JP2972834B2 - Desiccant air conditioner - Google Patents

Desiccant air conditioner

Info

Publication number
JP2972834B2
JP2972834B2 JP33321995A JP33321995A JP2972834B2 JP 2972834 B2 JP2972834 B2 JP 2972834B2 JP 33321995 A JP33321995 A JP 33321995A JP 33321995 A JP33321995 A JP 33321995A JP 2972834 B2 JP2972834 B2 JP 2972834B2
Authority
JP
Japan
Prior art keywords
air
heat
desiccant
absorption
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33321995A
Other languages
Japanese (ja)
Other versions
JPH09178290A (en
Inventor
田 健 作 前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP33321995A priority Critical patent/JP2972834B2/en
Priority to US08/769,253 priority patent/US5761925A/en
Priority to CNB961139048A priority patent/CN1148539C/en
Publication of JPH09178290A publication Critical patent/JPH09178290A/en
Application granted granted Critical
Publication of JP2972834B2 publication Critical patent/JP2972834B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1016Rotary wheel combined with another type of cooling principle, e.g. compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1028Rotary wheel combined with a spraying device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Air Conditioning (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、デシカント空調装
置に係り、特に加熱および冷却用の熱源として吸収ヒー
トポンプを使用するデシカント式空調装置に関する。
The present invention relates to a desiccant air conditioner, and more particularly to a desiccant air conditioner using an absorption heat pump as a heat source for heating and cooling.

【0002】[0002]

【従来の技術】デシカント式空調装置は米国特許第2,
700,537号明細書に記載されている。この公知例
に示されたデシカント式空調装置では、デシカント(吸
湿剤)の再生のための熱源として、100〜150℃程
度の温度の熱源を必要とし、もっぱら電気ヒータやボイ
ラが熱源として用いられていた。最近になってデシカン
トの改良により、60〜80℃の温度でもデシカントの
再生ができるデシカント空調装置が開発され、温度の低
い熱源で運転が可能になった。
2. Description of the Related Art Desiccant air conditioners are disclosed in U.S. Pat.
No. 700,537. In the desiccant air conditioner shown in this known example, a heat source at a temperature of about 100 to 150 ° C. is required as a heat source for regeneration of the desiccant (hygroscopic agent), and an electric heater or a boiler is exclusively used as a heat source. Was. Recently, with the improvement of desiccant, a desiccant air conditioner capable of regenerating desiccant even at a temperature of 60 to 80 ° C. has been developed, and can be operated with a low-temperature heat source.

【0003】図5はこのように改良された公知のデシカ
ント式空調装置の空調機(以下デシカント空調機と称す
る)の実施例を示し、図6は図5の実施例の空調機の運
転状態を示したモリエル線図である。図5において符号
101は空調空間、102は送風機、103は処理空気
および再生空気と選択的に接することができるデシカン
ト材を内包したデシカントロータ、104は顕熱熱交換
器、105は加湿器、106は加湿器の給水配管、10
7〜111はそれぞれ空調空気の空気通路、130は再
生空気の送風機、120は温水と再生空気の熱交換器
(加熱器)、121は顕熱熱交換器、122、123は
温水配管、124〜129はそれぞれ再生空気の空気通
路である。また図中、丸で囲ったアルファベットK〜V
は、図6と対応する空気の状態を示す記号であり、SA
は給気を、RAは還気を、OAは外気を、EXは排気を
それぞれ表している。
FIG. 5 shows an embodiment of an air conditioner (hereinafter, referred to as a desiccant air conditioner) of a known desiccant type air conditioner improved as described above, and FIG. 6 shows an operation state of the air conditioner of the embodiment of FIG. It is the Mollier diagram shown. In FIG. 5, reference numeral 101 denotes an air-conditioned space, 102 denotes a blower, 103 denotes a desiccant rotor containing a desiccant material capable of selectively contacting processing air and regeneration air, 104 denotes a sensible heat exchanger, 105 denotes a humidifier, 106 Is the water supply pipe of the humidifier, 10
7 to 111 are air passages for conditioned air, 130 is a blower for regeneration air, 120 is a heat exchanger (heater) for hot water and regeneration air, 121 is a sensible heat exchanger, 122 and 123 are hot water pipes, and 124 to 129 are air passages for the regeneration air. Also, in the figure, alphabets K to V circled
Is a symbol indicating the state of air corresponding to FIG.
Represents air supply, RA represents return air, OA represents outside air, and EX represents exhaust.

【0004】この公知の装置の作用について説明する
と、図5において、空調される室内101の空気(処理
空気)は経路107を経て送風機102に吸引され昇圧
されて経路108をへてデシカントロータ103に送ら
れデシカントロータの吸湿剤で空気中の水分を吸着され
絶対湿度が低下する。また吸着の際、吸着熱によって空
気は温度上昇する。湿度が下がり温度上昇した空気は経
路109を経て顕熱熱交換器104に送られ外気(再生
空気)と熱交換して冷却される。冷却された空気は経路
110を経て加湿器105に送られ水噴射または気化式
加湿によって等エンタルピ過程で温度低下し経路111
を経て空調空間101に戻される。
The operation of this known device will be described. Referring to FIG. 5, air (process air) in a room 101 to be air-conditioned is sucked into a blower 102 through a path 107, is pressurized, and passes through a path 108 to the desiccant rotor 103. The moisture in the air is adsorbed by the desiccant rotor by the desiccant rotor and the absolute humidity decreases. At the time of adsorption, the temperature of the air rises due to the heat of adsorption. The air whose humidity has decreased and its temperature has increased is sent to the sensible heat exchanger 104 via the path 109 and cooled by exchanging heat with outside air (regenerated air). The cooled air is sent to the humidifier 105 via the path 110, and the temperature is reduced in the isenthalpy process by water injection or vaporization humidification and the path 111
Is returned to the air-conditioned space 101.

【0005】デシカントはこの過程で水分を吸着したた
め、再生が必要で、この従来例では外気を用いて次のよ
うに行われる。外気(OA)は経路124を経て送風機
130に吸引され昇圧されて顕熱熱交換器104に送ら
れ、処理空気を冷却して自らは温度上昇し経路125を
経て次の顕熱熱交換器121に流入し、再生後の高温の
空気と熱交換して温度上昇する。さらに顕熱熱交換器1
21を出た再生空気は経路126を経て加熱器120に
流入し温水によって加熱され60〜80℃まで温度上昇
し、相対湿度が低下する。相対湿度が低下した再生空気
はデシカントロータ103を通過してデシカントロータ
の水分を除去する。デシカントロータ103を通過した
再生空気は経路128を経て顕熱熱交換器121に流入
し、再生前の再生空気の余熱を行ったのち経路129を
経て排気として外部に捨てられる。
Since the desiccant adsorbs moisture in this process, it needs to be regenerated. In this conventional example, the desiccant is performed as follows using outside air. The outside air (OA) is sucked into the blower 130 via the path 124 and is boosted and sent to the sensible heat exchanger 104, where it cools the processing air to increase its temperature, and passes through the path 125 to the next sensible heat exchanger 121. And heat exchange with hot air after regeneration to increase the temperature. Sensible heat exchanger 1
The regenerated air exiting from 21 flows into the heater 120 via the path 126 and is heated by the hot water, the temperature rises to 60 to 80 ° C., and the relative humidity decreases. The regenerated air having a reduced relative humidity passes through the desiccant rotor 103 to remove moisture from the desiccant rotor. The regenerated air that has passed through the desiccant rotor 103 flows into the sensible heat exchanger 121 via a path 128, performs the residual heat of the regenerated air before regeneration, and is then discarded as exhaust through a path 129.

【0006】 これまでの過程を湿り空気線図を用いて
説明すると、図6において、空調される室内101の空
気(処理空気:状態K)は経路107を経て送風機10
2に吸引され昇圧されて経路108をへてデシカントロ
ータ103に送られデシカントロータの吸湿剤で空気中
の水分を吸着され絶対湿度が低下するとともに吸着熱に
よって空気は温度上昇する(状態L)。湿度が下がり温
度上昇した空気は経路109を経て顕熱熱交換器104
に送られ外気(再生空気)と熱交換して冷却される(状
態M)。冷却された空気は経路110を経て加湿器10
5に送られ水噴射または気化式加湿によって等エンタル
ピ過程で温度低下し(状態P)、経路111を経て空調
空間101に戻される。このようにして室内の還気
(K)と給気(P)との間にはエンタルピ差ΔQが生
じ、これによって空調空間101の冷房が行われる。
The process up to now will be described with reference to a psychrometric chart. In FIG. 6, air in the room 101 to be air-conditioned (process air: state K) passes through a path 107 and
2, the pressure is increased, and is sent to the desiccant rotor 103 via the path 108. The moisture in the air is adsorbed by the desiccant rotor 103, the absolute humidity decreases, and the temperature of the air rises due to the heat of adsorption (state L). The air whose humidity has decreased and the temperature has increased passes through a path 109 and the sensible heat exchanger 104.
And cooled by exchanging heat with outside air (regenerated air) (state M). The cooled air passes through the path 110 and passes through the humidifier 10
Then, the temperature is lowered in the isenthalpy process by water injection or vaporization humidification (state P), and returned to the air-conditioned space 101 via the path 111. In this way, an enthalpy difference ΔQ is generated between the return air (K) and the supply air (P) in the room, whereby the air-conditioned space 101 is cooled.

【0007】デシカントの再生は次のように行われる。
外気(OA:状態Q)は経路124を経て送風機130
に吸引され昇圧されて顕熱熱交換器104に送られ、処
理空気を冷却して自らは温度上昇し(状態R)経路12
5を経て次の顕熱熱交換器121に流入し、再生後の高
温の空気と熱交換して温度上昇する(状態S)。さらに
顕熱熱交換器121を出た再生空気は経路126を経て
加熱器120に流入し温水によって加熱され60〜80
℃まで温度上昇し、相対湿度が低下する(状態T)。相
対湿度が低下した再生空気はデシカントロータ103を
通過してデシカントロータの水分を除去する(状態
U)。デシカントロータ103を通過した再生空気は経
路128を経て顕熱熱交換器121に流入し、再生前の
再生空気の余熱を行って自らは温度低下した(状態V)
のち経路129を経て排気として外部に捨てられる。こ
のようにしてデシカントの再生と処理空気の除湿、冷却
をくりかえし行うことによって、デシカントによる空調
が行われていた。
[0007] The desiccant is reproduced as follows.
The outside air (OA: state Q) passes through the path 124 to the blower 130
The pressure is increased and sent to the sensible heat exchanger 104, which cools the processing air to increase its temperature (state R).
After that, the refrigerant flows into the next sensible heat exchanger 121 through heat exchange with high-temperature air after regeneration (temperature S). Further, the regenerated air exiting from the sensible heat exchanger 121 flows into the heater 120 via the path 126 and is heated by hot water to be heated to 60 to 80.
The temperature rises to ° C. and the relative humidity decreases (state T). The regenerated air having a reduced relative humidity passes through the desiccant rotor 103 to remove moisture from the desiccant rotor (state U). The regenerated air that has passed through the desiccant rotor 103 flows into the sensible heat exchanger 121 via the path 128, and performs the residual heat of the regenerated air before the regeneration to lower the temperature itself (state V).
Thereafter, it is discarded as exhaust air through a path 129. By repeating the desiccant regeneration and the dehumidification and cooling of the processing air in this manner, air conditioning by the desiccant has been performed.

【0008】このように構成されたデシカント空調のエ
ネルギ効率を示す動作係数(COP)は図6における冷
房効果ΔQを再生加熱量ΔHで除した値(ΔQ/ΔH)
で示されるが、従来のデシカント空調では、初期のもの
と比べて再生用空気加熱のための温水の作用温度は低下
したものの、デシカントの再生熱源にはボイラを使用
し、依然として燃料の持つ1の熱量の質の高いエネルギ
(エクセルギ)を100℃未満の低い温度で1未満の熱
量としてしか利用していなかったため、他の熱駆動の冷
凍機(例えば2重効用吸収冷凍機)を用いて空気を冷却
除湿する空調システムに比べて、動作係数(COP)が
低い欠点があった。
[0008] The operation coefficient (COP) indicating the energy efficiency of the desiccant air conditioner thus configured is obtained by dividing the cooling effect ΔQ in FIG. 6 by the regeneration heating amount ΔH (ΔQ / ΔH).
In the conventional desiccant air conditioning, although the working temperature of the hot water for heating the regeneration air is lower than that of the initial desiccant air conditioner, the boiler is used as the desiccant regeneration heat source, and the Since high-quality energy (exergy) with a calorific value was used only as a calorie of less than 1 at a low temperature of less than 100 ° C., air was cooled using another heat-driven refrigerator (for example, a double effect absorption refrigerator). There was a drawback that the coefficient of operation (COP) was lower than that of an air conditioning system for cooling and dehumidifying.

【0009】[0009]

【発明が解決しようとする課題】本発明は前述した点に
鑑みてなされたもので、ボイラの代りとなる熱源機とし
て、再生空気加熱用に外部から加えられる駆動入力熱量
と低温から汲み上げた蒸発熱とを加えた熱量が取り出せ
る60〜80℃程度の中間温度の加熱源と、デシカント
空調サイクル中に行われる処理空気を冷却する過程で更
に空気を冷却しうる冷却用の15℃程度の冷却源を併せ
て供給できる吸収ヒートポンプを熱源として組合せする
ことによって、デシカント空調のエネルギ効率を高め、
従来からの冷凍機を用いて空気を冷却除湿する空調シス
テムのエネルギ効率を上回るデシカント空調装置を提供
することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned points, and has been developed as a heat source unit which replaces a boiler, and a drive input heat amount externally applied for heating regeneration air and an evaporation pumped from a low temperature. A heating source at an intermediate temperature of about 60 to 80 ° C. from which heat plus heat can be taken out, and a cooling source at about 15 ° C. for cooling which can further cool the air in the process of cooling the processing air performed during the desiccant air conditioning cycle By combining an absorption heat pump that can supply air as a heat source, the energy efficiency of desiccant air conditioning is improved,
It is an object of the present invention to provide a desiccant air conditioner that exceeds the energy efficiency of an air conditioning system that cools and dehumidifies air using a conventional refrigerator.

【0010】[0010]

【課題を解決するための手段】本発明によれば、第1の
蒸発器と第1の吸収器と第1の再生器と第1の凝縮器と
を備えて吸収冷凍サイクルを行う第1のサイクル装置
と、第2の蒸発器と第2の吸収器と第2の再生器と第2
の凝縮器とを備えて前記第1のサイクル装置の吸収冷凍
サイクルより低温で作動する吸収冷凍サイクルを行う第
2のサイクル装置とを含んで構成される吸収ヒートポン
プを熱源とするデシカント空調装置において;空調空間
に供給する処理空気の水分を吸着するデシカントであっ
て、前記第1の吸収器の吸収熱および前記第2の凝縮器
の凝縮熱を加熱源として再生されるデシカントとを備
え;前記第2の吸収器の吸収熱を前記第1の蒸発器の蒸
発熱として使用するように構成され;前記第1の凝縮器
の凝縮熱を前記第2の再生器での加熱に使用するように
構成され;前記第2の蒸発器の蒸発熱で前記処理空気を
冷却するように構成されている。
According to the present invention, a first evaporator, a first absorber, a first regenerator and a first condenser for performing an absorption refrigeration cycle is provided. A cycle device, a second evaporator, a second absorber, a second regenerator and a second
And a second cycle device for performing an absorption refrigeration cycle operating at a lower temperature than the absorption refrigeration cycle of the first cycle device, wherein the heat source is an absorption heat pump; A desiccant that adsorbs moisture of the processing air supplied to the air-conditioned space, the desiccant being regenerated using heat of absorption of the first absorber and heat of condensation of the second condenser as heating sources; 2 is configured to use the heat of absorption of the second absorber as the heat of evaporation of the first evaporator; and is configured to use the heat of condensation of the first condenser for heating in the second regenerator. The processing air is cooled by the heat of evaporation of the second evaporator.

【0011】また本発明によれば、前記デシカントを再
生するために前記第1の吸収器の吸収熱および前記第2
の凝縮器の凝縮熱を搬送する媒体を流す加熱経路を備
え、前記加熱経路は、前記第1の吸収器の吸収溶液温度
が前記第2の凝縮器の冷媒凝縮温度より高くなるように
配設されている。
Further, according to the present invention, in order to regenerate the desiccant, heat absorbed by the first absorber and the second
A heating path for flowing a medium that conveys the heat of condensation of the condenser, wherein the heating path is disposed so that the absorption solution temperature of the first absorber is higher than the refrigerant condensation temperature of the second condenser. Have been.

【0012】さらに本発明によれば、前記デシカントが
前記処理空気と再生空気とに選択的に接することができ
るように構成されたデシカントロータと;前記処理空気
前記再生空気とを熱交換媒体とする顕熱熱交換器とを
備え;前記デシカントに接する前記再生空気を前記顕熱
熱交換器から前記デシカントロータに到る途中で前記加
熱源で加熱し、前記空調空間に供給する前記処理空気を
前記顕熱熱交換器から前記空調空間に到る途中で前記冷
却を行うように構成されている。
According to the present invention, the desiccant is said process air regeneration and to the desiccant rotor configured to be able to contact the selective air; the process air and the regeneration air and the heat exchange medium A sensible heat exchanger that heats the regenerated air in contact with the desiccant from the sensible heat exchanger to the desiccant rotor by the heating source, and supplies the processing air supplied to the air-conditioned space. The cooling is performed on the way from the sensible heat exchanger to the air-conditioned space.

【0013】なお、本明細書においてヒートポンプとは
冷凍機を含んでいる。
In this specification, the heat pump includes a refrigerator.

【0014】デシカント空調用の熱源として、前述のよ
うに構成した本発明の吸収ヒートポンプを組合せたデシ
カント空調装置によって、第1のサイクル装置の再生器
に加えられる駆動入力熱量に第2のサイクル装置の蒸発
熱を加えた熱量に相当する熱量の熱を、第1のサイクル
装置の凝縮熱および第2のサイクル装置の吸収熱として
利用熱媒体即ちデシカント再生用の60〜80℃程度の
中間温度の加熱源として利用することができ、さらに第
2のサイクル装置の蒸発器の蒸発熱を、デシカント空調
サイクル中に行われる空気を冷却する過程に15℃程度
の冷却熱源として利用することができるため、デシカン
ト再生のために必要な1次エネルギが節約できるととも
に、冷房効果が増し、従って動作係数が高いデシカント
空調システムを提供することができる。
As a heat source for desiccant air conditioning, the desiccant air conditioner combined with the absorption heat pump of the present invention configured as described above reduces the amount of drive input heat applied to the regenerator of the first cycle device by the heat of the second cycle device. The heat of the amount of heat corresponding to the amount of heat to which the heat of evaporation is added is used as the heat of condensation of the first cycle device and the heat of absorption of the second cycle device. Heating medium, that is, heating at an intermediate temperature of about 60 to 80 ° C. for desiccant regeneration. And the heat of evaporation of the evaporator of the second cycle device can be used as a cooling heat source of about 15 ° C. in the process of cooling the air performed during the desiccant air conditioning cycle. It is possible to save the primary energy required for regeneration and to provide a desiccant air-conditioning system that increases the cooling effect and thus has a high coefficient of operation. It can be.

【0015】[0015]

【発明の実施の形態】以下、本発明に係るデシカント空
調装置の一実施例を図1乃至図4を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a desiccant air conditioner according to the present invention will be described below with reference to FIGS.

【0016】図1は本発明に係るデシカント空調装置の
基本構成を示す図である。このうち吸収ヒートポンプの
部分は、第1の蒸発器3と、第1の吸収器1と、第1の
再生器2と、第1の凝縮器4と吸収溶液の第1の熱交換
器5とを構成機器として吸収式冷凍サイクルを行う第1
のサイクル装置と、第2の蒸発器13と、第2の吸収器
11と、第2の再生器12と、第2の凝縮器14と吸収
溶液の第2の熱交換器15とを構成機器として、前記第
1のサイクル装置の吸収冷凍サイクルよりも低温で作動
する第2の吸収冷凍サイクルを行う第2のサイクル装置
からなり、前記第1のサイクル装置の第1の蒸発器3と
第2のサイクル装置の第2の吸収器11との間に熱交換
装置21を形成し、かつ該第1のサイクル装置の第1の
凝縮器4と第2のサイクル装置の第2の再生器12との
間に熱交換装置20を形成し、かつ第1のサイクル装置
の吸収熱および第2のサイクル装置の凝縮熱を加熱源と
して取出す搬送媒体の経路32を第2のサイクル装置の
凝縮器伝熱管31から第1のサイクル装置の吸収器伝熱
管30の順に通過して熱交換するよう搬送媒体の経路を
構成する。
FIG. 1 is a diagram showing a basic configuration of a desiccant air conditioner according to the present invention. The absorption heat pump includes a first evaporator 3, a first absorber 1, a first regenerator 2, a first condenser 4, and a first heat exchanger 5 for absorbing solution. Of an absorption refrigeration cycle using
, A second evaporator 13, a second absorber 11, a second regenerator 12, a second condenser 14, and a second heat exchanger 15 for absorbing solution. A second cycle device that performs a second absorption refrigeration cycle that operates at a lower temperature than the absorption refrigeration cycle of the first cycle device, and includes a first evaporator 3 and a second evaporator 3 of the first cycle device. A heat exchanger 21 between the second absorber 11 of the first cycle device and the second regenerator 12 of the second cycle device with the first condenser 4 of the first cycle device. The heat exchanger 20 is formed between the first and second heat exchangers, and a heat transfer path 32 is provided for extracting the heat of absorption of the first heat exchanger and the heat of condensation of the second heat exchanger as a heat source. Pass from 31 to the heat exchanger tube 30 of the first cycle device Constituting a path of transport medium to the heat exchange Te.

【0017】図1ではこのように構成された吸収ヒート
ポンプの温水配管と冷水配管を以下に示すデシカント空
調機とをそれぞれ冷水ポンプ160、温水ポンプ150
を介して接続したものである。
In FIG. 1, the hot water pipe and the cold water pipe of the absorption heat pump thus configured are connected to a desiccant air conditioner shown below, respectively.
Are connected via a.

【0018】図1のデシカント空調装置の空調機の部分
は以下に示すよう構成されている。空調空間101は処
理空気の送風機102の吸い込み口と経路107を介し
て接続し、送風機102の吐出口はデシカントロータ1
03と経路108を介して接続し、デシカントロータ1
03の処理空気の出口は再生空気と熱交換関係にある顕
熱熱交換器104と経路109を介して接続し、顕熱熱
交換器104の処理空気の出口は冷水熱交換器115と
経路110を介して接続し、冷却器115の処理空気の
出口は加湿器105と経路119を介して接続し、加湿
器105の処理空気の出口は空調空間101と経路11
1を介して接続して処理空気のサイクル装置を形成す
る。
The part of the air conditioner of the desiccant air conditioner of FIG. 1 is configured as follows. The air-conditioned space 101 is connected to a suction port of a blower 102 for processing air via a path 107, and a discharge port of the blower 102 is connected to the desiccant rotor 1.
03 via the path 108 and the desiccant rotor 1
03 is connected to the sensible heat exchanger 104, which has a heat exchange relationship with the regenerated air, via a path 109, and the processing air outlet of the sensible heat exchanger 104 is connected to the chilled water heat exchanger 115 and the path 110. The outlet of the processing air of the cooler 115 is connected to the humidifier 105 via the path 119, and the outlet of the processing air of the humidifier 105 is connected to the air-conditioned space 101 and the path 11
1 to form a process air cycle device.

【0019】一方、再生用の空気経路は、外気を再生空
気用の送風機130の吸い込み口と経路124を介して
接続し、送風機130の吐出口は処理空気と熱交換関係
にある顕熱熱交換器104と接続し、顕熱熱交換器10
4の再生空気の出口は別の顕熱熱交換器121の低温側
入口と経路125を介して接続し、顕熱熱交換器121
の低温側出口は加熱器120と経路126を介して接続
し、加熱器120の再生空気の出口はデシカントロータ
103の再生空気入口と経路127を介して接続し、デ
シカントロータ103の再生空気の出口は顕熱熱交換器
121の高温側入口と経路128を介して接続し、顕熱
熱交換器121の高温側出口は外部空間と経路129を
介して接続して再生空気を外部から取り入れて、外部に
排気するサイクルを形成する。
On the other hand, a regeneration air path connects outside air to a suction port of a regeneration air blower 130 via a path 124, and a discharge port of the blower 130 has a sensible heat exchange Sensible heat exchanger 10
4 is connected to the low-temperature side inlet of another sensible heat exchanger 121 via a path 125, and the sensible heat exchanger 121
Is connected to the heater 120 via a path 126, the outlet of the regeneration air of the heater 120 is connected to the regeneration air inlet of the desiccant rotor 103 via a path 127, and the outlet of the regeneration air of the desiccant rotor 103. Is connected to the high temperature side inlet of the sensible heat exchanger 121 via the path 128, and the high temperature side outlet of the sensible heat exchanger 121 is connected to the external space via the path 129 to take in regeneration air from outside, A cycle to exhaust to the outside is formed.

【0020】前記加熱器120の温水入口は加熱経路1
22を介して吸収ヒートポンプの温水経路の第1のサイ
クル装置の第1の吸収器1の出口に接続し、加熱器12
0の温水出口は経路123および温水ポンプ150を介
して吸収ヒートポンプの温水経路の第2のサイクル装置
の第2の凝縮器14の入口に接続する。また前記冷水熱
交換器115の冷水入口は冷却経路117を介して吸収
ヒートポンプの冷水経路の第2のサイクル装置の第2の
蒸発器13の出口に接続し、冷却器115の冷水出口は
経路118およびポンプ160を介して吸収ヒートポン
プの冷水経路の第2のサイクル装置の第2の蒸発器13
の入口に接続する。なお図中、丸で囲ったアルファベッ
トK〜Vは、図4と対応する空気の状態を示す記号であ
り、SAは給気を、RAは還気を、OAは外気を、EX
は排気をそれぞれ表わす 上述のように構成されたデシカント空調装置の吸収ヒー
トポンプ部分の吸収サイクルを次に説明する。第1のサ
イクル装置の吸収溶液は第1の再生器2で外部の熱源
(図示せず)から伝熱管34を介して加熱され、冷媒蒸
気を発生し、濃縮されたのち第1の熱交換器5を経て第
1の吸収器1に至る。第1の吸収器1では吸収溶液は第
1の蒸発器3で蒸発した冷媒を吸収し、希釈された後ポ
ンプ6の作用によって再び第1の熱交換器5を経て第1
の再生器2に戻る。第1の吸収器1では吸収の際発生す
る吸収熱を利用するため、温水などの熱媒体と伝熱管3
0によって熱交換される。第1の再生器2で発生した冷
媒蒸気は、第1の凝縮器4に流入し凝縮する。第1の凝
縮器4では凝縮の際発生する凝縮熱が熱交換装置20に
よって第2のサイクル装置の第2の再生器12に伝達さ
れる。凝縮した冷媒は第1の蒸発器3に送られ蒸発す
る。第1の蒸発器3では蒸発の際吸熱する蒸発熱が熱交
換装置21によって第2のサイクル装置の第2の吸収器
11から伝達される。なお通常の2重効用吸収冷凍機で
行われているように第1の凝縮器4の伝熱管は直接第2
のサイクル装置の第2の再生器12内に設置しても差し
支えなく、同様の作用を行うことができる。
The hot water inlet of the heater 120 is connected to the heating path 1
22, the hot water path of the absorption heat pump is connected to the outlet of the first absorber 1 of the first cycle device, and the heater 12
The hot water outlet of 0 is connected via a path 123 and a hot water pump 150 to the inlet of the second condenser 14 of the second cycle device in the hot water path of the absorption heat pump. The chilled water inlet of the chilled water heat exchanger 115 is connected to the outlet of the second evaporator 13 of the second cycle device in the chilled water path of the absorption heat pump via the cooling path 117, and the chilled water outlet of the cooler 115 is connected to the path 118. And the second evaporator 13 of the second cycle device in the chilled water path of the absorption heat pump via the pump 160
Connect to the entrance. In the figure, circled alphabets K to V are symbols indicating the state of air corresponding to FIG. 4, where SA is air supply, RA is return air, OA is outside air, and EX is air.
Represents the exhaust gas. The absorption cycle of the absorption heat pump portion of the desiccant air conditioner configured as described above will be described below. The absorption solution of the first cycle device is heated by an external heat source (not shown) in the first regenerator 2 via the heat transfer tube 34 to generate a refrigerant vapor, and after being concentrated, the first heat exchanger 2 5 to the first absorber 1. In the first absorber 1, the absorbing solution absorbs the refrigerant evaporated in the first evaporator 3, and after being diluted, passes through the first heat exchanger 5 again through the first heat exchanger 5 by the action of the pump 6.
Return to the regenerator 2. Since the first absorber 1 uses the heat of absorption generated during absorption, a heat medium such as hot water and a heat transfer tube 3 are used.
0 heat exchange. The refrigerant vapor generated in the first regenerator 2 flows into the first condenser 4 and condenses. In the first condenser 4, the heat of condensation generated during the condensation is transferred by the heat exchange device 20 to the second regenerator 12 of the second cycle device. The condensed refrigerant is sent to the first evaporator 3 and evaporates. In the first evaporator 3, the evaporative heat absorbed during the evaporation is transmitted from the second absorber 11 of the second cycle device by the heat exchange device 21. Note that the heat transfer tube of the first condenser 4 is directly connected to the second heat transfer tube as in a normal double effect absorption refrigerator.
The same operation can be performed without any problem even if it is installed in the second regenerator 12 of the cycle device.

【0021】第2のサイクル装置の吸収溶液は第2の再
生器12で第1のサイクル装置の凝縮熱で熱交換装置2
0を介して加熱され、冷媒蒸気を発生し、濃縮されたの
ち第2の熱交換器15を経て第2の吸収器11に至る。
第2の吸収器11では吸収溶液は第2の蒸発器13で蒸
発した冷媒を吸収し、希釈された後ポンプ16の作用に
よって再び第2の熱交換器15を経て第2の再生器12
に戻る。第2の吸収器11では吸収の際発生する吸収熱
は熱交換装置21によって第1のサイクル装置の蒸発器
3に伝達される。第2の再生器12で発生した冷媒蒸気
は、第2の凝縮器14に流入し凝縮する。第2の凝縮器
14では凝縮の際発生する凝縮熱を利用するため、熱媒
体と伝熱管31によって熱交換される。
The absorption solution of the second cycle device is condensed in the second regenerator 12 by the heat of condensation of the first cycle device.
0, generates refrigerant vapor, is concentrated, and then reaches the second absorber 11 via the second heat exchanger 15.
In the second absorber 11, the absorbing solution absorbs the refrigerant evaporated in the second evaporator 13, and after being diluted, passes through the second heat exchanger 15 again by the action of the pump 16 to become the second regenerator 12.
Return to In the second absorber 11, the heat of absorption generated at the time of absorption is transferred by the heat exchange device 21 to the evaporator 3 of the first cycle device. The refrigerant vapor generated in the second regenerator 12 flows into the second condenser 14 and condenses. In the second condenser 14, heat is exchanged between the heat medium and the heat transfer tube 31 in order to utilize the heat of condensation generated during the condensation.

【0022】また前記熱媒体は第2のサイクル装置の凝
縮器伝熱管31から第1のサイクル装置の吸収器伝熱管
30の順序で流すことによって第1のサイクル装置の吸
収溶液温度が第2のサイクル装置の冷媒凝縮温度よりも
高くなる。凝縮した冷媒は第2の蒸発器13に送られ蒸
発する。第2の蒸発器13では蒸発の際吸熱する蒸発熱
を利用するため、冷水等の熱媒体と伝熱管33によって
熱交換される。なお第2の吸収器11の伝熱管は直接第
1のサイクル装置の第1の蒸発器3内に設置しても差し
支えなく、同様の作用を行うことができる。
The heat medium flows from the condenser heat transfer tube 31 of the second cycle device to the absorber heat transfer tube 30 of the first cycle device in order, so that the absorption solution temperature of the first cycle device becomes the second. It becomes higher than the refrigerant condensation temperature of the cycle device. The condensed refrigerant is sent to the second evaporator 13 and evaporates. In the second evaporator 13, heat is exchanged with a heat medium such as cold water by the heat transfer tube 33 in order to use the evaporation heat absorbed during the evaporation. The heat transfer tube of the second absorber 11 may be installed directly in the first evaporator 3 of the first cycle device, and the same operation can be performed.

【0023】次に前述のように構成されたデシカント空
調装置の吸収ヒートポンプの部分の動作を図2を参照し
て説明する。図2は図1のデシカント空調装置の吸収ヒ
ートポンプの部分のサイクルを示すデューリング線図で
ある。本図は吸収冷凍機で一般的に用いられている臭化
リチウムー水系のものを代表例として示す。図中に示す
アルファベット記号は、吸収溶液や冷媒の状態を示すも
ので、同じ記号を丸で囲んだものを図1にも記載した。
Next, the operation of the absorption heat pump of the desiccant air conditioner constructed as described above will be described with reference to FIG. FIG. 2 is a During diagram showing a cycle of a part of an absorption heat pump of the desiccant air conditioner of FIG. This figure shows a typical example of a lithium bromide-water system generally used in an absorption refrigerator. The alphabetic symbols shown in the figure indicate the states of the absorbing solution and the refrigerant, and the same symbols are circled in FIG.

【0024】第1のサイクル装置の吸収溶液は第1の再
生器2で外部の熱源から加熱され、冷媒蒸気を発生し濃
縮された(状態c:図中では175℃)のち第1の熱交
換器5を経て(状態d)第1の吸収器1に至る。第1の
吸収器1では吸収溶液は第1の蒸発器3で蒸発した冷媒
を吸収し、希釈された後(状態a)再び第1の熱交換器
5を経て加熱され(状態b)第1の再生器2に戻る。第
1の再生器2で発生した冷媒蒸気は、第1の凝縮器4に
流入し凝縮する(状態f)。第1の凝縮器4では凝縮の
際発生する凝縮熱が熱交換装置20によって第2のサイ
クル装置の第2の再生器12に伝達される。凝縮した冷
媒は第1の蒸発器3に送られ蒸発する(状態e)。第1
の蒸発器3では蒸発の際吸熱する蒸発熱が熱交換装置2
1によって第2のサイクル装置の第2の吸収器11(状
態A)から伝達される。
The absorption solution of the first cycle device is heated by an external heat source in the first regenerator 2, generates refrigerant vapor and is concentrated (state c: 175 ° C. in the figure), and then subjected to the first heat exchange It reaches the first absorber 1 via the absorber 5 (state d). In the first absorber 1, the absorbing solution absorbs the refrigerant evaporated in the first evaporator 3 and is diluted (state a) and then heated again through the first heat exchanger 5 (state b). Return to the regenerator 2. The refrigerant vapor generated in the first regenerator 2 flows into the first condenser 4 and condenses (state f). In the first condenser 4, the heat of condensation generated during the condensation is transferred by the heat exchange device 20 to the second regenerator 12 of the second cycle device. The condensed refrigerant is sent to the first evaporator 3 and evaporates (state e). First
In the evaporator 3, the heat of evaporation absorbed during the evaporation is converted into the heat exchange device 2.
1 transmitted from the second absorber 11 of the second cycle device (state A).

【0025】第2のサイクル装置の吸収溶液は第2の再
生器12で第1のサイクル装置の凝縮熱(状態f)で熱
交換装置20を介して加熱され、冷媒蒸気を発生し、濃
縮された(状態C)のち第2の熱交換器15を経て(状
態D)第2の吸収器11に至る。第2の吸収器11では
吸収溶液は第2の蒸発器13で蒸発した冷媒(状態E)
を吸収し、希釈された(状態A)後再び第2の熱交換器
15を経て加熱され(状態B)第2の再生器12に戻
る。第2の吸収器11では吸収の際発生する吸収熱は熱
交換装置21によって第1のサイクル装置の蒸発器3
(状態e)に伝達される。第2の再生器12で発生した
冷媒蒸気は、第2の凝縮器14に流入し凝縮する(状態
F)。熱媒体を第2のサイクル装置の凝縮器伝熱管31
から第1のサイクル装置の吸収器伝熱管30の順序で流
すことによって第1のサイクル装置の吸収溶液温度(状
態a:図中では75℃)が第2のサイクル装置の冷媒凝
縮温度(状態F:図中では65℃)よりも高くなる。凝
縮した冷媒(状態F)は第2の蒸発器13に送られ蒸発
する(状態E)。
The absorption solution of the second cycle device is heated in the second regenerator 12 by the heat of condensation (state f) of the first cycle device through the heat exchange device 20, generates refrigerant vapor, and is concentrated. After that (state C), it reaches the second absorber 11 via the second heat exchanger 15 (state D). In the second absorber 11, the absorbing solution is the refrigerant evaporated in the second evaporator 13 (state E).
After being diluted (state A), it is heated again via the second heat exchanger 15 (state B) and returns to the second regenerator 12. In the second absorber 11, the heat of absorption generated at the time of absorption is converted by the heat exchange device 21 into the evaporator 3 of the first cycle device.
(State e). The refrigerant vapor generated in the second regenerator 12 flows into the second condenser 14 and condenses (state F). The heat medium is transferred to the condenser heat transfer tube 31 of the second cycle device.
Through the heat transfer tube 30 of the first cycle device, the absorption solution temperature of the first cycle device (state a: 75 ° C. in the figure) is reduced to the refrigerant condensing temperature of the second cycle device (state F). : 65 ° C. in the figure). The condensed refrigerant (state F) is sent to the second evaporator 13 and evaporates (state E).

【0026】このように構成された吸収ヒートポンプで
は、第1のサイクル装置の第1の再生器2に外部から加
えられた高温の熱は第1のサイクル装置の溶液濃縮に利
用するとともに、その際発生した冷媒蒸気の保有熱が第
2のサイクル装置の溶液濃縮に再び利用できるため、1
つの入熱で2つの冷凍サイクルの駆動力となる溶液濃縮
ができる。また第2のサイクル装置の吸収熱を第1のサ
イクル装置の蒸発熱として系内で使用する。そのため第
1のサイクル装置では吸収熱が、第2のサイクル装置で
は凝縮熱と蒸発熱が利用可能となり、図2に示すように
吸収、凝縮の過程で発生する熱は60℃〜80℃の加熱
源としてデシカントの再生に利用することができ、また
第2のサイクル装置の蒸発熱は15℃程度の冷却源とし
て処理空気の冷却に利用することができる。
In the absorption heat pump configured as described above, the high-temperature heat externally applied to the first regenerator 2 of the first cycle device is used for the concentration of the solution in the first cycle device. Since the generated heat of the refrigerant vapor can be reused for the solution concentration of the second cycle device, 1
With one heat input, solution concentration, which is a driving force for two refrigeration cycles, can be performed. The heat absorbed by the second cycle device is used in the system as the heat of evaporation of the first cycle device. Therefore, heat of absorption can be used in the first cycle device and heat of condensation and heat of evaporation can be used in the second cycle device. As shown in FIG. 2, the heat generated in the process of absorption and condensation is heated to 60 ° C. to 80 ° C. It can be used as a source for desiccant regeneration, and the heat of evaporation of the second cycle device can be used as a cooling source of about 15 ° C. for cooling process air.

【0027】この実施例のヒートポンプの熱バランスを
見ると、このヒートポンプへの入熱は第1のサイクル装
置の再生器に外部から加えられた高温の熱と第2のサイ
クル装置の蒸発器で冷水から奪った熱であり、このヒー
トポンプからの出熱はデシカントの再生熱として再生空
気に加えられた第1のサイクル装置の吸収熱と第2のサ
イクル装置の凝縮熱である。したがって再生空気には、
第1のサイクル装置の再生器に外部から加えられた高温
の熱の他に第2のサイクル装置の蒸発器で処理空気から
奪った熱が加えられるため、加熱源として利用可能な熱
量は第1のサイクル装置の再生器に外部から加えられた
熱量よりも増加する。このように第1、第2サイクル装
置全体ではヒートポンプ作用がある。
Looking at the heat balance of the heat pump of this embodiment, the heat input to this heat pump is caused by the high temperature heat externally applied to the regenerator of the first cycle device and the cold water by the evaporator of the second cycle device. And the heat output from the heat pump is the heat of absorption of the first cycle device and the heat of condensation of the second cycle device added to the regeneration air as the regeneration heat of the desiccant. Therefore, the regeneration air contains
In addition to the high-temperature heat externally applied to the regenerator of the first cycle device, the heat removed from the processing air by the evaporator of the second cycle device is added. The amount of heat added to the regenerator of the cycle device from outside is increased. Thus, the entire first and second cycle devices have a heat pump function.

【0028】また、第1のサイクル装置の吸収溶液温度
が第2のサイクル装置の冷媒凝縮温度よりも高くなるよ
うに、第1のサイクル装置の吸収熱および第2のサイク
ル装置の凝縮熱を外部に利用温熱として取出す搬送媒体
即ち温水の経路を構成したことは、後述する通り、温水
をデシカント空調に使用する際の空気との熱交換が空気
側の顕熱変化であり、空気の比熱は温水に比べて著しく
低く温度変化が大きいため、温水の流量を減少させて温
度変化を大きくしても熱交換は効率良く行われ、従って
温水を作る吸収ヒートポンプの温水の流入側にあたる第
2のサイクル装置の凝縮温度は、出口側にあたる第1の
サイクル装置の吸収温度よりも低く設定することがで
き、そのようにすることによって第1のサイクル装置の
第1の再生器2の圧力と温度を低くすることができるた
め、第1のサイクル装置の第1の再生器2への加熱量が
軽減される効果がある。
Further, the heat of absorption of the first cycle device and the heat of condensation of the second cycle device are externally controlled so that the absorption solution temperature of the first cycle device is higher than the refrigerant condensation temperature of the second cycle device. The configuration of the conveyance medium, that is, the path of the hot water, which is taken out as hot water for use, is that, as described later, heat exchange with air when hot water is used for desiccant air conditioning is a sensible heat change on the air side, and the specific heat of air is hot water. Since the temperature change is remarkably low and the temperature change is large, even if the flow rate of the hot water is reduced and the temperature change is increased, the heat exchange is performed efficiently, and therefore, the second cycle device corresponding to the hot water inflow side of the absorption heat pump for producing hot water Can be set lower than the absorption temperature of the first cycle device corresponding to the outlet side, so that the pressure of the first regenerator 2 of the first cycle device can be reduced. And it is possible to lower the temperature, the effect of the first heating amount to the regenerator 2 of the first cycle apparatus can be reduced.

【0029】次に前述のように構成された吸収ヒートポ
ンプをデシカント空調に組合せた際の動作を説明する。
図3は図1の実施例の空気調和の部分の作動状態を示す
モリエル線図である。
Next, the operation when the absorption heat pump configured as described above is combined with desiccant air conditioning will be described.
FIG. 3 is a Mollier diagram showing an operation state of an air conditioning part of the embodiment of FIG.

【0030】本実施例のデシカント空調機部分の作用に
ついて説明すると、図1において、空調される室内10
1の空気(処理空気)は経路107を経て送風機102
に吸引され昇圧されて経路108をへてデシカントロー
タ103に送られデシカントロータの吸湿剤で空気中の
水分を吸着され絶対湿度が低下する。また吸着の際、吸
着熱によって空気は温度上昇する。湿度が下がり温度上
昇した空気は経路109を経て顕熱熱交換器104に送
られ外気(再生空気)と熱交換して冷却される。冷却さ
れた空気は経路110を経て冷却器115に送られさら
に冷却される。冷却された処理空気は加湿器105に送
られ水噴射または気化式加湿によって等エンタルピ過程
で温度低下し経路111を経て空調空間101に戻され
る。
The operation of the desiccant air conditioner of this embodiment will be described.
The air (process air) 1 passes through the path 107 and
Then, the pressure is increased and the pressure is sent to the desiccant rotor 103 via the path 108. The moisture in the air is adsorbed by the desiccant rotor's moisture absorbent, and the absolute humidity is reduced. At the time of adsorption, the temperature of the air rises due to the heat of adsorption. The air whose humidity has decreased and its temperature has increased is sent to the sensible heat exchanger 104 via the path 109 and cooled by exchanging heat with outside air (regenerated air). The cooled air is sent to a cooler 115 via a path 110 and further cooled. The cooled processing air is sent to the humidifier 105, and its temperature is lowered in the isenthalpy process by water injection or vaporization humidification, and is returned to the air-conditioned space 101 via the path 111.

【0031】デシカントロータはこの過程で水分を吸着
したため、再生が必要で、この実施例では外気を再生用
空気として用いて次のように行われる。外気(OA)は
経路124を経て送風機130に吸引され昇圧されて顕
熱熱交換器104に送られ、処理空気を冷却して自らは
温度上昇し経路125を経て次の顕熱熱交換器121に
流入し、再生後の高温の空気と熱交換して温度上昇す
る。さらに顕熱熱交換器121を出た再生空気は経路1
26を経て加熱器120に流入し温水によって加熱され
60〜80℃まで温度上昇し、相対湿度が低下する。こ
の過程は再生空気の顕熱変化であり、空気の比熱は温水
に比べて著しく低く温度変化が大きいため、温水の流量
を減少させて温度変化を大きくしても熱交換は効率良く
行われる。従って温水を作る吸収ヒートポンプの温水の
流入側にあたる第2サイクル装置の凝縮温度は、出口側
にあたる第1のサイクル装置の吸収温度よりも低く設定
することができ、そのようにすることによって第1のサ
イクル装置の第1の再生器2の圧力と温度を低くするこ
とができるため、第1のサイクル装置の第1の再生器2
への加熱量が軽減される。
Since the desiccant rotor adsorbs moisture in this process, regeneration is required. In this embodiment, the desiccant rotor is operated as follows using outside air as regeneration air. The outside air (OA) is sucked into the blower 130 via the path 124 and is boosted and sent to the sensible heat exchanger 104, where it cools the processing air to increase its temperature, and passes through the path 125 to the next sensible heat exchanger 121. And heat exchange with hot air after regeneration to increase the temperature. Further, the regenerated air exiting from the sensible heat exchanger 121 passes through path 1
After flowing into the heater 120 through the heater 26, it is heated by the hot water, the temperature rises to 60 to 80 ° C., and the relative humidity decreases. This process is a change in the sensible heat of the regenerated air. Since the specific heat of the air is significantly lower than that of the hot water and the temperature change is large, even if the flow rate of the hot water is reduced and the temperature change is increased, the heat exchange is performed efficiently. Therefore, the condensing temperature of the second cycle device corresponding to the inflow side of the hot water of the absorption heat pump for producing the hot water can be set lower than the absorption temperature of the first cycle device corresponding to the outlet side. Since the pressure and temperature of the first regenerator 2 of the cycle device can be reduced, the first regenerator 2 of the first cycle device can be reduced.
The amount of heating to the is reduced.

【0032】また温水の利用温度差を大きくとるによっ
て流量が少なくなるため、搬送動力が低減される。加熱
器120を出て相対湿度が低下した再生空気はデシカン
トロータ103を通過してデシカントロータの水分を除
去し再生作用をする。デシカントロータ103を通過し
た再生空気は経路128を経て顕熱熱交換器121に流
入し、再生前の再生空気の余熱を行ったのち経路129
を経て排気として外部に捨てられる。
Further, since the flow rate is reduced by increasing the difference in the use temperature of the hot water, the transfer power is reduced. The regenerated air having a reduced relative humidity after exiting the heater 120 passes through the desiccant rotor 103 to remove moisture from the desiccant rotor and perform a regeneration operation. The regenerated air that has passed through the desiccant rotor 103 flows into the sensible heat exchanger 121 via the path 128, and after performing the residual heat of the regenerated air before regeneration, the path 129.
And is discarded outside as exhaust gas.

【0033】これまでの過程をモリエル線図を用いて説
明すると、図3において、空調される室内101の空気
(処理空気:状態K)は経路107を経て送風機102
に吸引され昇圧されて経路108をへてデシカントロー
タ103に送られデシカントロータの吸湿剤で空気中の
水分を吸着され絶対湿度が低下するとともに吸着熱によ
って空気は温度上昇する(状態L)。湿度が下がり温度
上昇した空気は経路109を経て顕熱熱交換器104に
送られ外気(再生空気)と熱交換して冷却される(状態
M)。冷却された空気は経路110を経て冷却器115
に送られさらに冷却される(状態N)。冷却された空気
は経路110を経て加湿器105に送られ水噴射または
気化式加湿によって等エンタルピ過程で温度低下し(状
態P)、経路111を経て空調空間101に戻される。
このようにして室内の還気(状態K)と給気(状態P)
との間にはエンタルピ差ΔQが生じ、これによって空調
空間101の冷房が行われる。
The process up to now will be described with reference to a Mollier diagram. In FIG. 3, the air in the room 101 to be air-conditioned (processed air: state K) passes through a path 107 and is supplied to a blower 102.
Then, the pressure is increased, and the pressure is increased. Then, the moisture is sent to the desiccant rotor 103 through the path 108, the moisture in the air is adsorbed by the desiccant rotor 103, the absolute humidity is reduced, and the temperature of the air is increased by the heat of adsorption (state L). The air whose humidity has decreased and its temperature has increased is sent to the sensible heat exchanger 104 via the path 109 and exchanges heat with outside air (regenerated air) to be cooled (state M). The cooled air passes through a path 110 to a cooler 115
And further cooled (state N). The cooled air is sent to the humidifier 105 via the path 110, and its temperature is lowered in the isenthalpy process by water injection or vaporization humidification (state P), and is returned to the air-conditioned space 101 via the path 111.
In this way, the indoor return air (state K) and air supply (state P)
And an enthalpy difference ΔQ is generated between them, whereby the air-conditioned space 101 is cooled.

【0034】デシカントの再生は次のように行われる。
再生用の外気(OA:状態Q)は経路124を経て送風
機130に吸引され昇圧されて顕熱熱交換器104に送
られ、処理空気を冷却して自らは温度上昇し(状態R)
経路125を経て次の顕熱熱交換器121に流入し、再
生後の高温の空気と熱交換して温度上昇する(状態
S)。さらに顕熱熱交換器121を出た再生空気は経路
126を経て加熱器120に流入し温水によって加熱さ
れ60〜80℃まで温度上昇し、相対湿度が低下する
(状態T)。相対湿度が低下した再生空気はデシカント
ロータ103を通過してデシカントロータの水分を除去
する(状態U)。デシカントロータ103を通過した再
生空気は経路128を経て顕熱熱交換器121に流入
し、顕熱熱交換器104を出た再生前の再生空気の余熱
を行って自らは温度低下した(状態V)のち経路129
を経て排気として外部に捨てられる。このようにしてデ
シカントの再生と処理空気の除湿、冷却をくりかえし行
うことによって、デシカントによる空調を行う。
The desiccant is reproduced as follows.
The outside air for regeneration (OA: state Q) is sucked into the blower 130 via the path 124, is pressurized and sent to the sensible heat exchanger 104, cools the processing air, and rises in temperature (state R).
It flows into the next sensible heat exchanger 121 via the path 125 and exchanges heat with the high-temperature air after regeneration to increase the temperature (state S). Further, the regenerated air exiting the sensible heat exchanger 121 flows into the heater 120 via the path 126, is heated by the hot water, is heated to 60 to 80 ° C., and the relative humidity is reduced (state T). The regenerated air having a reduced relative humidity passes through the desiccant rotor 103 to remove moisture from the desiccant rotor (state U). The regenerated air that has passed through the desiccant rotor 103 flows into the sensible heat exchanger 121 via the path 128, and the regenerated air before regeneration that has exited the sensible heat exchanger 104 undergoes residual heat to lower its temperature (state V). ) After the route 129
And is discarded outside as exhaust gas. In this manner, the desiccant is air-conditioned by repeating the desiccant regeneration and the dehumidification and cooling of the processing air.

【0035】なお再生用空気として室内換気にともなう
排気を用いる方法も従来からデシカント空調では広く行
われているが、本発明においても室内からの排気を再生
用空気として使用してもさしつかえなく、本実施例と同
様の効果が得られる。
Although desiccant air-conditioning has been widely used in the past as a method for using the exhaust gas accompanying the indoor ventilation as the regeneration air, the present invention can also use the exhaust gas from the room as the regeneration air. The same effect as that of the embodiment can be obtained.

【0036】このように構成されたデシカント空調のエ
ネルギ効率を示す動作係数(COP)は図3における冷
房効果ΔQを再生加熱量で除した値で示されるが、再生
空気に温水熱交換器で加えられた熱量ΔHのうち冷水熱
交換器で冷却した熱量Δq分の熱量は前記の吸収ヒート
ポンプのヒートポンプ作用により処理空気から冷水熱交
換器115、第2のサイクル装置の第2の蒸発器13を
介してくみ上げたものであるから、実際にこのシステム
に加えられる熱量はΔHからΔqを引いたΔhとなり、
図中で状態Xから状態Tまでの顕熱変化に相当する。
The operating coefficient (COP) indicating the energy efficiency of the desiccant air conditioner thus configured is shown by dividing the cooling effect ΔQ by the regeneration heating amount in FIG. 3, and is added to the regeneration air by the hot water heat exchanger. Of the obtained heat quantity ΔH, the heat quantity of the heat quantity Δq cooled by the chilled water heat exchanger is transferred from the processing air through the chilled water heat exchanger 115 and the second evaporator 13 of the second cycle device by the heat pump action of the absorption heat pump. As a result, the amount of heat actually applied to this system is Δh, which is ΔH minus Δq,
In the figure, this corresponds to a sensible heat change from state X to state T.

【0037】従って動作係数は、ΔQ/(ΔHーΔq)
=ΔQ/Δhとなる。図3の動作係数と図6の従来例の
動作係数を比較すると、本発明の実施例では分子の冷凍
効果ΔQは従来例に比べてΔqだけ増加し、また分母の
加熱量は従来例に比べてΔqだけ減少し、従って分母が
減少し分子が増加するため、動作係数は著しく向上す
る。
Therefore, the operation coefficient is ΔQ / (ΔH−Δq)
= ΔQ / Δh. Comparing the operation coefficient of FIG. 3 with the operation coefficient of the conventional example of FIG. 6, in the embodiment of the present invention, the refrigeration effect ΔQ of the numerator increases by Δq as compared with the conventional example, and the heating amount of the denominator is compared with the conventional example. Therefore, the operating coefficient is significantly improved because the denominator is reduced and the numerator is increased.

【0038】本発明のデシカント空調システムの動作係
数を以下に概略計算する。吸収ヒートポンプの冷凍効果
に対する動作係数を、従来の単効用吸収冷凍機並みの大
略0.6とし、従来のデシカント空調の動作係数を1.
0とすると、本発明の実施例では、吸収ヒートポンプへ
外部から加熱される熱量を1に採ると、ヒートポンプ作
用により、温水には1.6の熱量が加えられ、この熱で
デシカント空調を作動させると、冷房効果は1.0(動
作係数)×1.6(加熱量)+0.6(冷凍効果:Δ
q)=2.2の熱量となる。従って、本発明の動作係数
は、2.2(冷房効果)/1.0(吸収ヒートポンプへ
の入熱)=2.2となる。この値は従来の2重効用吸収
冷凍機の持つ1.2程度の動作係数を大幅に上回るもの
であり、極めて高い省エネルギ効果がある。
The operation coefficient of the desiccant air-conditioning system of the present invention is roughly calculated as follows. The operating coefficient for the refrigeration effect of the absorption heat pump is approximately 0.6, which is comparable to that of a conventional single-effect absorption refrigerator, and the operating coefficient of the conventional desiccant air conditioner is 1.
In the embodiment of the present invention, when the amount of heat to be externally heated to the absorption heat pump is set to 0, 1.6 is added to the hot water by the heat pump action, and the desiccant air conditioning is operated by this heat. And the cooling effect is 1.0 (operation coefficient) × 1.6 (heating amount) +0.6 (refrigeration effect: Δ
q) = 2.2. Therefore, the operation coefficient of the present invention is 2.2 (cooling effect) /1.0 (heat input to the absorption heat pump) = 2.2. This value greatly exceeds the operating coefficient of the conventional double effect absorption refrigerator of about 1.2, and has an extremely high energy saving effect.

【0039】このようにして、第1のサイクル装置の再
生器に加えられる駆動入力熱量に第2のサイクル装置の
蒸発熱を加えた熱量に相当する熱量の熱を、第1のサイ
クル装置の凝縮熱および第2のサイクル装置の吸収熱の
形でデシカント再生用の60〜80℃程度の中間温度の
加熱源として利用することができ、さらに第2のサイク
ル装置の蒸発器の蒸発熱を、デシカント空調サイクル中
に行われる空気を冷却する過程に15℃程度の冷却熱源
として利用することができるため、デシカント再生のた
めに必要な1次エネルギが節約できるとともに、冷房効
果が増す効果が得られる。
In this manner, heat of a heat amount corresponding to a heat amount obtained by adding the evaporation heat of the second cycle device to the drive input heat amount applied to the regenerator of the first cycle device is condensed by the first cycle device. It can be used as a heat source at an intermediate temperature of about 60 to 80 ° C. for desiccant regeneration in the form of heat and absorption heat of the second cycle device. Further, the evaporation heat of the evaporator of the second cycle device is desiccant Since it can be used as a cooling heat source of about 15 ° C. in the process of cooling the air performed during the air conditioning cycle, the primary energy required for desiccant regeneration can be saved and the effect of increasing the cooling effect can be obtained.

【0040】図4は本発明の他の実施例である。図4
は、本発明に係るデシカント空調装置の基本構成を示す
図であり、このうち吸収ヒートポンプの部分は、第1の
蒸発器3、第1の吸収器1、第1の再生器2、第1の凝
縮器4、および吸収溶液の第1の熱交換器5を構成機器
として吸収式冷凍サイクルを行う第1のサイクル装置
と、第2の蒸発器13、第2の吸収器11、第2の再生
器12、第2の凝縮器14、および吸収溶液の第2の熱
交換器15を構成機器として、前記第1のサイクル装置
の吸収冷凍サイクルよりも低温で作動する第2の吸収冷
凍サイクルを行う第2のサイクル装置からなり、前記第
1のサイクル装置の第1の蒸発器3と第2のサイクル装
置の第2の吸収器11との間に熱交換装置21を形成
し、かつ該第1のサイクル装置の第1の凝縮器4と第2
のサイクル装置の第2の再生器12との間に熱交換装置
20を形成し、かつ第1のサイクル装置の吸収熱を加熱
源として取出す搬送媒体の経路231、232を第1の
サイクル装置の吸収器伝熱管30とポンプ251を介し
て接続し、かつ第2のサイクル装置の凝縮熱を加熱源と
して取出す搬送媒体の経路221、222を第2のサイ
クル装置の凝縮器伝熱管31とポンプ250を介して接
続し、空調機系統にて加熱源として利用できるよう搬送
媒体の加熱経路を構成する。
FIG. 4 shows another embodiment of the present invention. FIG.
FIG. 1 is a diagram showing a basic configuration of a desiccant air conditioner according to the present invention, in which an absorption heat pump includes a first evaporator 3, a first absorber 1, a first regenerator 2, and a first regenerator 2. A first cycle device for performing an absorption refrigeration cycle using the condenser 4 and the first heat exchanger 5 for absorbing solution as constituent devices, a second evaporator 13, a second absorber 11, and a second regeneration. A second absorption refrigeration cycle that operates at a lower temperature than the absorption refrigeration cycle of the first cycle device is performed by using the vessel 12, the second condenser 14, and the second heat exchanger 15 of the absorption solution as constituent devices. A heat exchanger 21 between the first evaporator 3 of the first cycle device and the second absorber 11 of the second cycle device; The first condenser 4 and the second condenser of the cycle device
The heat exchange device 20 is formed between the second regenerator 12 of the first cycle device and the transfer medium paths 231 and 232 that take out the heat absorbed by the first cycle device as a heat source. The transfer medium paths 221 and 222 which are connected to the absorber heat transfer tube 30 via the pump 251 and take out the condensation heat of the second cycle device as a heat source are connected to the condenser heat transfer tube 31 and the pump 250 of the second cycle device. And a heating path of the transport medium is configured to be used as a heating source in the air conditioner system.

【0041】図4のデシカント空調装置の空調機の部分
は以下に示すよう構成されている。空調空間101は処
理空気の送風機102の吸い込み口と経路107を介し
て接続し、送風機102の吐出口はデシカントロータ1
03と経路108を介して接続し、デシカントロータ1
03の処理空気の出口は再生空気と熱交換関係にある顕
熱熱交換器104と経路109を介して接続し、顕熱熱
交換器104の処理空気の出口は冷水熱交換器115と
経路110を介して接続し、冷却器115の処理空気の
出口は加湿器105と経路119を介して接続し、加湿
器105の処理空気の出口は空調空間101と経路11
1を介して接続して処理空気のサイクルを形成する。
The air conditioner of the desiccant air conditioner of FIG. 4 is configured as follows. The air-conditioned space 101 is connected to a suction port of a blower 102 for processing air via a path 107, and a discharge port of the blower 102 is connected to the desiccant rotor 1.
03 via the path 108 and the desiccant rotor 1
03 is connected to the sensible heat exchanger 104, which has a heat exchange relationship with the regenerated air, via a path 109, and the processing air outlet of the sensible heat exchanger 104 is connected to the chilled water heat exchanger 115 and the path 110. The outlet of the processing air of the cooler 115 is connected to the humidifier 105 via the path 119, and the outlet of the processing air of the humidifier 105 is connected to the air-conditioned space 101 and the path 11
1 to form a cycle of process air.

【0042】一方、再生用の空気経路は、外気を再生空
気用の送風機130の吸い込み口と経路124を介して
接続し、送風機130の吐出口は処理空気と熱交換関係
にある顕熱熱交換器104と接続し、顕熱熱交換器10
4の再生空気の出口は別の顕熱熱交換器121の低温側
入口と経路125を介して接続し、顕熱熱交換器121
の低温側出口は第1の加熱器220と経路126を介し
て接続し、第1の加熱器220の出口は第2の加熱器2
30と経路252を介して接続し、第2の加熱器230
の再生空気の出口はデシカントロータ103の再生空気
入口と経路127を介して接続し、デシカントロータ1
03の再生空気の出口は顕熱熱交換器121の高温側入
口と経路128を介して接続し、顕熱熱交換器121の
高温側出口は外部空間と経路129を介して接続して再
生空気を外部から取り入れて、外部に排気するサイクル
を形成する。
On the other hand, the regeneration air path connects the outside air to the suction port of the regeneration air blower 130 through the path 124, and the discharge port of the blower 130 has a sensible heat exchange heat exchange relation with the processing air. Sensible heat exchanger 10
4 is connected to the low-temperature side inlet of another sensible heat exchanger 121 via a path 125, and the sensible heat exchanger 121
Is connected to the first heater 220 via the path 126, and the outlet of the first heater 220 is connected to the second heater 2.
30 via a path 252 and a second heater 230
The outlet of the regeneration air is connected to the regeneration air inlet of the desiccant rotor 103 via a path 127, and the desiccant rotor 1
03 is connected to the high-temperature side inlet of the sensible heat exchanger 121 via the path 128, and the high-temperature side outlet of the sensible heat exchanger 121 is connected to the external space via the path 129 to generate the regenerated air. From outside to form a cycle to exhaust to the outside.

【0043】前記第1の加熱器220の温水入口は経路
221を介して吸収ヒートポンプの温水経路の第2のサ
イクル装置の第2の凝縮器14の出口に接続し、第1の
加熱器220の温水出口は経路222および温水ポンプ
250を介して吸収ヒートポンプの温水経路の第2のサ
イクル装置の第2の凝縮器14の入口に接続する。また
前記第2の加熱器230の温水入口は経路231を介し
て吸収ヒートポンプの温水経路の第1のサイクル装置の
第1の吸収器1の出口に接続し、第2の加熱器230の
温水出口は経路232および温水ポンプ251を介して
吸収ヒートポンプの温水経路の第1のサイクル装置の吸
収器1の入口に接続する。また前記冷却器115の冷水
入口は経路117を介して吸収ヒートポンプの冷水経路
の第2のサイクル装置の第2の蒸発器13の出口に接続
し、冷水熱交換器115の冷水出口は経路118および
ポンプ160を介して吸収ヒートポンプの冷水経路の第
2のサイクル装置の第2の蒸発器13の入口に接続す
る。なお図中、丸で囲ったアルファベットK〜Vは、図
3と対応する空気の状態を示す記号であり、SAは給気
を、RAは還気を、OAは外気を、EXは排気をそれぞ
れ表わす。
The hot water inlet of the first heater 220 is connected via a path 221 to the outlet of the second condenser 14 of the second cycle device in the hot water path of the absorption heat pump. The hot water outlet is connected via a path 222 and a hot water pump 250 to the inlet of the second condenser 14 of the second cycle device in the hot water path of the absorption heat pump. The hot water inlet of the second heater 230 is connected to the outlet of the first absorber 1 of the first cycle device in the hot water path of the absorption heat pump via the path 231, and the hot water outlet of the second heater 230 Is connected to the inlet of the absorber 1 of the first cycle device in the hot water path of the absorption heat pump via the path 232 and the hot water pump 251. The chilled water inlet of the cooler 115 is connected to the outlet of the second evaporator 13 of the second cycle device in the chilled water path of the absorption heat pump via the path 117, and the chilled water outlet of the chilled water heat exchanger 115 is connected to the path 118 and the path. The pump 160 is connected to the inlet of the second evaporator 13 of the second cycle device in the chilled water path of the absorption heat pump. In the figure, circled alphabets K to V are symbols indicating the state of air corresponding to FIG. 3, where SA is supply air, RA is return air, OA is outside air, and EX is exhaust air. Express.

【0044】上述のように構成されたデシカント空調装
置の吸収ヒートポンプ部分の吸収サイクルを次に説明す
る。第1のサイクル装置の吸収溶液は第1の再生器2で
外部の熱源(図示せず)から伝熱管34を介して加熱さ
れ、冷媒蒸気を発生し、濃縮されたのち第1の熱交換器
5を経て第1の吸収器1に至る。第1の吸収器1では吸
収溶液は第1の蒸発器3で蒸発した冷媒を吸収し、希釈
された後ポンプ6の作用によって再び第1の熱交換器5
を経て第1の再生器2に戻る。第1の吸収器1では吸収
の際発生する吸収熱を利用するため、温水などの熱媒体
と伝熱管30によって熱交換される。第1の再生器2で
発生した冷媒蒸気は、第1の凝縮器4に流入し凝縮す
る。第1の凝縮器4では凝縮の際発生する凝縮熱が熱交
換装置20によって第2のサイクル装置の第2の再生器
12に伝達される。凝縮した冷媒は第1の蒸発器3に送
られ蒸発する。第1の蒸発器3では蒸発の際吸熱する蒸
発熱が熱交換装置21によって第2のサイクル装置の第
2の吸収器11から伝達される。
Next, the absorption cycle of the absorption heat pump portion of the desiccant air conditioner configured as described above will be described. The absorption solution of the first cycle device is heated by an external heat source (not shown) in the first regenerator 2 via the heat transfer tube 34 to generate a refrigerant vapor, and after being concentrated, the first heat exchanger 2 5 to the first absorber 1. In the first absorber 1, the absorbing solution absorbs the refrigerant evaporated in the first evaporator 3, and after being diluted, the first heat exchanger 5 is again actuated by the action of the pump 6.
And returns to the first regenerator 2. In the first absorber 1, heat is exchanged with a heat medium such as hot water by the heat transfer tube 30 in order to use the absorbed heat generated at the time of absorption. The refrigerant vapor generated in the first regenerator 2 flows into the first condenser 4 and condenses. In the first condenser 4, the heat of condensation generated during the condensation is transferred by the heat exchange device 20 to the second regenerator 12 of the second cycle device. The condensed refrigerant is sent to the first evaporator 3 and evaporates. In the first evaporator 3, the evaporative heat absorbed during the evaporation is transmitted from the second absorber 11 of the second cycle device by the heat exchange device 21.

【0045】第2のサイクル装置の吸収溶液は第2の再
生器12で第1のサイクル装置の凝縮熱で熱交換装置2
0を介して加熱され、冷媒蒸気を発生し、濃縮されたの
ち第2の熱交換器15を経て第2の吸収器11に至る。
第2の吸収器11では吸収溶液は第2の蒸発器13で蒸
発した冷媒を吸収し、希釈された後ポンプ16の作用に
よって再び第2の熱交換器15を経て第2の再生器12
に戻る。第2の吸収器11では吸収の際発生する吸収熱
は熱交換装置21によって第1のサイクル装置の蒸発器
3に伝達される。第2の再生器12で発生した冷媒蒸気
は、第2の凝縮器14に流入し凝縮する。第2の凝縮器
14では凝縮の際発生する凝縮熱を利用するため、熱媒
体と伝熱管31によって熱交換される。また前記第1の
サイクル装置の吸収器伝熱管30から取り出した熱媒体
に連結した第2の加熱器は、第2のサイクル装置の凝縮
器伝熱管31から取り出した熱媒体に連結した第1の加
熱器よりも再生空気が高温の状態で接するため、第1の
サイクル装置の吸収温度は第2のサイクル装置の凝縮温
度よりも高くなる。凝縮した冷媒は第2の蒸発器13に
送られ蒸発する。第2の蒸発器13では蒸発の際吸熱す
る蒸発熱を利用するため、冷水等の熱媒体と伝熱管33
によって熱交換される。
The absorption solution of the second cycle device is supplied to the second regenerator 12 by the heat of condensation of the first cycle device.
0, generates refrigerant vapor, is concentrated, and then reaches the second absorber 11 via the second heat exchanger 15.
In the second absorber 11, the absorbing solution absorbs the refrigerant evaporated in the second evaporator 13, and after being diluted, passes through the second heat exchanger 15 again by the action of the pump 16 to become the second regenerator 12.
Return to In the second absorber 11, the heat of absorption generated at the time of absorption is transferred by the heat exchange device 21 to the evaporator 3 of the first cycle device. The refrigerant vapor generated in the second regenerator 12 flows into the second condenser 14 and condenses. In the second condenser 14, heat is exchanged between the heat medium and the heat transfer tube 31 in order to utilize the heat of condensation generated during the condensation. The second heater connected to the heat medium taken out of the absorber heat transfer tube 30 of the first cycle device is connected to the first heat medium taken out of the condenser heat transfer tube 31 of the second cycle device. Since the regeneration air comes in contact with the heater at a higher temperature than the heater, the absorption temperature of the first cycle device becomes higher than the condensation temperature of the second cycle device. The condensed refrigerant is sent to the second evaporator 13 and evaporates. The second evaporator 13 uses a heat medium such as cold water and a heat transfer tube 33 because the second heat evaporator 13 uses the heat of evaporation absorbed during the evaporation.
Heat exchanged.

【0046】次に前述のように構成された吸収ヒートポ
ンプをデシカント空調に組合せた際の動作を説明する。
図3は図4においても適用できる実施例の空気調和の部
分の作動状態を示すモリエル線図である。
Next, the operation when the absorption heat pump configured as described above is combined with the desiccant air conditioning will be described.
FIG. 3 is a Mollier diagram showing an operation state of an air conditioning part of the embodiment applicable to FIG.

【0047】本実施例のデシカント空調機部分の作用に
ついて説明すると、図4において、空調される室内10
1の空気(処理空気)は経路107を経て送風機102
に吸引され昇圧されて経路108をへてデシカントロー
タ103に送られデシカントロータの吸湿剤で空気中の
水分を吸着され絶対湿度が低下する。また吸着の際、吸
着熱によって空気は温度上昇する。湿度が下がり温度上
昇した空気は経路109を経て顕熱熱交換器104に送
られ外気(再生空気)と熱交換して冷却される。冷却さ
れた空気は経路110を経て冷却器115に送られさら
に冷却される。冷却された処理空気は加湿器105に送
られ水噴射または気化式加湿によって等エンタルピ過程
で温度低下し経路111を経て空調空間101に戻され
る。
The operation of the desiccant air conditioner of this embodiment will be described.
The air (process air) 1 passes through the path 107 and
Then, the pressure is increased and the pressure is sent to the desiccant rotor 103 via the path 108. The moisture in the air is adsorbed by the desiccant rotor's moisture absorbent, and the absolute humidity is reduced. At the time of adsorption, the temperature of the air rises due to the heat of adsorption. The air whose humidity has decreased and its temperature has increased is sent to the sensible heat exchanger 104 via the path 109 and cooled by exchanging heat with outside air (regenerated air). The cooled air is sent to a cooler 115 via a path 110 and further cooled. The cooled processing air is sent to the humidifier 105, and its temperature is lowered in the isenthalpy process by water injection or vaporization humidification, and is returned to the air-conditioned space 101 via the path 111.

【0048】デシカントの再生は次のように行われる。
外気(OA)は経路124を経て送風機130に吸引さ
れ昇圧されて顕熱熱交換器104に送られ、処理空気を
冷却して自らは温度上昇し経路125を経て次の顕熱熱
交換器121に流入し、再生後の高温の空気と熱交換し
て温度上昇する。さらに顕熱熱交換器121を出た再生
空気は経路126を経て第1の加熱器220に流入し吸
収ヒートポンプの第2のサイクル装置の凝縮熱を加熱源
とする温水によって加熱され60℃位まで温度上昇し、
次に経路252を経て第2の加熱器230に流入し第1
のサイクル装置の吸収熱を加熱源とする温水によって更
に加熱され75℃位まで温度上昇して相対湿度が低下す
る。この過程は再生空気の顕熱変化であり、空気の比熱
は温水に比べて著しく低く温度変化が大きいため、第1
の加熱器を第2の加熱器よりも低温で作動させても熱交
換は効率良く行われる。従って吸収ヒートポンプの第2
のサイクル装置の凝縮温度は、第1のサイクル装置の吸
収温度よりも低くすることができ、そのようにすること
によって第1のサイクル装置の第1の再生器2の圧力と
温度を低くすることができるため、第1のサイクル装置
の第1の再生器2への加熱量が軽減される。
The desiccant is reproduced as follows.
The outside air (OA) is sucked into the blower 130 via the path 124 and is boosted and sent to the sensible heat exchanger 104, where it cools the processing air to increase its temperature, and passes through the path 125 to the next sensible heat exchanger 121. And heat exchange with hot air after regeneration to increase the temperature. Further, the regenerated air exiting from the sensible heat exchanger 121 flows into the first heater 220 via the path 126, and is heated by hot water using the heat of condensation of the second cycle device of the absorption heat pump as a heating source to about 60 ° C. The temperature rises,
Next, it flows into the second heater 230 via the path 252 and
Is further heated by warm water using the heat of absorption of the cycle device as a heating source, the temperature rises to about 75 ° C., and the relative humidity decreases. This process is a change in the sensible heat of the regenerated air. The specific heat of the air is significantly lower than that of the hot water and the temperature change is large.
Even if the heater of (1) is operated at a lower temperature than the second heater, the heat exchange is performed efficiently. Therefore, the second absorption heat pump
The condensing temperature of the first cycle device can be lower than the absorption temperature of the first cycle device, thereby lowering the pressure and temperature of the first regenerator 2 of the first cycle device. Therefore, the amount of heating of the first cycle device to the first regenerator 2 is reduced.

【0049】しかして本実施例においても図1の実施例
と同様の効果が得られる。温水熱交換器120を出て相
対湿度が低下した再生空気はデシカントロータ103を
通過してデシカントロータの水分を除去し再生作用をす
る。デシカントロータ103を通過した再生空気は経路
128を経て顕熱熱交換器121に流入し、再生前の再
生空気の余熱を行ったのち経路129を経て排気として
外部に捨てられる。
In this embodiment, the same effects as in the embodiment of FIG. 1 can be obtained. The regenerated air having a reduced relative humidity after exiting the hot water heat exchanger 120 passes through the desiccant rotor 103 to remove moisture from the desiccant rotor and perform a regeneration operation. The regenerated air that has passed through the desiccant rotor 103 flows into the sensible heat exchanger 121 via a path 128, performs the residual heat of the regenerated air before regeneration, and is then discarded as exhaust through a path 129.

【0050】これまでの過程は図1の実施例と同じく図
3をモリエル線図を用いて説明することができるので、
本実施例の省エネルギ効果に関する説明は省略する。
The process so far can be described with reference to the Mollier diagram in FIG. 3 as in the embodiment of FIG.
A description of the energy saving effect of this embodiment is omitted.

【0051】このようにして、本実施例においても第1
のサイクル装置の再生器に加えられる駆動入力熱量に第
2のサイクル装置の蒸発熱を加えた熱量に相当する熱量
の熱を、第1のサイクル装置の凝縮熱および第2のサイ
クル装置の吸収熱の形でデシカント再生用の60〜80
℃程度の中間温度の加熱源として利用することができ、
さらに第2のサイクル装置の蒸発器の蒸発熱を、デシカ
ント空調サイクル中に行われる空気を冷却する過程に1
5℃程度の冷却熱源として利用することができるため、
デシカント再生のために必要な1次エネルギが節約でき
るとともに、冷房効果が増す効果が得られる。
As described above, also in the present embodiment, the first
Heat of a heat quantity corresponding to the sum of the drive input heat quantity applied to the regenerator of the first cycle apparatus and the heat of evaporation of the second cycle apparatus, the heat of condensation of the first cycle apparatus and the heat of absorption of the second cycle apparatus 60-80 for desiccant regeneration in the form of
Can be used as a heating source at an intermediate temperature of about ℃,
Further, the heat of evaporation of the evaporator of the second cycle device is used for cooling the air performed during the desiccant air conditioning cycle.
Because it can be used as a cooling heat source of about 5 ° C,
The primary energy required for desiccant regeneration can be saved, and the effect of increasing the cooling effect can be obtained.

【0052】[0052]

【発明の効果】以上説明したように本発明によれば、デ
シカント空調の処理空気の熱を吸収ヒートポンプのヒー
トポンプ作用により汲み上げて、再生空気の加熱に用い
ることができるため、デシカントの再生のため外部から
加える必要がある熱量が大幅に軽減され、動作係数を著
しく向上することができる。したがって本発明によれ
ば、冷房のための熱源エネルギの消費量が軽減され、経
済性にすぐれたデシカント空調装置を提供することがで
き、従来からの2重効用吸収冷凍機を用いて空気を冷却
除湿する空調システムの動作係数すなわちエネルギ効率
を上回る空調システムを提供することができる。
As described above, according to the present invention, the heat of the processing air of the desiccant air conditioning can be pumped up by the heat pump function of the absorption heat pump and used for heating the regeneration air. The amount of heat that needs to be added from is greatly reduced, and the operating coefficient can be significantly improved. Therefore, according to the present invention, it is possible to provide a desiccant air-conditioning apparatus that reduces the consumption of heat source energy for cooling and is excellent in economy, and cools air using a conventional double effect absorption refrigerator. It is possible to provide an air conditioning system that exceeds the operating coefficient of the air conditioning system to be dehumidified, that is, energy efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るデシカント空調装置の一実施例の
基本構成を示す説明図。
FIG. 1 is an explanatory diagram showing a basic configuration of an embodiment of a desiccant air conditioner according to the present invention.

【図2】図1の実施例に係る吸収ヒートポンプの一実施
例の吸収溶液サイクル装置をデューリング線図で示す説
明図。
FIG. 2 is an explanatory diagram showing, as a During diagram, an absorption solution cycle device of one embodiment of the absorption heat pump according to the embodiment of FIG.

【図3】図1の実施例に係る空気のデシカント空調サイ
クルをモリエル線図で示す説明図。
FIG. 3 is an explanatory diagram showing a desiccant air-conditioning cycle of air according to the embodiment of FIG. 1 in a Mollier diagram.

【図4】本発明に係るデシカント空調装置の別の実施例
の基本構成を示す説明図。
FIG. 4 is an explanatory diagram showing a basic configuration of another embodiment of the desiccant air conditioner according to the present invention.

【図5】従来のデシカント空調の基本構成を示す説明
図。
FIG. 5 is an explanatory diagram showing a basic configuration of a conventional desiccant air conditioner.

【図6】従来のデシカント空調の空気のデシカント空調
サイクルをモリエル線図で示す説明図。
FIG. 6 is an explanatory diagram showing a Mollier diagram of a conventional desiccant air conditioning cycle for desiccant air conditioning.

【符号の説明】[Explanation of symbols]

1・・・第1の吸収器 2・・・第1の再生器 3・・・第1の蒸発器 4・・・第1の凝縮器 5・・・第1の熱交換器 6・・・溶液ポンプ 7・・・絞り機構 11・・・吸収器 12・・・・・・第2の再生器 13・・・・・・第2の蒸発器 14・・・第2の凝縮器 15・・・第2の熱交換器 16・・・溶液ポンプ 17・・・絞り機構 20・・・伝熱管(熱交換装置) 21・・・伝熱管(熱交換装置) 30・・・伝熱管(熱交換機構) 31・・・伝熱管(熱交換機構) 32・・・熱媒体(温水)経路 33・・・伝熱管(熱交換機構) 34・・・伝熱管(熱交換機構) 101・・・空調空間 102・・・送風機 103・・・デシカントロータ 104・・・顕熱熱交換器 105・・・加湿器 106・・・給水管 107・・・空気経路 108・・・空気経路 109・・・空気経路 110・・・空気経路 111・・・空気経路 115・・・冷却器(冷水熱交換器) 117・・・冷水経路(冷却経路) 118・・・冷水経路 119・・・空気経路 120・・・加熱器(温水熱交換器) 121・・・顕熱熱交換器 122・・・温水経路(加熱経路) 123・・・温水経路 124・・・空気経路 125・・・空気経路 126・・・空気経路 127・・・空気経路 128・・・空気経路 129・・・空気経路 130・・・送風機 150・・・温水ポンプ 160・・・冷水ポンプ 220・・・第1の加熱器(温水熱交換器) 221・・・温水経路 222・・・温水経路 230・・・第2の加熱器(温水熱交換器) 231・・・温水経路 232・・・温水経路 250・・・温水ポンプ 251・・・温水ポンプ 252・・・空気経路 a・・・・・・吸収冷凍サイクルの状態点 b・・・吸収冷凍サイクルの状態点 c・・・吸収冷凍サイクルの状態点 d・・・吸収冷凍サイクルの状態点 e・・・吸収冷凍サイクルの状態点 f・・・吸収冷凍サイクルの状態点 A・・・吸収冷凍サイクルの状態点 B・・・吸収冷凍サイクルの状態点 C・・・吸収冷凍サイクルの状態点 D・・・吸収冷凍サイクルの状態点 E・・・吸収冷凍サイクルの状態点 F・・・吸収冷凍サイクルの状態点 K・・・デシカント空調の空気の状態点 L・・・デシカント空調の空気の状態点 M・・・デシカント空調の空気の状態点 N・・・デシカント空調の空気の状態点 P・・・デシカント空調の空気の状態点 Q・・・デシカント空調の空気の状態点 R・・・デシカント空調の空気の状態点 S・・・デシカント空調の空気の状態点 T・・・デシカント空調の空気の状態点 U・・・デシカント空調の空気の状態点 V・・・デシカント空調の空気の状態点 X・・・デシカント空調の空気の状態点 SA・・・給気 RA・・・還気 EX・・・排気 OA・・・外気 ΔQ・・・冷房効果 Δq・・・吸収ヒートポンプの冷凍効果 ΔH・・・温水による加熱量 DESCRIPTION OF SYMBOLS 1 ... 1st absorber 2 ... 1st regenerator 3 ... 1st evaporator 4 ... 1st condenser 5 ... 1st heat exchanger 6 ... Solution pump 7 Throttling mechanism 11 Absorber 12 Second regenerator 13 Second evaporator 14 Second condenser 15 Second heat exchanger 16 Solution pump 17 Throttling mechanism 20 Heat transfer tube (heat exchange device) 21 Heat transfer tube (heat exchange device) 30 Heat transfer tube (heat exchange) 31) Heat transfer tube (heat exchange mechanism) 32 ... Heat medium (hot water) path 33 ... Heat transfer tube (heat exchange mechanism) 34 ... Heat transfer tube (heat exchange mechanism) 101 ... Air conditioning Space 102: Blower 103: Desiccant rotor 104: Sensible heat exchanger 105: Humidifier 106: Water supply pipe 107: Air path 1 08 ... air path 109 ... air path 110 ... air path 111 ... air path 115 ... cooler (cold water heat exchanger) 117 ... cold water path (cooling path) 118 ... Cold water path 119 Air path 120 Heater (hot water heat exchanger) 121 Sensible heat exchanger 122 Hot water path (heating path) 123 Hot water path 124 Air Path 125 ・ ・ ・ Air path 126 ・ ・ ・ Air path 127 ・ ・ ・ Air path 128 ・ ・ ・ Air path 129 ・ ・ ・ Air path 130 ・ ・ ・ Blower 150 ・ ・ ・ Hot water pump 160 ・ ・ ・ Cold water pump 220 ・..First heater (hot water heat exchanger) 221 hot water path 222 hot water path 230 second heater (hot water heat exchanger) 231 hot water path 232. Hot water path 250 ・ ・ ・Water pump 251: Hot water pump 252: Air path a: State point of absorption refrigeration cycle b: State point of absorption refrigeration cycle c: State point of absorption refrigeration cycle d ...・ State point of absorption refrigeration cycle e ・ ・ ・ State point of absorption refrigeration cycle f ・ ・ ・ State point of absorption refrigeration cycle A ・ ・ ・ State point of absorption refrigeration cycle B ・ ・ ・ State point of absorption refrigeration cycle C ・ ・・ State point of absorption refrigeration cycle D ・ ・ ・ State point of absorption refrigeration cycle E ・ ・ ・ State point of absorption refrigeration cycle F ・ ・ ・ State point of absorption refrigeration cycle K ・ ・ ・ State point of air of desiccant air conditioning L ・..Air state point of desiccant air conditioning M: Air state point of desiccant air conditioning N: Air state point of desiccant air conditioning P: Air state point of desiccant air conditioning Q: Air of desiccant air conditioning Shape State point R: State point of air of desiccant air conditioning S: State point of air of desiccant air conditioning T: State point of air of desiccant air conditioning U: State point of air of desiccant air conditioning V ... Air state point of desiccant air conditioning X: Air state point of desiccant air conditioning SA: Supply air RA: Return air EX: Exhaust OA: Outside air ΔQ: Cooling effect Δq: Refrigeration effect of absorption heat pump ΔH ・ ・ ・ Amount of heating by hot water

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 第1の蒸発器と第1の吸収器と第1の再
生器と第1の凝縮器とを備えて吸収冷凍サイクルを行う
第1のサイクル装置と、第2の蒸発器と第2の吸収器と
第2の再生器と第2の凝縮器とを備えて前記第1のサイ
クル装置の吸収冷凍サイクルより低温で作動する吸収冷
凍サイクルを行う第2のサイクル装置とを含んで構成さ
れる吸収ヒートポンプを熱源とするデシカント空調装置
において;空調空間に供給する処理空気の水分を吸着す
るデシカントであって、前記第1の吸収器の吸収熱およ
び前記第2の凝縮器の凝縮熱を加熱源として再生される
デシカントとを備え;前記第2の吸収器の吸収熱を前記
第1の蒸発器の蒸発熱として使用するように構成され;
前記第1の凝縮器の凝縮熱を前記第2の再生器での加熱
に使用するように構成され;前記第2の蒸発器の蒸発熱
で前記処理空気を冷却するように構成されたことを特徴
とする;デシカント空調装置。
1. A first cycle device for performing an absorption refrigeration cycle including a first evaporator, a first absorber, a first regenerator, and a first condenser; and a second evaporator. A second cycle device for performing an absorption refrigeration cycle operating at a lower temperature than the absorption refrigeration cycle of the first cycle device, comprising a second absorber, a second regenerator, and a second condenser. A desiccant air conditioner using the absorption heat pump configured as a heat source; a desiccant that adsorbs moisture of the processing air supplied to the air-conditioned space, the heat of absorption of the first absorber and the heat of condensation of the second condenser. A desiccant regenerated as a heat source; and configured to use the heat of absorption of the second absorber as the heat of evaporation of the first evaporator;
Being configured to use the heat of condensation of the first condenser for heating in the second regenerator; and configured to cool the process air with the heat of evaporation of the second evaporator. Features; Desiccant air conditioner.
【請求項2】 前記デシカントを再生するために前記第
1の吸収器の吸収熱および前記第2の凝縮器の凝縮熱を
搬送する媒体を流す加熱経路を備え、前記加熱経路は、
前記第1の吸収器の吸収溶液温度が前記第2の凝縮器の
冷媒凝縮温度より高くなるように配設された、請求項1
に記載のデシカント空調装置。
2. A heating path for flowing a medium for conveying heat of absorption of the first absorber and heat of condensation of the second condenser for regenerating the desiccant, wherein the heating path comprises:
2. The device according to claim 1, wherein the absorption solution temperature of the first absorber is higher than the refrigerant condensation temperature of the second condenser. 3.
The desiccant air conditioner according to the above.
【請求項3】 前記デシカントが前記処理空気と再生空
気とに選択的に接することができるように構成されたデ
シカントロータと;前記処理空気と前記再生空気とを熱
交換媒体とする顕熱熱交換器とを備え;前記デシカント
に接する前記再生空気を前記顕熱熱交換器から前記デシ
カントロータに到る途中で前記加熱源で加熱し、前記空
調空間に供給する前記処理空気を前記顕熱熱交換器から
前記空調空間に到る途中で前記冷却を行うように構成さ
れた;請求項1または請求項2に記載のデシカント空調
装置。
Sensible heat exchange to the process air and the regeneration air and the heat exchange medium; wherein the desiccant is the process air and the regeneration air and the desiccant rotor configured to and to be able to contact the selective The regeneration air in contact with the desiccant is heated by the heating source on the way from the sensible heat exchanger to the desiccant rotor, and the processing air supplied to the air-conditioned space is subjected to the sensible heat exchange. 3. The desiccant air conditioner according to claim 1, wherein the cooling is performed on the way from the container to the air conditioning space. 4.
JP33321995A 1995-12-21 1995-12-21 Desiccant air conditioner Expired - Fee Related JP2972834B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP33321995A JP2972834B2 (en) 1995-12-21 1995-12-21 Desiccant air conditioner
US08/769,253 US5761925A (en) 1995-12-21 1996-12-18 Absorption heat pump and desiccant assisted air conditioner
CNB961139048A CN1148539C (en) 1995-12-21 1996-12-23 Absorption heat pump and desiccant assisted air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33321995A JP2972834B2 (en) 1995-12-21 1995-12-21 Desiccant air conditioner

Publications (2)

Publication Number Publication Date
JPH09178290A JPH09178290A (en) 1997-07-11
JP2972834B2 true JP2972834B2 (en) 1999-11-08

Family

ID=18263654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33321995A Expired - Fee Related JP2972834B2 (en) 1995-12-21 1995-12-21 Desiccant air conditioner

Country Status (1)

Country Link
JP (1) JP2972834B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999014538A1 (en) * 1997-09-17 1999-03-25 Ebara Corporation Air conditioning system

Also Published As

Publication number Publication date
JPH09178290A (en) 1997-07-11

Similar Documents

Publication Publication Date Title
US5943874A (en) Desiccant assisted air conditioning apparatus
US5758509A (en) Absorption heat pump and desiccant assisted air conditioning apparatus
US5761923A (en) Air conditioning system
US5761925A (en) Absorption heat pump and desiccant assisted air conditioner
US7428821B2 (en) Dehumidifying system
EP1304529A2 (en) Air conditioner
JP2012026700A (en) Desiccant air-conditioning system
JP3585308B2 (en) Desiccant air conditioner
JPH11132593A (en) Air conditioner
JP3434109B2 (en) Desiccant air conditioner
JPH1026369A (en) Air conditioning system and control method
JP2972834B2 (en) Desiccant air conditioner
WO1999014538A1 (en) Air conditioning system
JP2971842B2 (en) Absorption heat pump and air conditioning system using the same as heat source
JP3743581B2 (en) Heat pump and operation method thereof
JP3480772B2 (en) Absorption heat pump
JP3434110B2 (en) Desiccant air conditioner
JPH10122689A (en) Absorption heat pump and air conditioning system using the same
JP2971841B2 (en) Air conditioning system
JPH09178287A (en) Absorption heat pump
JPH09318126A (en) Air-conditioning system
JPH1026434A (en) Air conditioning system
JPH1026433A (en) Air conditioning system
JPH09178286A (en) Absorption heat pump
JPH09196496A (en) Air-conditioning system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990728

LAPS Cancellation because of no payment of annual fees