WO1999018622A1 - Non-aqueous electrolyte secondary cell - Google Patents

Non-aqueous electrolyte secondary cell Download PDF

Info

Publication number
WO1999018622A1
WO1999018622A1 PCT/JP1998/004509 JP9804509W WO9918622A1 WO 1999018622 A1 WO1999018622 A1 WO 1999018622A1 JP 9804509 W JP9804509 W JP 9804509W WO 9918622 A1 WO9918622 A1 WO 9918622A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
aqueous electrolyte
negative electrode
positive
plate
Prior art date
Application number
PCT/JP1998/004509
Other languages
English (en)
French (fr)
Inventor
Kiyomi Kozuki
Seiichi Uemoto
Takabumi Fujii
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP98945633A priority Critical patent/EP0964461B1/en
Priority to CA002274483A priority patent/CA2274483C/en
Priority to DE69837533T priority patent/DE69837533T2/de
Priority to US09/319,500 priority patent/US6156452A/en
Publication of WO1999018622A1 publication Critical patent/WO1999018622A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/559Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/567Terminals characterised by their manufacturing process by fixing means, e.g. screws, rivets or bolts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/10Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with wound or folded electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a structure of a non-aqueous electrolyte secondary battery, particularly, a portion of a current collecting terminal for making an electrical connection to the outside and a portion for making an electrical connection to a lead plate of an electrode plate.
  • lithium secondary batteries which are currently the mainstream, use lithium transition metal composite oxides such as lithium cobalt oxide, lithium nickel oxide, and lithium manganate for the positive electrode, and can store and release lithium ions in the negative electrode
  • a non-aqueous electrolyte is used as the electrolyte. Since the potential of the lithium secondary battery is as high as 4 V or higher, A1 with high voltage resistance and high corrosion resistance is generally used as the material of the core material of the positive electrode and the structural material such as the sealing plate. ing.
  • CU which is a material having excellent electric conductivity, is generally used.
  • the strip-shaped positive electrode plate and the negative electrode plate are connected to each other by welding a lead plate to a central portion or one end of the end portion.
  • These electrode plates are laminated and wound via a separator to form an electrode plate group, and the lead plate is shown in FIG. As described above, it is electrically connected to the current collecting terminal by welding, etc., and the current is extracted through the lead plate.
  • connecting parts such as cables may be attached using the current collection terminal formed with the port.
  • A1 is used for the current collecting terminal, strength defects such as breakage of the port when the nut is tightened and distortion of the connecting portion due to compression of the seat may occur.
  • A1 is also susceptible to oxidation, which causes an increase in electrical resistance and a consequent decrease in electrical conductivity.
  • plating such as Ni to prevent oxidation.
  • the portion with the port portion is made of stainless steel, etc., which has higher tensile strength than A1, and the other portions are made of A1, and they are fastened to each other with screws to prevent them from turning. There is a way.
  • the present invention can solve the above-mentioned problems, and the object of the present invention is that even if the port is tightened with an excessive torque value, the port may be easily broken or the seat may be distorted.
  • the characteristics of A1 which are excellent in high voltage resistance and corrosion resistance, are to provide a current collector terminal for non-aqueous electrolyte batteries with a highly reliable port terminal that can be used as it is.
  • the volume that the electrode can occupy in the battery case is limited, so the longer the electrode is, the thinner the electrode is, and the current density per unit area of the electrode is reduced. Because of the increased area, the distance to the lead plate However, the effect of increasing the electrode area cannot be fully utilized.
  • two or more lead plates are attached to the same electrode plate to form a group, and these lead plates are taken out in parallel in the same direction and connected to the current collecting terminal. There is a way to do that.
  • the lead plate may be cut due to vibration or the like.
  • the present invention solves these problems, and particularly provides a non-aqueous electrolyte secondary battery having high vibration resistance that does not cause a failure in a connection portion such as breakage of a lead plate due to vibration or impact in a large battery. It is. Disclosure of the invention
  • the present invention provides a method according to the present invention, wherein a part forming an external terminal and a part connecting a lead plate derived from an electrode plate group are made of different metals, and these metals are connected by solid-phase bonding or vacuum. It is integrated by brazing.
  • a plurality of lead plates taken out are fixed with screws or rivets, and screws or rivets are arranged on the current collecting terminals electrically connected to the lead plates by welding, etc., and the lead plates are fixed.
  • At least one of the positive electrode and the negative electrode has a portion forming an external terminal protruding outside the battery case and a lead derived from the electrode plate group in the battery case.
  • the two parts are made of dissimilar metals, and the interface between the dissimilar metals is stabilized at the electrode potential by being integrated by solid-state bonding or vacuum brazing.
  • a current collecting terminal having low electric resistance and strength when processed can be obtained.
  • the method of solid-state welding is preferably one of diffusion welding, explosive welding, and friction welding.
  • the metal type of the part forming the external terminal is iron (Fe), nickel (Ni), stainless steel, or copper (Cu) because of its mechanical strength.
  • the metal species at the part to which the lead plate is connected is preferably aluminum (A 1) because it is stable even at the high potential of the positive electrode.
  • the strength of the normally used copper simple substance is secured as compared with the aluminum simple substance conventionally used for the positive electrode.
  • the metal type of the terminal part is made of copper or more. Any of iron (F e), nickel (N i), and stainless steel having the above mechanical strength may be used, and the portion to which the lead plate is connected may be copper (C u).
  • a plurality of lead plates taken out are fixed with screws or rivets, and a screw rivet is provided at a current collecting terminal portion electrically connected to the lead plate by welding or the like, and the lead plate is provided. Is fixed.
  • FIG. 1 is a sectional view of the structure of the battery of the present invention.
  • the following description is an example, and the present invention is not limited to this.
  • a non-aqueous electrolyte secondary battery comprising a positive electrode plate 1, a negative electrode plate 2, a non-aqueous electrolyte composed of an organic electrolyte, a non-aqueous electrolyte 5.
  • Negative electrode current collecting terminal 6 is made of one kind of metal, or a part of external terminal protruding outside battery case 4 is connected to a lead plate housed inside battery case 4. The part is composed of dissimilar metals, and the interface is joined by solid-state welding or vacuum brazing.
  • the most commonly used joining methods for materials which are based on the formation of metallurgical bonds at joints, can be broadly divided into fusion joining, brazing, and solid-state joining. You. Among these, the fusion bonding method is the most widely used technology.
  • solid-state joining and vacuum brazing are more suitable than fusion joining.
  • a high energy density heat source such as electron beam or laser welding
  • aluminum or copper will be used.
  • Metallic materials with high electrical conductivity have very high reflectivity, and The heating efficiency is poor. Therefore, when high power is applied, the heat history of the material to be welded becomes extremely fast, which causes problems such as solidification cracking and is not suitable.
  • One of the joining methods for dissimilar metals in the current collecting terminal of the present invention uses a solid-phase joining method. Under a temperature condition equal to or lower than the melting point of the base material to be joined, pressurization is performed to such an extent that the composition does not deform as much as possible. There is no danger of solidification cracking, etc., by joining using the diffusion of atoms generated between dissimilar metals at the joint.
  • one of the dissimilar metal joining methods for the current collecting terminal of the present invention uses vacuum brazing among brazing.
  • Vacuum brazing does not cause oxidation, carburization, or decarburization of the base material, and the stainless steel is made of stainless steel. It is a great advantage to heat highly oxidizable metals such as steel and aluminum (A 1) in vacuum. Also, since no flux is required, pre-processing and post-processing are not required, and a clean joint surface can be obtained.
  • the metal type of the part that forms the external terminal of the positive electrode current collector terminal is iron (Fe), nickel (Ni), stainless steel or copper (Cu), and the metal of the part to which the lead plate is connected
  • the seed is aluminum (A 1).
  • the strength is relatively high.Therefore, form a port, etc., and tighten the nut with an excessive torque when connecting cables etc. Also, there is no breakage due to breakage of the port and compression of the seat.
  • the negative electrode current collecting terminal of the present invention will be described.
  • the metal type of the part forming the external terminal is iron (Fe), nickel (Ni) or stainless steel, and the part connected to the lead plate is copper (Cu). If the above-mentioned metal is used for the part of the current collecting terminal that forms the external terminal outside the battery, the strength is relatively high. In addition, there is no breakage due to breakage of the Porto part and compression of the seat part. In addition, when copper is used in a portion of the current collecting terminal that is connected to the lead plate inside the battery, characteristics having excellent electrical conductivity can be secured.
  • FIG. 1 is a sectional view of the configuration of the present invention.
  • a non-aqueous electrolyte secondary battery including a positive electrode plate 1, a negative electrode plate 2, a non-aqueous electrolyte made of an organic electrolyte, a non-aqueous electrolyte made of an organic electrolyte, and a battery case 4 for accommodating them.
  • a plurality of positive electrodes are taken out from one end of the negative electrode plate 2, and a lead plate 7 made of aluminum is taken out from one end, and a lead plate 8 made of copper is taken out of the negative electrode.
  • a plurality of lead plates 7, 8 taken out of the positive and negative electrodes in parallel in the same direction are fixed by screws or rivets.
  • the aluminum positive electrode lead plate 7 and the portion of the positive electrode current collecting terminal 5 made of aluminum inside the battery are fixed with screws or rivets, and are electrically connected by ultrasonic welding.
  • the copper negative electrode lead plate 8 and the portion of the negative electrode current collecting terminal 6 made of copper inside the battery are fixed with screws or rivets, and are electrically connected by ultrasonic welding.
  • Ultrasonic welding imparts high-frequency vibrations to the parts to be joined, whereby metal atoms are diffused and recrystallized to form a joint, which does not reach high temperatures and forms a molten or brittle structure. There is no need to worry about solidification cracking. Also, the deformation of the weld is small. Since the joint area is larger than that of laser welding, it is superior when a large current is applied. In addition, maintenance can be performed easily and productivity is high.
  • Fixing the lead plate and the current collecting terminal with a screw or rivet can improve workability and absorb the vibration of ultrasonic waves.
  • a conduction path can be secured.
  • FIG. 1 is a longitudinal sectional view of the nonaqueous electrolyte secondary battery of the present invention
  • FIG. 2 is a longitudinal sectional view of a current collecting terminal of the nonaqueous electrolyte secondary battery of the present invention
  • FIG. 3 is a nonaqueous electrolyte secondary battery of the present invention.
  • Fig. 4 is a cross-sectional view showing a conventional current collecting terminal
  • Fig. 5 is a cross-sectional view showing another example of a conventional current collecting terminal
  • Fig. 6 is a cross-sectional view of a conventional battery.
  • FIG. 7 is a perspective view showing a conventional electrode group.
  • the positive current collector terminals were joined using the HIP method (hot isostatic pressing method).
  • HIP method hot isostatic pressing method.
  • the aluminum part 21 electrically connected to the lead plate inside the battery case and the stainless steel part 20 protruding outside the battery case and also serving as an external terminal are connected to each other by a surface roughness. Polished to 10 im or less, placed in a metal capsule, degassed, and sealed.
  • the bonding surface is a vacuum state (1 0- 2 ⁇ 1 0- 1 P a higher) was subjected to vacuum degassing under heat charged to 3 0 0 whole capsule Le in an electric furnace.
  • the capsules subjected to vacuum degassing are charged into the HIP method apparatus, and the temperature is raised to 110 T: and the pressure is simultaneously increased to 10 OPa in 4 hours. The temperature and pressure were reduced.
  • the obtained positive electrode current collector terminal was subjected to machining such as forming a port portion on a stainless steel portion, and subjected to Ni plating. This positive terminal is referred to as terminal A. (Example 2)
  • the rotating table was started to rotate at 100 rpm, the stationary table was moved to the rotating table, and material contact heating was started with a friction pressure of 49 MPa and a friction time of 3 seconds.
  • terminal B This positive terminal is referred to as terminal B.
  • the positive electrode current collector terminal shown in Fig. 2 was joined using the explosion pressure welding method.
  • the obtained positive electrode current collecting terminal was machined into a predetermined shape, a port portion was formed on a stainless steel portion, and Ni plating was performed.
  • This positive terminal is referred to as terminal C.
  • the positive electrode current collector terminals shown in Fig. 2 were joined using a vacuum brazing method.
  • the aluminum part 21 and the stainless steel part 20 were degreased with acetone, respectively, and fixed with a jig with magnesium (Mg) 'interposed as a brazing material on the joint surface. It is transported into a vacuum furnace and heated to 600 ° C at a vacuum of 100 to 5 Torr to evaporate magnesium, and the vapor pressure at this time destroys the oxide film on the joint surface. Good bonding.
  • Mg magnesium
  • the obtained positive electrode current collecting terminal was machined into a predetermined shape, a bolt portion was formed on a stainless steel portion, and Ni plating was performed. This positive terminal is referred to as terminal D. (Comparative Example 1)
  • terminal E As shown in Fig. 4, the whole of 20 and 21 was made of aluminum (A1050), and a port was formed in the portion of 20 and machined into a predetermined shape to produce a positive electrode current collector terminal. This positive terminal is referred to as terminal E.
  • a part 21 of the positive electrode current collector terminal where the lead plate of the positive electrode plate is electrically connected and accommodated in the battery case is made of aluminum (A1050) and machined into a predetermined shape.
  • the parts that protrude outside the battery case and also serve as external terminals were made of stainless steel (SUS 316L), machined into a predetermined shape, and fixed together with screws to produce positive current collector terminals.
  • This positive terminal is referred to as terminal F.
  • the negative electrode current collector terminals were joined using the HIP method (hot isostatic pressing method).
  • HIP method hot isostatic pressing method.
  • a copper part 21 electrically connected to the lead plate inside the battery case and a stainless steel part 20 protruding outside the battery case and also serving as an external terminal were joined to a surface roughness of 10 / It was polished to less than m, placed in a metal capsule, degassed, and sealed.
  • the bonding surface is a vacuum state (10- 2 ⁇ 10- 1 P a higher) was subjected to vacuum degassing under heating charged to 300 ° C in an electric furnace the entire capsule Le.
  • the vacuum degassed capsule is charged into the HIP method equipment, and the temperature is raised to 1100 ° C and the pressure is simultaneously increased to 10 OPa in 4 hours, held for 4 hours, and then reduced in 4 hours. Processed.
  • the obtained negative electrode current collecting terminal was subjected to mechanical processing such as forming a bolt portion on a stainless steel portion, and subjected to Ni plating. This negative terminal is referred to as terminal G.
  • terminal H As shown in FIG. 4, the entirety of 20, 21 was made of copper, a bolt portion was formed in the portion of 20, and machined into a predetermined shape to produce a negative electrode current collecting terminal. This negative terminal is referred to as terminal H.
  • Example 6 a battery having the cross-sectional structure shown in FIG. 1 was manufactured.
  • the negative electrode was mainly made of graphite capable of absorbing and releasing lithium
  • the positive electrode was made of lithium cobalt oxide as the active material.
  • the negative electrode plate is prepared by mixing polyvinylidene fluoride powder with graphite at 5 Wt (weight)% based on the whole negative electrode, adding N-methyl-2-pyrrolidone to adjust the paste, and collecting the obtained paste into a copper collector. It was prepared by coating on an electric body and drying.
  • acetylene black carbon powder was added to the positive electrode active material in an amount of 3 Wt% based on the positive electrode active material, and polyvinylidene fluoride powder was added in an amount of 5 Wt% to the positive electrode active material.
  • N-methyl-2-pyrrolidone was added.
  • the obtained paste was applied to an aluminum current collector and dried to produce a positive electrode plate.
  • an aluminum lead plate was attached to one end of the positive electrode plate, and a copper lead plate was attached to the negative electrode plate by ultrasonic welding so that they could be taken out in parallel in the same direction.
  • Positive and negative plates are stacked through a polyethylene resin separator and spirally wound around the core 16 to form a cylindrical electrode group with an outer diameter of (i) 58 mm and a length of 20 O mm Was prepared.
  • the terminal A according to Example 1 was used as the positive electrode current collecting terminal, and the terminal G according to Example 5 was used as the negative electrode current collecting terminal.
  • the positive electrode sealing plate was produced as follows. As shown in Fig. 3, a resin insulating gasket 9 is inserted into the positive current collector terminal 5, followed by a stainless steel cover plate 10, a resin insulating gasket 11, and a stainless steel washer 1 Insert 2. Next, a push nut 13 made of stainless steel is inserted and pressurized by a press machine to be fastened. The positive electrode current collecting terminal 5 and the cover plate 10 are insulated through a resin insulating gasket 9, and airtightness is secured by fastening the push nut 13. In this way, a positive electrode sealing plate 14 was produced.
  • the negative electrode sealing plate 15 was prepared in the same manner as the positive electrode sealing plate 14 except that the negative electrode current collecting terminal 6 was used, the 18 had no liquid injection hole, and did not include the 19 closed lid.
  • the fabricated electrode group was inserted into a stainless steel battery case 4 having an outer diameter of ⁇ 60 mm and a length of 250 mm, and a resin insulating plate 17 was inserted from one open end. Put on the electrode group. Next, the negative lead plate 8 is taken out from the hole previously formed in the resin insulating plate 17.
  • the electrolytic solution is a solution prepared by dissolving 1 to 6 at 1 mol 71 in an equal volume solvent of ethylene glycol and getylcapone.
  • the injection hole 18 was covered with a stainless steel injection hole sealing lid 19 and sealed by laser welding.
  • the battery obtained in this manner was designated as battery a of the present invention.
  • the battery obtained in the same manner as the battery a in Example 6 was used as a comparative battery b except that the lead taken out from the electrode group was not fixed with a rivet or the like, and the vicinity of the welding to the current collecting terminal was not fixed with a rivet or the like. .
  • Table 1 shows that the terminals A to D and G of the example of the present invention and the terminals E, F and H of the comparative example were gradually applied with a tensile load in the axial direction.
  • the airtightness of the dissimilar metal part was measured using a A comparison of resistance values at three points is shown.
  • Table 2 shows the number of connection failures between the current collecting terminal and the lead after the drop test of the battery a of the example of the present invention and the battery b of the comparative example.
  • the terminals A to D of the present invention use a stainless steel having a high strength in the port portion, so that the breaking failure when tightening the nut is small. Did not. im mu fcfc helium
  • the terminals A to D in which dissimilar metals were joined according to the present invention had a very high hermeticity of the dissimilar metal joint and a low resistance value.
  • the terminal G of the example of the present invention and the terminal H of the comparative example did not have such a large difference, but the terminal H of the comparative example was not so bad when tightened with a nut, but was slightly deformed. Was observed, but was not observed at all in the terminal G of the embodiment.
  • the part forming the external terminal and the part connected to the lead plate derived from the electrode group are made of different metals, and these metals are used. Since solid parts are joined by solid-state joining or vacuum brazing, the use of strong metal for the external terminals makes it possible to tighten nuts with excessive torque, such as when connecting cables. Breakage failure can be prevented. In addition, the electrical conductivity of the joint surface between the metals can be improved by integrating them by a solid-phase joining method or a vacuum brazing method.
  • connection failure can be reduced.

Description

非水電解質二次電池 技術分野
本発明は、 非水電解質二次電池の、 とくにその集電端子において外部との電 気的接続を行う部分と極板のリード板との電気的接続を行う部分の構造に関す るものである。 背景技術
近年、 A V機器、 パソコン等の電子機器、 通信機器の駆動用電源として小型、 軽量で高エネルギー密度の二次電池が求められ、 一方大型の電池は電気自動車 をはじめ、 環境問題に関する分野で研究開発がなされ、 大容量、 高出力、 高電 圧等に優れた二次電池が求められており、 その中でもリチウムニ次電池は大ぃ に期待されている。 とくに、 大型のリチウム二次電池については、 高出力化に よる大電流負荷特性の向上、 長寿命化の要求に加え、 車両用電源として搭載し た場合でも振動などによってリード板切れ等の接続部の不具合が発生しないよ うな耐振動性が要求されている。
一般的に現在、 主流となっているリチウム二次電池は、 正極にコバルト酸リ チウム、 ニッケル酸リチウム、 マンガン酸リチウム等のリチウム遷移金属複合 酸化物を用い、 負極にリチウムイオンを吸蔵、 放出可能な炭素材料を用い、 電 解質に非水電解質を用いている。 このリチウム二次電池は正極の電位が 4 V以 上と高いため、 正極の芯材ゃ封口板等の構造部材の材質として耐高電圧性、 耐 食性の高い A 1が一般的に多く用いられている。 また、 負極には電気伝導性に 優れた材質である C Uが一般的に用いられている。
また、 通常、 帯状の正極板、 負極板のそれぞれには中央部または端部の一力 所にリード板を溶接するなどにより接続している。 そして、 これらの極板をセ パレー夕を介して積層、 巻回して極板群を構成し、 前記リード板を図 6に示す ように集電端子と溶接するなどにより電気的に接続し、 電流の取り出しをリー ド板を介して行っている。
大型電池の場合は高出力化に伴う負荷特性の向上が求められている。 この場 合、 電極の面積を大きくして電極の単位面積当たりの電流密度が過大にならな いように設計する必要があるが、 単電池の高さ方向、 即ち電極板の幅方向の寸 法拡大により、 電極面積を拡大することはある程度の限界があり、 実際には電 極長さを大きくすることによって高出力化のによる負荷特性の向上を図ってい る。
大型の電池を複数接続する場合に、 ポルト部を形成した集電端子を用いてケ —ブル等の接続部品を取り付けることがある。 その際に、 集電端子に A 1を用 いると、 ナツ卜の締め付け時にポルトが折損し易いことや座部が圧縮され接続 部のゆがみが生じることなどの強度的欠点を生じることがある。
また、 A 1は酸化されやすく、 その場合、 電気抵抗の上昇およびそれに伴う 電気伝導性の低下を引き起こす。 また、 酸化を防ぐために N i等のメツキを施 すことは一般に困難とされている。 この課題を解決するため、 ポルト部を有す る部分を A 1よりも引っ張り強度の大きいステンレス鋼等で構成し、 それ以外 の部分を A 1で構成し、 互いをネジで締め回り止めをする方法がある。
この場合は、 ポルト部には強度の強い材質が用いられているためナツトの締 め付けによる折損という欠点は解消されるものの、 異種金属間抵抗により、 端 子部の抵抗が高くなることや、 気密性が十分に得られないという欠点がある。 本発明は、 上記のような課題を解決できるものであり、 その目的とするとこ ろは過大なトルク値でポルトの締め付けを行っても、 ポルト部が容易に折損し たり座部がゆがむことがなく、 耐高電圧、 耐食性に優れた A 1の特性はそのま ま生かすことのできる信頼性の高いポルト端子を備えた非水電解質電池用集電 端子を提供することである。
また、 電極構成に関しては、 電池ケース内で電極が占有しうる体積には限り があるため、 電極を長くするに従い電極の厚さは薄くなり、 電極の単位面積当 たりの電流密度は低下するものの、 面積が増大した分、 リード板までの距離が 長く、 即ち電気抵抗が大きくなり電極の面積を大きくした効果が十分活かされ ない。
この課題解決のために図 7に示すように 2個以上のリ一ド板を同一極板に取 り付けて群構成し、 これらのリード板を同方向に平行に取り出し、 集電端子と 接続する方法がある。 これにより前記課題は解決されるものの、 車両用電源と して搭載された場合、 振動などによりリード板が切れる恐れがある。
本発明は、 これらの課題を解決するもので、 とくに大型電池において、 振動 や衝撃等によるリード板切れ等の接続部の不具合が発生しない耐振動性の高い 非水電解質二次電池を提供するものである。 発明の開示
上記端子部材に関する課題を解決するために本発明は、 外部端子をなす部分 と極板群から導出されたリード板を接続した部分とは異種金属からなり、 これ らの金属が固相接合あるいは真空ろう付による接合により一体化されたもので ある。 また、 電極構成に関しては複数取り出したリード板をビスやリベットで 固定したものであり、 リード板と溶接などにより電気的に接続した集電端子部 にビスやリベットを配し、 前記リード板を固定することにより、 前記課題を解 決するものである。
本発明の非水電解質二次電池では正極、 負極のうち、 少なくとも一方の集電 端子が電池ケース外に突出した外部端子をなす部分と電池ケ一ス内の極板群か ら導出されたリード板が接続された部分とから構成されており、 それらの二つ の部分は異種金属からなり、 異種金属間の境界面は固相接合または真空ろう付 により一体化されることにより電極電位で安定で、 電気抵抗が低く、 かつ加工 された際に強度を有する集電端子とすることができる。
固相接合の方法としては拡散接合、 爆発圧接、 摩擦接合のいずれかであるこ とが好ましい。
また、 正極集電端子の場合には、 外部端子をなす部分の金属種は機械的強度 を有する点で鉄 (F e ) 、 ニッケル (N i ) 、 ステンレス鋼、 銅 (C u ) のい ずれかで、 リード板が接続された部分の金属種は正極の高電位でも安定である 点でアルミニウム (A 1 ) が好ましい。
一方、 負極集電端子の場合には、 通常用いられる銅単体でも正極で従来用い られていたアルミニウム単体に比べ、 強度は確保されるが、 必要に応じて端子 をなす部分の金属種に銅以上の機械的強度を有する鉄 (F e ) 、 ニッケル (N i ) 、 ステンレス鋼のいずれかを用い、 リード板が接続された部分を銅 (C u ) としてもよい。
また、 電極構成に関しては複数取り出したリード板をビスやリベッ卜で固定 したものであり、 リード板と溶接などにより電気的に接続した集電端子部にビ スゃリベットを配し、 前記リード板を固定するものである。
以下、 本発明の実施の形態について図 1を参照して説明する。 図 1は本発明 の電池の構成断面図である。 尚、 以下の説明は一例であって、 本発明はこれに 限定されるものではない。
正極板 1、 負極板 2、 セパレー夕 3からなる極板群と、 有機電解液からなる 非水電解質と、 これらを収納する電池ケース 4を備えた非水電解質二次電池で、 正極集電端子 5、 負極集電端子 6は 1種類の金属から構成するか、 または電池 ケース 4より外に突出した外部端子をなす部分と電池ケース 4より内に収納さ れたリ一ド板が接続された部分とを異種金属から構成するもので、 その境界面 は固相接合や真空ろう付けにより接合したものである。
以下では、 本発明の異種金属の接合について説明する。
現在、 一般的に用いられている材料の接合法の中で、 接合部における冶金学 的な結合の形成に基礎に置くものは、 溶融接合法、 ろう付け法、 固相接合法に 大別される。 この中で溶融接合法は最も広く利用されている技術である。
しかし、 接合される材料や種類、 形状によっては溶融接合法よりも固相接合 法、 真空ろう付け法の方が適している。 例えば、 異種金属の溶融接合法による 接合のうち、 一方の金属にアルミニウムや銅 (C u ) を用いる場合は、 電子ビ ームゃレーザー溶接等の高エネルギー密度熱源を用いるとアルミニウムや銅の ように電気伝導性の高い金属材料は反射率が非常に大きく、 レーザ一照射によ る加熱効率が悪い。 このため高パワーを投入すると、 溶接される材料の熱履歴 は極度に早くなりこのため凝固割れ等の問題があり、 不適である。
本発明の集電端子における異種金属の接合方法のひとつは、 固相接合法を用 いるものであり、 接合する母材の融点以下の温度条件で、 組成変形をできるだ け生じない程度加圧して接合部で異種金属間に生じる原子の拡散を利用して接 合することで、 凝固割れ等の心配がない。
また、 本発明の集電端子における異種金属接合方法のひとつは、 ろう付けの 中でも真空ろう付けを用いるものであり、 真空ろう付けは、 母材が酸化、 浸炭、 脱炭することがなく、 ステンレス鋼やアルミニウム (A 1 ) 等の非常に酸化さ れやすい金属は真空中で加熱することが大きなメリットとなる。 また、 フラッ クスが不要であるので前処理、 後処理が不要になりきれいな接合面を得ること ができる。
以下では、 本発明の正極集電端子について説明する。 正極集電端子は外部端 子をなす部分の金属種が、 鉄 (F e ) 、 ニッケル (N i ) 、 ステンレス鋼ある いは銅(C u ) であり、 リード板が接続された部分の金属種はアルミニウム (A 1 ) である。
集電端子において電池外部で外部端子をなす部分に上記の金属を用いると比 較的強度が高いので、 ポルト部等を形成し、 ケーブル等の接続時に過大なトル クでナットの締め付けを行つてもポルト部の折損や座部の圧縮によるゆがみが 無い。
また、 集電端子において電池内部でリード板と接続される部分がアルミニゥ ムを用いると、 耐電圧性、 耐食性および電気伝導性に優れた特性を確保するこ とができる。
以下では、 本発明の負極集電端子について説明する。 負極集電端子は外部端 子をなす部分の金属種が鉄 (F e ) 、 ニッケル (N i ) あるいはステンレス鋼 でありリード板が接続された部分は銅 (C u ) である。 集電端子において電池 外部で外部端子ををなす部分に上記の金属を用いると比較的強度が高いのでポ ルト部等を形成しケーブル等の接続時に過大なトルクでナツトの締め付けを行 つてもポルト部の折損や座部の圧縮によるゆがみが無い。 また、 集電端子にお いて電池内部でリード板と接続される部分に銅を用いると電気伝導性に優れた 特性を確保することができる。
以下では電池ケース内に収納されたリード板と集電端子との接合形態の一例 について図 1を参考にして説明する。 図 1は本発明の構成断面図である。 正極 板 1、 負極板 2、 セパレー夕 3からなる極板群と、 有機電解液からなる非水電 解質と、 これらを収納する電池ケース 4を備えた非水電解質二次電池で、 正極 板 1および負極板 2はそれぞれ一端から複数本の正極はアルミニウム製のリ一 ド板 7、 負極は銅製のリード板 8を取り出している。 正、 負極のそれぞれにお いて同方向に平行に取り出された複数のリード板 7、 8はビスやリベットかし めにより固定されている。 アルミニウム製正極リード板 7と、 正極集電端子 5 の電池内部のアルミニウムからなる部分はビスやリベットにより固定されてお り、 さらに超音波溶接により電気的に接続されている。
一方、 銅製の負極リード板 8と、 負極集電端子 6の電池内部の銅からなる部 分はビスやリベットにより固定されており、 さちに超音波溶接により電気的に 接続されている。
銅やアルミニウムのように電気伝導度の高い金属材料の接合には超音波溶接 を用いることが好ましく、 溶融溶接であるレーザー溶接では加熱効率が悪いこ とから高パワーの導入が必要であり生産性が悪く、 メンテナンスも困難になり 作業性が悪い。 また、 熱影響による凝固割れの問題や溶接部の変形も大きい。 抵抗溶接についても同様である。
それに対し、 超音波溶接は接合される部分に高周波振動を与えることにより 金属の原子が拡散され、 再結晶することで接合がなされるので高温に達するこ とがなく溶融や脆い铸造組織を形成することがなく凝固割れのような心配がな い。 また溶接部の変形も小さい。 接合面積もレーザ一溶接等よりも大きいので 大電流を流す場合に優位である。 また、 メンテナンスを容易に行うことができ、 生産性も高い。
さらにこのように複数のリ一ド板を集電端子に超音波溶接する場合、 あらか じめビスやリベッ卜でリード板と集電端子を固定していることは、 作業性が高 まることや、 超音波の振動を吸収する役割を果たすことができるので、 振動に よる各極板とリード板の接合部分の破損や各極板の合剤層 (活物質層) の脱落 を防止することができ、 万がー車両電源搭載時の振動や衝撃により溶接による 電気的接続部が外れることがあっても導通経路を確保することができる。 図面の簡単な説明
図 1は本発明の非水電解質二次電池の縦断面図、 図 2は本発明の非水電解質 二次電池の集電端子の縦断面図、 図 3は本発明の非水電解質二次電池の封口板 の組立時の様子を示す図、 図 4は従来の集電端子を示す断面図、 図 5は従来の 集電端子の他の例を示す断面図、 図 6は従来の電池断面図、 図 7は従来の極板 群を示す斜視図である。 発明を実施するための好ましい形態
以下、 本発明の実施例を、 図面を参照しながら説明する。
(実施例 1 )
図 2に示したように正極集電端子を、 H I P法 (熱間等方加圧法) を用いて 接合した。 まず、 正極集電端子において、 電池ケース内でリード板と電気的に 接続するアルミニウム部分 2 1と電池ケース外に突出し外部端子を兼ねるステ ンレス鋼部分 2 0とを、 その接合面を面粗度 1 0 i m以下に研磨し、 金属カブ セル内に入れ脱気、 密封した。
接合面は真空状態 (1 0— 2〜1 0—1 P a以上) であることが好ましく、 カプセ ル全体を電気炉に装入し 3 0 0 に加熱しながら真空脱気を行った。
真空脱気を行ったカプセルを H I P法装置に装入し、 温度を 1 1 0 0 T:、 圧 力を 1 0 O P aまで 4時間で同時に昇温昇圧し 4時間保持した後、 4時間で降 温減圧処理した。 得られた正極集電端子はステンレス鋼部分にポルト部を形成 するなどの機械加工を行い、 N iメツキを行った。 この正極端子を端子 Aとす る。 (実施例 2 )
次に、 図 2に示した正極集電端子を摩擦接合法 (ブレーキ法) を用いて接合 した。
正極集電端子のアルミニウム部分 2 1を静止台に挿入し、
方、 正極集電端子のステンレス鋼部分 2 0を回転台に挿入し、
回転台を 1 0 0 0 r p mで回転を開始し、 静止台を回転台に移動し摩擦圧力 4 9 M P a、 摩擦時間 3秒で素材接触加熱を開始した。
次に回転を急停止しアップセット圧力 7 8 . 5 M P a、 アップセット時間 6 秒で加圧し、 アルミニウム部分とステンレス鋼部分の接合品を得た。 得られた 正極集電端子は所定の形状に機械加工し、 ステンレス鋼部分にポルト部を形成 し N iメツキを行った。 この正極端子を端子 Bとする。
(実施例 3 )
図 2に示した正極集電端子を爆発圧接法を用いて接合した。
正極集電端子において、 アルミニウム部分 2 1を上方に、 ステンレス鋼部分 2 0を下方に、 それぞれ隙間を設けてセットし、 アルミ材に爆薬と雷管をしか けて起爆させて下方に押し曲げられ衝突するときの両金属の著しい流動で表面 の酸化皮膜吸着ガス層を排除し活性化した面同士を冶金的に接合した。
得られた正極集電端子は、 所定の形状に機械加工し、 ステンレス鋼部分にポ ルト部を形成し N iメツキを行った。 この正極端子を端子 Cとする。
(実施例 4 )
図 2に示した正極集電端子を、 真空ろう付け法を用いて接合した。
正極集電端子において、 アルミニウム部分 2 1とステンレス鋼部分 2 0をそ れぞれアセトンで脱脂し、 接合面にろう付け材としてマグネシウム (M g )' を 介在させて治具により固定した。 真空炉内に搬入し 1 0 1 0— 5 T o r rの真 空度で 6 0 0 °Cまで加熱してマグネシウムを蒸発させてこのときの蒸気圧で接 合面の酸化皮膜を破壊することで良好に接合した。
得られた正極集電端子は、 所定の形状に機械加工し、 ステンレス鋼部分にボ ルト部を形成し N iメツキを行った。 この正極端子を端子 Dとする。 (比較例 1 )
図 4に示したように、 20, 21の全体がアルミニウム (A 1050) から なり、 20の部分にポルト部を形成し、 所定の形状に機械加工して正極集電端 子を作製した。 この正極端子を端子 Eとする。
(比較例 2 )
図 5に示したように正極集電端子の正極板のリ一ド板が電気的に接続され電 池ケース内に収納される部分 21はアルミニウム (A 1050) から作製し、 所定の形状に機械加工し、 電池ケース外に突出し外部端子を兼ねる部分 20は ステンレス鋼 (SUS 316L) にして、 所定の形状に機械加工し、 互いにね じで固定して正極集電端子を作製した。 この正極端子を端子 Fとする。
' (実施例 5)
図 2に示したように、 負極集電端子を H I P法 (熱間等方加圧法) を用いて 接合した。 まず、 負極集電端子において、 電池ケース内でリード板と電気的に 接続する銅部分 21と電池ケース外に突出し外部端子を兼ねるステンレス鋼部 分 20とを、 その接合面を面粗度 10 / m以下に研磨し、 金属カプセル内に入 れ脱気、 密封した。
接合面は真空状態 (10— 2〜10— 1 P a以上) であることが好ましく、 カプセ ル全体を電気炉に装入し 300°Cに加熱しながら真空脱気を行った。
真空脱気を行ったカプセルを H I P法装置に装入し、 温度を 1 100°C、 圧 力を 10 OP aまで 4時間で同時に昇温昇圧し 4時間保持した後、 4時間で降 温減圧処理した。 得られた負極集電端子はステンレス鋼部分にボルト部を形成 するなどの機械的加工を行い、 N iメツキを行った。 この負極端子を端子 Gと する。
(比較例 3)
図 4に示したように、 20, 21の全体が銅からなり、 20の部分にボルト 部を形成し、 所定の形状に機械加工して負極集電端子を作製した。 この負極端 子を端子 Hとする。
(実施例 6) 本実施例では図 1に示した断面構造の電池を作製した。 負極はリチウムを吸 蔵、 放出可能な黒鉛を主材料とし、 正極はリチウムコバルト酸化物を活物質に 用いた。
負極板は、黒鉛にポリフッ化ビニリデン粉を負極全体に対し 5 W t (重量) % を混合した後、 N—メチルー 2 _ピロリドンを添加してペーストを調整し、 得 られたペーストを銅製の集電体に塗布し乾燥して作製した。
他方、 正極活物質にアセチレンブラックの炭素粉を正極活物質に対し 3 W t %とポリフッ化ビニリデン粉を正極活物質に対し 5 W t %をそれぞれ加えて 混合した後、 N—メチルー 2—ピロリドンを添加してペーストを調整した。 得 られたペーストをアルミニウム製の集電体に塗布し乾燥して正極板を作製した。 得られた正、 負極板において、 正極板には一端にアルミニウム製のリード板 を、 負極板には銅製のリード板を、 それぞれ同方向に平行に取り出せるように 超音波溶接で取り付けた。 正、 負極板をポリエチレン樹脂製セパレ一夕を介し て重ねて巻芯 1 6の周りに渦巻状に巻回し、 外観寸法径 (i) 5 8 mm、 長さ 2 0 O mmの円筒型電極群を作製した。
正極集電端子は、 実施例 1による端子 Aを、 負極集電端子は実施例 5による 端子 Gを用いた。
正極封口板は以下のようにして作製した。 図 3に示したように、 正極集電端 子 5に樹脂製絶縁ガスケット 9を挿入、 続いてステンレス鋼製の蓋板 1 0、 さ らに樹脂製絶縁ガスケット 1 1、 ステンレス鋼製のワッシャー 1 2を挿入する。 次にステンレス鋼製のプッシュナツト 1 3を挿入しプレス機で加圧し締結する。 正極集電端子 5と蓋板 1 0は、 樹脂絶縁ガスケット 9を介し絶縁されておりプ ッシュナツト 1 3の締結により気密性が確保される。 このようにして正極封口 板 1 4を作製した。
負極封口板 1 5は、 負極集電端子 6を用い、 1 8の注液孔がなく、 1 9の密 閉蓋を含まない以外は、 正極封口板 1 4と同様にして作製した。
作製した電極群を本実施例では外観寸法径 Φ 6 0 mm、 長さ 2 5 0 mmのス テンレス製電池ケース 4に挿入し、 一方の開口端から樹脂製絶縁板 1 7を入れ、 電極群の上に乗せる。 次に樹脂製絶縁板 1 7に予めあけておいた穴から負極リ —ド板 8を取り出す。
負極リード板 8および負極集電端子 6にあらかじめあけておいた穴に銅製の リベットを挿入し、 そのリベットをかしめて固定した後、 更に超音波溶接し、 接合した。 負極の蓋板 1 0の周縁部と電池ケース 4とをレーザ一溶接を行い、 封口した。 次にケース 4のもう一方の正極側の開口端からも樹脂製絶縁板 1 7 をいれ、 正極に関しても上記した負極と同様の工程を行った。 ただし、 正極の 場合はリベットおよび集電端子のリベットをかしめる部分はアルミニウムから なる。 正極封口板 1 4に設けた注液孔 1 8から作製した電解液を注入した。 こ こで、 電解液は、 エチレン力一ポネートとジェチルカ一ポネートの等体積溶媒 に、 1 ? 6を1モル71 で溶解したものである。 ついで、 注液孔 1 8にステ ンレス製の注液孔密閉蓋 1 9をかぶせ、 レーザ一溶接を行い封止した。 このよ うにして得た電池を本発明の電池 aとした。
(比較例 4 )
電極群から取り出したリードをリベット等で固定しないこと、 集電端子との 溶接近傍をリベット等で固定しないこと以外は実施例 6の電池 aと同様にして 得た電池を比較の電池 bとした。
(表 1 ) は本発明の実施例の端子 A〜D, Gと比較例の端子 E , F , Hを軸 方向に引っ張りの荷重を徐々に加え、 各試験品が破断するまで続けて、 破断し たときの最大引張荷重が任意に設定した最小引張荷重基準値を充足するかどう かを調べると共に、 異種金属部の気密性をへリゥムリーク検査を用いて測定し た結果、 集電端子部の抵抗値の 3点での比較を示す。
(表 2 ) には本発明の実施例の電池 aと比較例の電池 bとの落下試験後の集 電端子部とリ一ド部の接続不良数を示す。
(表 1 ) に示したように比較例 1のアルミニウム製の端子 Eに比べて本発明 の端子 A〜Dは、 ポルト部に強度の強いステンレス鋼を用いているためナツト 締め付け時の折損不良はなかった。 i ム fcfc ヘリウム
τ . ゥ l¾s何里个氏リークテスト 正極端子 A 実施例 1 SUS/AI HIP法 0/100個 10 Torr 0.008.Q 正桎端子 B 実施例 2 SUS/A1 ブレーキ法 0/100個 10— 0.009 正極端子 C 実施例 3 SUS/AI 爆発圧接法 0/100個 10— 0.008 正極端子 D 実施例 4 SUS/AI 真空ろう付け法 0/100個 0.007 正極端子 E 比較例 1 Al 30/100個 0.002 正極端子 F 比較例 2 SUS/AI ねじ止め 0/100個 1( 2以上 0.2 負極端子 G 実施例 5 SUS/Cu HIP法 0/100個 1 0-9~-12 0.007 負極端子 H 比較例 3 Cu 0/100個 * 0.002
*不良ではないが、やや変形したものが見られた
表 2
Figure imgf000014_0001
また、 比較例 2の単に異種金属をねじ止めした端子 Fに比べて本発明により 異種金属を接合した端子 A〜Dは異種金属接合部の気密性が非常に高く、 また 抵抗値も低かった。 また、 本発明め実施例の端子 Gと比較例の端子 Hでは、 そ れほど大きな差はなかったが、 比較例の端子 Hがナツトで締め付けた場合に不 良というほどではないが、 やや変形が見られたのに対し、 実施例の端子 Gでは 全く見られなかった。
また、 (表 2 ) に示したように本発明によりリードを固定した電池 aは比較 例 4の電池 bで見られた接続不良の発生はなかった。 なお、 正、 負極の集電端 子において、 ステンレス鋼を用いた部分に正極では鉄、 ニッケル、 銅を用いた 場合、 また、 負極では鉄、 ニッケルを用いた場合でも同様の効果が得られた。 産業上の利用可能性
以上のように、 本発明は正極および負極の集電端子において、 外部端子をな す部分と極板群から導出されたリード板が接続された部分とを異種金属で構成 し、 これらの金属を固相接合法あるいは真空ろう付法により一体化しているの で、 外部端子をなす部分に強度の強い金属を用いることにより、 ケーブルの接 続等の過大なトルクでナツトの締め付けを行う際にも折損不良を防止できる。 また、 固相接合法や真空ろう付法により一体化することにより、 金属間の接 合面の電気導電性を良好にすることができる。
また、 電極群から取り出した複数のリード板と集電端子をビスやリベッ卜で 固定することにより、 接続不良を低減することができる。

Claims

請求の範囲
1. 正極板、 負極板、 セパレー夕からなる極板群と、 非水電解質と、 これらを 収容する電池ケースと、 一端が外部端子を兼ねる正、 負極集電端子とを備 え、 前記集電端子の他端には各極板のリード板が電気的に接続されており、 正極、 負極のうち、 少なくとも一方の集電端子が電池ケース外に突出した 外部端子をなす部分と電池ケース内の極板群から導出されたリード板が接 続された部分とから構成されており、 それらの二つの部分は異種金属から なり、 異種金属間の境界面は固相接合により一体化された非水電解質二次 電池。
2. 固相接合の方法は拡散接合、 爆発圧接、 または摩擦接合である請求の範囲 第 1項記載の非水電解質二次電池。
3. 正極集電端子は、 外部端子をなす部分の金属種が鉄(F e) 、 ニッケル(N i ) 、 銅 (Cu) またはステンレス鋼であり、 リード板が接続された部分 の金属種がアルミニウム (A 1 ) である請求の範囲第 1項または第 2項に 記載の非水電解質二次電池。
4. 負極集電端子は、 外部端子をなす部分の金属種が鉄(F e) 、 ニッケル(N i ) あるいはステンレス鋼であり、 リード板が接続された部分の金属種が (Cu) である請求の範囲第 1項または第 2項記載の非水電解質二次電池。
5. 正極板、 負極板、 セパレー夕からなる極板群と、 非水電解質と、 これらを 収容する電池ケースと、 一端が外部端子を兼ねる正、 負極集電端子とを備 え、 前記集電端子の他端には各極板のリード板が電気的に接続されており、 正極、 負極のうち少なくとも一方の集電端子が電池ケース外に突出した外 部端子をなす部分と電池ケース内の極板群から導出されたリード板が接続 . された部分とは異種金属からなり、 異種金属間の境界面は真空ろう付けに より一体化された非水電解質二次電池。
6. 正極集電端子は、 外部端子をなす部分の金属種が鉄(F e) 、 ニッケル(N i ) 、 銅 (Cu) あるいはステンレス鋼であり、 リード板が接続された部 分の金属種がアルミニウム (A 1 ) である請求の範囲第 5項記載の非水電 解質二次電池。
7 . 負極の集電端子は、 外部端子をなす部分の金属種が鉄 (F e ) 、 ニッケル (N i ) あるいはステンレス鋼であり、 リード板が接続された部分の金属種 が (C u ) である請求の範囲第 5項記載の非水電解質二次電池。
8 . 正極板、 負極板、 セパレ一夕からなる極板群と、 非水電解質と、 これらを 収容する電池ケースと、 一端が外部端子を兼ねる正、 負極集電端子とを備 え、 前記正極、 負極のうち、 少なくとも一方の集電端子の他端には各極板 から複数本取り出されたリード板がビスまたはリベットにより電気的に接 続されている請求の範囲第 1項または第 5項記載の非水電解質二次電池。
9 . 前記リード板と接続された集電端子がビスまたはリベットで固定されてい る請求の範囲第 8項記載の非水電解質二次電池。
PCT/JP1998/004509 1997-10-07 1998-10-06 Non-aqueous electrolyte secondary cell WO1999018622A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP98945633A EP0964461B1 (en) 1997-10-07 1998-10-06 Non-aqueous electrolyte secondary cell
CA002274483A CA2274483C (en) 1997-10-07 1998-10-06 Non-aqueous electrolyte secondary battery
DE69837533T DE69837533T2 (de) 1997-10-07 1998-10-06 Sekundärzelle mit nichtwässigem elektrolyt
US09/319,500 US6156452A (en) 1997-10-07 1998-10-06 Non-aqueous electrolyte secondary cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP27411897 1997-10-07
JP9/274118 1997-10-07

Publications (1)

Publication Number Publication Date
WO1999018622A1 true WO1999018622A1 (en) 1999-04-15

Family

ID=17537276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/004509 WO1999018622A1 (en) 1997-10-07 1998-10-06 Non-aqueous electrolyte secondary cell

Country Status (7)

Country Link
US (1) US6156452A (ja)
EP (1) EP0964461B1 (ja)
KR (1) KR100314956B1 (ja)
CN (1) CN1121072C (ja)
CA (1) CA2274483C (ja)
DE (1) DE69837533T2 (ja)
WO (1) WO1999018622A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100675700B1 (ko) * 1999-08-10 2007-02-01 산요덴키가부시키가이샤 비수 전해액 이차 전지 및 그 제조 방법
US7781092B2 (en) 2002-12-18 2010-08-24 Samsung Sdi Co., Ltd. Secondary battery and method of manufacturing same

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6844110B2 (en) * 2000-05-24 2005-01-18 Ngk Insulators, Ltd. Lithium secondary cell and assembly thereof
US8168350B1 (en) 2002-07-02 2012-05-01 Microcell Corporation Fuel cell structures and assemblies with channeled current collectors, and method of making the same
US6884539B2 (en) * 2002-07-02 2005-04-26 Microcell Corporation Microcell electrochemical devices and assemblies with corrosion-resistant current collectors, and method of making the same
US7473490B2 (en) 2002-07-02 2009-01-06 Microcell Corporation Fuel cell structures and assemblies with channeled current collectors, and method of making the same
US8394522B2 (en) * 2002-08-09 2013-03-12 Infinite Power Solutions, Inc. Robust metal film encapsulation
US8445130B2 (en) 2002-08-09 2013-05-21 Infinite Power Solutions, Inc. Hybrid thin-film battery
US7993773B2 (en) * 2002-08-09 2011-08-09 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8431264B2 (en) 2002-08-09 2013-04-30 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8404376B2 (en) * 2002-08-09 2013-03-26 Infinite Power Solutions, Inc. Metal film encapsulation
US8236443B2 (en) 2002-08-09 2012-08-07 Infinite Power Solutions, Inc. Metal film encapsulation
US20070264564A1 (en) 2006-03-16 2007-11-15 Infinite Power Solutions, Inc. Thin film battery on an integrated circuit or circuit board and method thereof
DE10240112A1 (de) * 2002-08-30 2004-05-27 Ionity Ag Batteriekonfektionierung
WO2004033116A1 (en) * 2002-10-07 2004-04-22 Coatings For Industry, Inc. Formation of corrosion-resistant coating
JP4581323B2 (ja) * 2002-11-25 2010-11-17 株式会社Gsユアサ 電池及びその製造方法
KR100578800B1 (ko) * 2004-02-16 2006-05-11 삼성에스디아이 주식회사 이차 전지
US20080076013A1 (en) * 2006-07-26 2008-03-27 Wu Donald P H Conductive Structure for an Electrode Assembly of a Lithium Secondary Battery
US8062708B2 (en) 2006-09-29 2011-11-22 Infinite Power Solutions, Inc. Masking of and material constraint for depositing battery layers on flexible substrates
US8197781B2 (en) 2006-11-07 2012-06-12 Infinite Power Solutions, Inc. Sputtering target of Li3PO4 and method for producing same
KR100810601B1 (ko) * 2006-12-29 2008-03-06 새한에너테크 주식회사 대면적 2차전지용 크루드 셀 및 그 제조방법
KR100820127B1 (ko) 2007-03-08 2008-04-08 현대자동차주식회사 확산접합법을 이용한 연료전지용 금속분리판 접합장치
TWI441937B (zh) 2007-12-21 2014-06-21 Infinite Power Solutions Inc 形成用於電解質薄膜之濺鍍靶材的方法
US8268488B2 (en) * 2007-12-21 2012-09-18 Infinite Power Solutions, Inc. Thin film electrolyte for thin film batteries
US8518581B2 (en) 2008-01-11 2013-08-27 Inifinite Power Solutions, Inc. Thin film encapsulation for thin film batteries and other devices
CN101983469B (zh) 2008-04-02 2014-06-04 无穷动力解决方案股份有限公司 与能量采集关联的储能装置的无源过电压/欠电压控制和保护
US8372537B2 (en) * 2008-06-03 2013-02-12 C&D Technologies, Inc. Battery with a molded in-front terminal
JP5171401B2 (ja) * 2008-06-04 2013-03-27 日立ビークルエナジー株式会社 リチウム二次電池
US8906523B2 (en) 2008-08-11 2014-12-09 Infinite Power Solutions, Inc. Energy device with integral collector surface for electromagnetic energy harvesting and method thereof
WO2010030743A1 (en) 2008-09-12 2010-03-18 Infinite Power Solutions, Inc. Energy device with integral conductive surface for data communication via electromagnetic energy and method thereof
US8508193B2 (en) 2008-10-08 2013-08-13 Infinite Power Solutions, Inc. Environmentally-powered wireless sensor module
KR20110082035A (ko) * 2008-10-08 2011-07-15 인피니트 파워 솔루션스, 인크. 발에 의해 동력 공급되는 신발 삽입형 센서-트랜시버
JP5684462B2 (ja) * 2008-12-22 2015-03-11 昭和電工パッケージング株式会社 正極タブリード及び電池
US20100233527A1 (en) * 2009-03-13 2010-09-16 International Battery, Inc. Battery terminal
US8841017B2 (en) * 2009-07-24 2014-09-23 GM Global Technology Operations LLC Cell tab and interconnect assembly for a battery pack
US8599572B2 (en) 2009-09-01 2013-12-03 Infinite Power Solutions, Inc. Printed circuit board with integrated thin film battery
US8460818B2 (en) 2009-10-05 2013-06-11 Samsung Sdi Co., Ltd. Battery module
KR101084220B1 (ko) * 2009-10-30 2011-11-17 에스비리모티브 주식회사 이차전지의 단자유닛 및 그 제조방법
KR101084221B1 (ko) * 2009-10-30 2011-11-17 에스비리모티브 주식회사 이차 전지
DE102010008746A1 (de) * 2010-02-20 2011-08-25 Bayerische Motoren Werke Aktiengesellschaft, 80809 Elektrochemische Speicherzelle
JP5523164B2 (ja) * 2010-03-29 2014-06-18 株式会社神戸製鋼所 電極端子、及び電極端子の製造方法
WO2011122453A1 (ja) * 2010-03-29 2011-10-06 株式会社神戸製鋼所 バスバー、及びバスバーの製造方法
US8673479B2 (en) * 2010-03-30 2014-03-18 Samsung Sdi Co., Ltd. Secondary battery and a secondary battery module
KR101135510B1 (ko) * 2010-05-20 2012-04-13 에스비리모티브 주식회사 이차 전지 및 전지 모듈
CN102947976B (zh) 2010-06-07 2018-03-16 萨普拉斯特研究有限责任公司 可充电、高密度的电化学设备
US9537135B2 (en) 2010-07-21 2017-01-03 Samsung Sdi Co., Ltd. Terminal of rechargeable battery and method of manufacturing the same
US8916287B2 (en) 2010-08-16 2014-12-23 Samsung Sdi Co., Ltd. Rechargeable battery
JP5570383B2 (ja) 2010-10-15 2014-08-13 株式会社神戸製鋼所 導電性連結部材、導電性連結部材の製造方法、及び導電性連結部材が電極とされたバッテリ
CN103733382B (zh) * 2011-06-28 2016-03-30 矢崎总业株式会社 汇流条板
JP6212846B2 (ja) * 2011-10-04 2017-10-18 株式会社Gsユアサ 電気化学装置
US9252550B2 (en) * 2012-12-28 2016-02-02 Hitachi Metals, Ltd. Electrode terminal connector producing method
KR101416763B1 (ko) * 2012-12-31 2014-07-11 킴스테크날리지 주식회사 전기에너지 저장장치의 단자 및 이의 조립 방법
KR101590986B1 (ko) * 2013-03-05 2016-02-03 주식회사 엘지화학 확산 접합을 이용한 전극단자 또는 버스 바의 접합 방법
DE102013112060A1 (de) * 2013-11-01 2015-05-07 Johnson Controls Advanced Power Solutions Gmbh Elektrochemischer Akkumulator
KR102490863B1 (ko) 2015-11-04 2023-01-20 삼성에스디아이 주식회사 이차전지의 제조방법
CN105679991A (zh) * 2016-03-30 2016-06-15 湖南方恒复合材料有限公司 复合极柱及具有其的电池模块
JP6964268B2 (ja) * 2017-01-31 2021-11-10 パナソニックIpマネジメント株式会社 電池モジュール、および、その製造方法
JP6931460B2 (ja) 2017-10-06 2021-09-08 トヨタ自動車株式会社 電池および電池の製造方法
CN110224104B (zh) * 2018-03-02 2021-07-09 比亚迪股份有限公司 电池的负极柱、电池的盖板组件、电池和电动汽车
KR102157495B1 (ko) * 2020-02-03 2020-09-18 에이에프더블류 주식회사 파우치형 배터리 셀 및 그 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01255164A (ja) * 1988-04-01 1989-10-12 Natl Space Dev Agency Japan<Nasda> アルカリ蓄電池の製造方法
JPH07235289A (ja) * 1994-02-21 1995-09-05 A T Battery:Kk 封止電極端子構造
JPH08102313A (ja) * 1994-09-30 1996-04-16 Sony Corp 非水電解液二次電池
JPH0917441A (ja) * 1995-06-27 1997-01-17 Sanyo Electric Co Ltd 折曲した電極板を内蔵する角形電池
JPH0992258A (ja) * 1995-09-27 1997-04-04 Sony Corp 二次電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3116172A (en) * 1959-08-03 1963-12-31 Servel Inc Contact for use with cylindrical anodes
US3393095A (en) * 1965-05-12 1968-07-16 Varta Ag Cylindrical battery cells
US4322484A (en) * 1978-09-05 1982-03-30 General Electric Company Spiral wound electrochemical cell having high capacity
KR100417560B1 (ko) * 1995-09-27 2004-04-28 소니 가부시끼 가이샤 젤리롤형고용량2차전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01255164A (ja) * 1988-04-01 1989-10-12 Natl Space Dev Agency Japan<Nasda> アルカリ蓄電池の製造方法
JPH07235289A (ja) * 1994-02-21 1995-09-05 A T Battery:Kk 封止電極端子構造
JPH08102313A (ja) * 1994-09-30 1996-04-16 Sony Corp 非水電解液二次電池
JPH0917441A (ja) * 1995-06-27 1997-01-17 Sanyo Electric Co Ltd 折曲した電極板を内蔵する角形電池
JPH0992258A (ja) * 1995-09-27 1997-04-04 Sony Corp 二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0964461A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100675700B1 (ko) * 1999-08-10 2007-02-01 산요덴키가부시키가이샤 비수 전해액 이차 전지 및 그 제조 방법
KR100754705B1 (ko) * 1999-08-10 2007-09-03 산요덴키가부시키가이샤 비수 전해액 이차 전지
US7781092B2 (en) 2002-12-18 2010-08-24 Samsung Sdi Co., Ltd. Secondary battery and method of manufacturing same

Also Published As

Publication number Publication date
KR20000068897A (ko) 2000-11-25
DE69837533T2 (de) 2007-12-20
CN1121072C (zh) 2003-09-10
CA2274483C (en) 2006-01-31
EP0964461B1 (en) 2007-04-11
EP0964461A1 (en) 1999-12-15
CA2274483A1 (en) 1999-04-15
CN1241303A (zh) 2000-01-12
US6156452A (en) 2000-12-05
EP0964461A4 (en) 2004-08-25
KR100314956B1 (ko) 2001-11-23
DE69837533D1 (de) 2007-05-24

Similar Documents

Publication Publication Date Title
WO1999018622A1 (en) Non-aqueous electrolyte secondary cell
JP4273543B2 (ja) 非水電解質二次電池
EP2378593B1 (en) Battery module
Lee et al. Joining technologies for automotive lithium-ion battery manufacturing: A review
KR101205885B1 (ko) 분리가능하게 연결된 자동차용 배터리 시스템
KR101196376B1 (ko) 전기화학적 저장 전지의 제조
JP5628127B2 (ja) 二次電池
WO2008035495A1 (fr) Pile secondaire et procédé pour fabriquer une pile secondaire
EP1653530A1 (fr) Accumulateur présentant deux bornes de sortie de courant sur une paroi de son conteneur
JP2017510959A (ja) 電気化学的組立体に対して直接結合された端子を有するリチウム電気化学的蓄電池および関連した製造方法
JP2010525552A (ja) 溶接点接続部を持つ電気化学単電池及びエネルギー貯蔵装置
JP2005183373A (ja) 電池用ケース、その製造方法および電池ならびに電気二重層キャパシタ用ケース、その製造方法および電気二重層キャパシタ
JPH10154490A (ja) 電池の負極リード
JP5286628B2 (ja) 電池
JP5943146B2 (ja) 二次電池の集電構造及び二次電池の集電構造形成方法
CN210182468U (zh) 一种锂离子电池的连接结构
CN101807721A (zh) 用于动力型软包装锂离子蓄电池的组装方法
US20200067065A1 (en) Battery cell and method for producing a battery cell
US20240106087A1 (en) Joining methods and devices made using said methods
JP2001023605A (ja) 電池の製造方法
JP6807494B1 (ja) 組電池パックの入出力構造とその製造方法
JPH1031996A (ja) 電 池
JP2008210730A (ja) 組電池及びその溶接方法
TW201123586A (en) Method and design for externally applied laser welding of internal connections in a high power electrochemical cell
JPH08167428A (ja) 非水電解液二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98801425.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1019997003935

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1998945633

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2274483

Country of ref document: CA

Ref document number: 2274483

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09319500

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998945633

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997003935

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019997003935

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998945633

Country of ref document: EP