WO1999014538A1 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
WO1999014538A1
WO1999014538A1 PCT/JP1998/004179 JP9804179W WO9914538A1 WO 1999014538 A1 WO1999014538 A1 WO 1999014538A1 JP 9804179 W JP9804179 W JP 9804179W WO 9914538 A1 WO9914538 A1 WO 9914538A1
Authority
WO
WIPO (PCT)
Prior art keywords
cycle
heat
air
absorption
refrigerant
Prior art date
Application number
PCT/JP1998/004179
Other languages
French (fr)
Japanese (ja)
Inventor
Kensaku Maeda
Original Assignee
Ebara Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP9270546A external-priority patent/JP2971841B2/en
Priority claimed from JP9275059A external-priority patent/JP2971842B2/en
Application filed by Ebara Corporation filed Critical Ebara Corporation
Publication of WO1999014538A1 publication Critical patent/WO1999014538A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0014Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using absorption or desorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/008Sorption machines, plants or systems, operating continuously, e.g. absorption type with multi-stage operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Definitions

  • the present invention relates to an air conditioning system using a desiccant, and more particularly to an air conditioning system using an absorption heat pump as a heat source for heating regeneration air and cooling processing air.
  • FIG. 8 shows a conventionally known example of an air conditioning system in which an absorption heat pump is used as a heat source device and an air conditioner using a desiccant is combined with a so-called desiccant air conditioner.
  • This air-conditioning system is composed of a process air path ⁇ ⁇ ⁇ in which moisture is adsorbed by the desiccant rotor 103, and a desiccant port 110, which is heated by a heating source and passes through the desiccant port 103 after the moisture adsorption. It has a regeneration air path B for desorbing and regenerating moisture, and has a sensible heat between the treated air to which moisture is adsorbed and the regenerated air before regeneration and before being heated by the heating source.
  • An air conditioner having an exchanger 104, a first cycle that forms an absorption refrigeration cycle with the evaporator 3, absorber 1, regenerator 2, and condenser 4 as main components, and an evaporator 13 A second absorption refrigeration cycle that operates at a lower temperature than the first cycle, with the absorber 11, the regenerator 12, and the condenser 14 as main constituent devices.
  • the heat exchange relationship 21 between the evaporator 3 and the second cycle absorber 11 An absorption heat pump that forms a heat exchange relationship 20 between the condenser 4 of the first cycle and the regenerator 12 of the second cycle.
  • the regenerated air of the air conditioner is heated by the heater 120 to regenerate the desiccant by using the heat of absorption of the heat of the second cycle and the heat of condensation of the second cycle as the heat source.
  • This is an air conditioning system that cools the processing air of the air conditioner with a cooler (cold water heat exchanger) 115 using the heat source as a cooling heat source.
  • a high energy-saving effect can be obtained because the absorption heat pump simultaneously cools the processing air of the desiccant air conditioner and heats the regeneration air.
  • the absorption heat pump which is the heat source of the system, requires the refrigeration effect of the first cycle to be smaller than the absorption heat of the second cycle. It turned out that it was necessary to prevent overconcentration. The reason will be described below.
  • Fig. 9 shows a During diagram showing the operating state of the absorption heat pump of the conventional decent air conditioning system.
  • Fig. 9 shows a typical example of a lithium bromide-water system generally used in an absorption refrigerator, and shows the first cycle and the second cycle separately.
  • the alphabetic symbols shown in the figure indicate the state of the absorbing solution or refrigerant, and the same symbols are circled in FIG.
  • the absorption solution in the first cycle is heated from an external heat source in the regenerator 2, generates refrigerant vapor and is concentrated (order c: 175 ° C in the figure), and then heat exchanger After 5 (state d), it reaches absorber 1.
  • the absorber 1 absorbs the refrigerant evaporated in the evaporator 3, is diluted (state a), is heated again through the heat exchanger 5 (state b), and returns to the regenerator 2.
  • the refrigerant vapor generated in the regenerator 2 flows into the condenser 4 and condenses (state).
  • the heat of condensation generated during the condensation is transmitted to the regenerator 12 of the second cycle by the heat transfer tube 20 which has a heat exchange relationship.
  • the condensed refrigerant is sent to the evaporator 3 and evaporated. Emits (state e).
  • the evaporating heat absorbed during the evaporation is transmitted from the absorber 11 (state A) in the second cycle by the heat transfer tube 21 which has a heat exchange relationship.
  • the absorption solution of the second cycle is heated in the regenerator 12 by the heat of condensation (state) of the first cycle through the heat transfer tube 20, generates refrigerant vapor, is concentrated (state C), and is then heat-exchanged. After 15 (State D), it reaches absorber 11.
  • the absorbing solution absorbs the refrigerant (state E) evaporated in the evaporator 13, is diluted (state A), and is heated again through the heat exchanger 15 (state B).
  • the absorbed heat generated at the time of absorption is transferred to the evaporator 3 (state e) in the first cycle by the heat transfer tube 21 having a heat exchange relationship.
  • the refrigerant vapor generated in the regenerator 12 flows into the condenser 14 and condenses (state F).
  • the heat transfer medium flows in the order from the condenser heat transfer tubes 31 of the second cycle 31 to the absorber heat transfer tubes 30 of the first cycle, whereby the absorption solution temperature of the first cycle (state a: 75 ° C in the figure) ) Is higher than the refrigerant condensation temperature of the second cycle (State F: 65 ° C in the figure).
  • the condensed refrigerant (state F) is sent to the evaporator 13 and evaporates (state E).
  • the driving heat is applied to the regenerator 2 of the first cycle, and the used heat can be taken out by the absorber 1 of the first cycle and the condenser 14 of the second cycle, and The used cold energy can be taken out by the evaporator 13 in the second cycle.
  • the cycles are independent of each other, so the mass balance is balanced and the refrigerant / solution does not move from one cycle to the other. However, the heat balance is not balanced, as explained below.
  • the ratio of the refrigerating effect of the evaporator to the heat input of the regenerator in the first cycle Is the so-called operating coefficient (COP), which is a variable that can be set in design by the circulation ratio of the solution, etc., but is approximately 0.8.
  • COP operating coefficient
  • the ratio of the refrigerating effect of the evaporator to the heat input of the regenerator in cycle 2 be C2.
  • the values obtained by dividing the heat output of the condenser by the heat input of the evaporator are defined as R i and R 2 in each cycle.
  • R t, R 2 since each of the refrigerant flow rate are equal, becomes a value obtained by dividing E down evening ruby variation of refrigerant definitive in evaporator E down evening Lupi change of the refrigerant in the condenser of the each cycle.
  • the heat of absorption Q a 2 in the second cycle is the total heat input in the second cycle minus the heat of condensation
  • Ci and C 2 are approximately 0.8 (standard value of single-effect absorption cycle), and the value of equation (6) is obtained.
  • an object of the present invention is to provide an air conditioning system capable of smoothly operating a heat source absorption heat pump and obtaining high energy efficiency. Disclosure of the invention
  • a processing space in which water is adsorbed by a desiccant.
  • An air conditioner having a path for air, a path for regenerated air for desorbing and regenerating moisture in the desiccant by passing through the desiccant after being adsorbed after being heated by the heating source, and at least an evaporator and absorption
  • the first cycle which constitutes an absorption refrigeration cycle, using a heater, a regenerator, and a condenser as constituent devices
  • the first cycle which includes at least an evaporator, an absorber, a regenerator, and a condenser as constituent devices
  • a second absorption refrigeration cycle operating at a lower temperature, forming a heat exchange relationship between the evaporator of the first cycle and the heat absorber of the second cycle, and A heat exchange relationship is formed between the condenser and the regenerator in the second cycle, and a heat exchanger for cooling the refrigerant during cooling of the refrigerant from the condenser in
  • An absorption heat pump In the air conditioning system that cools the air conditioner using the heat of absorption of the first cycle of the heat pump and the heat of condensation of the second cycle as the heating source, the heat pump is provided in the refrigerant path of the first cycle of the heat pump.
  • An air conditioning system characterized in that the system is configured so that regeneration air or a heating medium for heating the regeneration air is guided to a heat exchanger that cools the refrigerant, and exchanges heat with the refrigerant.
  • the heat exchanger for cooling the refrigerant provided in the first cycle of the absorption heat pump is configured to guide the heating medium in a low temperature state to the heat exchanger to exchange heat with the refrigerant.
  • the cooling effect of the refrigerant increases, the rate of loss of the refrigeration effect due to self-evaporation when the refrigerant flows into the evaporator decreases, the refrigeration effect of the first cycle increases, and the concentration of the solution of the second cycle increases.
  • the second aspect of the present invention provides a heat exchanger for cooling the refrigerant which is provided in the refrigerant path of the first cycle of the absorption heat pump for cooling the refrigerant by introducing regeneration air or a heating medium for heating the regeneration air.
  • the heating medium having the lowest temperature is guided to the heat exchanger that cools the refrigerant provided in the first cycle of the absorption heat pump, the heat is exchanged with the cooling medium, and then the absorber is cooled.
  • the configuration in which the refrigerant is guided to the condenser for heating enhances the effect of cooling the refrigerant, and reduces the rate at which the refrigerant self-evaporates when flowing into the evaporator to impair the refrigeration effect. Since the refrigerating effect of the second cycle is improved, the concentration of the solution in the second cycle can be prevented and high energy efficiency can be obtained, and the heat retained in the refrigerant can be recovered and used for heating the regenerated desiccant air. However, the cooling effect of the system is increased, and high energy efficiency can be obtained.
  • the third aspect of the present invention provides a first cycle that forms an absorption refrigeration cycle with at least an evaporator, an absorber, a regenerator, and a condenser as constituent devices, and at least an evaporator, an absorber, a regenerator, and a condenser.
  • a second absorption refrigeration cycle that operates at a lower temperature than the first cycle, and has a heat exchange relationship between the evaporator of the first cycle and the absorber of the second cycle.
  • a heat exchange relationship between the condenser of the first cycle and the regenerator of the second cycle is formed by a part of the heat of condensation of the first cycle.
  • An absorption heat pump characterized in that a heat exchange relationship is formed so as to heat a heat medium from which heat is taken out by the absorber of the cycle and the condenser of the second cycle.
  • the amount of heat applied to the regenerator in the second cycle is reduced to suppress the concentration of the solution, and the heat of evaporation in the first cycle and the heat of absorption in the second cycle Therefore, the concentration of the solution in the second cycle can be prevented.
  • the smooth operation of the absorption heat pump is enabled, and the smooth operation of the entire system is enabled, so that an air conditioning system with high energy efficiency can be provided.
  • the invention according to claim 4 is directed to heating the heat medium after extracting the heat with the condenser of the second cycle and the absorber of the first cycle by a part of the heat of condensation of the first cycle.
  • the invention according to claim 5 comprises detecting the concentration of the absorbing solution in the second cycle, and detecting the concentration of the absorbing solution in the second cycle by using the heat of condensation in the first cycle when the concentration exceeds the set value. 5.
  • the refrigerant level of the evaporator in the second cycle is detected, and when the liquid level rises above a set value, the absorber in the first cycle and the second refrigerant are detected.
  • the concentration is set By increasing the amount of heat that heats the heat medium that extracts heat with the absorber in the first cycle and the condenser in the second cycle by the heat of condensation in the first cycle when the heat exceeds the fixed value, By balancing the heat of evaporation of the second cycle with the heat of absorption of the second cycle, the concentration of the solution in the second cycle can be maintained at an appropriate level, and smooth operation can be continued.
  • the invention according to claim 7 provides a process air path in which moisture is adsorbed by the desiccant, and a moisture in the desiccant which passes through the desiccant after the moisture adsorption after being heated by the heating source.
  • An air conditioner having a regeneration air path for desorption and regeneration, and having a sensible heat exchanger between the treated air to which moisture is adsorbed and the regeneration air before desiccant regeneration and before being heated by the heating source;
  • a first cycle that forms an absorption refrigeration cycle with at least an evaporator, an absorber, a regenerator, and a condenser as components, and at least an evaporator, an absorber, a regenerator, and a condenser as components.
  • a second absorption refrigeration cycle operating at a lower temperature than the first cycle, forming a heat exchange relationship between the evaporator of the first cycle and the absorber of the second cycle, and One cycle condenser and second An absorption heat pump that forms a heat exchange relationship with a regenerator of the cycle, and the air conditioning uses the absorption heat of the first cycle and the condensation heat of the second cycle of the absorption heat pump as a heat source.
  • An air conditioning system that heats the regeneration air of the air conditioner to regenerate the desiccant and cools the processing air of the air conditioner using the heat of evaporation of the second cycle of the absorption heat pump as a cooling heat source.
  • An air conditioning system characterized by forming a heat exchange relationship so as to heat regeneration air or a heat medium serving as a heating source for the regeneration air by a part of the condensation heat of the first cycle.
  • the invention according to claim 8 is configured such that the regeneration air or a heating medium for heating the regeneration air is guided to a heat exchanger that extracts a part of the condensation heat of the first cycle of the absorption heat pump to exchange heat with the refrigerant.
  • FIG. 1 is an explanatory view showing a basic configuration of an embodiment of an air conditioning system using a decant according to the present invention
  • FIG. 2 is a drawing showing the absorption solution cycle of the absorption heat pump shown in FIG.
  • FIG. 3 is an explanatory diagram showing a desiccant air-conditioning cycle of the air of the air conditioning system of FIG. 1 in a wet air diagram
  • FIG. 4 is a second embodiment of the present invention.
  • Fig. 5 is an explanatory diagram showing the basic configuration of the desiccant air conditioning system.
  • Fig. 5 is a During diagram showing the cycle of the heat source absorption heat pump shown in Fig. 4.
  • Fig. 6 is wet air showing the cycle of the desiccant air conditioning system shown in Fig. 4.
  • FIG. 5 is a During diagram showing the cycle of the heat source absorption heat pump shown in Fig. 4.
  • Fig. 6 is wet air showing the cycle of the desiccant air conditioning system shown in Fig. 4.
  • FIG. 7 is a diagram of a third embodiment of the present invention.
  • FIG. 8 is a view showing an embodiment of the conventional air conditioning system
  • FIG. 9 is a diagram showing a During line showing an operation state of an absorption heat pump part of the conventional decent power air conditioning system.
  • FIG. 1 is a diagram showing a basic configuration of a desiccant air conditioning system according to the present invention.
  • Evaporator 3, Absorber 1, Regenerator 2, Condenser 4, Heat exchanger 5 as the main components of the first cycle that forms an absorption refrigeration cycle, and Evaporator 13 and Absorber 11, Regeneration A second absorption refrigeration cycle that operates at a lower temperature than the first cycle, with the main components of the unit 12, the condenser 14, and the heat exchanger 15, and the evaporator of the first cycle 3 and a heat exchange relationship 21 between the absorber 11 of the second cycle and a heat exchange relationship between the condenser 4 of the first cycle and the regenerator 12 of the second cycle.
  • the relationship 20 is formed, and the refrigerant path 8 from the condenser 4 of the first cycle to the evaporator 3 is formed. It is provided with a heat exchanger 4 0 to cool the refrigerant. Further, in this embodiment, a sensor 62 for detecting the refrigerant level of the evaporator in the second cycle, a valve 60, a path 64 for sending refrigerant to the absorber, and a controller 63 are provided. When the solution is over-concentrated by the signal, the valve 60 is opened to send a refrigerant to the absorber 11 to dilute the solution.
  • the processing air path A is connected to the air conditioning space 101 and the suction port of the processing air blower 102 via the path 107, and the outlet of the blower 102 is connected to the desiccant trolley 103.
  • the outlet of the processing air of the trolley 103 is connected to the sensible heat exchanger 104, which has a heat exchange relationship with the regeneration air, via the path 109, and the processing air of the sensible heat exchanger 104
  • the outlet is connected to the cooler 1 15 via the route 110, and the outlet of the processing air of the cooler 115 is connected to the humidifier 105 via the route 111, and the humidifier 105
  • the outlet of the processing air is connected to the air-conditioned space 101 via a path 112 to form a processing air cycle.
  • the regeneration air path ⁇ connects the outside air to the suction port of the regeneration air blower 130 through the path 124, and the discharge port of the blower 130 has a sensible heat heat exchange relationship with the processing air.
  • the sensible heat exchanger 104 is connected to the low-temperature side inlet of another sensible heat exchanger 124 through the path 125,
  • the low-temperature side outlet of the sensible heat exchanger 1 2 1 is connected to the heater 1 2 0 via the path 1 2 6, and the outlet of the regeneration air of the heater 1 2 It is connected to the air inlet via the route 127, and the outlet of the regenerated air at the desiccant outlet 103 is connected to the hot side inlet of the sensible heat exchanger 121 via the route 128,
  • the outlet on the high-temperature side of the sensible heat exchanger 122 is connected to the external space via a path 129 to form a cycle in which regenerated air is taken in from the outside and exhausted outside.
  • the hot water After passing the heat transfer medium (hot water) between the absorption heat pump section and the air conditioner section through the heat transfer medium (hot water), the hot water exits the heater 120 in the regeneration air path between the air conditioner and the path. 1 2 3, pump 150, route 50, refrigerant cooling heat exchanger 40, route 51, condenser 14, route 52, 'absorber 1 It is configured to return.
  • the path of the heat transfer medium that transfers cold heat between the absorption heat pump section and the air conditioner section passes through the cooler 1 15 in the processing air path of the air conditioner after the cold water passes through the path 1.
  • pump 16 0, evaporator 1 3, route 1 1 It is configured to return to the cooler 1 15 via the order of 7.
  • the circled alphabets K to V are symbols indicating the state of air corresponding to that in Fig. 3, where SA is air supply, RA is return air, OA is outside air, and EX is exhaust air. Express.
  • the absorption solution of the first cycle is heated from an external heat source (not shown) in the regenerator 2 via the heat transfer tube 34, generates refrigerant vapor, is concentrated, and is then concentrated through the heat exchanger 5 to the absorber. Leads to one.
  • the absorbing solution absorbs the refrigerant evaporated in the evaporator 3, and after being diluted, returns to the regenerator 2 via the heat exchanger 5 again by the action of the pump 6.
  • heat is exchanged with a heat medium such as hot water by the heat transfer tube 30 in order to use the heat of absorption generated at the time of absorption.
  • the refrigerant vapor generated in the regenerator 2 flows into the condenser 4 and is condensed.
  • the heat of condensation generated during the condensation is transferred to the regenerator 12 in the second cycle by the heat transfer tube 20 which has a heat exchange relationship.
  • the condensed refrigerant is cooled by the heat medium in the heat exchanger 40 and then sent to the evaporator 3 to evaporate.
  • the evaporative heat absorbed during the evaporation is transmitted from the absorber 11 in the second cycle by the heat transfer tube 21 having a heat exchange relationship.
  • the absorption solution of the second cycle is heated in the regenerator 12 by the heat of condensation of the first cycle through the heat transfer tube 20, generates refrigerant vapor, is concentrated, and is absorbed through the heat exchanger 15 Container 1 leads to 1.
  • the absorbing solution absorbs the refrigerant evaporated in the evaporator 13, and after being diluted, returns to the regenerator 12 via the heat exchanger 15 by the action of the pump 16.
  • the heat of absorption generated at the time of absorption is transferred to the evaporator 3 of the first cycle by the heat transfer tube 21 having a heat exchange relationship.
  • the refrigerant vapor generated in the regenerator 12 is sent to the condenser 14 Inflows and condenses.
  • the condenser 14 heat is exchanged between the heat medium and the heat transfer tube 31 in order to use the heat of condensation generated during the condensation.
  • the heat medium flows in the following order: a refrigerant cooling heat exchanger 40 in the first cycle, a condenser heat transfer tube 31 in the second cycle, and an absorber heat transfer tube 30 in the first cycle.
  • the absorption solution temperature in the first cycle, the refrigerant condensation temperature in the second cycle, and the refrigerant temperature at the evaporator inlet in the first cycle increase in this order, and the refrigerant temperature at the evaporator inlet in the first cycle becomes the lowest.
  • the refrigerant condensed in the second cycle is sent to the evaporator 13 and evaporates.
  • FIG. 2 is a Duling diagram showing a cycle of the heat source absorption heat pump of FIG. This figure shows a typical example of a lithium bromide-water system commonly used in absorption refrigerators. Alphabet symbols in the figure indicate the state of the absorbing solution and refrigerant, and the same symbols are circled in Fig. 1.
  • the absorption solution in the first cycle is heated from an external heat source in the regenerator 2, generates refrigerant vapor and is concentrated (state c: 175 ° C in the figure), and then passes through the heat exchanger 5 (state d) lead to absorber 1.
  • the absorber 1 absorbs the refrigerant evaporated in the evaporator 3, is diluted (state a), is heated again through the heat exchanger 5 (state b), and returns to the regenerator 2.
  • the refrigerant vapor generated in the regenerator 2 flows into the condenser 4 and condenses (in a state).
  • the heat of condensation generated during the condensation is transferred to the regenerator 12 in the second cycle by the heat transfer tube 20 which has a heat exchange relationship.
  • the condensed refrigerant is cooled by the refrigerant cooling heat exchanger 40 (state g), and then sent to the evaporator 3 to evaporate (state e).
  • the heat of evaporation that is absorbed during the evaporation is converted into Transmitted from the absorber 1 1 (state A) of the cycle.
  • the absorbing solution of the second cycle is heated by the regenerator 12 with the heat of condensation (state) of the first cycle through the heat transfer tube 20, generates refrigerant vapor, is concentrated (state C), and then heats It passes through the exchanger 15 (state D) to the absorber 11.
  • the absorption solution absorbs the refrigerant (state E) evaporated in the evaporator 13, is diluted (state A), and is heated again through the heat exchanger 15 (state B).
  • the heat of absorption generated at the time of absorption is transferred to the evaporator 3 (state e) in the first cycle by the heat transfer tube 21 which has a heat exchange relationship.
  • the refrigerant vapor generated in the regenerator 12 flows into the condenser 14 and is condensed (state F).
  • the condensed refrigerant (state F) is sent to the evaporator 13 and evaporates (state E).
  • Cycle absorption solution temperature state a: 75 ° C in the figure
  • refrigerant condensation temperature in the second cycle state F: 65 ° C in the figure
  • evaporator inlet in the first cycle state g: The refrigerant temperature increases in the order of 55 ° C in the figure, and the refrigerant temperature at the evaporator inlet in the first cycle becomes the lowest.
  • the refrigeration effect of the first cycle is increased by minimizing the refrigerant temperature at the evaporator inlet of the first cycle of the absorption heat pump, the absorption heat of the second cycle is cooled.
  • the capacity is increased, which can reduce the tendency of the second cycle solution to concentrate.
  • C 2 are approximately 0.8 (standard value of single-effect absorption cycle) as in the above-mentioned conventional example.
  • the absorption heat of the second cycle can be cooled by the refrigeration effect of the first cycle, so that the refrigerant can be absorbed by the absorber in the second cycle, Solution concentration , Continuous operation becomes possible. Further, with the increase in the amount of refrigerant absorbed in the second cycle, the refrigerating effect of the evaporator 13 also increases.
  • FIG. 1 the air in the air conditioning space 101 is shown in FIG.
  • the (processed air) is sucked into the blower 102 via the passage 107, is pressurized, is sent through the passage 108 to the desiccant towel 103, and is sent to the desiccant towel by the desiccant towel.
  • the temperature of air rises due to heat of adsorption.
  • the air whose humidity has dropped and the temperature has risen is sent to a sensible heat exchanger 104 via a path 109, where it is cooled by exchanging heat with outside air (regenerated air).
  • the cooled air is sent to the cooler 115 via the path 110 and further cooled.
  • the cooled treated air is sent to the humidifier 105 and cooled by water injection or vaporization humidification in the isentraumy process, and is returned to the air-conditioned space 101 via the route 112.
  • the desiccant rotor Since the desiccant rotor adsorbs moisture in this process, regeneration is necessary.
  • the desiccant rotor is operated as follows using outside air as regeneration air. Outside air (OA) is sucked into the blower 130 through the path 124 and is pressurized and sent to the sensible heat exchanger 104, where it cools the treated air and rises in temperature to the path 125 After that, it flows into the next sensible heat exchanger 1 2 1 and exchanges heat with the hot air after regeneration to increase the temperature. Further, the regenerated air exiting the sensible heat exchanger '12 1 flows into the heater 120 via the path 126, is heated by the hot water, and rises in temperature to 60 to 80 ° C, and the relative humidity is reduced. descend.
  • Outside air OA
  • the sensible heat exchanger '12 1 flows into the heater 120 via the path 126, is heated by the hot water, and rises in temperature to 60 to 80 ° C, and the relative humidity is reduced. descend.
  • This process is a sensible heat change of the regenerated air.
  • the specific heat of air is significantly lower than that of hot water, and the temperature change is large.Therefore, even if the flow rate of hot water is reduced and the temperature change is increased, heat exchange is performed efficiently.
  • the transfer power can be reduced.
  • the regenerated air whose relative humidity has decreased after exiting the heater 120, passes through the desiccant towels 103, and then passes through the desiccant heater. It removes evening water and has a regenerating effect.
  • the regenerated air that has passed through the desiccant trolley 103 flows into the sensible heat exchanger 122 through the path 128, preheats the regenerated air before regeneration, and then passes through the path 129 as exhaust. Discarded outside o
  • the air in the air-conditioned space 101 (processed air: state) is sucked into the blower 102 via the route 107 and is pressurized to increase the pressure in the route 1.
  • the desiccant rotor 103 is sent to the desiccant rotor 103, where the moisture in the air is adsorbed by the desiccant rotor, the absolute humidity decreases, and the temperature of the air rises due to the heat of adsorption (state L).
  • the air whose humidity has dropped and the temperature has risen is sent to the sensible heat exchanger 104 via the path 109 and cooled by exchanging heat with the outside air (regenerated air) (state M).
  • the cooled air is sent to the cooler 115 via the route 110 and further cooled (state N), and the cooled air is sent to the humidifier 105 via the route 111 to spray water or water.
  • the temperature decreases during the iso-rubber process by vaporization humidification (state P), and is returned to the air-conditioned space 101 via route 112. In this way, an en-ubiquity difference ⁇ Q is generated between the return air in the room (state K) and the supply air (state P), thereby cooling the air-conditioned space 101.
  • desiccant regeneration is performed as follows.
  • the outside air for regeneration (OA: state Q) is sucked into the blower 130 via the path 124, pressurized and sent to the sensible heat exchanger 104, where it cools the treated air and raises its temperature.
  • the desiccant is air-conditioned by repeating the regeneration of the desiccant and the dehumidification and cooling of the treated air.
  • desiccant air-conditioning has been widely used in the past for the method of using exhaust accompanying indoor ventilation as regeneration air
  • It is also possible to use a method in which the air cooled by the sensible heat exchanger 104 for cooling the treated air is not used for regeneration but is once exhausted, and the fresh outside air is led to the sensible heat exchanger 122 as regenerated air. I can't tell.
  • the heat exchanger 40 for cooling the refrigerant in the refrigerant path from the condenser 4 to the evaporator 3 in the first cycle and performing cooling, the refrigerant flows into the evaporator 3
  • the rate at which the cooling effect is impaired due to self-evaporation is reduced, and a large refrigeration effect is obtained.
  • the sensible heat of the condensed refrigerant in the first cycle which has been lost by self-evaporation, can also be recovered and used as a heating source for heating the regenerated air. Therefore, as the cooling capacity increases, the energy efficiency of the entire air conditioning system also improves.
  • a means for diluting the solution by opening the valve 60 and sending the refrigerant to the absorber 11 when the solution is excessively concentrated by the signal of the sensor 62 is provided.
  • the cooling effect of the heat exchanger 40 will not be obtained, and the first Since it is assumed that the refrigeration effect of the cycle is reduced and the heat absorbed in the second cycle cannot be cooled as described above, it is provided as a safety device in such a case.
  • the solution concentration can be prevented from increasing.
  • This type of means is a well-known technique in a conventional absorption refrigerator, and as a similar means, the refrigerant temperature, pressure and solution temperature may be measured and calculated by a microcomputer or the like for dilution. Also, as shown in the above calculation example, when the heat exchanger 40 cools the refrigerant in the first cycle extremely effectively, on the contrary, the refrigeration effect in the first cycle is lower than that in the second cycle.
  • the solution may be diluted in the first cycle as well, as it may exceed the heat absorption and thus reduce the evaporation pressure in the first cycle and the solution concentration in the second cycle may be too low. It is permissible to provide a means to reduce the refrigeration effect.
  • FIG. 4 is a diagram showing a basic configuration of a desiccant air-conditioning system according to a second embodiment of the present invention.
  • the following configuration is added to the conventional absorption heat pump shown in FIG. That is, a heat exchanger 61 for extracting a part of the refrigerant vapor from the regenerator 2 of the first cycle to the outside and heating the heat medium with the heat of condensation is provided.
  • the heat exchanger 61 and the regenerator 2 are further connected to each other.
  • a control valve 65 a refrigerant passage condensed in the heat exchanger 61, a path 68 for guiding the refrigerant to the evaporator 3, and a throttle 69 are provided.
  • the second control valve 66 is provided, and the refrigerant level detection sensor 62 of the evaporator 13 in the second cycle, the controller 63, the controller 63, the first control valve 65, the second A signal path 72 that connects the control valve 66 and a signal path 70 that connects the controller 63 and the refrigerant level sensor 62 are provided, and the refrigerant level sensor 62 is set.
  • the controller 63 detects that the liquid level has risen above the value, and the controller 63 opens the first control valve 65 and throttles the second control valve 66.
  • the air conditioner is configured in the same manner as the conventional embodiment of FIG.
  • the path of the heat transfer medium (hot water) for transferring heat between the absorption heat pump section and the air conditioner section is changed after the hot water exits the heater 120 in the regeneration air path of the air conditioner.
  • Route 1 2 3 Pump 1 50, Route 50, Condenser 14, Route 52, Absorber 1, Route 53, Heat Exchanger 61, Route 55, Route 1 2 2 To return to the heater 120.
  • the path of the heat transfer medium (cold water) that transfers cold heat between the absorption heat pump section and the air conditioner section passes through the cooler 1 15 in the processing air path of the air conditioner after the cold water exits the path 1 18 ,
  • the circled K-V 6 is a symbol indicating the state of air corresponding to, SA is air supply, A is return air, OA is outside air, EX is exhaust.
  • the absorption solution of the first cycle is heated from an external heat source (not shown) in the regenerator 2 via the heat transfer tube 34, generates refrigerant vapor, is concentrated, and is then concentrated through the heat exchanger 5 to the absorber. Leads to one.
  • the absorbing solution absorbs the refrigerant evaporated in the evaporator 3, and after being diluted, returns to the regenerator 2 via the heat exchanger 5 again by the action of the pump 6.
  • heat is exchanged between the absorbing solution and a heat medium such as hot water via the heat transfer tube 30 in order to use the heat of absorption generated at the time of absorption.
  • the refrigerant vapor generated in the regenerator 2 flows into the heat exchanger 61 via the first control valve 65, which is partially open, and condenses.
  • heat is exchanged with a heat medium such as hot water by the heat transfer tube 35 in order to utilize the heat of condensation generated during condensation.
  • Most of the remaining refrigerant vapor generated in the regenerator 2 flows into the condenser 4 via the slightly throttled second control valve 66 and condenses.
  • the heat of condensation generated at the time of condensation is transmitted to the regenerator 12 in the second cycle by the heat transfer tube 20 which has a heat exchange relationship.
  • the refrigerant condensed in the heat exchanger 61 and the condenser 4 is sent to the evaporator 3 and evaporates.
  • the evaporative heat absorbed during the evaporation is transmitted from the absorber 11 in the second cycle by the heat transfer tube 21 having a heat exchange relationship.
  • the absorption solution of the second cycle was heated through the heat transfer tube 20 by the heat of condensation generated in the condenser 4 of the first cycle in the regenerator 12 to generate refrigerant vapor, and was concentrated. After that, it passes through the heat exchanger 15 and reaches the absorber 11.
  • the absorption solution absorbs the refrigerant evaporated in the evaporator 13, and after being diluted, returns to the regenerator 12 via the heat exchanger 15 again by the action of the pump 16.
  • the heat of absorption generated at the time of absorption is transferred to the evaporator 3 in the first cycle by the heat transfer tube 21 having a heat exchange relationship.
  • regenerator 1 2 The refrigerant vapor flows into the condenser 14 and condenses.
  • heat is exchanged by the heat medium and the heat transfer tube 31 in order to use the heat of condensation generated during the condensation.
  • heat is exchanged by the heat transfer tube 33 with a heat medium such as cold water in order to use the evaporation heat absorbed during the evaporation.
  • FIG. 5 is a During diagram showing a cycle of the heat source absorption heat pump of FIG.
  • This figure shows a typical example of a lithium bromide monohydrate system commonly used in absorption refrigerators.
  • the alphabetic symbols shown in the figure indicate the state of the absorbing solution and the refrigerant, and the same symbols are also circled in FIG.
  • the absorption solution in the first cycle is heated from an external heat source in the regenerator 2, generates refrigerant vapor and is concentrated (state c: 175 ° C in the figure), and then passes through the heat exchanger 5 (state d) lead to absorber 1.
  • the absorbing solution absorbs the refrigerant evaporated in the evaporator 3, is diluted (state a), is heated again through the heat exchanger 5 (state b), and returns to the regenerator 2.
  • Part of the refrigerant vapor generated in the regenerator 2 flows into the heat exchanger 61 and the rest flows into the condenser 4 and condenses (in a state).
  • the heat of condensation generated during condensation is transferred to the regenerator 12 in the second cycle by the heat transfer tube 20 that has a heat exchange relationship, but is generated when the heat is condensed in the heat exchanger 61.
  • the condensed heat is not transferred to the recycler 12 of the second cycle.
  • the condensed refrigerant is sent to the evaporator 3 and evaporates (state e).
  • the evaporative heat absorbed during the evaporation is transmitted from the absorber 11 (state A) in the second cycle by the heat transfer tube 21 having a heat exchange relationship.
  • the absorption solution of the second cycle is passed through the heat transfer tube 20 with the remaining heat of condensation (state) excluding the heat of condensation generated when condensing in the heat exchanger 61 of the first cycle in the regenerator 12. Heated to generate refrigerant vapor and concentrated (State C) After that, it passes through the heat exchanger 15 (state D) and reaches the absorber 11.
  • the absorption solution absorbs the refrigerant (state E) evaporated in the evaporator 13, is diluted (state A), and is heated again through the heat exchanger 15 (state B).
  • the heat of absorption generated at the time of absorption is transferred to the evaporator 3 (state e) in the first cycle by the heat transfer tube 21 having a heat exchange relationship.
  • the refrigerant vapor generated in the regenerator 12 flows into the condenser 14 and is condensed (state F).
  • the condensed refrigerant (state F) is sent to the evaporator 13 to evaporate (state E).
  • the operating temperature of the equipment used as the heating source is determined by flowing the heat medium in the following order: condenser heat transfer tube 31 in the second cycle, absorber heat transfer tube 30 in the first cycle, and heat exchanger 61.
  • Refrigerant condensation temperature in the second cycle (state F: 65 ° C in the figure)
  • absorption solution temperature in the first cycle (state a: 75 ° C in the figure)
  • heat exchanger in the first cycle 6 Condensation temperature at 1 (in the state: 95 ° C in the figure) increases in the order of downstream of the heat medium, and therefore the temperature of the heat medium (hot water) that exits the absorption heat pump and enters the air conditioner Higher than.
  • the heat of condensation generated during condensation in the condenser 4 of the first cycle is transmitted to the regenerator 12 of the second cycle of the absorption heat pump, but the heat exchange in the first cycle is The heat of condensation that exchanges heat with the hot water in the vessel 61 is not transferred.
  • the regenerating and concentrating action of the solution in the second cycle is reduced, and the heat of absorption in the second cycle is also reduced, so that it can be balanced with the heat of evaporation in the first cycle.
  • the tendency of the solution to be concentrated can be reduced. The reason will be described below.
  • the ratio of the refrigerating effect of the evaporator to the heat input of the regenerator in the first cycle is calculated by comparing the ratio of the refrigerating effect to the heat input of the regenerator in the second cycle.
  • the heat of evaporation of the first cycle and the heat of absorption in the second cycle can be balanced to reduce the tendency of the solution in the second cycle to be concentrated.
  • the (processed air) is sucked into the blower 102 via the passage 107, is boosted in pressure, and is sent through the passage 108 to the receiver 1103, where it is sucked at the receiver outlet.
  • the moisture in the air is adsorbed by the wetting agent, and the absolute humidity decreases.
  • the temperature of air rises due to heat of adsorption.
  • the air whose humidity has dropped and the temperature has risen is sent to a sensible heat exchanger 104 via a path 109, where it is cooled by exchanging heat with outside air (regenerated air).
  • the cooled air is sent to the cooler 115 via the path 110 and further cooled.
  • the cooled treated air is sent to the humidifier 105 and cooled by water injection or evaporative humidification in the course of an isoruby, and is returned to the air-conditioned space 101 via the route 112.
  • regeneration is necessary.
  • the following operation is performed using outside air as regeneration air.
  • Outside air (OA) is sucked into the blower 130 through the path 124 and is pressurized and sent to the sensible heat exchanger 104, where it cools the treated air and rises in temperature to the path 125 After that, it flows into the next sensible heat exchanger 1 2 1 and exchanges heat with the hot air after regeneration to increase the temperature.
  • the regenerated air that has exited the sensible heat exchanger 122 flows into the heater 120 via the path 126 and is heated by the hot water, where the temperature rises to 60 to 80 ° C, and the relative humidity decreases. I do. This process changes the sensible heat of the regeneration air.
  • the regenerated air whose relative humidity has decreased after exiting the heater 120 passes through the desiccant heater 103 to remove moisture from the desiccant heater and perform a regenerating operation.
  • the regenerated air that passed through the desiccant outlet overnight 103 flows into the sensible heat exchanger 122 via the route 128, and after preheating the regenerated air before regeneration, passes the route 129. Discarded as exhaust ⁇
  • the cooled air is sent to the cooler 115 via the route 110 and is further cooled (state N), and the cooled air is sent to the humidifier 105 via the route 111 for water injection or vaporization.
  • the temperature decreases during the iso-evening ruby process (state P), and route 1
  • the air is returned to the air-conditioned space 101 via 1 2.
  • an en-ubiquity ruby difference ⁇ Q is generated between the return air (state K) and the supply air (state P) in the room, thereby cooling the air-conditioned space 101. .
  • State Q is sucked into the blower 130 via the path 124 and is pressurized, sent to the sensible heat exchanger 104, cools the processing air, and rises in temperature (state
  • the regenerated air that passed through the desiccant outlet 103 passed through the path 128 to the sensible heat exchanger 122, and exited the sensible heat exchanger 104 and preheated the regenerated air before regeneration. After the temperature drops (State V), it is discarded to the outside as exhaust gas through the route 12.
  • the desiccant regeneration ability is further increased, and the dehumidifying effect is thus reduced. Get higher.
  • desiccant air conditioning is performed by repeating regeneration of the desiccant and dehumidification and cooling of the treated air.
  • the method of using the exhaust accompanying the indoor ventilation as the regeneration air has been widely used in the desiccant air conditioning, but in the present invention, the exhaust from the room may be used as the regeneration air. The same effects as in the present embodiment can be obtained.
  • the regenerator 12 of the second cycle of the absorption heat pump is However, the heat of condensation generated during condensation in the condenser 4 of the first cycle is transferred, but the heat of condensation exchanged in the heat exchanger 61 of the first cycle is not transferred, and the condensation of the first cycle is performed. Only a certain percentage of the heat, X, is transmitted. As a result, the solution of the second cycle The heat of vaporization of the second cycle, and thus the heat of vaporization of the first cycle can be balanced and the tendency of the second cycle solution to thicken can be reduced .
  • the refrigerant level detection sensor 62 of the evaporator 13 the controller 63, the controller 63, the first control valve 65, the second control A signal path 72 connecting the valve 66 and a signal path 70 connecting the controller 63 and the coolant level sensor 62 are provided so that the coolant level sensor 62 exceeds the set value.
  • the controller detects that the liquid level has risen, the controller opens the first control valve 65 and throttles the second control valve 66. This is a control operation required when the solution concentration in the first cycle is abnormally concentrated.
  • this kind of absorption heat pump essentially has the refrigeration effect of the first cycle and the absorption effect of the second cycle.
  • control valve 6 5 It has a characteristic that it is smaller than heat, and the solution in the second cycle tends to concentrate. To prevent this, the control valve 6 5 It may be possible to always open the air at a predetermined opening and condense the predetermined refrigerant in the heat exchanger 61.
  • a path 56 bypassing the heat exchanger 61 may be provided as shown in FIG. 4, and the flow of the hot water in the heat exchanger 61 may be provided.
  • a throttle 80 may be provided in path 56 to prevent the flow rate in paths 53 and 55 from decreasing due to resistance.
  • a pump may be provided in path 53 or 55 (Fig. (Not shown) can be installed.
  • the heat exchanger 61 is configured to guide and heat the heat medium for heating the regenerated air of the desiccant air conditioner.
  • the desiccant 103 is directly connected to the heat exchanger 61. Guides regeneration air before passing And heat it.
  • FIG. 7 shows a third embodiment of the present invention.
  • a heat exchanger tube 35 of a heat exchanger for condensing a part of the refrigerant generated in the regenerator 2 of the first cycle is installed directly inside the condenser 4, and the heat exchanger tube 35
  • the heat medium that extracts heat is heated by the absorber of the first cycle and the condenser of the second cycle, and the heating amount is adjusted by the hot water outlet path of the absorber 1 in the first cycle of the heat medium path
  • This is configured to be performed by the three-way valve 71 provided in 53.
  • most of the hot water passing through the three-way valve 71 flows through the path 56, and the remaining part passes through the heat transfer tube 35 via the path 54.
  • the refrigerant level sensor 62 of the evaporator 13 in the second cycle the controller 63, a signal path 72 connecting the controller 63 and the three-way valve 71, and a controller 63
  • a signal path 70 is provided to connect the refrigerant level detection sensor 62 with the refrigerant level detection sensor 62.
  • the controller 63 Open the path 54 side of the valve 71, narrow the path 56 side to increase the flow rate of hot water passing through the heat transfer tube 35, and increase the amount of refrigerant condensed in the heat transfer tube 35.
  • the amount of refrigerant condensed is reduced, reducing the amount of heat applied to regenerator 12 in the second cycle.
  • the solution of the second cycle has a reduced regenerating and concentrating action, and accordingly the heat of absorption of the second cycle is also reduced, and the heat of evaporation of the first cycle is reduced.
  • the balance can be balanced and the tendency of the second cycle solution to concentrate can be reduced.
  • the operation of the absorption heat pump and the operation of the desiccant air conditioner are the same as in the second embodiment, and therefore, description thereof will be omitted.
  • Industrial applicability O The present invention is suitable for use as an air conditioner for general dwellings or larger buildings used as, for example, supermarkets, offices and the like.

Abstract

An air conditioning system capable of operating a heat source absorbing heat pump smoothly and achieving high energy efficiency, comprising a desiccant air conditioner, a first absorption-refrigeration cycle, a second absorption-refrigeration cycle operating at a lower temperature than the first absorption-refrigeration cycle, and an absorption heat pump provided with a heat exchanger to cool a refrigerant in the refrigerant path from a condenser to an evaporator in the first cycle, forming heat exchange relationships between the evaporator in the first cycle and an absorber in the second cycle and between a condenser in the first cycle and a regenerator in the second cycle. The treated air in the air conditioner is cooled using evaporation heat generated in the second cycle of the absorption heat pump as the heat source for cooling while regenerating desiccant by heating the regenerated air in the air conditioner using the absorption heat in the first cycle and the condensation heat in the second cycle in the absorption heat pump as the heat source. The system is configured so as to direct the regenerated air or a heating medium for heating the regenerated air to the heat exchanger for cooling the refrigerant provided in the refrigerant path in the first cycle of the absorption heat pump to exchange heat with the refrigerant.

Description

明 細 書 空調システム 技術分野  Description Air-conditioning system Technical field
本発明は、 デシカントを用いた空調システムに係り、 特に再生空気の 加熱および処理空気の冷却用の熱源として吸収ヒ一トポンプを使用する 空調システムに関する。 背景技術  The present invention relates to an air conditioning system using a desiccant, and more particularly to an air conditioning system using an absorption heat pump as a heat source for heating regeneration air and cooling processing air. Background art
図 8は、 吸収ヒートポンプを熱源機とし、 デシカン トを用いた空調機 所謂デシカン ト空調機と組合せた空調システムの従来の公知例である。 この空調システムは、 デシカン トロータ 1 0 3により水分を吸着される 処理空気の経路 Αと、 加熱源によって加熱されたのち前記水分吸着後の デシカン ト口一夕 1 0 3を通過してデシカント中の水分を脱着して再生 する再生空気の経路 Bを有し、 水分を吸着された処理空気とデシカント ロー夕 1 0 3再生前かつ加熱源により加熱される前の再生空気との間に 顕熱熱交換器 1 0 4を有する空調機と、 蒸発器 3、 吸収器 1、 再生器 2 、 凝縮器 4を主な構成機器として吸収式冷凍サ クルをなす第 1のサイク ルと、 蒸発器 1 3、 吸収器 1 1、 再生器 1 2、 凝縮器 1 4を主な構成機 器として、 前記第 1のサイクルよりも低温で作動する第 2の吸収冷凍サ ィクルからなり、 前記第 1のサイクルの蒸発器 3と第 2のサイクルの吸 収器 1 1 との間に熱交換関係 2 1を形成し、 かつ該第 1のサイクルの凝 縮器 4と第 2のサイクルの再生器 1 2との間に熱交換関係 2 0を形成し た吸収ヒートポンプとを有し、 前記吸収ヒートポンプの第 1のサイクル の吸収熱および第 2のサイクルの凝縮熱を加熱源として前記空調機の再 生空気を加熱器 1 2 0で加熱してデシカン トの再生を行うとともに前記 吸収ヒートポンプの第 2のサイクルの蒸発熱を冷却熱源として冷却器 (冷水熱交換器) 1 1 5で前記空調機の処理空気の冷却を行う空調シス テムである。 この空調システムでは、 吸収ヒートポンプがデシカン ト空 調機の処理空気の冷却と再生空気の加熱を同時に行うことで、 高い省ェ ネルギー効果が得られる。 FIG. 8 shows a conventionally known example of an air conditioning system in which an absorption heat pump is used as a heat source device and an air conditioner using a desiccant is combined with a so-called desiccant air conditioner. This air-conditioning system is composed of a process air path さ れ る in which moisture is adsorbed by the desiccant rotor 103, and a desiccant port 110, which is heated by a heating source and passes through the desiccant port 103 after the moisture adsorption. It has a regeneration air path B for desorbing and regenerating moisture, and has a sensible heat between the treated air to which moisture is adsorbed and the regenerated air before regeneration and before being heated by the heating source. An air conditioner having an exchanger 104, a first cycle that forms an absorption refrigeration cycle with the evaporator 3, absorber 1, regenerator 2, and condenser 4 as main components, and an evaporator 13 A second absorption refrigeration cycle that operates at a lower temperature than the first cycle, with the absorber 11, the regenerator 12, and the condenser 14 as main constituent devices. The heat exchange relationship 21 between the evaporator 3 and the second cycle absorber 11 An absorption heat pump that forms a heat exchange relationship 20 between the condenser 4 of the first cycle and the regenerator 12 of the second cycle. Cycle The regenerated air of the air conditioner is heated by the heater 120 to regenerate the desiccant by using the heat of absorption of the heat of the second cycle and the heat of condensation of the second cycle as the heat source. This is an air conditioning system that cools the processing air of the air conditioner with a cooler (cold water heat exchanger) 115 using the heat source as a cooling heat source. In this air conditioning system, a high energy-saving effect can be obtained because the absorption heat pump simultaneously cools the processing air of the desiccant air conditioner and heats the regeneration air.
しかしながら、 該システムの熱源機となる吸収ヒー トポンプは、 第 1 のサイクルの冷凍効果が第 2のサイクルの吸収熱より小さいため、 吸収 ヒートポンプを円滑に作動させるには、 第 2のサイクルの溶液の過濃縮 を防止する必要があることが判明した。 以下に理由を説明する。  However, the absorption heat pump, which is the heat source of the system, requires the refrigeration effect of the first cycle to be smaller than the absorption heat of the second cycle. It turned out that it was necessary to prevent overconcentration. The reason will be described below.
従来のデシ力ン ト空調システムの吸収ヒ一トポンプ部分の作動状態を 示すデューリング線図を図 9に示す。 図 9は一般的に吸収冷凍機で用い られている臭化リチウム—水系のものを代表例としたもので、 第 1のサ ィクルと第 2のサイクルを別々に示す。 図中に示すアルファべッ ト記号 は、 吸収溶液や冷媒の状態を示すもので、 同じ記号を丸で囲んだものを 図 8にも記載している。  Fig. 9 shows a During diagram showing the operating state of the absorption heat pump of the conventional decent air conditioning system. Fig. 9 shows a typical example of a lithium bromide-water system generally used in an absorption refrigerator, and shows the first cycle and the second cycle separately. The alphabetic symbols shown in the figure indicate the state of the absorbing solution or refrigerant, and the same symbols are circled in FIG.
図 9において、 第 1のサイクルの吸収溶液は再生器 2で外部の熱源か ら加熱され、 冷媒蒸気を発生し濃縮された (秩態 c : 図中では 1 7 5 °C ) のち熱交換器 5を経て (状態 d ) 吸収器 1に至る。 吸収器 1では吸収溶 液は蒸発器 3で蒸発した冷媒を吸収し、 希釈された後 (状態 a ) 再び熱 交換器 5を経て加熱され (状態 b ) 再生器 2に戻る。 再生器 2で発生し た冷媒蒸気は、 凝縮器 4に流入し凝縮する (状態 ) 。 凝縮器 4では凝 縮の際発生する凝縮熱が熱交換関係をなす伝熱管 2 0によって第 2のサ ィクルの再生器 1 2に伝達される。 凝縮した冷媒は蒸発器 3に送られ蒸 発する (状態 e) 。 蒸発器 3では蒸発の際吸熱する蒸発熱が熱交換関係 をなす伝熱管 2 1によって第 2のサイクルの吸収器 1 1 (状態 A) から 伝達される。 第 2のサイクルの吸収溶液は再生器 1 2で第 1のサイクル の凝縮熱 (状態 ) で伝熱管 20を介して加熱され、 冷媒蒸気を発生し、 濃縮された (状態 C) のち熱交換器 1 5を経て (状態 D) 吸収器 1 1に 至る。 吸収器 1 1では吸収溶液は蒸発器 1 3で蒸発した冷媒 (状態 E) を吸収し、 希釈された (状態 A) 後再び熱交換器 1 5を経て加熱され (状態 B) 再生器 1 2に戻る。 吸収器 1 1では吸収の際発生する吸収熱 は熱交換関係をなす伝熱管 2 1によって第 1のサイクルの蒸発器 3 (状 態 e) に伝達される。 再生器 1 2で発生した冷媒蒸気は、 凝縮器 14に 流入し凝縮する (状態 F) 。 熱媒体を第 2のサイクルの凝縮器伝熱管 3 1から第 1のサイクルの吸収器伝熱管 30の順序で流すことによって第 1のサイクルの吸収溶液温度 (状態 a : 図中では 7 5 °C) が第 2のサイ クルの冷媒凝縮温度 (状態 F : 図中では 65°C) よりも高くなる。 凝縮 した冷媒 (状態 F) は蒸発器 1 3に送られ蒸発する (状態 E) 。 In Fig. 9, the absorption solution in the first cycle is heated from an external heat source in the regenerator 2, generates refrigerant vapor and is concentrated (order c: 175 ° C in the figure), and then heat exchanger After 5 (state d), it reaches absorber 1. In the absorber 1, the absorbing solution absorbs the refrigerant evaporated in the evaporator 3, is diluted (state a), is heated again through the heat exchanger 5 (state b), and returns to the regenerator 2. The refrigerant vapor generated in the regenerator 2 flows into the condenser 4 and condenses (state). In the condenser 4, the heat of condensation generated during the condensation is transmitted to the regenerator 12 of the second cycle by the heat transfer tube 20 which has a heat exchange relationship. The condensed refrigerant is sent to the evaporator 3 and evaporated. Emits (state e). In the evaporator 3, the evaporating heat absorbed during the evaporation is transmitted from the absorber 11 (state A) in the second cycle by the heat transfer tube 21 which has a heat exchange relationship. The absorption solution of the second cycle is heated in the regenerator 12 by the heat of condensation (state) of the first cycle through the heat transfer tube 20, generates refrigerant vapor, is concentrated (state C), and is then heat-exchanged. After 15 (State D), it reaches absorber 11. In the absorber 11, the absorbing solution absorbs the refrigerant (state E) evaporated in the evaporator 13, is diluted (state A), and is heated again through the heat exchanger 15 (state B). Return to In the absorber 11, the absorbed heat generated at the time of absorption is transferred to the evaporator 3 (state e) in the first cycle by the heat transfer tube 21 having a heat exchange relationship. The refrigerant vapor generated in the regenerator 12 flows into the condenser 14 and condenses (state F). The heat transfer medium flows in the order from the condenser heat transfer tubes 31 of the second cycle 31 to the absorber heat transfer tubes 30 of the first cycle, whereby the absorption solution temperature of the first cycle (state a: 75 ° C in the figure) ) Is higher than the refrigerant condensation temperature of the second cycle (State F: 65 ° C in the figure). The condensed refrigerant (state F) is sent to the evaporator 13 and evaporates (state E).
このように構成された吸収ヒートポンプでは、 駆動熱は第 1のサイク ルの再生器 2に加えられ、 第 1のサイクルの吸収器 1と第 2のサイクル の凝縮器 14で利用温熱が取り出せ、 かつ第 2のサイクルの蒸発器 1 3 で利用冷熱が取り出せる。 この吸収ヒートポ プでは、 サイクルが各々 独立しているため、 物質収支では、 バランスしていて、 一方のサイクル から他方に冷媒ゃ溶液が移動することはない。 しかし熱収支では、 以下 に説明するように、 バランスがとれない。  In the absorption heat pump configured as described above, the driving heat is applied to the regenerator 2 of the first cycle, and the used heat can be taken out by the absorber 1 of the first cycle and the condenser 14 of the second cycle, and The used cold energy can be taken out by the evaporator 13 in the second cycle. In this absorption heat pump, the cycles are independent of each other, so the mass balance is balanced and the refrigerant / solution does not move from one cycle to the other. However, the heat balance is not balanced, as explained below.
今、 第 1のサイクルの再生器の入熱に対する蒸発器の冷凍効果の割合 を とする。 は所謂動作係数 (COP) で、 溶液の循環比等によつ て設計的に設定できる変数であるが、 大略 0. 8程度である。 同様に第 2のサイクルの再生器の入熱に対する蒸発器の冷凍効果の割合を C 2とす る。 また、 凝縮器の出熱を蒸発器の入熱で除した値をそれぞれのサイク ルで、 R i、 R2とする。 : R t、 R2は、 それぞれの冷媒流量が等しいから、 それぞれのサイクルの凝縮器における冷媒のェン夕ルピ変化を蒸発器に おける冷媒のェン夕ルビ変化で除した値となる。 Now, let the ratio of the refrigerating effect of the evaporator to the heat input of the regenerator in the first cycle be. Is the so-called operating coefficient (COP), which is a variable that can be set in design by the circulation ratio of the solution, etc., but is approximately 0.8. Similarly Let the ratio of the refrigerating effect of the evaporator to the heat input of the regenerator in cycle 2 be C2. The values obtained by dividing the heat output of the condenser by the heat input of the evaporator are defined as R i and R 2 in each cycle. : R t, R 2, since each of the refrigerant flow rate are equal, becomes a value obtained by dividing E down evening ruby variation of refrigerant definitive in evaporator E down evening Lupi change of the refrigerant in the condenser of the each cycle.
ここで、 第 1のサイクルへの入熱を 1 とすると、 このサイクルの冷房 効果 Q e tは、  Here, assuming that the heat input to the first cycle is 1, the cooling effect Q e t of this cycle is
Q e != C 1 ( 1 )  Q e! = C 1 (1)
である。 It is.
一方、 第 2のサイクルには、 第 1のサイクルの凝縮熱が再生器に加え られるから、 再生器入熱 Q g2は、 On the other hand, in the second cycle, because the condensation heat of the first cycle is added to the regenerator, the regenerator heat input Q g 2 is
Q g2= C 1 · R 1 ( 2 ) Q g 2 = C 1R 1 (2)
第 2のサイクルの冷房効果 Q Θ 2は、 The cooling effect Q Θ 2 of the second cycle is
Q e 2 = C 2 - Q 2= C2 - C i - R i ( 3 ) Q e 2 = C 2-Q 2 = C 2 -C i-R i (3)
第 2のサイクルの凝縮熱 Q c 2は、 The heat of condensation Q c 2 of the second cycle is
Q c 2 = R2 - Q e 2= C i - C 2 ' R i - R 2 ( 4 ) Q c 2 = R 2 -Q e 2 = C i-C 2 'R i-R 2 (4)
第 2のサイクルの吸収熱 Q a 2は、 第 2のサイクルの全入熱から凝縮熱 を引いたものであるから、 The heat of absorption Q a 2 in the second cycle is the total heat input in the second cycle minus the heat of condensation,
Q a 2= C i - R i+ C2 - C i - R i- C 1 C 2 · R . · R 2 ( 5 ) 本吸収ヒートポンプでは、 第 1のサイクルの蒸発器と第 2のサイクル の吸収器が熱交換するので、 ここで、 第 1のサイクルの蒸発熱 Q e!と第 2のサイクルの吸収熱 Q a 2の大小を比較する。 そこで両者の差をとると、 Q a2- Q e 1= C i-R i-l- C 2-C i-R i- C i- C 2-R i- 2- C I Q a 2 = C i - R i + C 2 - C i -. In R i- C 1 C 2 · R · R 2 (5) the absorption heat pump, absorption of the evaporator of the first cycle the second cycle Since the vessel exchanges heat, the heat of evaporation of the first cycle, Q e! And the magnitude of the absorbed heat Q a 2 in the second cycle. So taking the difference between, Q a 2 - Q e 1 = C iR il- C 2-C iR i- C i- C 2-R i- 2- C I
= C 1 [ (R ,— 1 ) - C2 · R i (R2- 1 ) ] ( 6 ) 図 5のサイクルの作動状態から、 R R2を計算すると、 0 = C 1 [(R, - 1) - C 2 · R i (R 2 - 1)] (6) from the operating state of the cycle in FIG. 5, when calculating a RR 2, 0
R ,= ( 6 75 - 9 5) / ( 60 9 - 9 5 ) = 1. 1 28 R, = (6 75-95) / (609-95) = 1.128
R2= ( 6 39 - 65) / ( 603 - 65 ) = 1. 06 7 R 2 = (6 39-65) / (603-65) = 1.06 7
Ciおよび C2は大略 0. 8 (単効用吸収サイクルの標準的な値) とし て、 ( 6 )式の値を求めると、 Ci and C 2 are approximately 0.8 (standard value of single-effect absorption cycle), and the value of equation (6) is obtained.
Q a2-Q e i= 0.8 ( 0.1 28 - 0.8 x 1.1 28 x 0.067 ) Q a 2 -Q ei = 0.8 (0.1 28-0.8 x 1.1 28 x 0.067)
= 0.054 > 0  = 0.054> 0
となり、 第 2のサイクルの吸収熱の方が大きいことが判る。 仮に、 第 1 のサイ クルの蒸発熱 Q e ,が第 2のサイクルの吸収熱 Q a 2より大きくな るためには、 ( 6 )式 0となる必要があり、 従って、 It can be seen that the heat absorbed in the second cycle is larger. If, evaporation heat Q e of the first cycle, but the order Do greater than absorption heat Q a 2 second cycle, there is a need for a (6) 0, therefore,
C2≥ (R 1 - 1 ) / ( 2- 1 ) /R , ( 7 ) C 2 ≥ (R 1 - 1 ) / (2 - 1) / R, (7)
となる。 この C 2を計算すると、 Becomes Calculating this C 2 gives
C 2≥ 0. 1 28 / 0. 067 / 1. 1 2 8 = 1. 6 94 C 2 ≥ 0.128 / 0.067 / 1.128 = 1.694
となり、 単効用吸収冷凍サイ クルの C 0 Pとしては達成不可能な値とな る。 即ち、 このサイクルでは常に第 2のサイクルの吸収熱 Q a 2のほうが- 第 1のサイクルの蒸発熱 Q e!よ りも大きいことが判る。 This is an unattainable value for C 0 P of a single-effect absorption refrigeration cycle. That is, in this cycle, the heat of absorption Q a 2 of the second cycle is always higher than the heat of evaporation of the first cycle Q e! It turns out that it is bigger than that.
従って、 図 8の従来例の熱源吸収ヒー トポンプでは、 第 1のサイクル の冷凍効果が小さいため、 第 2のサイクルの吸収熱を冷却しきれず、 そ のため第 2のサイクルでは、 冷媒を吸収器で吸収しきれなくなって、 溶 液が次第に濃縮してしまうため、 継続的な運 ができない問題点がある。 本発明は、 上記課題に鑑み、 熱源吸収ヒー トポンプを円滑に作動させ、 かつ高いエネルギー効率を得ることができる空調システムを提供するこ とを目的とする。 発明の開示  Therefore, in the conventional heat source absorption heat pump shown in Fig. 8, since the refrigeration effect in the first cycle is small, the heat absorbed in the second cycle cannot be completely cooled. As the solution cannot be absorbed completely, the solution gradually concentrates, so that there is a problem that continuous luck cannot be achieved. In view of the above problems, an object of the present invention is to provide an air conditioning system capable of smoothly operating a heat source absorption heat pump and obtaining high energy efficiency. Disclosure of the invention
請求項 1に記載の発明は、 デシカン 卜により水分を吸着される処理空 気の経路と、 加熱源によって加熱されたのち前記水分吸着後のデシカン トを通過してデシカン ト中の水分を脱着して再生する再生空気の経路を 有する空調機と、 少なく とも蒸発器、 吸収器、 再生器、 凝縮器を構成機 器として、 吸収式冷凍サイ クルをなす第 1のサイクルと、 少なく とも蒸 発器、 吸収器、 再生器、 凝縮器を構成機器として、 前記第 1のサイクル よりも低温で作動する第 2の吸収冷凍サイクルからなり、 前記第 1のサ ィクルの蒸発器と第 2のサイクルの吸熱器との間に熱交換関係を形成し、 かつ該第 1のサイクルの凝縮器と第 2のサイクルの再生器との間に熱交 換関係を形成し、 かつ該第 1のサイクルの凝縮器から蒸発器に至る冷媒 冷却中に冷媒を冷却する熱交換器を設けた吸収ヒートポンプとを有し、 前記吸収ヒートポンプの第 1のサイクルの吸収熱および第 2のサイクル の凝縮熱を加熱源として、 前記空調機の冷却を行う空調システムにおい て、 前記吸収ヒ一トポンプの第 1のサイクルの冷媒経路中に設けた冷媒 を冷却する熱交換器に再生空気または再生空気を加熱する加熱媒体を導 いて冷媒と熱交換させるよう構成したことを特徴とする空調システムで ある。 According to the first aspect of the present invention, there is provided a processing space in which water is adsorbed by a desiccant. An air conditioner having a path for air, a path for regenerated air for desorbing and regenerating moisture in the desiccant by passing through the desiccant after being adsorbed after being heated by the heating source, and at least an evaporator and absorption The first cycle, which constitutes an absorption refrigeration cycle, using a heater, a regenerator, and a condenser as constituent devices, and the first cycle, which includes at least an evaporator, an absorber, a regenerator, and a condenser as constituent devices A second absorption refrigeration cycle operating at a lower temperature, forming a heat exchange relationship between the evaporator of the first cycle and the heat absorber of the second cycle, and A heat exchange relationship is formed between the condenser and the regenerator in the second cycle, and a heat exchanger for cooling the refrigerant during cooling of the refrigerant from the condenser in the first cycle to the evaporator is provided. An absorption heat pump; In the air conditioning system that cools the air conditioner using the heat of absorption of the first cycle of the heat pump and the heat of condensation of the second cycle as the heating source, the heat pump is provided in the refrigerant path of the first cycle of the heat pump. An air conditioning system characterized in that the system is configured so that regeneration air or a heating medium for heating the regeneration air is guided to a heat exchanger that cools the refrigerant, and exchanges heat with the refrigerant.
このように、 吸収ヒー トポンプの第 1のサイクルに設けた冷媒を冷却 する熱交換器に温度が低い状態の加熱媒体を該熱交換器に導いて冷媒と 熱交換させるよう構成したことによ り、 冷媒^冷却する効果が高まり、 冷媒が蒸発器に流入する際に自己蒸発して冷凍効果が損なわれる割合が 減少し、 第 1のサイクルの冷凍効果が増し、 第 2のサイクルの溶液の濃 縮防止と高いエネルギー効率を得るとともに、 従来失われていた冷媒の 保有熱を回収してデシカン トの再生空気の加熱に用いることができるた め、 システムの冷房効果が増し、 高いエネルギー効率を得ることができ る。 請求項 2に記載の発明は、 吸収ヒ一トポンプの第 1のサイクルの冷媒 経路中に設けた冷媒を冷却する熱交換器に再生空気または再生空気を加 熱する加熱媒体を導いて冷媒と熱交換させた後、 第 2のサイクルの凝縮 器及び第 1のサイクルの吸収器に導いて加熱するよう構成したことを特 徵とする請求項 1に記載の空調システムである。 As described above, the heat exchanger for cooling the refrigerant provided in the first cycle of the absorption heat pump is configured to guide the heating medium in a low temperature state to the heat exchanger to exchange heat with the refrigerant. The cooling effect of the refrigerant increases, the rate of loss of the refrigeration effect due to self-evaporation when the refrigerant flows into the evaporator decreases, the refrigeration effect of the first cycle increases, and the concentration of the solution of the second cycle increases. High cooling efficiency and high energy efficiency, as well as recovering the retained heat of the refrigerant, which can be used to heat desiccant regenerated air, increasing the cooling effect of the system and achieving high energy efficiency be able to. The second aspect of the present invention provides a heat exchanger for cooling the refrigerant which is provided in the refrigerant path of the first cycle of the absorption heat pump for cooling the refrigerant by introducing regeneration air or a heating medium for heating the regeneration air. 2. The air conditioning system according to claim 1, wherein the air conditioning system is configured to be guided to a condenser in the second cycle and an absorber in the first cycle for heating after the replacement.
このように、 吸収ヒー トポンプの第 1のサイクルに設けた冷媒を冷却 する熱交換器に最も温度が低い状態の加熱媒体を該熱交換器に導いて冷 媒と熱交換させた後、 吸収器及び凝縮器に導いて加熱するよう構成した ことにより、 冷媒を冷却する効果が高ま り、 泠媒が蒸発器に流入する際 に自己蒸発して冷凍効果が損なわれる割合が減少し、 第 1のサイクルの 冷凍効果が增し、 第 2のサイ クルの溶液の濃縮防止と高いエネルギー効 率を得るとともに、 冷媒の保有熱を回収してデシカン トの再生空気の加 熱に用いることができるため、 システムの冷房効果が増し、 高いエネル ギー効率を得ることができる。  As described above, after the heating medium having the lowest temperature is guided to the heat exchanger that cools the refrigerant provided in the first cycle of the absorption heat pump, the heat is exchanged with the cooling medium, and then the absorber is cooled. In addition, the configuration in which the refrigerant is guided to the condenser for heating enhances the effect of cooling the refrigerant, and reduces the rate at which the refrigerant self-evaporates when flowing into the evaporator to impair the refrigeration effect. Since the refrigerating effect of the second cycle is improved, the concentration of the solution in the second cycle can be prevented and high energy efficiency can be obtained, and the heat retained in the refrigerant can be recovered and used for heating the regenerated desiccant air. However, the cooling effect of the system is increased, and high energy efficiency can be obtained.
請求項 3に記載の発明は、 少なく とも蒸発器、 吸収器、 再生器、 凝縮 器を構成機器として吸収冷凍サイクルをなす第 1のサイクルと、 少なく とも蒸発器、 吸収器、 再生器、 凝縮器を構成機器として、 前記第 1のサ ィクルよりも低温で作動する第 2の吸収冷凍サイクルからなり、 前記第 1のサイクルの蒸発器と第 2のサイクルの吸政器との間に熱交換関係を 形成し、 かつ該第 1のサイクルの凝縮器と第 2のサイクルの再生器との 間に熱交換関係を形成した吸収ヒートポンプにおいて、 第 1のサイクル の凝縮熱の一部によって、 第 1のサイクルの吸収器および第 2のサイク ルの凝縮器で温熱を取り出す熱媒体を加熱するように熱交換関係を形成 したことを特徴とする吸収ヒートポンプである。  The third aspect of the present invention provides a first cycle that forms an absorption refrigeration cycle with at least an evaporator, an absorber, a regenerator, and a condenser as constituent devices, and at least an evaporator, an absorber, a regenerator, and a condenser. A second absorption refrigeration cycle that operates at a lower temperature than the first cycle, and has a heat exchange relationship between the evaporator of the first cycle and the absorber of the second cycle. And a heat exchange relationship between the condenser of the first cycle and the regenerator of the second cycle is formed by a part of the heat of condensation of the first cycle. An absorption heat pump characterized in that a heat exchange relationship is formed so as to heat a heat medium from which heat is taken out by the absorber of the cycle and the condenser of the second cycle.
このように、 第 1のサイクルの凝縮熱の一部を取り出すことによって、 第 1のサイクルの冷凍効果を低下させることなく、 第 2のサイクルの再 生器に加える熱量を減じて溶液の濃縮作用を抑制し、 第 1のサイクルの 蒸発熱と第 2のサイクルの吸収熱をバランスさせることができるため、 第 2のサイクルの溶液の濃縮防止を図ることができる。 これにより、 吸 収ヒートポンプの円滑な作動が可能になるとともに、 システム全体の円 滑な作動を可能にして、 エネルギー効率が高い空調システムを提供する ことができる。 Thus, by extracting a part of the heat of condensation of the first cycle, Without reducing the refrigeration effect of the first cycle, the amount of heat applied to the regenerator in the second cycle is reduced to suppress the concentration of the solution, and the heat of evaporation in the first cycle and the heat of absorption in the second cycle Therefore, the concentration of the solution in the second cycle can be prevented. As a result, the smooth operation of the absorption heat pump is enabled, and the smooth operation of the entire system is enabled, so that an air conditioning system with high energy efficiency can be provided.
請求項 4に記載の発明は、 第 2のサイクルの凝縮器および第 1のサイ クルの吸収器で温熱を取り出した後の熱媒体を第 1のサイクルの凝縮熱 の一部によって加熱することを特徴とする請求項 3に記載の吸収ヒート ポンプである。 このように、 作動温度が高い第 1のサイクルの凝縮熱で 熱媒体を加熱することにより、 前記の第 2のサイクルの溶液の濃縮防止 効果のほかに、 高い温度の熱媒体を取り出すことができるため、 特にデ シカン ト空調機のデシカン トの再生の熱源に用いる場合には再生能力が 高まり、 除湿能力を高めることができる。  The invention according to claim 4 is directed to heating the heat medium after extracting the heat with the condenser of the second cycle and the absorber of the first cycle by a part of the heat of condensation of the first cycle. An absorption heat pump according to claim 3, characterized in that: In this way, by heating the heat medium with the heat of condensation of the first cycle having a high operating temperature, in addition to the effect of preventing the solution from being concentrated in the second cycle, a heat medium having a high temperature can be taken out. Therefore, particularly when used as a heat source for desiccant regeneration of a desiccant air conditioner, the regeneration capability is enhanced, and the dehumidification capability can be enhanced.
請求項 5に記載の発明は、 第 2のサイクルの吸収溶液濃度を検出して- 該濃度が設定値よりも増加した場合に第 1のサイクルの凝縮熱によって、 第 1のサイクルの吸収器および第 2のサイクルの凝縮器で温熱を取り出 す熱媒体を加熱する熱量を増加させることを特徴とする請求項 3又は 4 に記載の吸収ヒ一トポンプである。  The invention according to claim 5 comprises detecting the concentration of the absorbing solution in the second cycle, and detecting the concentration of the absorbing solution in the second cycle by using the heat of condensation in the first cycle when the concentration exceeds the set value. 5. The absorption heat pump according to claim 3, wherein an amount of heat for heating a heat medium for extracting heat from the condenser in the second cycle is increased.
請求項 6に記載の発明は、 第 2のサイクルの蒸発器の冷媒液面を検出 し、 該液面が設定値よりも上昇した際に、 第 1のサイクルの吸収器およ び第 2のサイクルの凝縮器で温熱を取り出す熱媒体をを加熱する熱量を 増加させることを特徴とする請求項 5に記載の吸収ヒートポンプである, このように、 第 2のサイクルの吸収溶液濃度を検出して、 該濃度が設 定値よりも増加した場合に第 1のサイクルの凝縮熱によって、 第 1のサ ィクルの吸収器および第 2のサイクルの凝縮器で温熱を取り出す熱媒体 を加熱する熱量を増加させることにより、 第 1のサイクルの蒸発熱と第 2のサイクルの吸収熱をバランスさせて、 第 2のサイクルの溶液の濃度 を適正に保つことができ、 円滑な運転を継続することができる。 According to the invention of claim 6, the refrigerant level of the evaporator in the second cycle is detected, and when the liquid level rises above a set value, the absorber in the first cycle and the second refrigerant are detected. The absorption heat pump according to claim 5, wherein the amount of heat for heating a heat medium that takes out heat in the condenser of the cycle is increased, and thus, the absorption solution concentration in the second cycle is detected. The concentration is set By increasing the amount of heat that heats the heat medium that extracts heat with the absorber in the first cycle and the condenser in the second cycle by the heat of condensation in the first cycle when the heat exceeds the fixed value, By balancing the heat of evaporation of the second cycle with the heat of absorption of the second cycle, the concentration of the solution in the second cycle can be maintained at an appropriate level, and smooth operation can be continued.
請求項 7に記載の発明は、 デシカン トにより水分を吸着される処理空 気の経路と、 加熱源によって加熱されたのち前記水分吸着後のデシカン トを通過してデシ力ン ト中の水分を脱着して再生する再生空気の経路を 有し、 水分を吸着された処理空気とデシカント再生前かつ加熱源により 加熱される前の再生空気との間に顕熱熱交換器を有する空調機と、 少な くとも蒸発器、 吸収器、 再生器、 凝縮器を構成機器として吸収冷凍サイ クルをなす第 1のサイクルと、 少なく とも蒸発器、 吸収器、 再生器、 凝 縮器を構成機器として、 前記第 1のサイクルよりも低温で作動する第 2 の吸収冷凍サイクルからなり、 前記第 1のサイクルの蒸発器と第 2のサ ィクルの吸収器との間に熱交換関係を形成し、 かつ該第 1のサイクルの 凝縮器と第 2のサイクルの再生器との間に熱交換関係を形成した吸収ヒ —トポンプとを有し、 前記吸収ヒ一トポンプの第 1のサイクルの吸収熱 および第 2のサイクルの凝縮熱を加熱源として前記空調機の再生空気を 加熱してデシカントの再生を行うとともに前記吸収ヒ一トポンプの第 2 のサイクルの蒸発熱を冷却熱源として前記空調機の処理空気の冷却を行 う空調システムにおいて、 前記吸収ヒートポンプの、 第 1のサイクルの 凝縮熱の一部によって、 再生空気または前記再生空気の加熱源となる熱 媒体を加熱するように熱交換関係を形成したことを特徴とする空調シス テムである。  The invention according to claim 7 provides a process air path in which moisture is adsorbed by the desiccant, and a moisture in the desiccant which passes through the desiccant after the moisture adsorption after being heated by the heating source. An air conditioner having a regeneration air path for desorption and regeneration, and having a sensible heat exchanger between the treated air to which moisture is adsorbed and the regeneration air before desiccant regeneration and before being heated by the heating source; A first cycle that forms an absorption refrigeration cycle with at least an evaporator, an absorber, a regenerator, and a condenser as components, and at least an evaporator, an absorber, a regenerator, and a condenser as components. A second absorption refrigeration cycle operating at a lower temperature than the first cycle, forming a heat exchange relationship between the evaporator of the first cycle and the absorber of the second cycle, and One cycle condenser and second An absorption heat pump that forms a heat exchange relationship with a regenerator of the cycle, and the air conditioning uses the absorption heat of the first cycle and the condensation heat of the second cycle of the absorption heat pump as a heat source. An air conditioning system that heats the regeneration air of the air conditioner to regenerate the desiccant and cools the processing air of the air conditioner using the heat of evaporation of the second cycle of the absorption heat pump as a cooling heat source. An air conditioning system characterized by forming a heat exchange relationship so as to heat regeneration air or a heat medium serving as a heating source for the regeneration air by a part of the condensation heat of the first cycle.
このように、 吸収ヒートポンプの第 1のサイクルの凝縮熱の一部を取 り出すことによって、 第 1のサイクルの冷凍効果を低下させることなく- 第 2のサイクルの再生器に加える熱量を減じて溶液の濃縮作用を抑制し、 第 1のサイクルの蒸発熱と第 2のサイクルの吸収熱をバランスさせるた め、 第 2のサイクルの溶液の濃縮防止を図ることができて円滑なシステ ムの作動が得られるとともに、 高い温度の熱媒体を取り出すことができ るため、 デシカン ト空調機のデシ力ン トの再生の熱源に用いることで再 生能力が高まり、 除湿能,力が高めることができる。 Thus, some of the heat of condensation from the first cycle of the absorption heat pump is removed. Without reducing the refrigeration effect of the first cycle-reducing the amount of heat applied to the regenerator in the second cycle to reduce the concentration of the solution, reducing the heat of evaporation in the first cycle and the second In order to balance the heat absorbed in the cycle, it is possible to prevent the concentration of the solution in the second cycle and to achieve smooth operation of the system. By using it as a heat source for the regeneration of the air conditioner's decent power, the regenerative capacity can be increased, and the dehumidifying capacity and power can be increased.
請求項 8に記載の発明は、 吸収ヒートポンプの第 1のサイクルの凝縮 熱の一部を取り出す熱交換器に再生空気または再生空気を加熱する加熱 媒体を導いて冷媒と熱交換させるよう構成したことを特徴とする請求項 The invention according to claim 8 is configured such that the regeneration air or a heating medium for heating the regeneration air is guided to a heat exchanger that extracts a part of the condensation heat of the first cycle of the absorption heat pump to exchange heat with the refrigerant. Claims characterized by the following:
7に記載の空調システムである。 7. The air conditioning system according to 7.
このように、 吸収ヒ一トポンプの第 1のサイクルの凝縮熱の一部を取 り出す熱交換器に再生空気または再生空気を加熱する加熱媒体を導いて 冷媒と熱交換させることによって、 高い温度の熱源で、 デシカン ト空調 機のデシカン 卜の再生ができるため、 除湿能力が高めることができる。 図面の簡単な説明  As described above, by introducing the regeneration air or the heating medium that heats the regeneration air to the heat exchanger that extracts a part of the condensation heat of the absorption heat pump in the first cycle, heat exchange with the refrigerant increases the temperature. Since the desiccant of the desiccant air conditioner can be regenerated with this heat source, the dehumidifying capacity can be increased. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明に係るデシ力ン トを用いた空調システムの一実施例の基 本構成を示す説明であり、 図 2は図 1の吸収ヒ一卜ポンプの部分の吸収 溶液サイクルをデューリング線図で示す説明図であり、 図 3は図 1の空 調システムの空気のデシカン ト空調サイクルを湿り空気線図で示す説明 図であり、 図 4は本発明の第 2の実施例であるデシカント空調システム の基本構成を示す説明図であり、 図 5は図 4の熱源吸収ヒ一トポンプの サイクルを示すデューリング線図であり、 図 6は図 4のデシカント空調 システムのサイクルを示す湿り空気線図であり、 図 7は本発明の第 3の 実施例を示す図であり、 図 8は従来の空調システムの実施例を示す図で あり、 図 9は従来のデシ力ン 卜空調システムの吸収ヒ一卜ポンプ部分の 作動状態を示すデューリング線図である。 発明を実施するための最良の形態 FIG. 1 is an explanatory view showing a basic configuration of an embodiment of an air conditioning system using a decant according to the present invention, and FIG. 2 is a drawing showing the absorption solution cycle of the absorption heat pump shown in FIG. FIG. 3 is an explanatory diagram showing a desiccant air-conditioning cycle of the air of the air conditioning system of FIG. 1 in a wet air diagram, and FIG. 4 is a second embodiment of the present invention. Fig. 5 is an explanatory diagram showing the basic configuration of the desiccant air conditioning system. Fig. 5 is a During diagram showing the cycle of the heat source absorption heat pump shown in Fig. 4. Fig. 6 is wet air showing the cycle of the desiccant air conditioning system shown in Fig. 4. FIG. 7 is a diagram of a third embodiment of the present invention. FIG. 8 is a view showing an embodiment of the conventional air conditioning system, and FIG. 9 is a diagram showing a During line showing an operation state of an absorption heat pump part of the conventional decent power air conditioning system. FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明に係る空調システムの実施例を図面を参照して説明する < 図 1は本発明に係るデシカン ト空調システムの基本構成を示す図であり- このうち、 熱源吸収ヒー トポンプの部分は、 蒸発器 3、 吸収器 1、 再生 器 2、 凝縮器 4、 熱交換器 5を主な構成機器として吸収式冷凍サイクル をなす第 1のサイクルと、 蒸発器 1 3、 吸収器 1 1、 再生器 1 2、 凝縮 器 1 4、 熱交換器 1 5を主な構成機器として、 前記第 1のサイクルより も低温で作動する第 2の吸収冷凍サイクルからなり、 前記第 1のサイク ルの蒸発器 3と第 2のサイクルの吸収器 1 1 との間に熱交換関係 2 1を 形成し、 かつ該第 1のサイクルの凝縮器 4と第 2のサイクルの再生器 1 2との間に熱交換関係 2 0を形成し、 さらに前記第 1のサイクルの凝縮 器 4から蒸発器 3に至る冷媒経路 8中に冷媒を冷却する熱交換器 4 0を 設けたものである。 さらにこの実施例では、 第 2のサイクルの蒸発器の 冷媒液面を検出するセンサ 6 2と、 弁 6 0と、 冷媒を吸収器に送る経路 6 4と、 コントローラ 6 3からなり、 センサ 6 2の信号によって溶液が 過濃縮された際に弁 6 0を開いて、 冷媒を吸収器 1 1に送って溶液を希 釈する手段を設けている。  Hereinafter, an embodiment of an air conditioning system according to the present invention will be described with reference to the drawings. <FIG. 1 is a diagram showing a basic configuration of a desiccant air conditioning system according to the present invention. , Evaporator 3, Absorber 1, Regenerator 2, Condenser 4, Heat exchanger 5 as the main components of the first cycle that forms an absorption refrigeration cycle, and Evaporator 13 and Absorber 11, Regeneration A second absorption refrigeration cycle that operates at a lower temperature than the first cycle, with the main components of the unit 12, the condenser 14, and the heat exchanger 15, and the evaporator of the first cycle 3 and a heat exchange relationship 21 between the absorber 11 of the second cycle and a heat exchange relationship between the condenser 4 of the first cycle and the regenerator 12 of the second cycle. The relationship 20 is formed, and the refrigerant path 8 from the condenser 4 of the first cycle to the evaporator 3 is formed. It is provided with a heat exchanger 4 0 to cool the refrigerant. Further, in this embodiment, a sensor 62 for detecting the refrigerant level of the evaporator in the second cycle, a valve 60, a path 64 for sending refrigerant to the absorber, and a controller 63 are provided. When the solution is over-concentrated by the signal, the valve 60 is opened to send a refrigerant to the absorber 11 to dilute the solution.
一方、 空調機の部分は図 8の従来の実施例と同じく、 以下に示すよう 構成されている。 処理空気経路 Aは、 空調空間 1 0 1 と処理空気の送風 機 1 0 2の吸い込み口と経路 1 0 7を介して接続し、 送風機 1 0 2の吐 出口はデシカン トロー夕 1 0 3と経路 1 0 8を介して接続し、 デシカン トロー夕 1 0 3の処理空気の出口は再生空気と熱交換関係にある顕熱熱 交換器 1 0 4と経路 1 0 9を介して接続し、 顕熱熱交換器 1 0 4の処理 空気の出口は冷却器 1 1 5と経路 1 1 0を介して接続し、 冷却器 1 1 5 の処理空気の出口は加湿器 1 0 5と経路 1 1 1を介して接続し、 加湿器 1 0 5の処理空気の出口は空調空間 1 0 1 と経路 1 1 2を介して接続し て処理空気のサイクルを形成している。 On the other hand, the air conditioner is configured as shown below, as in the conventional embodiment of FIG. The processing air path A is connected to the air conditioning space 101 and the suction port of the processing air blower 102 via the path 107, and the outlet of the blower 102 is connected to the desiccant trolley 103. Connect through 108 and desiccan The outlet of the processing air of the trolley 103 is connected to the sensible heat exchanger 104, which has a heat exchange relationship with the regeneration air, via the path 109, and the processing air of the sensible heat exchanger 104 The outlet is connected to the cooler 1 15 via the route 110, and the outlet of the processing air of the cooler 115 is connected to the humidifier 105 via the route 111, and the humidifier 105 The outlet of the processing air is connected to the air-conditioned space 101 via a path 112 to form a processing air cycle.
一方再生空気経路 Βは、 外気を再生空気用の送風機 1 3 0の吸い込み 口と経路 1 2 4を介して接続し、 送風機 1 3 0の吐出口は処理空気と熱 交換関係にある顕熱熱交換器 1 0 4と接続し、 顕熱熱交換器 1 0 4の再 生空気の出口は別の顕熱熱交換器 1 2 1の低温側入口と経路 1 2 5を介 して接続し、 顕熱熱交換器 1 2 1の低温側出口は加熱器 1 2 0 と経路 1 2 6を介して接続し、 加熱器 1 2 0の再生空気の出口はデシカン ト ロ一 夕 1 0 3の再生空気入口と経路 1 2 7を介して接続し、 デシカン ト口一 夕 1 0 3の再生空気の出口は顕熱熱交換器 1 2 1の高温側入口と経路 1 2 8を介して接続し、 顕熱熱交換器 1 2 1の高温側出口は外部空間と経 路 1 2 9を介して接続して再生空気を外部から取り入れて、 外部に排気 するサイクルを形成している。  On the other hand, the regeneration air path 、 connects the outside air to the suction port of the regeneration air blower 130 through the path 124, and the discharge port of the blower 130 has a sensible heat heat exchange relationship with the processing air. The sensible heat exchanger 104 is connected to the low-temperature side inlet of another sensible heat exchanger 124 through the path 125, The low-temperature side outlet of the sensible heat exchanger 1 2 1 is connected to the heater 1 2 0 via the path 1 2 6, and the outlet of the regeneration air of the heater 1 2 It is connected to the air inlet via the route 127, and the outlet of the regenerated air at the desiccant outlet 103 is connected to the hot side inlet of the sensible heat exchanger 121 via the route 128, The outlet on the high-temperature side of the sensible heat exchanger 122 is connected to the external space via a path 129 to form a cycle in which regenerated air is taken in from the outside and exhausted outside.
そして、. 吸収ヒートポンプ部分と空調機部分との間の温熱の授受を行 う熱移送媒体 (温水) の経路を温水が空調機あ再生空気経路中の加熱器 1 2 0を出たあと、 経路 1 2 3、 ポンプ 1 5 0、 経路 5 0、 冷媒冷却用 熱交換器 4 0、 経路 5 1、 凝縮器 1 4、 経路 5 2、'吸収器 1の順に経由 して加熱器 1 2 0に戻るよう構成されている。  After passing the heat transfer medium (hot water) between the absorption heat pump section and the air conditioner section through the heat transfer medium (hot water), the hot water exits the heater 120 in the regeneration air path between the air conditioner and the path. 1 2 3, pump 150, route 50, refrigerant cooling heat exchanger 40, route 51, condenser 14, route 52, 'absorber 1 It is configured to return.
また吸収ヒー トポンプ部分と空調機部分との間の冷熱の授受を行う熱 移送媒体 (冷水) の経路を冷水が空調機の処理空気経路中の前記冷却器 1 1 5を出たあと、 経路 1 1 8、 ポンプ 1 6 0、 蒸発器 1 3、 経路 1 1 7の順に経由して冷却器 1 1 5に戻るよう構成されている。 なお図中、 丸で囲ったアルファベッ ト K〜Vは、 図 3と対応する空気の状態を示す 記号であり、 S Aは給気を、 R Aは還気を、 O Aは外気を、 E Xは排気 を表わす。 In addition, the path of the heat transfer medium (cold water) that transfers cold heat between the absorption heat pump section and the air conditioner section passes through the cooler 1 15 in the processing air path of the air conditioner after the cold water passes through the path 1. 1 8, pump 16 0, evaporator 1 3, route 1 1 It is configured to return to the cooler 1 15 via the order of 7. In the figure, the circled alphabets K to V are symbols indicating the state of air corresponding to that in Fig. 3, where SA is air supply, RA is return air, OA is outside air, and EX is exhaust air. Express.
次に、 前述のように構成されたデシカント空調システムの吸収ヒート ポンプ部分の作用を、 図 1を参照して説明する。  Next, the operation of the absorption heat pump portion of the desiccant air conditioning system configured as described above will be described with reference to FIG.
第 1のサイクルの吸収溶液は再生器 2で外部の熱源 (図示せず) から 伝熱管 3 4を介して加熱され、 冷媒蒸気を発生し、 濃縮されたのち熱交 換器 5を経て吸収器 1に至る。 吸収器 1では吸収溶液は蒸発器 3で蒸発 した冷媒を吸収し、 希釈された後ポンプ 6の作用によって再び熱交換器 5を経て再生器 2に戻る。 吸収器 1では吸収の際発生する吸収熱を利用 するため、 温水などの熱媒体と伝熱管 3 0によって熱交換される。 再生 器 2で発生した冷媒蒸気は、 凝縮器 4に流入し凝縮する。 凝縮器 4では 凝縮の際発生する凝縮熱が熱交換関係をなす伝熱管 2 0によって第 2の サイクルの再生器 1 2に伝達される。 凝縮した冷媒は熱交換器 4 0で熱 媒体によって冷却されたのち、 蒸発器 3に送られ蒸発する。 蒸発器 3で は蒸発の際吸熱する蒸発熱が熱交換関係をなす伝熱管 2 1によって第 2 のサイクルの吸収器 1 1から伝達される。  The absorption solution of the first cycle is heated from an external heat source (not shown) in the regenerator 2 via the heat transfer tube 34, generates refrigerant vapor, is concentrated, and is then concentrated through the heat exchanger 5 to the absorber. Leads to one. In the absorber 1, the absorbing solution absorbs the refrigerant evaporated in the evaporator 3, and after being diluted, returns to the regenerator 2 via the heat exchanger 5 again by the action of the pump 6. In the absorber 1, heat is exchanged with a heat medium such as hot water by the heat transfer tube 30 in order to use the heat of absorption generated at the time of absorption. The refrigerant vapor generated in the regenerator 2 flows into the condenser 4 and is condensed. In the condenser 4, the heat of condensation generated during the condensation is transferred to the regenerator 12 in the second cycle by the heat transfer tube 20 which has a heat exchange relationship. The condensed refrigerant is cooled by the heat medium in the heat exchanger 40 and then sent to the evaporator 3 to evaporate. In the evaporator 3, the evaporative heat absorbed during the evaporation is transmitted from the absorber 11 in the second cycle by the heat transfer tube 21 having a heat exchange relationship.
第 2のサイクルの吸収溶液は再生器 1 2で第 1のサイクルの凝縮熱で 伝熱管 2 0を介して加熱され、 冷媒蒸気を発生し、 濃縮されたのち熱交 換器 1 5を経て吸収器 1 1に至る。 吸収器 1 1では吸収溶液は蒸発器 1 3で蒸発した冷媒を吸収し、 希釈された後ポンプ 1 6の作用によって再 び熱交換器 1 5を経て再生器 1 2に戻る。 吸収器 1 1では吸収の際発生 する吸収熱は熱交換関係をなす伝熱管 2 1によって第 1のサイクルの蒸 発器 3に伝達される。 再生器 1 2で発生した冷媒蒸気は、 凝縮器 1 4に 流入し凝縮する。 凝縮器 1 4では凝縮の際発生する凝縮熱を利用するた め、 熱媒体と伝熱管 3 1によって熱交換される。 また前記熱媒体は第 1 のサイクルの冷媒冷却用熱交換器 4 0、 第 2のサイクルの凝縮器伝熱管 3 1、 第 1のサイクルの吸収器伝熱管 3 0の順序で流すことによって、 第 1のサイクルの吸収溶液温度、 第 2のサイクルの冷媒凝縮温度、 第 1 のサイクルの蒸発器入口の冷媒温度の順に高くなり、 第 1のサイクルの 蒸発器入口の冷媒温度が最も低くなる。 第 2のサイクルで凝縮した冷媒 は蒸発器 1 3に送られ蒸発する。 蒸発器 1 3では蒸発の際吸熱する蒸発 熱を利用するため、 冷水等の熱媒体と伝熱管 3 3によって熱交換される, 次に、 前述のように構成された吸収ヒ一トポンプの動作を図 2を参照 して説明する。 図 2は図 1の熱源吸収ヒ一トポンプのサイクルを示すデ ユーリ ング線図である。 本図は吸収冷凍機で一般的に用いられている臭 化リチウムー水系のものを代表例として示す。 図中に示すアルファべッ ト記号は、 吸収溶液や冷媒の状態を示すもので、 同じ記号を丸で囲んだ ものを図 1 にも記載した。 The absorption solution of the second cycle is heated in the regenerator 12 by the heat of condensation of the first cycle through the heat transfer tube 20, generates refrigerant vapor, is concentrated, and is absorbed through the heat exchanger 15 Container 1 leads to 1. In the absorber 11, the absorbing solution absorbs the refrigerant evaporated in the evaporator 13, and after being diluted, returns to the regenerator 12 via the heat exchanger 15 by the action of the pump 16. In the absorber 11, the heat of absorption generated at the time of absorption is transferred to the evaporator 3 of the first cycle by the heat transfer tube 21 having a heat exchange relationship. The refrigerant vapor generated in the regenerator 12 is sent to the condenser 14 Inflows and condenses. In the condenser 14, heat is exchanged between the heat medium and the heat transfer tube 31 in order to use the heat of condensation generated during the condensation. In addition, the heat medium flows in the following order: a refrigerant cooling heat exchanger 40 in the first cycle, a condenser heat transfer tube 31 in the second cycle, and an absorber heat transfer tube 30 in the first cycle. The absorption solution temperature in the first cycle, the refrigerant condensation temperature in the second cycle, and the refrigerant temperature at the evaporator inlet in the first cycle increase in this order, and the refrigerant temperature at the evaporator inlet in the first cycle becomes the lowest. The refrigerant condensed in the second cycle is sent to the evaporator 13 and evaporates. In the evaporator 13, heat is exchanged with the heat medium such as chilled water and the heat transfer tube 33 to use the heat of evaporation absorbed during the evaporation.Next, the operation of the absorption heat pump configured as described above is performed. This will be described with reference to FIG. FIG. 2 is a Duling diagram showing a cycle of the heat source absorption heat pump of FIG. This figure shows a typical example of a lithium bromide-water system commonly used in absorption refrigerators. Alphabet symbols in the figure indicate the state of the absorbing solution and refrigerant, and the same symbols are circled in Fig. 1.
第 1のサイクルの吸収溶液は再生器 2で外部の熱源から加熱され、 冷 媒蒸気を発生し濃縮された (状態 c : 図中では 1 7 5 °C ) のち熱交換器 5を経て (状態 d ) 吸収器 1に至る。 吸収器 1では吸収溶液は蒸発器 3 で蒸発した冷媒を吸収し、 希釈された後 (状態 a ) 再び熱交換器 5を経 て加熱され (状態 b ) 再生器 2に戻る。 再生器 2で発生した冷媒蒸気は、 凝縮器 4に流入し凝縮する (状態で) 。 凝縮器 4では凝縮の際発生する 凝縮熱が熱交換関係をなす伝熱管 2 0によって第 2のサイクルの再生器 1 2に伝達される。 凝縮した冷媒は冷媒冷却用熱交換器 4 0で冷却され (状態 g ) たのち、 蒸発器 3に送られ蒸発する (状態 e ) 。 蒸発器 3で は蒸発の際吸熱する蒸発熱が熱交換関係をなす伝熱管 2 1によって第 2 のサイクルの吸収器 1 1 (状態 A ) から伝達される。 The absorption solution in the first cycle is heated from an external heat source in the regenerator 2, generates refrigerant vapor and is concentrated (state c: 175 ° C in the figure), and then passes through the heat exchanger 5 (state d) lead to absorber 1. In the absorber 1, the absorbing solution absorbs the refrigerant evaporated in the evaporator 3, is diluted (state a), is heated again through the heat exchanger 5 (state b), and returns to the regenerator 2. The refrigerant vapor generated in the regenerator 2 flows into the condenser 4 and condenses (in a state). In the condenser 4, the heat of condensation generated during the condensation is transferred to the regenerator 12 in the second cycle by the heat transfer tube 20 which has a heat exchange relationship. The condensed refrigerant is cooled by the refrigerant cooling heat exchanger 40 (state g), and then sent to the evaporator 3 to evaporate (state e). In the evaporator 3, the heat of evaporation that is absorbed during the evaporation is converted into Transmitted from the absorber 1 1 (state A) of the cycle.
第 2のサイクルの吸収溶液は再生器 1 2で第 1のサイクルの凝縮熱 (状態 ) で伝熱管 2 0を介して加熱され、 冷媒蒸気を発生し、 濃縮さ れた (状態 C ) のち熱交換器 1 5を経て (状態 D ) 吸収器 1 1 に至る。 吸収器 1 1では吸収溶液は蒸発器 1 3で蒸発した冷媒 (状態 E ) を吸収 し、 希釈された (状態 A ) 後再び熱交換器 1 5を経て加熱され (状態 B ) 再生器 1 2に戻る。 吸収器 1 1では吸収の際発生する吸収熱は熱交換関 係をなす伝熱管 2 1によって第 1のサイクルの蒸発器 3 (状態 e ) に伝 達される。 再生器 1 2で発生した冷媒蒸気は、 凝縮器 1 4に流入し凝縮 する (状態 F ) 。 凝縮した冷媒 (状態 F ) は蒸発器 1 3に送られ蒸発す る (状態 E ) 。  The absorbing solution of the second cycle is heated by the regenerator 12 with the heat of condensation (state) of the first cycle through the heat transfer tube 20, generates refrigerant vapor, is concentrated (state C), and then heats It passes through the exchanger 15 (state D) to the absorber 11. In the absorber 11, the absorption solution absorbs the refrigerant (state E) evaporated in the evaporator 13, is diluted (state A), and is heated again through the heat exchanger 15 (state B). Return to In the absorber 11, the heat of absorption generated at the time of absorption is transferred to the evaporator 3 (state e) in the first cycle by the heat transfer tube 21 which has a heat exchange relationship. The refrigerant vapor generated in the regenerator 12 flows into the condenser 14 and is condensed (state F). The condensed refrigerant (state F) is sent to the evaporator 13 and evaporates (state E).
熱媒体を第 1のサイクルの冷媒冷却用熱交換器 4 0、 第 2のサイクル の凝縮器伝熱管 3 1、 第 1のサイクルの吸収器伝熱管 3 0の順序で流す ことによって、 第 1のサイクルの吸収溶液温度 (状態 a : 図中では 7 5 °C;) 、 第 2のサイクルの冷媒凝縮温度 (状態 F : 図中では 6 5 °C ) 、 第 1のサイクルの蒸発器入口 (状態 g : 図中では 5 5 °C ) の冷媒温度の順 に高くなり、 第 1のサイクルの蒸発器入口の冷媒温度が最も低くなる。 このように、 吸収ヒ一トポンプの第 1のサイクルの蒸発器入口の冷媒 温度を最も低くすることによって、 第 1のサイクルの冷凍効果が増大す るため、 第 2のサイクルの吸収熱を冷却する能力が高くなり、 そのため 第 2のサイクルの溶液が濃縮される傾向を緩和することができる。 以下 に理由を説明する。  By flowing the heat medium in the order of the heat exchanger 40 for cooling the refrigerant in the first cycle, the condenser heat transfer tube 31 in the second cycle, and the absorber heat transfer tube 30 in the first cycle, Cycle absorption solution temperature (state a: 75 ° C in the figure), refrigerant condensation temperature in the second cycle (state F: 65 ° C in the figure), evaporator inlet in the first cycle (state g: The refrigerant temperature increases in the order of 55 ° C in the figure, and the refrigerant temperature at the evaporator inlet in the first cycle becomes the lowest. As described above, since the refrigeration effect of the first cycle is increased by minimizing the refrigerant temperature at the evaporator inlet of the first cycle of the absorption heat pump, the absorption heat of the second cycle is cooled. The capacity is increased, which can reduce the tendency of the second cycle solution to concentrate. The reasons are explained below.
前記( 6 )式で示した、 第 2のサイクルの吸収熱と第 1のサイクルの蒸 発熱との差を求めるため、 図 2のサイクルの作動状態について、 R i、 R 2を計算すると、 R iについては蒸発器入口のェン夕ルビが熱交換器 4 0 の作用によって、 5 5°Cまで下がるため、 冷凍効果が増し、 従って は 小さくなる。 すなわち、 In order to find the difference between the heat absorbed in the second cycle and the heat generated in the first cycle, as shown in the above equation (6), R i and R 2 were calculated for the operation state of the cycle in FIG. For i, the heat exchanger at the entrance of the evaporator is the heat exchanger 4 0 As a result, the refrigeration effect increases, and thus decreases. That is,
R!= ( 6 7 5 - 9 5) / ( 609 - 5 5 ) = 1. 047  R! = (6 7 5-9 5) / (609-55) = 1.047
R2= ( 6 39 - 6 5 ) / ( 603 - 6 5 ) = 1. 0 67 R 2 = (6 39-65) / (603-65) = 1.067
および C2は前記従来例と同様に大略 0. 8 (単効用吸収サイクル の標準的な値) として、 And C 2 are approximately 0.8 (standard value of single-effect absorption cycle) as in the above-mentioned conventional example.
前記( 6 )式の値を求めると、  When the value of the above equation (6) is obtained,
Q a 2 - Q e t= C 1 [ ( : - 1 ) - C 2-R i ( R 2 - 1 ) ] Q a 2-Q et = C 1 [(:-1)-C 2 -R i (R 2-1)]
= 0.8 ( 0.047— 0.8 x 1.047 x 0.067) = - 0.007 < 0  = 0.8 (0.047— 0.8 x 1.047 x 0.067) =-0.007 <0
となり、 第 2のサイクルの吸収熱の方が逆にわずかに小さくなることが 判る。 しかも、 この差は第 1のサイクルの蒸発熱 (冷凍効果) に対して、 0. 9 %の差に過ぎないほどわずかな差であって、 第 2のサイクルの吸 収熱と第 1のサイクルの蒸発熱は殆ど等しくなる。 It can be seen that the heat of absorption in the second cycle is slightly smaller. Moreover, this difference is only a small difference of 0.9% with respect to the heat of evaporation (refrigeration effect) of the first cycle, and the difference between the heat absorbed in the second cycle and the heat of the first cycle. Are almost equal.
この場合では、 第 1のサイクルの蒸発熱 Q e!を第 2のサイクルの吸収 熱 Q a 2より大きくなるための条件すなわち、 ( 6 )式 0となる条件を求 めると、 In this case, the heat of evaporation of the first cycle Q e! Is determined to be larger than the absorption heat Q a 2 in the second cycle, that is, the condition that satisfies Equation (6) 0 is obtained as
C 2≥ (R 1 - 1 ) / (R 2 - 1 ) /R C 2 ≥ (R 1-1) / (R 2-1) / R
= 1 0. 047 / 0. 067 / 1. 047 = 0. 67  = 1 0. 047 / 0. 067 / 1. 047 = 0.67
となり、 単効用吸収冷凍サイクルの C 0 Pとしては十分実現可能な値と なる。 即ち、 このサイクルでは第 2のサイクルの吸収熱 Q a 2と第 1のサ ィクルの蒸発熱 Q e iをほぼ等しくできることが判る。 This is a sufficiently achievable value for C 0 P in a single-effect absorption refrigeration cycle. That is, in this cycle is seen to be able to substantially equal the heat of vaporization Q ei with absorption heat Q a 2 of the second cycle the first sub Ikuru.
従って、 図 1の実施例の熱源吸収ヒートポンプでは、 第 1のサイクル の冷凍効果で第 2のサイクルの吸収熱を冷却でき、 そのため第 2のサイ クルでは、 冷媒を吸収器で吸収可能になり、 溶液が濃縮してしまうこと がなくなるため、 継続的な運転が可能になる。 また第 2のサイクルの吸 収冷媒量の増加に伴って、 蒸発器 1 3の冷凍効果も増加する。 Therefore, in the heat source absorption heat pump of the embodiment of FIG. 1, the absorption heat of the second cycle can be cooled by the refrigeration effect of the first cycle, so that the refrigerant can be absorbed by the absorber in the second cycle, Solution concentration , Continuous operation becomes possible. Further, with the increase in the amount of refrigerant absorbed in the second cycle, the refrigerating effect of the evaporator 13 also increases.
次に前述のように構成された吸収ヒ一トポンプをデシカン ト空調に組 合せた際の動作を説明すると、 図 1において、 空調空間 1 0 1の空気 Next, the operation when the absorption heat pump configured as described above is combined with the desiccant air conditioning will be described. In FIG. 1, the air in the air conditioning space 101 is shown in FIG.
(処理空気) は経路 1 0 7を経て送風機 1 0 2に吸引され昇圧されて経 路 1 0 8をへてデシカン トロ一夕 1 0 3に送られデシカントロ一夕の吸 湿剤で空気中の水分を吸着され絶対湿度が低下する。 また吸着の際、 吸 着熱によって空気は温度上昇する。 湿度が下がり温度上昇した空気は経 路 1 0 9を経て顕熱熱交換器 1 0 4に送られ外気 (再生空気) と熱交換 して冷却される。 冷却された空気は経路 1 1 0を経て冷却器 1 1 5に送 られさらに冷却される。 冷却された処理空気は加湿器 1 0 5に送られ水 噴射または気化式加湿によって等ェンタルビ過程で温度低下し経路 1 1 2を経て空調空間 1 0 1に戻される。 The (processed air) is sucked into the blower 102 via the passage 107, is pressurized, is sent through the passage 108 to the desiccant towel 103, and is sent to the desiccant towel by the desiccant towel. Absorb moisture and decrease absolute humidity. At the time of adsorption, the temperature of air rises due to heat of adsorption. The air whose humidity has dropped and the temperature has risen is sent to a sensible heat exchanger 104 via a path 109, where it is cooled by exchanging heat with outside air (regenerated air). The cooled air is sent to the cooler 115 via the path 110 and further cooled. The cooled treated air is sent to the humidifier 105 and cooled by water injection or vaporization humidification in the isenthalby process, and is returned to the air-conditioned space 101 via the route 112.
デシカン トロータはこの過程で水分を吸着したため、 再生が必要で、 この実施例では外気を再生用空気として用いて次のように行われる。 外 気 (O A ) は経路 1 2 4を経て送風機 1 3 0に吸引され昇圧されて顕熱 熱交換器 1 0 4に送られ、 処理空気を冷却して自らは温度上昇し経路 1 2 5を経て次の顕熱熱交換器 1 2 1に流入し、 再生後の高温の空気と熱 交換して温度上昇する。 さらに顕熱熱交換器' 1 2 1を出た再生空気は経 路 1 2 6を経て加熱器 1 2 0に流入し温水によって加熱され 6 0〜 8 0 °Cまで温度上昇し、 相対湿度が低下する。 この過程は再生空気の顕熱変 化であり、 空気の比熱は温水に比べて著しく低く温度変化が大きいため、 温水の流量を減少させて温度変化を大きく しても熱交換は効率良く行わ れ、 搬送動力を低減することができる。 加熱器 1 2 0を出て相対湿度が 低下した再生空気はデシカン トロ一夕 1 0 3を通過してデシ力ントロ一 夕の水分を除去し再生作用をする。 デシカン トロー夕 1 0 3を通過した 再生空気は経路 1 2 8を経て顕熱熱交換器 1 2 1に流入し、 再生前の再 生空気の予熱を行ったのち経路 1 2 9を経て排気として外部に捨てられ る o Since the desiccant rotor adsorbs moisture in this process, regeneration is necessary. In this embodiment, the desiccant rotor is operated as follows using outside air as regeneration air. Outside air (OA) is sucked into the blower 130 through the path 124 and is pressurized and sent to the sensible heat exchanger 104, where it cools the treated air and rises in temperature to the path 125 After that, it flows into the next sensible heat exchanger 1 2 1 and exchanges heat with the hot air after regeneration to increase the temperature. Further, the regenerated air exiting the sensible heat exchanger '12 1 flows into the heater 120 via the path 126, is heated by the hot water, and rises in temperature to 60 to 80 ° C, and the relative humidity is reduced. descend. This process is a sensible heat change of the regenerated air.The specific heat of air is significantly lower than that of hot water, and the temperature change is large.Therefore, even if the flow rate of hot water is reduced and the temperature change is increased, heat exchange is performed efficiently. The transfer power can be reduced. The regenerated air, whose relative humidity has decreased after exiting the heater 120, passes through the desiccant towels 103, and then passes through the desiccant heater. It removes evening water and has a regenerating effect. The regenerated air that has passed through the desiccant trolley 103 flows into the sensible heat exchanger 122 through the path 128, preheats the regenerated air before regeneration, and then passes through the path 129 as exhaust. Discarded outside o
これまでの過程を図 3の湿り空気線図を用いて説明すると、 空調空間 1 0 1の空気 (処理空気 :状態 ) は経路 1 0 7を経て送風機 1 0 2に 吸引され昇圧されて経路 1 0 8をへてデシカン トロータ 1 0 3に送られ デシカン トロータの吸湿剤で空気中の水分を吸着され絶対湿度が低下す るとともに吸着熱によって空気は温度上昇する (状態 L ) 。 湿度が下が り温度上昇した空気は経路 1 0 9を経て顕熱熱交換器 1 0 4に送られ外 気 (再生空気) と熱交換して冷却される (状態 M ) 。 冷却された空気は 経路 1 1 0を経て冷却器 1 1 5に送られさらに冷却され (状態 N ) 、 冷 却された空気は経路 1 1 1を経て加湿器 1 0 5に送られ水噴射または気 化式加湿によって等ェン夕ルビ過程で温度低下し (状態 P ) 、 経路 1 1 2を経て空調空間 1 0 1に戻される。 このようにして室内の還気 (状態 K ) と給気 (状態 P ) との間にはェン夕ルビ差 Δ Qが生じ、 これによつ て空調空間 1 0 1の冷房が行われるが、 図 1の実施例では前述の通り、 ヒートポンプの蒸発器入口の冷媒のェン夕ルビが下がりヒートポンプの 冷凍効果が増加しているため、 図 8の実施例'よりもェン夕ルビ差 Δ qが 大きくなり、 従って冷房効果を示すェン夕ルビ差△ Qも大きくなる。 一方、 デシカントの再生は次のように行われる。 再生用の外気 (O A :状態 Q ) は経路 1 2 4を経て送風機 1 3 0に吸引され昇圧されて顕熱 熱交換器 1 0 4に送られ、 処理空気を冷却して自らは温度上昇し (状態 : R ) 経路 1 2 5を経て次の顕熱熱交換器 1 2 1に流入し、 再生後の高 温の空気と熱交換して温度上昇する (状態 S ) 。 さらに顕熱熱交換器 1 2 1 を出た再生空気は経路 1 2 6を経て加熱器 1 2 0に流入し温水によ つて加熱され 6 0〜 8 0 °Cまで温度上昇し、 相対湿度が低下する (状態 T ) 。 相対湿度が低下した再生空気はデシカン トロー夕 1 0 3を通過し てデシカン トロー夕の水分を除去する (状態 U ) 。 デシカン ト口一夕 1 0 3を通過した再生空気は経路 1 2 8を経て顕熱熱交換器 1 2 1に流入 し、 顕熱熱交換器 1 0 4を出た再生前の再生空気の予熱を行って自らは 温度低下した (状態 V ) のち経路 1 2 9を経て排気として外部に捨てら れる。 The process up to now will be described with reference to the psychrometric chart of FIG. 3. The air in the air-conditioned space 101 (processed air: state) is sucked into the blower 102 via the route 107 and is pressurized to increase the pressure in the route 1. After passing through 08, the desiccant rotor 103 is sent to the desiccant rotor 103, where the moisture in the air is adsorbed by the desiccant rotor, the absolute humidity decreases, and the temperature of the air rises due to the heat of adsorption (state L). The air whose humidity has dropped and the temperature has risen is sent to the sensible heat exchanger 104 via the path 109 and cooled by exchanging heat with the outside air (regenerated air) (state M). The cooled air is sent to the cooler 115 via the route 110 and further cooled (state N), and the cooled air is sent to the humidifier 105 via the route 111 to spray water or water. The temperature decreases during the iso-rubber process by vaporization humidification (state P), and is returned to the air-conditioned space 101 via route 112. In this way, an en-ubiquity difference ΔQ is generated between the return air in the room (state K) and the supply air (state P), thereby cooling the air-conditioned space 101. As described above, in the embodiment of FIG. 1, since the entropy ruby of the refrigerant at the inlet of the evaporator of the heat pump decreases and the refrigerating effect of the heat pump increases, the entropy ruby difference Δ q becomes large, and therefore, the enzymatic ruby difference △ Q showing the cooling effect also becomes large. On the other hand, desiccant regeneration is performed as follows. The outside air for regeneration (OA: state Q) is sucked into the blower 130 via the path 124, pressurized and sent to the sensible heat exchanger 104, where it cools the treated air and raises its temperature. (State: R) Flows into the next sensible heat exchanger 122 via route 125, and exchanges heat with the high-temperature air after regeneration to raise the temperature (state S). Further sensible heat exchanger 1 The regenerated air exiting 21 flows into the heater 120 via the path 126, is heated by the hot water, is heated to 60 to 80 ° C, and the relative humidity is reduced (state T). The regenerated air having a decreased relative humidity passes through the desiccant trowel 103 to remove the water from the desiccant trowel (state U). The regenerated air that passed through the desiccant outlet 103 passed through the passage 128 to the sensible heat exchanger 121, and preheated from the sensible heat exchanger 104 before regeneration before regeneration. After the temperature drops (State V), it is discarded as exhaust gas through Route 12 29.
このようにしてデシカン トの再生と処理空気の除湿、 冷却をく りかえ し行うことによって、 デシカン トによる空調を行う。 なお再生用空気と して室内換気にともなう排気を用いる方法も従来からデシカン ト空調で は広く行われているが、 本発明においても室内からの排気を再生用空気 として使用してもさしっかえなく、 本実施例と同様の効果が得られる。 また、 顕熱熱交換器 1 0 4で処理空気を冷却した空気を再生に用いずに, 一旦排気して、 新しい外気を再生空気として顕熱熱交換器 1 2 1に導く 方法を用いてもさしつかえない。  In this way, the desiccant is air-conditioned by repeating the regeneration of the desiccant and the dehumidification and cooling of the treated air. Although desiccant air-conditioning has been widely used in the past for the method of using exhaust accompanying indoor ventilation as regeneration air, in the present invention, it is also possible to use exhaust from the room as regeneration air. Therefore, the same effect as in the present embodiment can be obtained. It is also possible to use a method in which the air cooled by the sensible heat exchanger 104 for cooling the treated air is not used for regeneration but is once exhausted, and the fresh outside air is led to the sensible heat exchanger 122 as regenerated air. I can't tell.
このようにして、 第 1のサイクルの凝縮器 4から蒸発器 3に至る冷媒 経路中に冷媒を冷却する熱交換器 4 0を設けて冷却することにより、 冷 媒が蒸発器 3に流入する際に自己蒸発して冷 効果が損なわれる割合が 減少し、 大きな冷凍効果が得られるため、 システムの冷房効果が増すと ともに、 第 1のサイクルの吸収熱および第 2のサイクルの凝縮熱に加え て、 従来自己蒸発によって失われていた第 1のサイクルの凝縮冷媒の顕 熱も回収して加熱源として再生空気の加熱に利用することができる。 従 つて、 冷房能力の増加とともに空調システム全体のエネルギー効率も良 くなる。 なお、 本実施例では、 熱源吸収ヒートポンプの第 2のサイクル中に、 蒸発器の冷媒液面を検出するセンサ 6 2 と、 弁 6 0と、 冷媒を吸収器に 送る経路 6 4と、 コン トローラ 6 3からなり、 センサ 6 2の信号によつ て溶液が過濃縮された際に弁 6 0を開いて、 冷媒を吸収器 1 1に送って 溶液を希釈する手段を設けているが、 これは、 空調システムの部分負荷 時などに負荷がなくなって熱移送媒体 (温水) の温度が上昇してしまつ た場合には、 前記熱交換器 4 0の冷却効果が得られなり、 第 1のサイク ルの冷凍効果が小さくなって、 前記のとおり第 2のサイクルの吸収熱を 冷却できなくなることが想定されるため、 そのような場合の安全装置と して設けたもので、 第 2のサイクルの溶液濃度の上昇を防止することが できる。 In this way, by providing the heat exchanger 40 for cooling the refrigerant in the refrigerant path from the condenser 4 to the evaporator 3 in the first cycle and performing cooling, the refrigerant flows into the evaporator 3 The rate at which the cooling effect is impaired due to self-evaporation is reduced, and a large refrigeration effect is obtained. However, the sensible heat of the condensed refrigerant in the first cycle, which has been lost by self-evaporation, can also be recovered and used as a heating source for heating the regenerated air. Therefore, as the cooling capacity increases, the energy efficiency of the entire air conditioning system also improves. In the present embodiment, during the second cycle of the heat source absorption heat pump, a sensor 62 for detecting the refrigerant level of the evaporator, a valve 60, a path 64 for sending the refrigerant to the absorber, and a controller A means for diluting the solution by opening the valve 60 and sending the refrigerant to the absorber 11 when the solution is excessively concentrated by the signal of the sensor 62 is provided. If the load on the heat transfer medium (hot water) rises due to no load, such as when the air conditioning system is partially loaded, the cooling effect of the heat exchanger 40 will not be obtained, and the first Since it is assumed that the refrigeration effect of the cycle is reduced and the heat absorbed in the second cycle cannot be cooled as described above, it is provided as a safety device in such a case. The solution concentration can be prevented from increasing.
この種の手段は従来の吸収冷凍機で公知な技術であって、 類似の手段 として、 冷媒温度や圧力と溶液温度を測定しマイクロコンピュータ等で 演算して希釈するようにしても差し支えない。 また、 前記の計算事例で 示した通り、 熱交換器 4 0が極めて効果的に第 1のサイクルの冷媒を冷 却した場合には、 逆に第 1のサイクルの冷凍効果が第 2のサイクルの吸 収熱を上回り、 そのため、 第 1のサイクルの蒸発圧力が低下し、 第 2の サイクルの溶液濃度が薄くなりすぎる可能性も考えられるため、 第 1の サイクルにも、 このような溶液を希釈する手 ¾を設けて、 冷凍効果を下 げるようにしても差し支えない。  This type of means is a well-known technique in a conventional absorption refrigerator, and as a similar means, the refrigerant temperature, pressure and solution temperature may be measured and calculated by a microcomputer or the like for dilution. Also, as shown in the above calculation example, when the heat exchanger 40 cools the refrigerant in the first cycle extremely effectively, on the contrary, the refrigeration effect in the first cycle is lower than that in the second cycle. The solution may be diluted in the first cycle as well, as it may exceed the heat absorption and thus reduce the evaporation pressure in the first cycle and the solution concentration in the second cycle may be too low. It is permissible to provide a means to reduce the refrigeration effect.
図 4は本発明の第 2の実施例であるデシカン ト空調システムの基本構 成を示す図であり、 図 8に示す従来の吸収ヒートポンプに、 さらに以下 の構成が加えられている。 すなわち、 第 1のサイクルの再生器 2から冷 媒蒸気の一部を外部に取り出してその凝縮熱で熱媒体を加熱する熱交換 器 6 1 を設け、 さらに熱交換器 6 1 と再生器 2 とを結ぶ経路 6 7中に第 1の制御弁 6 5を設け、 さらに熱交換器 6 1で凝縮した冷媒を蒸発器 3 に導く経路 6 8と絞り 6 9を設け、 さらに再生器 2と凝縮器 4とを結ぶ 経路中に第 2の制御弁 6 6を設け、 さらに、 第 2のサイクルの蒸発器 1 3の冷媒液面検出センサ 6 2と、 コントローラ 6 3と、 コントローラ 6 3と第 1の制御弁 6 5、 第 2の制御弁 6 6とを結ぶ信号経路 7 2と、 コ ン トロ一ラ 6 3と冷媒液面検出センサ 6 2とを結ぶ信号経路 7 0とを設 けて、 冷媒液面検出センサ 6 2が設定値を超えて液面が上昇したことを 検出して、 コン トローラ 6 3が第 1の制御弁 6 5を開き、 第 2の制御弁 6 6を絞る様構成したものである。 一方、 空調機の部分は、 図 8の従来 の実施例と同じように構成されている。 FIG. 4 is a diagram showing a basic configuration of a desiccant air-conditioning system according to a second embodiment of the present invention. The following configuration is added to the conventional absorption heat pump shown in FIG. That is, a heat exchanger 61 for extracting a part of the refrigerant vapor from the regenerator 2 of the first cycle to the outside and heating the heat medium with the heat of condensation is provided.The heat exchanger 61 and the regenerator 2 are further connected to each other. Route 6 during the 7 1, a control valve 65, a refrigerant passage condensed in the heat exchanger 61, a path 68 for guiding the refrigerant to the evaporator 3, and a throttle 69 are provided.In the path connecting the regenerator 2 and the condenser 4, The second control valve 66 is provided, and the refrigerant level detection sensor 62 of the evaporator 13 in the second cycle, the controller 63, the controller 63, the first control valve 65, the second A signal path 72 that connects the control valve 66 and a signal path 70 that connects the controller 63 and the refrigerant level sensor 62 are provided, and the refrigerant level sensor 62 is set. The controller 63 detects that the liquid level has risen above the value, and the controller 63 opens the first control valve 65 and throttles the second control valve 66. On the other hand, the air conditioner is configured in the same manner as the conventional embodiment of FIG.
そして、 吸収ヒ一トポンプ部分と空調機部分との間の温熱の授受を行 う熱移送媒体 (温水) の経路を、 温水が空調機の再生空気経路中の加熱 器 1 2 0を出たあと、 経路 1 2 3、 ポンプ 1 5 0、 経路 5 0、 凝縮器 1 4、 経路 5 2、 吸収器 1、 経路 5 3、 熱交換器 6 1、 経路 5 5、 経路 1 2 2の順に経由して加熱器 1 2 0に戻るよう構成されている。 また吸収 ヒートポンプ部分と空調機部分との間の冷熱の授受を行う熱移送媒体 (冷水) の経路を冷水が空調機の処理空気経路中の冷却器 1 1 5を出た あと、 経路 1 1 8、 ポンプ 1 6 0、 蒸発器 1 3、 経路 1 1 7の順に経由 して冷却器 1 1 5に戻るよう構成されている' なお図中、 丸で囲ったァ ルファベッ ト K〜Vは、 図 6と対応する空気の状態を示す記号であり、 S Aは給気を、 ; Aは還気を、 O Aは外気を、 E Xは排気を表わす。 次に、 前述のように構成されたデシカン ト空調システムの吸収ヒ一ト ポンプ部分の作用を、 図 4を参照して説明する。 作動の状態として、 コ ントローラ 6 3が第 1の制御弁 6 5を完全に閉じて、 第 2の制御弁 6 6 を開いた場合の動作は図 8の従来の実施例と同じであるため、 説明を省 略し、 ここではコン トローラ 6 3が第 1の制御弁 6 5を開き、 第 2の制 御弁 6 6を絞った場合の作用について説明する。 Then, the path of the heat transfer medium (hot water) for transferring heat between the absorption heat pump section and the air conditioner section is changed after the hot water exits the heater 120 in the regeneration air path of the air conditioner. , Route 1 2 3, Pump 1 50, Route 50, Condenser 14, Route 52, Absorber 1, Route 53, Heat Exchanger 61, Route 55, Route 1 2 2 To return to the heater 120. The path of the heat transfer medium (cold water) that transfers cold heat between the absorption heat pump section and the air conditioner section passes through the cooler 1 15 in the processing air path of the air conditioner after the cold water exits the path 1 18 , The pump 160, the evaporator 13 and the path 1 17 to return to the cooler 1 15 in this order.'In the figure, the circled K-V 6 is a symbol indicating the state of air corresponding to, SA is air supply, A is return air, OA is outside air, EX is exhaust. Next, the operation of the absorption heat pump portion of the desiccant air conditioning system configured as described above will be described with reference to FIG. As an operation state, when the controller 63 completely closes the first control valve 65 and opens the second control valve 66, the operation is the same as that of the conventional embodiment of FIG. Omit description Here, the operation when the controller 63 opens the first control valve 65 and throttles the second control valve 66 will be described.
第 1のサイクルの吸収溶液は再生器 2で外部の熱源 (図示せず) から 伝熱管 3 4を介して加熱され、 冷媒蒸気を発生し、 濃縮されたのち熱交 換器 5を経て吸収器 1に至る。 吸収器 1では吸収溶液は蒸発器 3で蒸発 した冷媒を吸収し、 希釈された後ポンプ 6の作用によって再び熱交換器 5を経て再生器 2に戻る。 吸収器 1では、 吸収の際発生する吸収熱を利 用するため、 吸収溶液と温水などの熱媒体との間で伝熱管 3 0を介して 熱交換される。 再生器 2で発生した冷媒蒸気は、 一部が開いている第 1 の制御弁 6 5を経て熱交換器 6 1に流入して凝縮する。 熱交換器 6 1で は凝縮の際発生する凝縮熱を利用するため、 温水などの熱媒体と伝熱管 3 5によって熱交換される。 再生器 2で発生した冷媒蒸気の残りの大部 分は若干絞られた第 2の制御弁 6 6を経て凝縮器 4に流入し凝縮する。 凝縮器 4では凝縮の際発生する凝縮熱が熱交換関係をなす伝熱管 2 0に よって第 2のサイクルの再生器 1 2に伝達される。 熱交換器 6 1及び凝 縮器 4で凝縮した冷媒は蒸発器 3に送られて蒸発する。 蒸発器 3では蒸 発の際に吸熱する蒸発熱が熱交換関係をなす伝熱管 2 1によって第 2の サイクルの吸収器 1 1から伝達される。  The absorption solution of the first cycle is heated from an external heat source (not shown) in the regenerator 2 via the heat transfer tube 34, generates refrigerant vapor, is concentrated, and is then concentrated through the heat exchanger 5 to the absorber. Leads to one. In the absorber 1, the absorbing solution absorbs the refrigerant evaporated in the evaporator 3, and after being diluted, returns to the regenerator 2 via the heat exchanger 5 again by the action of the pump 6. In the absorber 1, heat is exchanged between the absorbing solution and a heat medium such as hot water via the heat transfer tube 30 in order to use the heat of absorption generated at the time of absorption. The refrigerant vapor generated in the regenerator 2 flows into the heat exchanger 61 via the first control valve 65, which is partially open, and condenses. In the heat exchanger 61, heat is exchanged with a heat medium such as hot water by the heat transfer tube 35 in order to utilize the heat of condensation generated during condensation. Most of the remaining refrigerant vapor generated in the regenerator 2 flows into the condenser 4 via the slightly throttled second control valve 66 and condenses. In the condenser 4, the heat of condensation generated at the time of condensation is transmitted to the regenerator 12 in the second cycle by the heat transfer tube 20 which has a heat exchange relationship. The refrigerant condensed in the heat exchanger 61 and the condenser 4 is sent to the evaporator 3 and evaporates. In the evaporator 3, the evaporative heat absorbed during the evaporation is transmitted from the absorber 11 in the second cycle by the heat transfer tube 21 having a heat exchange relationship.
第 2のサイクルの吸収溶液は再生器 1 2ビおいて第 1のサイクルの凝 縮器 4で発生する凝縮熱で伝熱管 2 0を介して加熱され、 冷媒蒸気を発 生し、 濃縮されたのち熱交換器 1 5を経て吸収器 1 1に至る。 吸収器 1 1では吸収溶液は蒸発器 1 3で蒸発した冷媒を吸収し、 希釈された後ポ ンプ 1 6の作用によって再び熱交換器 1 5を経て再生器 1 2に戻る。 吸 収器 1 1では吸収の際発生する吸収熱は熱交換関係をなす伝熱管 2 1に よって第 1のサイクルの蒸発器 3に伝達される。 再生器 1 2で発生した 冷媒蒸気は、 凝縮器 1 4に流入し凝縮する。 凝縮器 1 4では凝縮の際発 生する凝縮熱を利用するため、 熱媒体と伝熱管 3 1によって熱交換され る。 蒸発器 1 3では蒸発の際吸熱する蒸発熱を利用するため、 冷水等の 熱媒体と伝熱管 3 3によって熱交換される。 The absorption solution of the second cycle was heated through the heat transfer tube 20 by the heat of condensation generated in the condenser 4 of the first cycle in the regenerator 12 to generate refrigerant vapor, and was concentrated. After that, it passes through the heat exchanger 15 and reaches the absorber 11. In the absorber 11, the absorption solution absorbs the refrigerant evaporated in the evaporator 13, and after being diluted, returns to the regenerator 12 via the heat exchanger 15 again by the action of the pump 16. In the absorber 11, the heat of absorption generated at the time of absorption is transferred to the evaporator 3 in the first cycle by the heat transfer tube 21 having a heat exchange relationship. Generated by regenerator 1 2 The refrigerant vapor flows into the condenser 14 and condenses. In the condenser 14, heat is exchanged by the heat medium and the heat transfer tube 31 in order to use the heat of condensation generated during the condensation. In the evaporator 13, heat is exchanged by the heat transfer tube 33 with a heat medium such as cold water in order to use the evaporation heat absorbed during the evaporation.
次に、 前述のように構成された吸収ヒ一トポンプの動作を図 5を参照 して説明する。 図 5は、 図 4の熱源吸収ヒートポンプのサイクルを示す デューリング線図である。 本図は吸収冷凍機で一般的に用いられている 臭化リチウム一水系のものを代表例として示す。 図中に示すアルファべ ッ ト記号は、 吸収溶液や冷媒の状態を示すもので、 同じ記号を丸で囲ん だものを図 4にも記載した。  Next, the operation of the absorption heat pump configured as described above will be described with reference to FIG. FIG. 5 is a During diagram showing a cycle of the heat source absorption heat pump of FIG. This figure shows a typical example of a lithium bromide monohydrate system commonly used in absorption refrigerators. The alphabetic symbols shown in the figure indicate the state of the absorbing solution and the refrigerant, and the same symbols are also circled in FIG.
第 1のサイクルの吸収溶液は再生器 2で外部の熱源から加熱され、 冷 媒蒸気を発生し濃縮された (状態 c : 図中では 1 7 5 °C ) のち熱交換器 5を経て (状態 d ) 吸収器 1に至る。 吸収器 1では吸収溶液は蒸発器 3 で蒸発した冷媒を吸収し、 希釈された後 (状態 a ) 再び熱交換器 5を経 て加熱され (状態 b ) 再生器 2に戻る。 再生器 2で発生した冷媒蒸気は、 一部が熱交換器 6 1で残りが凝縮器 4に流入し凝縮する (状態で) 。 凝 縮器 4では凝縮の際発生する凝縮熱が熱交換関係をなす伝熱管 2 0によ つて第 2のサイクルの再生器 1 2に伝達されるが、 熱交換器 6 1で凝縮 する際発生した凝縮熱は第 2のサイクルの再'生器 1 2には伝達されない。 凝縮した冷媒はそれぞれ蒸発器 3に送られて蒸発する (状態 e ) 。 蒸発 器 3では蒸発の際吸熱する蒸発熱が熱交換関係をなす伝熱管 2 1によつ て第 2のサイクルの吸収器 1 1 (状態 A ) から伝達される。  The absorption solution in the first cycle is heated from an external heat source in the regenerator 2, generates refrigerant vapor and is concentrated (state c: 175 ° C in the figure), and then passes through the heat exchanger 5 (state d) lead to absorber 1. In the absorber 1, the absorbing solution absorbs the refrigerant evaporated in the evaporator 3, is diluted (state a), is heated again through the heat exchanger 5 (state b), and returns to the regenerator 2. Part of the refrigerant vapor generated in the regenerator 2 flows into the heat exchanger 61 and the rest flows into the condenser 4 and condenses (in a state). In the condenser 4, the heat of condensation generated during condensation is transferred to the regenerator 12 in the second cycle by the heat transfer tube 20 that has a heat exchange relationship, but is generated when the heat is condensed in the heat exchanger 61. The condensed heat is not transferred to the recycler 12 of the second cycle. The condensed refrigerant is sent to the evaporator 3 and evaporates (state e). In the evaporator 3, the evaporative heat absorbed during the evaporation is transmitted from the absorber 11 (state A) in the second cycle by the heat transfer tube 21 having a heat exchange relationship.
第 2のサイクルの吸収溶液は、 再生器 1 2で第 1のサイクルの熱交換 器 6 1で凝縮する際発生した凝縮熱を除いた残りの凝縮熱 (状態 ) で 伝熱管 2 0を介して加熱され、 冷媒蒸気を発生し、 濃縮された (状態 C ) のち熱交換器 1 5を経て (状態 D ) 吸収器 1 1に至る。 吸収器 1 1では 吸収溶液は蒸発器 1 3で蒸発した冷媒 (状態 E ) を吸収し、 希釈された (状態 A ) 後再び熱交換器 1 5を経て加熱され (状態 B ) 再生器 1 2に 戻る。 吸収器 1 1では吸収の際発生する吸収熱は熱交換関係をなす伝熱 管 2 1によって第 1のサイクルの蒸発器 3 (状態 e ) に伝達される。 再 生器 1 2で発生した冷媒蒸気は、 凝縮器 1 4に流入して凝縮する (状態 F ) 。 凝縮した冷媒 (状態 F ) は蒸発器 1 3に送られて蒸発する (状態 E ) 。 The absorption solution of the second cycle is passed through the heat transfer tube 20 with the remaining heat of condensation (state) excluding the heat of condensation generated when condensing in the heat exchanger 61 of the first cycle in the regenerator 12. Heated to generate refrigerant vapor and concentrated (State C) After that, it passes through the heat exchanger 15 (state D) and reaches the absorber 11. In the absorber 11, the absorption solution absorbs the refrigerant (state E) evaporated in the evaporator 13, is diluted (state A), and is heated again through the heat exchanger 15 (state B). Return to In the absorber 11, the heat of absorption generated at the time of absorption is transferred to the evaporator 3 (state e) in the first cycle by the heat transfer tube 21 having a heat exchange relationship. The refrigerant vapor generated in the regenerator 12 flows into the condenser 14 and is condensed (state F). The condensed refrigerant (state F) is sent to the evaporator 13 to evaporate (state E).
加熱源として利用する機器の作動温度は、 熱媒体を第 2のサイクルの 凝縮器伝熱管 3 1、 第 1のサイクルの吸収器伝熱管 3 0、 熱交換器 6 1 の順序で流すことによって、 第 2のサイクルの冷媒凝縮温度 (状態 F : 図中では 6 5 °C ) 、 第 1のサイクルの吸収溶液温度 (状態 a : 図中では 7 5 °C ) 、 第 1のサイクルの熱交換器 6 1における凝縮温度 (状態で : 図中では 9 5 °C ) の順に熱媒体の下流に行くに従って高くなり、 従って 吸収ヒートポンプを出て、 空調機に入る熱媒体 (温水) の温度も従来例 よりも高くなる。  The operating temperature of the equipment used as the heating source is determined by flowing the heat medium in the following order: condenser heat transfer tube 31 in the second cycle, absorber heat transfer tube 30 in the first cycle, and heat exchanger 61. Refrigerant condensation temperature in the second cycle (state F: 65 ° C in the figure), absorption solution temperature in the first cycle (state a: 75 ° C in the figure), heat exchanger in the first cycle 6 Condensation temperature at 1 (in the state: 95 ° C in the figure) increases in the order of downstream of the heat medium, and therefore the temperature of the heat medium (hot water) that exits the absorption heat pump and enters the air conditioner Higher than.
このように、 吸収ヒ一トポンプの第 2のサイクルの再生器 1 2には、 第 1のサイクルの凝縮器 4で凝縮の際発生する凝縮熱が伝達されるが、 第 1のサイクルの熱交換器 6 1で温水と熱交'換する凝縮熱は伝達されな い。 そのため第 2のサイクルの溶液が再生濃縮作用が減少し、 それにつ れて第 2のサイクルの吸収熱も減少して、 第 1のサイクルの蒸発熱とバ ランスさせることができ、 第 2のサイクルの溶液が濃縮される傾向を緩 和することができる。 以下に理由を説明する。  In this way, the heat of condensation generated during condensation in the condenser 4 of the first cycle is transmitted to the regenerator 12 of the second cycle of the absorption heat pump, but the heat exchange in the first cycle is The heat of condensation that exchanges heat with the hot water in the vessel 61 is not transferred. As a result, the regenerating and concentrating action of the solution in the second cycle is reduced, and the heat of absorption in the second cycle is also reduced, so that it can be balanced with the heat of evaporation in the first cycle. The tendency of the solution to be concentrated can be reduced. The reason will be described below.
前記の従来例と同様に、 第 1のサイクルの再生器の入熱に対する蒸発 器の冷凍効果の割合を 、 第 2のサイクルの再生器の入熱に対する蒸 WO 99/14538 „ -. PCT/JP98/04179 As in the above-described conventional example, the ratio of the refrigerating effect of the evaporator to the heat input of the regenerator in the first cycle is calculated by comparing the ratio of the refrigerating effect to the heat input of the regenerator in the second cycle. WO 99/14538 „-. PCT / JP98 / 04179
L 0 発器の冷凍効果の割合を C 2 とする。 また、 凝縮器の出熱を蒸発器の入 熱で除した値をそれぞれのサイクルで、 R R2 とする。 Let the ratio of the refrigeration effect of the L 0 generator be C 2. The value obtained by dividing the heat output of the condenser by the heat input of the evaporator is defined as RR 2 in each cycle.
ここで、 第 1のサイクルへの入熱を 1とすると、 このサイクルの冷凍 効果 Q e ま、  Here, assuming that the heat input to the first cycle is 1, the refrigeration effect Q e of this cycle,
Q e != C 1  Q e! = C 1
である。 It is.
一方、 第 2のサイクルには、 第 1のサイクルの凝縮熱の一部が再生器 に加えらえる。 第 1のサイクルの全凝縮熱にする第 2のサイクルの再生 器 1 2に加えられる分の割合を Xとすると、 再生器入熱 Qg2 は、 On the other hand, in the second cycle, part of the heat of condensation from the first cycle is added to the regenerator. Assuming that the proportion of the amount added to the regenerator 1 2 in the second cycle to make the total heat of condensation in the first cycle X is X, the regenerator heat input Qg 2 is
Q g 2 = X · C 1 · R . (8 ) Q g 2 = X · C 1 · R. (8)
第 2のサイクルの冷凍効果 Q e 2 は、  The refrigeration effect Q e 2 of the second cycle is
Q e 2= C 2 · Q g 2 = X · C 2 · C! · R! (9 ) Q e 2 = C 2 · Q g 2 = X · C 2 · C! · R! (9)
第 2のサイクルの凝縮熱 Q c 2 は、 The heat of condensation Q c 2 of the second cycle is
Q c2 = R2 - Q e2 = X - Ci - C2 - Ri - R2 ( 1 0 ) Q c2 = R2-Q e 2 = X-Ci-C2-Ri-R 2 (10)
第 2のサイクルの吸収熱 Q a 2 は、 第 2のサイクルの全入熱から凝縮 熱を引いたものであるから、 Since the heat of absorption Q a 2 in the second cycle is the total heat input in the second cycle minus the heat of condensation,
Q a 2 = X (Ci-R1+C2-C i-R1- Ci-C2- i-R2) ( 1 1 ) 本吸収ヒートポンプでは、 第 1のサイ クルの蒸発器と第 2のサイクル の吸収器が熱交換するので、 ここで、 第 1のサイクルの蒸発熱 Q e i と 第 2のサイクルの吸収熱 Q a 2 の大小を比較する。 そこで両者の差をと ると、 Q a 2 = X (Ci-R 1 + C 2 -C iR 1 -Ci-C 2 -i-R2) (11) In this absorption heat pump, the evaporator of the first cycle and the Since the absorber exchanges heat, here, the magnitude of the heat of evaporation Q ei in the first cycle and the magnitude of the heat of absorption Q a 2 in the second cycle are compared. So, taking the difference between them,
Q a2-Q e i = X(Ci-Ri + C2-C i-Ri-Ci-C2-Ri-R2)-Ci  Q a2-Q e i = X (Ci-Ri + C2-C i-Ri-Ci-C2-Ri-R2) -Ci
= C i {X-Ri [ 1 -C2 (R2- l ) ] - 1 } ( 12 ) ここで、 第 1のサイクルの蒸発熱 Q e i と第 2のサイクルの吸収熱 Q a 2 と同じになるためには、 ( 1 2 )式 = 0となる必要があり、 従って、 X · R i [ 1 - C 2 (R2 - 1 ) ] = 1 = C i {X-Ri [1 -C 2 (R 2 -l)]-1} (12) where the heat of evaporation Q ei in the first cycle and the heat of absorption Q a 2 in the second cycle In order to become, the expression (1 2) needs to be equal to 0, so that X · R i [1 - C 2 (R 2 - 1)] = 1
である必要がある。 従って、 Needs to be Therefore,
X = l/Ri [ 1 - C 2 (R2- I ) ] ( 1 3 ) X = l / Ri [1-C 2 (R2- I)] (13)
ここで、 Xの値を求めるため、 各変数の値を求めると、 図 2のサイク ルの作動状態は図 6の従来例と同じであるから、 : Ri、 R2は、 Here, for determining the value of X, when determining the value of each variable, since the operating state of the cycle 2 is the same as the conventional example of FIG. 6,: Ri, R 2,
R i = ( 6 7 5 - 9 5 ) / ( 6 0 9 - 9 5 ) = 1. 1 2 8  R i = (675-95) / (609-95) = 1.12
R 2= ( 6 3 9 - 6 5 ) / ( 6 0 3 - 6 5 ) = 1. 0 6 7 R 2 = (6 3 9-6 5) / (6 0 3-6 5) = 1. 0 6 7
および C2は大略 0. 8 (単効用吸収サイクルの標準的な値) として. ( 1 3 )式から And C 2 are approximately 0.8 (standard value of single-effect absorption cycle). From equation (13)
X = 1 / 1 . 1 2 8 [ 1 — 0.8 ( 1 .0 6 7 - 1 ) ] = 0.9 3 7 となる。 すなわち、 第 1のサイクルの凝縮熱の 9 3. 7 %を第 2のサイ クルの再生器に加えることによって、 第 1のサイクルの蒸発熱と第 2の サイクルの吸収熱はバランスする。 このように、 第 1のサイクルの凝縮 熱の一部によって熱媒体を加熱し、 第 1のサイクルの凝縮熱のある割合 Xだけ第 2のサイクルの再生器 1 2の加熱に用いることで、 第 1のサイ クルの蒸発熱と第 2のサイクルの吸収熱はバランスして第 2のサイクル の溶液が濃縮される傾向を緩和することができる。  X = 1/1. 1 2 8 [1 — 0.8 (1.0 6 7-1)] = 0.9 3 7 That is, by adding 93.7% of the heat of condensation of the first cycle to the regenerator of the second cycle, the heat of evaporation of the first cycle and the heat of absorption of the second cycle are balanced. In this way, the heating medium is heated by a part of the condensation heat of the first cycle, and is used for heating the regenerator 12 of the second cycle by a certain ratio X of the heat of condensation of the first cycle. The heat of evaporation of the first cycle and the heat of absorption in the second cycle can be balanced to reduce the tendency of the solution in the second cycle to be concentrated.
以上の説明から割合 Xは、 X ^ 1でなくてはならないが、 そのために は、 ( 1 3 )式から、  From the above explanation, the ratio X must be X ^ 1, but for that purpose, from equation (13),
X = 1 /R! [ 1 - C2 (R2— 1 ) ] ≤ 1 X = 1 / R! [1-C 2 (R 2 — 1)] ≤ 1
従って、 Therefore,
C 2≤ (R 1- 1 ) / (R2— 1 ) /R 1 ( 1 4 ) C 2 ≤ (R 1-1) / (R 2 — 1) / R 1 (1 4)
である必要がある。 この C2を計算すると、 Needs to be Calculating this C 2 gives
C 2≤ 0. 1 2 8 / 0. 0 6 7 / 1. 1 2 8 = 1. 6 9 4 C 2 ≤ 0.12 1/0 .0 6 7 / 1.12 8 = 1.69 4
となる。 このことは、 C 2 即ち第 2のサイクルの C O Pが 1. 6 9 4を 超えない限り、 割合 Χ≤ 1が成立することを示しており、 この値は単効 用吸収冷凍サイクルの C 0 Ρとしては達成不可能な値であるから、 本実 施例のサイクルでは常に X≤ 1が成立する。 従って、 常に、 第 1のサイ クルの凝縮熱のある割合 Xだけ第 2のサイクルの再生器 1 2の加熱に用 いることで、 第 1のサイクルの蒸発熱と第 2のサイクルの吸収熱はバラ ンスさせることができる。 Becomes This is, C 2 that is COP of the second cycle 1. 6 9 4 Unless it exceeds, it indicates that the ratio Χ≤ 1 holds, and this value cannot be achieved as C 0 の in the single-effect absorption refrigeration cycle. ≤ 1 holds. Therefore, by always using a certain percentage X of the heat of condensation in the first cycle to heat the regenerator 12 in the second cycle, the heat of evaporation in the first cycle and the heat of absorption in the second cycle are reduced. Can be balanced.
次に、 前述のように構成された吸収ヒ一トポンプをデシカン ト空調に 組合せた際の動作を説明する。 図 4において、 空調空間 1 0 1の空気 Next, the operation when the absorption heat pump configured as described above is combined with desiccant air conditioning will be described. In Figure 4, the air in the air-conditioned space 101
(処理空気) は経路 1 0 7を経て送風機 1 0 2に吸引され昇圧されて経 路 1 0 8をへてデシ力ン トロ一夕 1 0 3に送られデシ力ン ト口一夕の吸 湿剤で空気中の水分を吸着され絶対湿度が低下する。 また吸着の際、 吸 着熱によって空気は温度上昇する。 湿度が下がり温度上昇した空気は経 路 1 0 9を経て顕熱熱交換器 1 0 4に送られ外気 (再生空気) と熱交換 して冷却される。 冷却された空気は経路 1 1 0を経て冷却器 1 1 5に送 られさらに冷却される。 冷却された処理空気は加湿器 1 0 5に送られ水 噴射または気化式加湿によって等ェン夕ルビ過程で温度低下し経路 1 1 2を経て空調空間 1 0 1に戻される。 The (processed air) is sucked into the blower 102 via the passage 107, is boosted in pressure, and is sent through the passage 108 to the receiver 1103, where it is sucked at the receiver outlet. The moisture in the air is adsorbed by the wetting agent, and the absolute humidity decreases. At the time of adsorption, the temperature of air rises due to heat of adsorption. The air whose humidity has dropped and the temperature has risen is sent to a sensible heat exchanger 104 via a path 109, where it is cooled by exchanging heat with outside air (regenerated air). The cooled air is sent to the cooler 115 via the path 110 and further cooled. The cooled treated air is sent to the humidifier 105 and cooled by water injection or evaporative humidification in the course of an isoruby, and is returned to the air-conditioned space 101 via the route 112.
デシカントロー夕はこの過程で水分を吸着したため、 再生が必要で、 この実施例では外気を再生用空気として用い 次のように行われる。 外 気 (O A ) は経路 1 2 4を経て送風機 1 3 0に吸引され昇圧されて顕熱 熱交換器 1 0 4に送られ、 処理空気を冷却して自らは温度上昇し経路 1 2 5を経て次の顕熱熱交換器 1 2 1に流入し、 再生後の高温の空気と熱 交換して温度上昇する。 さらに顕熱熱交換器 1 2 1を出た再生空気は経 路 1 2 6を経て加熱器 1 2 0に流入し温水によって加熱され 6 0〜 8 0 °Cまで温度上昇し、 相対湿度が低下する。 この過程は再生空気の顕熱変 化であり、 空気の比熱は温水に比べて著しく低く温度変化が大きいため、 温水の流量を減少させて温度変化を大きく しても熱交換は効率良く行わ れ、 搬送動力を低減することができる。 加熱器 1 2 0を出て相対湿度が 低下した再生空気はデシカン トロ一夕 1 0 3を通過してデシ力ン トロ一 夕の水分を除去し再生作用をする。 デシカン ト口一夕 1 0 3を通過した 再生空気は経路 1 2 8を経て顕熱熱交換器 1 2 1に流入し、 再生前の再 生空気の予熱を行ったのち経路 1 2 9を経て排気として外部に捨てられ る ο Since desiccant low water adsorbs moisture in this process, regeneration is necessary. In this embodiment, the following operation is performed using outside air as regeneration air. Outside air (OA) is sucked into the blower 130 through the path 124 and is pressurized and sent to the sensible heat exchanger 104, where it cools the treated air and rises in temperature to the path 125 After that, it flows into the next sensible heat exchanger 1 2 1 and exchanges heat with the hot air after regeneration to increase the temperature. Furthermore, the regenerated air that has exited the sensible heat exchanger 122 flows into the heater 120 via the path 126 and is heated by the hot water, where the temperature rises to 60 to 80 ° C, and the relative humidity decreases. I do. This process changes the sensible heat of the regeneration air. Since the specific heat of air is significantly lower than that of hot water and the temperature change is large, even if the flow rate of hot water is reduced and the temperature change is increased, heat exchange is performed efficiently and the transfer power can be reduced. . The regenerated air whose relative humidity has decreased after exiting the heater 120 passes through the desiccant heater 103 to remove moisture from the desiccant heater and perform a regenerating operation. The regenerated air that passed through the desiccant outlet overnight 103 flows into the sensible heat exchanger 122 via the route 128, and after preheating the regenerated air before regeneration, passes the route 129. Discarded as exhaust ο
これまでの過程を、 図 6の湿り空気線図を用いて説明すると、 空調空 間 1 0 1の空気 (処理空気 :状態 K ) は経路 1 0 7を経て送風機 1 0 2 に吸引され昇圧されて経路 1 0 8をへてデシカントロ一夕 1 0 3に送ら れデシカン 卜口一夕の吸湿剤で空気中の水分を吸着され絶対湿度が低下 するとともに吸着熱によって空気は温度上昇する (状態 L ) 。 湿度が下 がり温度上昇した空気は経路 1 0 9を経て顕熱熱交換器 1 0 4に送られ 外気 (再生空気) と熱交換して冷却される (状態 M ) 。 冷却された空気 は経路 1 1 0を経て冷却器 1 1 5に送られさらに冷却され (状態 N ) 、 冷却された空気は経路 1 1 1を経て加湿器 1 0 5に送られ水噴射または 気化式加湿によって等ェン夕ルビ過程で温度低下し (状態 P ) 、 経路 1 The process up to this point will be described with reference to the psychrometric chart of Fig. 6. The air in the air-conditioned space 101 (processed air: state K) is sucked into the blower 102 through the route 107 and pressurized. Through the route 108 to the desiccant towel 103, where the moisture in the air is adsorbed by the desiccant mouth and the absolute humidity decreases, and the temperature of the air rises due to the heat of adsorption (state L ). The air whose humidity has dropped and the temperature has risen is sent to the sensible heat exchanger 104 via the path 109 and cooled by exchanging heat with the outside air (regenerated air) (state M). The cooled air is sent to the cooler 115 via the route 110 and is further cooled (state N), and the cooled air is sent to the humidifier 105 via the route 111 for water injection or vaporization. By humidification, the temperature decreases during the iso-evening ruby process (state P), and route 1
1 2を経て空調空間 1 0 1に戻される。 この'ようにして室内の還気 (状 態 K ) と給気 (状態 P ) との間にはェン夕ルビ差△ Qが生じ、 これによ つて空調空間 1 0 1の冷房が行われる。 The air is returned to the air-conditioned space 101 via 1 2. In this way, an en-ubiquity ruby difference △ Q is generated between the return air (state K) and the supply air (state P) in the room, thereby cooling the air-conditioned space 101. .
一方、 デシカントの再生は次のように行われる。 再生用の外気 (O A On the other hand, desiccant regeneration is performed as follows. Outside air for regeneration (O A
:状態 Q ) は経路 1 2 4を経て送風機 1 3 0に吸引され昇圧されて顕熱 熱交換器 1 0 4に送られ、 処理空気を冷却して自らは温度上昇し (状態: State Q) is sucked into the blower 130 via the path 124 and is pressurized, sent to the sensible heat exchanger 104, cools the processing air, and rises in temperature (state
: : R ) 経路 1 2 5を経て次の顕熱熱交換器 1 2 1に流入し、 再生後の高 温の空気と熱交換して温度上昇する (状態 S ) 。 さらに顕熱熱交換器 1 2 1を出た再生空気は経路 1 2 6を経て加熱器 1 2 0に流入し温水によ つて加熱され 6 0〜 8 0 °Cまで温度上昇し、 相対湿度が低下する (状態 T ) が、 図 4の実施例では温水は作用温度が高い熱交換器 6 1 によって 従来の実施例よりも加熱されているから、 さらに相対湿度が低下する。 相対湿度が低下した再生空気はデシカン トロ一夕 1 0 3を通過してデシ カン トロー夕の水分を除去する (状態 U ) 。 デシカン ト口一夕 1 0 3を 通過した再生空気は経路 1 2 8を経て顕熱熱交換器 1 2 1に流入し、 顕 熱熱交換器 1 0 4を出た再生前の再生空気の予熱を行って自らは温度低 下した (状態 V ) のち経路 1 2 9を経て排気として外部に捨てられる。 図 4の実施例では前記の通り、 温水が作用温度が高い熱交換器 6 1によ つて従来の実施例よりも加熱されているから、 さらにデシカン 卜の再生 能力が高くなり、 そのため除湿効果が高くなる。 :: R) Flow into the next sensible heat exchanger 1 2 1 via route 1 2 5 The temperature rises due to heat exchange with warm air (state S). Furthermore, the regenerated air exiting the sensible heat exchanger 121 flows into the heater 120 via the path 126, is heated by the hot water, is heated to 60 to 80 ° C, and the relative humidity is reduced. Although the temperature drops (state T), the relative humidity further decreases in the embodiment of FIG. 4 because the hot water is heated by the heat exchanger 61 having a higher working temperature than the conventional embodiment. The regenerated air, whose relative humidity has decreased, passes through the desiccant towel 103 to remove moisture from the desiccant towel (state U). The regenerated air that passed through the desiccant outlet 103 passed through the path 128 to the sensible heat exchanger 122, and exited the sensible heat exchanger 104 and preheated the regenerated air before regeneration. After the temperature drops (State V), it is discarded to the outside as exhaust gas through the route 12. In the embodiment of FIG. 4, as described above, since the hot water is heated by the heat exchanger 61 having a higher working temperature than in the conventional embodiment, the desiccant regeneration ability is further increased, and the dehumidifying effect is thus reduced. Get higher.
このようにして、 デシカン トの再生と処理空気の除湿、 冷却をく りか えし行うことによって、 デシカン トによる空調を行う。 なお、 再生用空 気として室内換気にともなう排気を用いる方法も従来からデシカン ト空 調では広く行われているが、 本発明においても室内からの排気を再生用 空気として使用してもさしつかえなく、 本実施例と同様の効果が得られ る。  In this way, desiccant air conditioning is performed by repeating regeneration of the desiccant and dehumidification and cooling of the treated air. In addition, the method of using the exhaust accompanying the indoor ventilation as the regeneration air has been widely used in the desiccant air conditioning, but in the present invention, the exhaust from the room may be used as the regeneration air. The same effects as in the present embodiment can be obtained.
このように、 第 1のサイクルの凝縮熱の一部によって第 1のサイクル の熱交換器 6 1で熱媒体を加熱することによって、 吸収ヒ一トポンプの 第 2のサイクルの再生器 1 2には、 第 1のサイクルの凝縮器 4で凝縮の 際発生する凝縮熱が伝達されるが、 第 1のサイクルの熱交換器 6 1で熱 交換する凝縮熱は伝達されず、 第 1のサイクルの凝縮熱のある割合 Xだ けしか伝達されない。 そのため第 2のサイクルの溶液が再生濃縮作用が 減少し、 それにつれて第 2のサイクルの吸収熱も減少して、 第 1のサイ クルの蒸発熱とバランスさせることができ、 第 2のサイクルの溶液が濃 縮される傾向を緩和することができる。 Thus, by heating the heat medium in the heat exchanger 61 of the first cycle by a part of the heat of condensation of the first cycle, the regenerator 12 of the second cycle of the absorption heat pump is However, the heat of condensation generated during condensation in the condenser 4 of the first cycle is transferred, but the heat of condensation exchanged in the heat exchanger 61 of the first cycle is not transferred, and the condensation of the first cycle is performed. Only a certain percentage of the heat, X, is transmitted. As a result, the solution of the second cycle The heat of vaporization of the second cycle, and thus the heat of vaporization of the first cycle can be balanced and the tendency of the second cycle solution to thicken can be reduced .
なお、 本実施例では、 第 2のサイクルの蒸発器 1 3の冷媒液面検出セ ンサ 6 2 と、 コン トローラ 6 3 と、 コン トローラ 6 3 と第 1の制御弁 6 5、 第 2の制御弁 6 6 とを結ぶ信号経路 7 2 と、 コン ト ローラ 6 3 と冷 媒液面検出センサ 6 2 とを結ぶ信号経路 7 0 とを設けて、 冷媒液面検出 センサ 6 2が設定値を超えて液面が上昇したことを検出して、 コン ト口 —ラ 6 3が第 1の制御弁 6 5を開き、 第 2の制御弁 6 6を絞る様構成し たが、 これは、 第 2のサイクルの溶液濃度が異常に濃縮した場合に必要 な制御動作であって、 前記の通り、 この種の吸収ヒー トポンプには本質 的に、 第 1のサイクルの冷凍効果が第 2のサイクルの吸収熱よりも小さ くなる特性があって、 第 2のサイクルの溶液が濃縮傾向にあるため、 そ れを防止するため、 制御弁 6 5を常に所定開度で開いて、 所定の冷媒を 熱交換器 6 1で凝縮させるよう構成してもさしつかえない。  In the present embodiment, in the second cycle, the refrigerant level detection sensor 62 of the evaporator 13, the controller 63, the controller 63, the first control valve 65, the second control A signal path 72 connecting the valve 66 and a signal path 70 connecting the controller 63 and the coolant level sensor 62 are provided so that the coolant level sensor 62 exceeds the set value. When the controller detects that the liquid level has risen, the controller opens the first control valve 65 and throttles the second control valve 66. This is a control operation required when the solution concentration in the first cycle is abnormally concentrated. As described above, this kind of absorption heat pump essentially has the refrigeration effect of the first cycle and the absorption effect of the second cycle. It has a characteristic that it is smaller than heat, and the solution in the second cycle tends to concentrate. To prevent this, the control valve 6 5 It may be possible to always open the air at a predetermined opening and condense the predetermined refrigerant in the heat exchanger 61.
また、 前記の通り、 第 2のサイクルの吸収熱と第 1のサイクルの蒸発 熱とをバランスさせるために必要な熱交換器 6 1で凝縮させる冷媒量が ごく少量 (計算上 6 . 3 % ) なため、 温熱媒体を全量通過させる必要がな いので、 図 4に示したように、 熱交換器 6 1をバイパスする経路 5 6を 設けてもよく、 また熱交換器 6 1の温水の流動抵抗で、 経路 5 3、 5 5 の流量が減少するのを防止するため、 経路 5 6に絞り 8 0を設けてもよ く、 また別の方法として、 経路 5 3または 5 5にポンプ (図示せず) を 設置しても差し支えない。 さらに、 本実施例では、 熱交換器 6 1には、 デシカン ト空調機の再生空気を加熱する熱媒体を導いて加熱するよう構 成したが、 熱交換器 6 1に直接デシカン ト 1 0 3通過前の再生空気を導 いて加熱するようにしても差し支えない。 As described above, the amount of refrigerant condensed in the heat exchanger 61 necessary for balancing the heat of absorption in the second cycle and the heat of evaporation in the first cycle is very small (6.3% in calculation). Therefore, since it is not necessary to pass the entire amount of the heating medium, a path 56 bypassing the heat exchanger 61 may be provided as shown in FIG. 4, and the flow of the hot water in the heat exchanger 61 may be provided. A throttle 80 may be provided in path 56 to prevent the flow rate in paths 53 and 55 from decreasing due to resistance. Alternatively, a pump may be provided in path 53 or 55 (Fig. (Not shown) can be installed. Furthermore, in the present embodiment, the heat exchanger 61 is configured to guide and heat the heat medium for heating the regenerated air of the desiccant air conditioner. However, the desiccant 103 is directly connected to the heat exchanger 61. Guides regeneration air before passing And heat it.
図 7は、 本発明の第 3の実施例である。 この実施例では、 第 1のサイ クルの再生器 2で発生した冷媒の一部を凝縮させる熱交換器の伝熱管 3 5を直接凝縮器 4の内部に設置して、 伝熱管 3 5で第 1のサイクルの吸 収器および第 2のサイクルの凝縮器で温熱を取り出す熱媒体を加熱する よう構成し、 かつ加熱量の調整は熱媒体経路の第 1のサイクルの吸収器 1の温水出口経路 5 3に設けた 3方弁 7 1によって行うように構成した ものである。 この実施例では、 3方弁 7 1 を通過する温水のうち大部分 は経路 5 6を流動し、 残りの一部が経路 5 4を経て伝熱管 3 5を通過す る。 また、 第 2のサイクルの蒸発器 1 3の冷媒液面検出センサ 6 2 と、 コン トローラ 6 3と、 コン トローラ 6 3 と 3方弁 7 1 とを結ぶ信号経路 7 2 と、 コン トローラ 6 3 と冷媒液面検出センサ 6 2 とを結ぶ信号経路 7 0 とを設けて、 冷媒液面検出センサ 6 2が設定値を超えて液面が上昇 したことを検出して、 コン トローラ 6 3が 3方弁 7 1の経路 5 4側を開 き、 経路 5 6側を絞って伝熱管 3 5を通過する温水流量を増やして、 伝 熱管 3 5で凝縮する冷媒量を増やし、 第 1のサイクルで凝縮する冷媒量 を減少させて、 第 2のサイクルの再生器 1 2に加えられる熱量を減少さ せる。 このようにして第 2の実施例と同様に、 第 2のサイクルの溶液が 再生濃縮作用が減少し、 それにつれて第 2の'サイクルの吸収熱も減少し て、 第 1のサイクルの蒸発熱とバランスさせることができ、 第 2のサイ クルの溶液が濃縮される傾向を緩和することができる。 吸収ヒ一トポン プの作用とデシカン ト空調機の作用については、 第 2の実施例と同様な ため、 説明を省略する。 産業上の利用の可能性 O この発明は、 一般の住居、 又は、 例えば、 スーパ一マーケッ ト、 オフ イスその他として用いられるより大きな建築物のための空調装置に用い て好適である。 FIG. 7 shows a third embodiment of the present invention. In this embodiment, a heat exchanger tube 35 of a heat exchanger for condensing a part of the refrigerant generated in the regenerator 2 of the first cycle is installed directly inside the condenser 4, and the heat exchanger tube 35 The heat medium that extracts heat is heated by the absorber of the first cycle and the condenser of the second cycle, and the heating amount is adjusted by the hot water outlet path of the absorber 1 in the first cycle of the heat medium path This is configured to be performed by the three-way valve 71 provided in 53. In this embodiment, most of the hot water passing through the three-way valve 71 flows through the path 56, and the remaining part passes through the heat transfer tube 35 via the path 54. In addition, the refrigerant level sensor 62 of the evaporator 13 in the second cycle, the controller 63, a signal path 72 connecting the controller 63 and the three-way valve 71, and a controller 63 A signal path 70 is provided to connect the refrigerant level detection sensor 62 with the refrigerant level detection sensor 62.When the refrigerant level detection sensor 62 detects that the liquid level has risen beyond the set value, the controller 63 Open the path 54 side of the valve 71, narrow the path 56 side to increase the flow rate of hot water passing through the heat transfer tube 35, and increase the amount of refrigerant condensed in the heat transfer tube 35. The amount of refrigerant condensed is reduced, reducing the amount of heat applied to regenerator 12 in the second cycle. Thus, as in the second embodiment, the solution of the second cycle has a reduced regenerating and concentrating action, and accordingly the heat of absorption of the second cycle is also reduced, and the heat of evaporation of the first cycle is reduced. The balance can be balanced and the tendency of the second cycle solution to concentrate can be reduced. The operation of the absorption heat pump and the operation of the desiccant air conditioner are the same as in the second embodiment, and therefore, description thereof will be omitted. Industrial applicability O The present invention is suitable for use as an air conditioner for general dwellings or larger buildings used as, for example, supermarkets, offices and the like.

Claims

請求の範囲 The scope of the claims
1 . デシカントにより水分を吸着される処理空気の経路と、 加熱源に よって加熱されたのち前記水分吸着後のデシカン トを通過してデシカン ト中の水分を脱着して再生する再生空気の経路を有する空調機と、 少なく とも蒸発器、 吸収器、 再生器、 凝縮器を構成機器として吸収式 冷凍サイクルをなす第 1のサイクルと、 少なく とも蒸発器、 吸収器、 再 生器、 凝縮器を構成機器として、 前記第 1のサイクルよりも低温で作動 する第 2の吸収冷凍サイクルからなり、 前記第 1のサイクルの蒸発器と 第 2のサイクルの吸収器との間に熱交換関係を形成し、 かつ該第 1のサ ィクルの凝縮器と第 2のサイクルの再生器との間に熱交換関係を形成し、 かつ該第 1のサイクルの凝縮器から蒸発器に至る冷媒経路中に冷媒を冷 却する熱交換器を設けた吸収ヒートポンプとを有し、 1. The path of the treated air where moisture is adsorbed by the desiccant, and the path of regenerated air that is heated by the heating source, passes through the desiccant after adsorbing the moisture and desorbs and regenerates the moisture in the desiccant. The first cycle of an absorption refrigeration cycle with an air conditioner having at least an evaporator, absorber, regenerator, and condenser as components, and at least an evaporator, absorber, regenerator, and condenser The apparatus comprises a second absorption refrigeration cycle that operates at a lower temperature than the first cycle, forming a heat exchange relationship between the evaporator of the first cycle and the absorber of the second cycle, And a heat exchange relationship is formed between the condenser of the first cycle and the regenerator of the second cycle, and the refrigerant is cooled in the refrigerant path from the condenser of the first cycle to the evaporator. Heat exchanger And a yield heat pump,
前記吸収ヒートポンプの第 1のサイクルの吸収熱および第 2のサイク ルの凝縮熱を加熱源として前記空調機の再生空気を加熱してデシカン卜 の再生を行うとともに前記吸収ヒ一トポンプの第 2のサイクルの蒸発熱 を冷却熱源として前記空調機の処理空気の冷却を行う空調システムにお いて、  The regenerative air of the air conditioner is heated by using the heat of absorption of the first cycle and the heat of condensation of the second cycle of the absorption heat pump as a heat source to regenerate the desiccant and the second heat of the absorption heat pump. In an air conditioning system that cools the processing air of the air conditioner using the evaporation heat of the cycle as a cooling heat source,
前記吸収ヒ一トポンプの第 1のサイクルめ'冷媒経路中に設けた冷媒を 冷却する熱交換器に再生空気または再生空気を加熱する加熱媒体を導い て冷媒と熱交換させるよう構成したことを特徴とする空調システム。  In the first cycle of the absorption heat pump, the heat exchanger for cooling the refrigerant provided in the refrigerant path is guided to the heat exchanger for heating the regenerated air or the regenerated air to exchange heat with the refrigerant. And air conditioning system.
2 . 前記吸収ヒ一トポンプの第 1のサイクルの冷媒経路中に設けた冷 媒を冷却する熱交換器に再生空気または再生空気を加熱する加熱媒体を 導いて冷媒と熱交換させた後、 第 2のサイクルの凝縮器及び第 1のサイ クルの吸収器に導いて加熱するよう構成したことを特徴とする請求項 1 に記載の空調システム。 2. After the regeneration air or the heating medium for heating the regenerated air is introduced into the heat exchanger for cooling the refrigerant provided in the refrigerant path of the first cycle of the absorption heat pump and heat exchange is performed with the refrigerant, 2 cycle condenser and 1st cycle The air conditioning system according to claim 1, wherein the air conditioning system is configured to be guided to an absorber of a vehicle for heating.
3 . 少なく とも蒸発器、 吸収器、 再生器、 凝縮器を構成機器として吸 収冷凍サイクルをなす第 1のサイクルと、 少なく とも蒸発器、 吸収器、 再生器、 凝縮器を構成機器として、 前記第 1のサイクルよりも低温で作 動する第 2の吸収冷凍サイクルからなり、 前記第 1のサイクルの蒸発器 と第 2のサイクルの吸収器との間に熱交換関係を形成し、 かつ該第 1の サイクルの凝縮器と第 2のサイクルの再生器との間に熱交換関係を形成 した吸収ヒー トポンプにおいて、 第 1のサイクルの凝縮熱の一部によつ て、 第 1のサイクルの吸収器および第 2のサイクルの凝縮器で温熱を取 り出す熱媒体を加熱するように熱交換関係を形成したことを特徴とする 吸収ヒー トポンプ。 3. The first cycle that forms an absorption refrigeration cycle with at least an evaporator, absorber, regenerator, and condenser as components, and at least an evaporator, absorber, regenerator, and condenser as components. A second absorption refrigeration cycle operating at a lower temperature than the first cycle, forming a heat exchange relationship between the evaporator of the first cycle and the absorber of the second cycle, and In an absorption heat pump that forms a heat exchange relationship between the condenser of the first cycle and the regenerator of the second cycle, the absorption of the first cycle is partially performed by the heat of condensation of the first cycle. An absorption heat pump characterized in that a heat exchange relationship is formed so as to heat a heat medium for extracting heat with a condenser and a condenser in a second cycle.
4 . 第 2のサイクルの凝縮器および第 1のサイクルの吸収器で温熱を 取り出した後の熱媒体を第 1のサイクルの凝縮熱の一部によつて加熱す ることを特徴とする請求項 3に記載の吸収ヒートポンプ。 4. The heat medium after extracting the heat with the condenser of the second cycle and the absorber of the first cycle is heated by a part of the heat of condensation of the first cycle. 3. The absorption heat pump according to 3.
5 . 第 2のサイクルの吸収溶液濃度を検出'して、 該濃度が設定値より も増加した場合に第 1のサイクルの凝縮熱によって、 第 1のサイクルの 吸収器および第 2のサイクルの凝縮器で温熱を取り出す熱媒体を加熱す る熱量を増加させることを特徴とする請求項 3又は請求項 4に記載の吸 収ヒー トポンプ。 5. Detect the concentration of the absorbing solution in the second cycle, and if the concentration increases above the set value, the heat of condensation in the first cycle will cause the absorption in the first cycle and the condensation in the second cycle. 5. The absorption heat pump according to claim 3, wherein an amount of heat for heating a heat medium from which heat is taken out by the heater is increased.
6 . 第 2のサイクルの蒸発器の冷媒液面を検出し、 該液面が設定値よ りも上昇した際に、 第 1のサイクルの吸収器および第 2のサイクルの凝 縮器で温熱を取り出す熱媒体をを加熱する熱量を増加させることを特徴 とする請求項 5に記載の吸収ヒ一 卜ポンプ。 6. Detect the refrigerant level of the evaporator in the second cycle and check that the level is below the set value. 6. The heat absorption device according to claim 5, wherein when the temperature rises, the amount of heat for heating the heat medium from which heat is taken out by the absorber in the first cycle and the condenser in the second cycle is increased. Single pump.
7 . デシカン トにより水分を吸着される処理空気の経路と、 加熱源に よって加熱されたのち前記水分吸着後のデシカン トを通過してデシカン ト中の水分を脱着して再生する再生空気の経路を有し、 水分を吸着され た処理空気とデシカン ト再生前かつ加熱源により加熱される前の再生空 気との間に顕熱熱交換器を有する空調機と、 少なく とも蒸発器、 吸収器、 再生器、 凝縮器を構成機器として吸収冷凍サイクルをなす第 1のサイク ルと、 少なく とも蒸発器、 吸収器、 再生器、 凝縮器を構成機器として、 前記第 1のサイクルよ りも低温で作動する第 2の吸収冷凍サイクルから なり、 前記第 1のサイクルの蒸発器と第 2のサイクルの吸収器との間に 熱交換関係を形成し、 かつ該第 1のサイクルの凝縮器と第 2のサイクル の再生器との間に熱交換関係を形成した吸収ヒートポンプとを有し、 前 記吸収ヒートポンプの第 1のサイクルの吸収熱および第 2のサイクルの 凝縮熱を加熱源として前記空調機の再生空気を加熱してデシカン 卜の再 生を行うとともに前記吸収ヒートポンプの第 2のサイクルの蒸発熱を冷 却熱源として前記空調機の処理空気の冷却を う空調システムにおいて、 前記吸収ヒートポンプの、 第 1のサイクルの凝縮熱の一部によって、 再生空気または前記再生空気の加熱源となる熱媒体を加熱するように熱 交換関係を形成したことを特徴とすることを特徴とする空調システム。 7. The path of the treated air where moisture is adsorbed by the desiccant, and the path of regenerated air which is heated by the heating source, passes through the desiccant after adsorbing the moisture and desorbs and regenerates the moisture in the desiccant. An air conditioner with a sensible heat exchanger between the treated air to which moisture has been adsorbed and the regeneration air before desiccant regeneration and before being heated by the heating source, and at least an evaporator and absorber A first cycle that forms an absorption refrigeration cycle using a regenerator and a condenser as a constituent device, and at least a lower temperature than the first cycle using a evaporator, an absorber, a regenerator, and a condenser as a constituent device. An operating second absorption refrigeration cycle, forming a heat exchange relationship between the first cycle evaporator and the second cycle absorber, and the first cycle condenser and the second cycle Between the cycle regenerator An absorption heat pump that forms a heat exchange relationship, and heats the regenerated air of the air conditioner using the absorption heat of the first cycle and the condensation heat of the second cycle of the absorption heat pump as a heat source to reduce the desiccant. In an air conditioning system that performs regeneration and cools processing air of the air conditioner by using evaporation heat of a second cycle of the absorption heat pump as a cooling heat source, a part of the heat of condensation of the absorption heat pump in the first cycle An air conditioning system characterized in that a heat exchange relationship is formed so as to heat the regeneration air or a heat medium serving as a heating source for the regeneration air.
8 . 吸収ヒートポンプの第 1のサイクルの凝縮熱の一部を取り出す熱 交換器に再生空気または再生空気を加熱する加熱媒体を導いて冷媒と熱 ό D 交換させるよう構成したことを特徴とする請求項 7に記載の空調システ ム。 8. Regeneration air or a heating medium that heats the regeneration air is led to a heat exchanger that extracts a part of the condensation heat of the first cycle of the absorption heat pump, and the refrigerant and heat 8. The air conditioning system according to claim 7 , wherein the air conditioning system is configured to be replaced.
PCT/JP1998/004179 1997-09-17 1998-09-17 Air conditioning system WO1999014538A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP9270546A JP2971841B2 (en) 1997-09-17 1997-09-17 Air conditioning system
JP9/270546 1997-09-17
JP9/275059 1997-09-22
JP9275059A JP2971842B2 (en) 1997-09-22 1997-09-22 Absorption heat pump and air conditioning system using the same as heat source

Publications (1)

Publication Number Publication Date
WO1999014538A1 true WO1999014538A1 (en) 1999-03-25

Family

ID=26549255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/004179 WO1999014538A1 (en) 1997-09-17 1998-09-17 Air conditioning system

Country Status (1)

Country Link
WO (1) WO1999014538A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102230688A (en) * 2011-03-29 2011-11-02 清华大学 Solution-spraying heat pump unit
CN103615777A (en) * 2013-11-27 2014-03-05 上海理工大学 Humidity and temperature regulation system
CN105042684A (en) * 2015-06-04 2015-11-11 上海理工大学 Falling film type landscape annual self-balancing humidity adjusting system and method
EP3848649A1 (en) * 2019-11-25 2021-07-14 Raytheon Technologies Corporation Aircraft propulsion system with vapor absorption refrigeration system
US11225621B2 (en) 2017-03-10 2022-01-18 Compression Leasing Services, Inc. Deep vacuum regeneration of adsorbent media
WO2022126670A1 (en) * 2020-12-16 2022-06-23 淄博环能海臣环保技术服务有限公司 Salt-containing water desalination treatment device for concentrating and crystallizing high-salt wastewater by means of heat pump

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05280825A (en) * 1992-03-31 1993-10-29 Tsukishima Kikai Co Ltd Absorption heat pump
JPH09178289A (en) * 1995-12-21 1997-07-11 Ebara Corp Desiccant air-conditioner
JPH09178290A (en) * 1995-12-21 1997-07-11 Ebara Corp Desiccant type air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05280825A (en) * 1992-03-31 1993-10-29 Tsukishima Kikai Co Ltd Absorption heat pump
JPH09178289A (en) * 1995-12-21 1997-07-11 Ebara Corp Desiccant air-conditioner
JPH09178290A (en) * 1995-12-21 1997-07-11 Ebara Corp Desiccant type air conditioner

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102230688A (en) * 2011-03-29 2011-11-02 清华大学 Solution-spraying heat pump unit
CN103615777A (en) * 2013-11-27 2014-03-05 上海理工大学 Humidity and temperature regulation system
CN103615777B (en) * 2013-11-27 2016-03-23 上海理工大学 Damping thermoregulating system
CN105042684A (en) * 2015-06-04 2015-11-11 上海理工大学 Falling film type landscape annual self-balancing humidity adjusting system and method
US11225621B2 (en) 2017-03-10 2022-01-18 Compression Leasing Services, Inc. Deep vacuum regeneration of adsorbent media
EP3848649A1 (en) * 2019-11-25 2021-07-14 Raytheon Technologies Corporation Aircraft propulsion system with vapor absorption refrigeration system
US11519294B2 (en) 2019-11-25 2022-12-06 Raytheon Technologies Corporation Aircraft propulsion system with vapor absorption refrigeration system
WO2022126670A1 (en) * 2020-12-16 2022-06-23 淄博环能海臣环保技术服务有限公司 Salt-containing water desalination treatment device for concentrating and crystallizing high-salt wastewater by means of heat pump

Similar Documents

Publication Publication Date Title
US5943874A (en) Desiccant assisted air conditioning apparatus
US5761925A (en) Absorption heat pump and desiccant assisted air conditioner
US5791157A (en) Heat pump device and desiccant assisted air conditioning system
US20140202190A1 (en) Dehumidification system
WO1999022182A1 (en) Dehumidifying air-conditioning system and method of operating the same
CN107307683A (en) A kind of diffusion absorbing cultural relics display case constant humidity control system with self-watering function
JPH09196482A (en) Desiccant air-conditioning apparatus
CN108826541A (en) A kind of dehumidification heat exchange heat pump air conditioning system and its operation method with regenerator
JP2015194304A (en) Outside air treatment device
CN107388616B (en) The absorption refrigeration dehumidifying integrated air conditioning system of low grade heat energy driving
WO1999014538A1 (en) Air conditioning system
CN109252886A (en) A kind of deep well temperature reduction equipment of rotary wheel dehumidifying and heat pipe cold heat utilization
JP2971842B2 (en) Absorption heat pump and air conditioning system using the same as heat source
JP3434109B2 (en) Desiccant air conditioner
JP2971841B2 (en) Air conditioning system
CN106369715A (en) Composite internally-cooled liquid desiccant air conditioning unit driven by heat pump
JP2002018228A (en) Humidity controlling apparatus
JP3743581B2 (en) Heat pump and operation method thereof
CN207907382U (en) Solution humidifying device
JP6960282B2 (en) Desiccant air conditioner
JP2972834B2 (en) Desiccant air conditioner
JP2001099474A (en) Air conditioner
JP3480772B2 (en) Absorption heat pump
JP2014126255A (en) Humidity controller and dehumidification system using humidity controller
JP3434110B2 (en) Desiccant air conditioner

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)