JP3743581B2 - Heat pump and operation method thereof - Google Patents

Heat pump and operation method thereof Download PDF

Info

Publication number
JP3743581B2
JP3743581B2 JP00822296A JP822296A JP3743581B2 JP 3743581 B2 JP3743581 B2 JP 3743581B2 JP 00822296 A JP00822296 A JP 00822296A JP 822296 A JP822296 A JP 822296A JP 3743581 B2 JP3743581 B2 JP 3743581B2
Authority
JP
Japan
Prior art keywords
refrigerant
path
regenerator
heat
absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00822296A
Other languages
Japanese (ja)
Other versions
JPH09196502A (en
Inventor
田 健 作 前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP00822296A priority Critical patent/JP3743581B2/en
Priority to US08/783,042 priority patent/US5791157A/en
Priority to CNB971004250A priority patent/CN1172127C/en
Priority to CNA2004100301908A priority patent/CN1536280A/en
Publication of JPH09196502A publication Critical patent/JPH09196502A/en
Priority to US09/057,588 priority patent/US5966955A/en
Application granted granted Critical
Publication of JP3743581B2 publication Critical patent/JP3743581B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1417Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with liquid hygroscopic desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air
    • F24F6/14Air-humidification, e.g. cooling by humidification by forming water dispersions in the air using nozzles
    • F24F2006/146Air-humidification, e.g. cooling by humidification by forming water dispersions in the air using nozzles using pressurised water for spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1016Rotary wheel combined with another type of cooling principle, e.g. compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Air Conditioning (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ヒートポンプおよびその運転方法に係り、特にデシカント式空調システム用の熱源機として使用するヒートポンプに関する。
【0002】
【従来の技術】
デシカント式空調装置は米国特許第2,700,537号明細書に記載されている。この公知例に示されたデシカント式空調装置では、デシカント(吸湿剤)の再生のための熱源として、100〜150℃程度の温度の熱源を必要とし、もっぱら電気ヒータやボイラが熱源として用いられていた。最近になってデシカントの改良により、60〜80℃の温度でもデシカントの再生ができるデシカント空調装置が開発され、温度の低い熱源で運転が可能になって、デシカントの再生および処理空気の冷却用に電動式の蒸気圧縮式ヒートポンプまたは冷凍機を組合せたデシカント式空調装置が開発されるようになった。
【0003】
図9は公知の電動式の蒸気圧縮式ヒートポンプまたは冷凍機を組合せたデシカント式空調装置の例で、図10は図9の例の空調機の運転状態を示したモリエル線図である。図9の図中、符号101は空調空間、102は送風機、103は処理空気および再生空気と選択的に接することができるデシカント材を内包したデシカントロータ、104は顕熱熱交換器、105は加湿器、106は加湿器の給水配管、107〜113は処理空気の空気通路、140は再生空気の送風機、220は凝縮器で冷媒と再生空気の熱交換器(加熱器)、121は顕熱熱交換器、124〜129は再生空気の空気通路、201〜204は冷媒経路、240は蒸発器で冷媒と処理空気の熱交換器(冷却器)、250は膨張弁、260は圧縮機である。また図中、丸で囲ったアルファベットK〜Vは、図10と対応する空気の状態を示す記号であり、SAは給気を、RAは還気を、OAは外気を、EXは排気を表わす。
【0004】
この従来例の作用について説明すると、図9において、空調される室内101の空気(処理空気)は経路107を経て送風機102に吸引され昇圧されて経路108をへてデシカントロータ103に送られデシカントロータの吸湿剤で空気中の水分を吸着され絶対湿度が低下する。また吸着の際、吸着熱によって空気は温度上昇する。湿度が下がり温度上昇した空気は経路109を経て顕熱熱交換器104に送られ外気(再生空気)と熱交換して冷却される。冷却された空気は経路110を経て冷却器240に送られ冷凍機の作用によって冷却され、経路112を経て加湿器105に送られ水噴射または気化式加湿によって等エンタルピ過程で温度低下し経路113を経て空調空間101に戻される。
【0005】
デシカントはこの過程で水分を吸着したため、再生が必要で、この従来例では外気を用いて次のように行われる。外気(OA)は経路124を経て送風機140に吸引され昇圧されて顕熱熱交換器104に送られ、処理空気を冷却して自らは温度上昇し経路125を経て次の顕熱熱交換器121に流入し、再生後の高温の空気と熱交換して温度上昇する。さらに顕熱熱交換器121を出た再生空気は経路126を経て加熱器220に流入し冷凍機の凝縮熱によって加熱され60〜80℃まで温度上昇し、相対湿度が低下する。相対湿度が低下した再生空気はデシカントロータ103を通過してデシカントロータの水分を除去する。デシカントロータ103を通過した再生空気は経路128を経て顕熱熱交換器121に流入し、再生前の再生空気の余熱を行ったのち経路129を経て排気として外部に捨てられる。
【0006】
これまでの過程をモリエル線図(図10)を用いて説明すると、図10において、空調される室内101の空気(処理空気:状態K)は経路107を経て送風機102に吸引され昇圧されて経路108をへてデシカントロータ103に送られデシカントロータの吸湿剤で空気中の水分を吸着され絶対湿度が低下するとともに吸着熱によって空気は温度上昇する(状態L)。湿度が下がり温度上昇した空気は経路109を経て顕熱熱交換器104に送られ外気(再生空気)と熱交換して冷却される(状態M)。冷却された空気は経路110を経て冷却器240に送られ冷凍機の作用によって冷却され(状態N)、経路112を経て加湿器105に送られ水噴射または気化式加湿によって等エンタルピ過程で温度低下し(状態P)、経路113を経て空調空間101に戻される。このようにして室内の還気(K)と給気(P)との間にはエンタルピ差ΔQが生じ、これによって空調空間101の冷房が行われる。
【0007】
デシカントの再生は次のように行われる。外気(OA:状態Q)は経路124を経て送風機140に吸引され昇圧されて顕熱熱交換器104に送られ、処理空気を冷却して自らは温度上昇し(R)経路125を経て次の顕熱熱交換器121に流入し、再生後の高温の空気と熱交換して温度上昇する(状態S)。さらに顕熱熱交換器121を出た再生空気は経路126を経て加熱器220に流入しヒートポンプの凝縮熱によって加熱され60〜80℃まで温度上昇し、相対湿度が低下する(状態T)。相対湿度が低下した再生空気はデシカントロータ103を通過してデシカントロータの水分を除去する(状態U)。デシカントロータ103を通過した再生空気は経路128を経て顕熱熱交換器121に流入し、再生前の再生空気の余熱を行って自らは温度低下した(状態V)のち経路129を経て排気として外部に捨てられる。このようにしてデシカントの再生と処理空気の除湿、冷却をくりかえし行うことによって、デシカントによる空調が行われていた。
【0008】
このように構成されたデシカント空調では、組み合わされる蒸気圧縮冷凍サイクルには80℃程度の凝縮温度と10℃程度の蒸発温度が要求される。近年になって蒸気圧縮冷凍サイクルの冷媒に従来のフロン系を使用せず自然環境に対する影響が少ないアンモニア等の自然冷媒を使用することが望まれるとともに、夏期の日中には圧縮機を停止しても冷房が行えるような所謂蓄熱機能が求められるようになったが、冷凍サイクルの冷媒にアンモニアを使用してこのような凝縮温度を達成しようとすると圧力が42kg/cm2 にもなって異常に高くなり、装置が高価になる欠点があり、また蓄熱機能を持たせようとすると、10℃程度の低温と80℃程度の高温の両方の温度の蓄熱槽が必要となり、設備が極めて複雑で高価なものになる欠点があることが判った。
【0009】
そこで発明者は、種々研究の結果、吸収器と再生器と圧縮機を有し、吸収器と再生器との間を循環する吸収媒体の経路および再生器の冷媒蒸気を圧縮機で圧縮して吸収器に移送する冷媒の経路を有するヒートポンプで、前記再生器の冷却作用を外部に取り出す熱媒体と熱交換関係にある蒸発器を設け、さらに前記再生器内の吸収媒体と熱交換関係にある凝縮器を設け、さらに前記圧縮機で圧縮した冷媒蒸気を該凝縮器に導き凝縮した冷媒を貯蔵する冷媒貯蔵空間を設け、さらに再生器で濃縮した吸収媒体を貯蔵する吸収媒体貯蔵空間を設け、さらに前記蒸発器の冷媒空間を前記冷媒貯蔵空間および前記吸収器に接続したヒートポンプに着目し、これを使用することで、これらの問題が解決できる見通しを得たが、さらに吸収媒体を濃縮する運転の際に、ヒートポンプへの外部からの入熱を吸収器を作動させて吸収器の温熱媒体(温水)に排出することで、デシカント再生のために適温な温水が得られるとともに、ヒートポンプの作動圧力を上昇させずに済む効果が得られることを見出した。
【0010】
【発明が解決しようとする課題】
本発明は前述した点に鑑みてなされたもので、冷却作用および加熱作用の両方の作用を吸収媒体の濃度ポテンシャルの形態で貯蔵する運転として、蓄熱運転または蓄熱を保持しつつ冷房を行う運転の際に、吸収器の温熱媒体(温水)を加熱して、デシカント再生のために適温な温水を得るとともに、ヒートポンプの機内圧の上昇を抑制することによって、多機能で、信頼性が高く、かつ安価な蓄熱機能を備えたヒートポンプおよびその運転方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明によれば、吸収器と再生器と圧縮機とを有し、吸収器と再生器との間を循環する吸収媒体の経路および再生器の冷媒蒸気を圧縮機で圧縮して吸収器に移送する冷媒経路を有し、前記再生器の冷却作用を外部に取り出す熱媒体と熱交換関係にある蒸発器を設け、前記再生器内の吸収媒体と熱交換関係にある凝縮器を設け、前記圧縮機で圧縮した冷媒蒸気を該凝縮器に導き凝縮した冷媒を貯蔵する冷媒貯蔵空間を設け、再生器で濃縮した吸収媒体を貯蔵する吸収媒体貯蔵空間を設け、前記蒸発器の冷媒空間を前記冷媒貯蔵空間および前記吸収器に接続したヒートポンプの運転方法において、前記圧縮機を運転して前記再生器の冷媒蒸気を圧縮して前記凝縮器で冷媒を凝縮させる際に、圧縮した一部の冷媒を吸収器に導入し吸収させるようになっている。
【0012】
また本発明によれば、冷媒蒸気を吸収媒体で吸収する吸収器と冷媒蒸気を吸収媒体から分離する再生器と冷媒蒸気を圧縮する圧縮機を有し、該吸収器と該再生器との間を循環する吸収媒体の循環経路および再生器の冷媒蒸気を圧縮機で圧縮して吸収器に移送する冷媒経路を有し、前記再生器の冷却作用を外部に取り出す熱媒体と熱交換関係にある蒸発器を設け、前記再生器内の吸収媒体と熱交換関係にある凝縮器を設け、前記圧縮機で圧縮した冷媒蒸気を該凝縮器に導き凝縮した冷媒を貯蔵する冷媒貯蔵空間を設け該冷媒貯蔵空間を前記蒸発器と接続し、再生器で濃縮した吸収媒体を貯蔵する吸収媒体貯蔵空間を設け該吸収媒体貯蔵空間を前記発生器および吸収媒体の循環経路と接続し、前記蒸発器の冷媒空間を前記冷媒貯蔵空間および前記吸収器に接続したヒートポンプにおいて、前記圧縮機の吐出経路は第1の経路と第2の経路に分岐して構成されており、第1の経路は第1の弁を介して前記凝縮器に接続し、さらに第2の経路は第2の弁を介して前記吸収器に接続しており、前記圧縮機を運転して前記再生器の冷媒蒸気を圧縮しかつ第1の弁を開いて前記凝縮器で冷媒を凝縮させる際に、第2の弁開度を調節して圧縮した一部の冷媒を吸収器に導入し吸収させるようになっている。
【0013】
さらに本発明によれば、冷媒蒸気を吸収媒体で吸収し吸収熱で温熱媒体を加熱する吸収器と再生熱を冷熱媒体から奪って冷媒蒸気を吸収媒体から分離する再生器と冷媒蒸気を圧縮する圧縮機を有し、該吸収器と該再生器との間を循環する吸収媒体の循環経路および再生器の冷媒蒸気を圧縮機で圧縮して吸収器に移送する冷媒経路を有し、前記再生器の冷却作用を外部に取り出す冷熱媒体の経路を流動するものと同じ冷熱媒体と熱交換関係にある蒸発器を設け、前記冷熱媒体が前記再生器または該蒸発器を選択的に流動できるよう冷熱媒体の経路を開閉弁を介して外部との冷熱媒体の接続口と接続し、前記再生器内の吸収媒体と熱交換関係にある凝縮器を設け、該凝縮器には前記圧縮機で圧縮した冷媒蒸気を分岐して導く経路と凝縮器で凝縮した冷媒を前記冷媒貯蔵空間に導く経路を設け、該冷媒貯蔵空間を前記蒸発器と接続し、再生器で濃縮した吸収媒体を貯蔵する吸収媒体貯蔵空間を設け該吸収媒体貯蔵空間を前記発生器と接続し、前記吸収媒体貯蔵空間を再生器を出た吸収媒体の循環経路と開閉弁を介して接続し、前記蒸発器の冷媒空間を前記吸収器に接続するよう構成したヒートポンプにおいて、前記圧縮機の吐出経路は第1の経路と第2の経路に分岐して構成されており、第1の経路は第1の弁を介して前記凝縮器に接続し、さらに第2の経路は第2の弁を介して前記吸収器に接続しており、前記再生器には圧力検出器を設け、該圧力検出器の信号により第2の弁の開度を調節する制御機構を設けて、前記圧縮機を運転して前記再生器の冷媒蒸気を圧縮しかつ第1の弁を開いて前記凝縮器で冷媒を凝縮させる際に、前記再生器の圧力を検出して、再生器の圧力が上昇する場合には第2の弁を開き、再生器の圧力が降下する場合には第2の弁を閉じるように第2の弁の開度を調節して圧縮した一部の冷媒を吸収器に導入し吸収させるようになっている。したがって、蓄熱運転および蓄熱を保持する運転方法で吸収媒体を濃縮する運転を行う際に吸収器を作動させて、ヒートポンプへの外部からの入熱を吸収熱として吸収器の温熱媒体(温水)に排出することによって、デシカント再生のために適温な温水が得られるとともに、ヒートポンプの作動圧力を上昇させずに済む効果が得られるため、多機能で、信頼性が高く、かつ安価な蓄熱機能を備えたヒートポンプおよびデシカント空調システムを提供することができ、さらに水アンモニア系の吸収作動媒体などの自然冷媒も使用可能となるため、環境に対する影響が少ないヒートポンプおよびその運転方法を提供することができる。
【0014】
【発明の実施の形態】
以下、本発明に係るヒートポンプの一実施例を図1乃至図4を参照して説明する。
【0015】
図1は本発明を実施したヒートポンプの基本構成を示す図であり、図2は図1のヒートポンプと組合わせるデシカント空調機の基本構成を示す図である。図1において、本発明を実施したヒートポンプは冷媒蒸気を吸収媒体で吸収し吸収熱で伝熱管30を介して温熱媒体(温水)を加熱する吸収器1と再生熱を伝熱管32を介して冷熱媒体(冷水)から奪って冷媒蒸気を吸収媒体から分離する再生器2と吸収媒体の熱交換器5と冷媒蒸気を圧縮する圧縮機7を有し、該吸収器1と該再生器2との間を循環する吸収媒体の循環経路21、22、23、24、25、26を有するヒートポンプで、再生器2の冷媒蒸気を圧縮機7で圧縮した冷媒を送る圧縮機7の吐出経路を第1の経路43と第2の経路42に分岐して構成し、第1の経路43は第1の弁56を介して前記凝縮器4に接続し、さらに第2の経路42は第2の弁55を介して前記吸収器1に接続し、前記再生器2の冷却作用を伝熱管32を介して外部に取り出す冷熱媒体の経路62、63を流動するものと同じ冷熱媒体と伝熱管31を介して熱交換関係にある蒸発器3を設け、さらに前記冷熱媒体が前記再生器2または該蒸発器3を選択的に流動できるよう冷熱媒体の経路62、63を開閉弁70、71を介して、また経路67、68を開閉弁72、73および経路64、65を介して冷熱媒体の接続口60、61と接続し、さらに前記再生器2内の吸収媒体と熱交換関係にある凝縮器4を設け、さらに該凝縮器4には凝縮した冷媒を前記冷媒貯蔵空間14に導く経路44を設け、さらに該冷媒貯蔵空間14を前記蒸発器3と冷媒経路45、弁52、冷媒経路46を介して接続し、さらに再生器2で濃縮した吸収媒体を貯蔵する吸収媒体貯蔵空間12を設け該吸収媒体貯蔵空間12を前記発生器2と経路27、開閉弁51、経路28を介して接続し、さらに前記吸収媒体貯蔵空間12と再生器を出た吸収媒体の循環経路21と経路29、3方弁50を介して接続し、さらに前記蒸発器3の冷媒空間を前記吸収器1に経路47を介して接続し、さらに前記再生器2には圧力検出器91を設け、さらに該圧力検出器91の信号により第2の弁55の開度を調節する制御機構90を設けて、前記圧縮機7を運転して前記再生器2の冷媒蒸気を圧縮しかつ第1の弁56を開いて前記凝縮器4で冷媒を凝縮させる際に、前記再生器2の圧力を検出して、再生器の圧力が上昇する場合には第2の弁55を開き、再生器2の圧力が降下する場合には第2の弁55を閉じるように第2の弁55の開度を調節して圧縮した一部の冷媒を吸収器1に導入し吸収させるよう構成したものである。
【0016】
このように構成された図1のヒートポンプからは冷熱媒体(冷水)と温熱媒体(温水)が、それぞれ冷水経路の出入口60、61、温水経路の出入口80、81を介して図2に示すデシカント空調機と接続され、循環するよう構成する。
【0017】
図2のデシカント空調機は以下に示すよう構成されている。空調空間101は処理空気の送風機102の吸い込み口と経路107を介して接続し、送風機102の吐出口はデシカントロータ103と経路108を介して接続し、デシカントロータ103の処理空気の出口は再生空気と熱交換関係にある顕熱熱交換器104と経路109を介して接続し、顕熱熱交換器104の処理空気の出口は冷水熱交換器115と経路110を介して接続し、冷水熱交換器115の処理空気の出口は加湿器105と経路119を介して接続し、加湿器105の処理空気の出口は空調空間101と経路111を介して接続して処理空気のサイクルを形成する。一方再生用の空気経路は、外気を再生空気用の送風機140の吸い込み口と経路124を介して接続し、送風機140の吐出口は処理空気と熱交換関係にある顕熱熱交換器104と接続し、顕熱熱交換器104の再生空気の出口は別の顕熱熱交換器121の低温側入口と経路125を介して接続し、顕熱熱交換器121の低温側出口は温水熱交換器120と経路126を介して接続し、温水熱交換器120の再生空気の出口はデシカントロータ103の再生空気入口と経路127を介して接続し、デシカントロータ103の再生空気の出口は顕熱熱交換器121の高温側入口と経路128を介して接続し、顕熱熱交換器121の高温側出口は外部空間と経路129を介して接続して再生空気を外部から取り入れて、外部に排気するサイクルを形成する。前記温水熱交換器120の温水入口は経路122を介してヒートポンプの温水経路の出口81に接続し、温水熱交換器120の温水出口は経路123および温水ポンプ150を介してヒートポンプの温水経路の入口80に接続する。また前記冷水熱交換器115の冷水入口は経路117を介してヒートポンプの冷水経路の出口61に接続し、冷水熱交換器115の冷水出口は経路118およびポンプ160を介してヒートポンプの冷水経路の入口60に接続するよう構成する。なお図中、丸で囲ったアルファベットK〜Vは、図8と対応する空気の状態を示す記号であり、SAは給気を、RAは還気を、OAは外気を、EXは排気を表わす。
【0018】
本実施例の運転方法について以下に説明する。
【0019】
まず、蓄熱運転を行う場合、このような運転は一般的には夏期に深夜電力を使用して日中の冷房負荷の一部を賄うための冷房能力の備蓄として行うものである。この運転モードでは、ヒートポンプは図3のように設定して運転する。図3において、開閉弁56は開いており、経路41と経路43は連通する。さらに、調節弁55は制御機構90の作用によって再生器2の圧力を設定値に保つように、再生器2の圧力を検出して、再生器2の圧力が上昇する場合には第2の弁を開き、再生器2の圧力が降下する場合には第2の弁を閉じるように第2の弁の開度を調節して圧縮した一部の冷媒を吸収器1に導入し吸収させるよう制御され、さらに開閉弁51は開いており、吸収媒体貯蔵空間12と再生器2は連通している。さらに弁52は閉じており、冷媒貯蔵空間14と蒸発器3は連通していない。さらに開閉弁72、73は閉じており、蒸発器3には冷熱媒体(冷水)は流動していない。さらに開閉弁70、71は閉じており、再生器2には冷熱媒体(冷水)は流動していない。さらに3方弁50は経路21方向が閉じており、再生器2と吸収媒体経路22は直接連通していない。また空調機では図2において送風機102は停止して空調空間への給気は停止する。さらに送風機140は運転してデシカントの再生ができるよう送風を続ける。さらに冷水は停止し温水のみ運転する。さらにヒートポンプの圧縮機7と溶液ポンプ6を運転する。
【0020】
このように設定されたヒートポンプの作用について説明すると、図3において圧縮機7を運転すると、再生器2内の吸収媒体から冷媒蒸気が発生し、冷媒は圧縮されて経路41、43を経て再生器2と熱交換関係にある凝縮器4に流入する。冷媒は凝縮器4で熱を再生器2の吸収媒体に奪われて凝縮する。このとき前記の再生器2内の吸収媒体から冷媒蒸気が発生する際の再生熱は冷媒の凝縮熱によって賄われるが、再生熱よりも凝縮熱の方が圧縮機の動力が加わるため一般に大きく、そのため再生器2内の吸収媒体温度及び圧力は上昇傾向になる。しかし再生器2に設けた、圧力検出器91および、制御機構90、調節弁55の作用によって、再生器2内の吸収媒体の圧力が上昇すると調節弁55が開き、吸収器1に冷媒蒸気を送って過剰な蒸気を吸収器1で吸収させ、また再生器2内の吸収媒体の圧力が下がると調節弁55が閉じ、吸収器1に送る冷媒蒸気絞って冷媒蒸気を再生器2に保持するよう作用するので再生器2の圧力は設定値に保つことができる。吸収器1に送られた冷媒蒸気は吸収媒体に吸収され、吸収熱は吸収媒体と温熱媒体が伝熱管30を介して熱交換して冷却される。
【0021】
この時温水は吸収媒体の冷却によって自らは加熱され温度上昇するが、その熱は図2における空調機の送風機140の作用によってもたらされる外気と温水熱交換器120で熱交換し、再生空気に放熱される。この時、デシカントロータ103は気温が上昇し相対湿度が低下した再生空気によって再生作用を受ける。凝縮した冷媒は経路44を経て冷媒貯蔵空間14に導かれ貯蔵される。また吸収媒体は再生器2で濃縮されたのち再生器2から経路27、開閉弁51、経路28を経て吸収媒体貯蔵空間12を経由し、経路29および吸収媒体の経路22を経てポンプ6に流入し、ポンプ6の作用によって経路23を経て熱交換器5で吸収器1から戻る吸収媒体と熱交換した後経路24を経て吸収器1に流入し圧縮機7からの一部の冷媒を吸収してわずかに希釈されたのち経路25、熱交換器5、経路26を経て再生器2に還流し循環経路を循環する。このような運転方法では、一部の冷媒は吸収器1で冷媒を吸収して吸収媒体を希釈するが、大部分の冷媒は同じ吸収媒体から分離されて凝縮器4に流入して凝縮されるため、全体としては吸収媒体の濃縮が進んで、冷媒が冷媒貯蔵空間14に十分貯蔵された時点でこの運転モードでの運転を停止し、次の運転モードに移行する。
【0022】
これまでの吸収媒体の濃縮による蓄熱の過程を図4を用いて説明する。図4は吸収媒体濃縮の過程を示すデューリング線図である。図4において再生器2中の吸収媒体はCの状態にあり、圧縮機7の作用によって、冷媒蒸気(状態E)が分離される。分離された冷媒は圧縮されて(状態F)大部分は凝縮器4に送られ凝縮し(状態G)残りの一部は調節弁55を経て減圧され吸収器1に送られて吸収媒体に吸収される(状態A)。吸収媒体経路を循環する吸収媒体は、再生器2を出て(状態C)熱交換器で加熱され(状態D)、吸収器1に流入し冷媒蒸気を吸収した後(状態A)、熱交換器で冷却され(状態B)、再び再生器2に戻る。凝縮の際の凝縮熱は再生器2内の吸収媒体を加熱して、再生熱を賄う。また吸収の際の吸収熱は温水によって冷却され(図中では80℃)て空調機に移送されデシカントの再生に使用する。なおこの運転方法では冷水は製造されず前記のごとく、温水を製造してデシカントの再生空気の加熱に使用し、その際温水は冷却されてヒートポンプに還流する。この運転モードが終了した時点で、凝縮した冷媒(状態G)と濃縮した吸収媒体(状態C)がそれぞれ貯蔵空間に貯蔵される。
【0023】
なおこの運転方法において、もし吸収器1に第2の経路から送られる圧縮された冷媒蒸気の供給を停止すると、ヒートポンプへの入熱(圧縮機動力)が次第に蓄積されて、吸収媒体温度が上昇し、最終的には吸収器1における吸収媒体の温度が温水温度以上(図中では80℃以上)になった時点で、温水への放熱がおこなわれ始める。この時点では吸収器1と再生器2の吸収媒体温度は外部への放熱が行われなかったため、ほぼ同じとなり、そのため再生器2の温度は温水の温度近くまで上昇する。前述の通り再生器2の再生熱は凝縮器4から伝達されるので、凝縮温度も温水温度以上に上昇する。デシカントの再生のためには温水温度は60〜80℃が必要であり、従って大略凝縮温度は80℃程度まで上昇し、その時の凝縮圧力は42kg/cm2 にまで上昇し、圧縮機の圧力比が異常に高くなり、また構成機器の耐圧強度確保のため機器類の肉圧が極めて厚くなってしまい、実用には適さない高い圧力となってしまう。しかし本発明によればこの運転方法のように第2の経路を使用して吸収器1に冷媒を導入することによって、機内圧力は20kg/cm2 以下に抑制することができる。このように本発明によればヒートポンプの機内圧の上昇を抑制しつつ、蓄熱運転を行うことができる。なお図3の実施例による運転方法によって、吸収媒体から冷媒を分離し濃度ポテンシャルの形態で貯蔵することで、蓄熱作用すなわち冷房作用の備蓄作用が得られることは後述の図7で示す運転方法で改めて説明する。また本運転方法では空調機において温水によるデシカントの再生作用のみ行う。この作用について以下に説明する。
【0024】
図2において、空調機には経路81を経由して温水がヒートポンプから流入する。本運転方法では、送風機140の作用によって、外気が経路124を経て取り入れられ、顕熱熱交換器104に流入するが、顕熱熱交換器104は空調空間を循環する処理空気系統が停止しているため作用せず、従って温度変化せずに経路125を経て別の顕熱熱交換器121に流入し、デシカント再生後の再生空気と熱交換して温度上昇した後経路126を経て温水熱交換器120に流入し、ここで温水によって加熱されて温度上昇して相対湿度が低下する。温水熱交換器120を出た再生空気は経路128を経て顕熱熱交換器121に流入し再生空気を余熱した後、経路129をへて外部に排気される。
【0025】
このようにして本発明によれば蓄熱運転中に、停止している空調機のデシカントの再生も同時行うことができる。蓄熱運転は通常深夜に行われ、夏期の深夜は気温の低下によって相対湿度が上昇することが多く、従ってデシカントがこのような外気に触れた状態で放置されるとデシカントが水分を吸着してしまい翌日朝の冷房開始時の能力が不足する可能性があるが、このようにしてデシカントの再生を深夜蓄熱と同時に行っておくことは、翌日の運転開始時に円滑に能力を発揮する上で効果がある。
【0026】
次に、蓄熱を併用して蓄熱を保持しつつ冷房運転を行う場合の運転方法と作用について説明する。このような運転は深夜電力を使用して蓄熱を終えた後、日中の本格的冷房運転に備えて蓄熱をあまり使用せずに、冷房運転を行うためのものである。通常冷房負荷は正午から午後4時にかけての時間帯が最も負荷が大きく、該時間帯に集中的に蓄熱を使用することが有効であるため、それまでの時間帯は本運転方法で運転することが全体として効果を発揮する。
【0027】
この運転方法では、ヒートポンプは図5のように設定して運転する。図5において、開閉弁56は開いており、経路41と経路43は連通する。さらに、調節弁55は制御機構90の作用によって再生器2の圧力を設定値に保つように、再生器2の圧力を検出して、再生器2の圧力が上昇する場合には第2の弁を開き、再生器2の圧力が降下する場合には第2の弁を閉じるように第2の弁の開度を調節して圧縮した一部の冷媒を吸収器1に導入し吸収させるよう制御され、制御され、さらに開閉弁51は開いており、吸収媒体貯蔵空間12と再生器2は連通している。さらに弁52は開いており、冷媒貯蔵空間14から蒸発器3に冷媒が送られる。さらに開閉弁72、73は開いており、蒸発器3には冷熱媒体(冷水)が通水される。さらに開閉弁70、71は閉じており、再生器2には冷熱媒体(冷水)は流動しない。さらに3方弁50は経路21方向が閉じており、再生器2と吸収媒体経路22は直接連通していない。さらにヒートポンプの圧縮機7と溶液ポンプ6を運転し、また空調機を運転する。
【0028】
このように設定されたヒートポンプの作用について説明すると、図5において圧縮機7を運転すると、再生器2内の吸収媒体から冷媒蒸気が発生し、冷媒は圧縮されて経路41、43を経て再生器2と熱交換関係にある凝縮器4に流入する。冷媒は凝縮器4で熱を再生器2の吸収媒体に奪われて凝縮する。このとき前記の再生器2内の吸収媒体から冷媒蒸気が発生する際の再生熱は冷媒の凝縮熱によって賄われるが、再生熱よりも凝縮熱の方が圧縮機の動力が加わるため一般に大きく、そのため再生器2内の吸収媒体温度及び圧力は上昇傾向になる。しかし再生器2に設けた、圧力検出器91および、制御機構90、調節弁55の作用によって、再生器2内の吸収媒体の圧力が上昇すると調節弁55が開き、吸収器1に冷媒蒸気を送って過剰な蒸気を吸収器1で吸収させ、また再生器2内の吸収媒体の圧力が下がると調節弁55が閉じ、吸収器1に送る冷媒蒸気絞って冷媒蒸気を再生器2に保持するよう作用するので再生器2の圧力は設定値に保つことができる。
【0029】
この運転方法ではまた別の冷媒の流動が存在する。蒸発器3には、冷媒貯蔵空間14から冷媒が供給され(弁52には温度式膨張弁やフロート弁等の流量調節機構を装着しても差し支えない)、また蒸発器3では吸収器1からの冷媒蒸気の吸引作用を受けて冷媒が蒸発する。その際冷水は伝熱管31を介して冷媒に蒸発熱を奪われて冷却される。蒸発器3で蒸発した冷媒は経路47を経て吸収器1に流入し吸収される。吸収器1では、蒸発器3から経路47を経て流入した冷媒と再生器2から圧縮機7により圧縮されて経路42を経て流入した冷媒が吸収媒体に吸収され、吸収熱は吸収媒体と温熱媒体(温水)が伝熱管30を介して熱交換して冷却される。この時温水は吸収媒体を冷却することによって自らは加熱され温度上昇するが、その熱は図2における空調機の送風機140の作用によってもたらされる再生空気と温水熱交換器120において熱交換し、再生空気の加熱に使用される。圧縮機7で圧縮され凝縮器4で凝縮した冷媒は経路44を経て冷媒貯蔵空間14に導かれる。また吸収媒体は再生器2から経路27、開閉弁51、経路28を経て吸収媒体貯蔵空間12を経由し、経路29を経て吸収媒体の経路22を経てポンプ6に流入し、ポンプ6の作用によって経路23を経て熱交換器5で吸収器1から戻る吸収媒体と熱交換した後経路24を経て吸収器1に流入し圧縮機7と蒸発器3からの冷媒を吸収して希釈されたのち経路25、熱交換器5、経路26を経て再生器2に還流し循環経路を循環する。
【0030】
これまでの運転方法におけるヒートポンプの作用の過程を図6を用いて説明する。図6はヒートポンプの作用の過程を示すデューリング線図である。図6において再生器2中の吸収媒体はCの状態にあり、圧縮機の作用によって、冷媒蒸気(状態E)が分離される。分離された冷媒は圧縮されて(状態F)大部分は凝縮器4に送られ凝縮し(状態G)残りの一部は調節弁55を経て減圧され吸収器1に送られて吸収媒体に吸収される(状態A)が、この圧縮機による作用は前記の蓄熱運転と同じサイクルによる運転で、吸収媒体は再生器2において濃縮作用を受ける。また蒸発器3では吸収器1からの冷媒蒸気の吸引作用を受けて冷媒が蒸発する(状態H)。
【0031】
蒸発した冷媒は経路47を経て吸収器に流入し吸収され(状態A)、この吸収器による作用は公知の吸収冷凍サイクルによる作用と同じ運転で、吸収器では吸収媒体は希釈作用を受ける。蒸発器では蒸発の際には蒸発熱を冷水から奪うことによって冷水を冷却する。冷却した冷水は空調機に移送され処理空気の冷却冷却に使用する。吸収媒体経路を循環する吸収媒体は、再生器2を出て(状態C)熱交換器で加熱され(状態D)、吸収器1に流入し圧縮機から来る冷媒蒸気と蒸発器から来る冷媒蒸気を同時に吸収した後(状態A)、熱交換器で冷却され(状態B)、再び再生器に戻る。また吸収の際の吸収熱は温水によって冷却され(図中では80℃)て空調機に移送されデシカントの再生に使用する。このように第2の運転モードによって、ヒートポンプでは、吸収媒体の濃縮と希釈を同時に行いながら冷水の冷却と、温水の加熱を同時に行うことができる。
【0032】
なおこの運転方法において、もし吸収器1に第2の経路から送られる圧縮された冷媒蒸気の供給を停止すると、ヒートポンプから外部に熱を放出することができる機器は吸収器1しか存在しないためヒートポンプへの入熱(圧縮機動力)が次第に吸収媒体に蓄積されて、吸収媒体温度が上昇し、最終的には吸収器1における吸収媒体の温度が温水温度以上(図中では80℃以上)になった時点で、温水への放熱がおこなわれ始める。この時点では吸収器1と再生器2の吸収媒体温度は外部への放熱が行われなかったため、ほぼ同じとなり、そのため再生器2の温度は温水の温度近くまで上昇する。前述の通り再生器2の再生熱は凝縮器4から伝達されるので、凝縮温度も温水温度以上に上昇する。デシカントの再生のためには温水温度は60〜80℃が必要であり、従って大略凝縮温度は80℃程度まで上昇し、その時の凝縮圧力は42kg/cm2 にまで上昇し、圧縮機の圧力比が異常に高くなり、また構成機器の耐圧強度確保のため機器類の肉圧が極めて厚くなってしまい、実用には適さない高い圧力となってしまう。しかし本発明によれば本運転方法のように第2の経路を使用して吸収器1に冷媒を導入することによって、機内圧力は20kg/cm2 以下に抑制することができる。このように本発明によればヒートポンプの機内圧の上昇を抑制しつつ、蓄熱運転を行うことができる。
【0033】
このようにしてヒートポンプでできた冷温水は空調機に送られ次のようにして冷房作用を行う。図2において、空調される室内101の空気(処理空気)は経路107を経て送風機102に吸引され昇圧されて経路108をへてデシカントロータ103に送られデシカントロータの吸湿剤で空気中の水分を吸着され絶対湿度が低下する。また吸着の際、吸着熱によって空気は温度上昇する。湿度が下がり温度上昇した空気は経路109を経て顕熱熱交換器104に送られ外気(再生空気)と熱交換して冷却される。冷却された空気は経路110を経て冷水熱交換器115に送られさらに冷却される。冷却された処理空気は加湿器105に送られ水噴射または気化式加湿によって等エンタルピ過程で温度低下し経路111を経て空調空間101に戻される。
【0034】
デシカントロータはこの過程で水分を吸着したため、再生が必要で、この実施例では外気を再生用空気として用いて次のように行われる。外気(OA)は経路124を経て送風機140に吸引され昇圧されて顕熱熱交換器104に送られ、処理空気を冷却して自らは温度上昇し経路125を経て次の顕熱熱交換器121に流入し、再生後の高温の空気と熱交換して温度上昇する。さらに顕熱熱交換器121を出た再生空気は経路126を経て温水熱交換器120に流入し温水によって加熱され60〜80℃まで温度上昇し、相対湿度が低下する。温水熱交換器120を出て相対湿度が低下した再生空気はデシカントロータ103を通過してデシカントロータの水分を除去し再生作用をする。デシカントロータ103を通過した再生空気は経路128を経て顕熱熱交換器121に流入し、再生前の再生空気の余熱を行ったのち経路129を経て排気として外部に捨てられる。このようにして、本発明のヒートポンプをデシカント空調機と組合わせることによって、通常の冷房運転を行うことができる。なおこのようなデシカント空調機の作用は図9において示した従来例と同様で冷却、加熱の熱源が、冷媒の代りにから冷水、温水から伝達される点のみが異なっており、従って図10のモリエル線図が適用できるため、モリエル線図上による作用の説明は省略する。
【0035】
このようにして図5の運転方法によれば、吸収媒体の濃縮と希釈を同時に行いながら冷房運転ができるため、蓄熱運転で貯蔵した吸収媒体の濃度をなるべく希釈しない様にすることができ、従って蓄熱を保持しながら冷房運転を行うことができる。
【0036】
次に、図7の運転方法により蓄熱を消費して圧縮機を運転することなく冷房運転を行う場合の運転方法と作用について説明する。このような運転は、日中の電力のピークカットとして、圧縮機の動力を切って冷房運転を行うためのものである。通常冷房負荷は正午から午後4時にかけての時間帯が最も負荷が大きく、該時間帯に集中的に蓄熱を使用することが有効であるため、本運転モードで運転することが効果を発揮する。
【0037】
図7の運転方法では、ヒートポンプは次のように設定して運転する。図7において、開閉弁56は閉じており、経路41と経路43は連通しない。さらに、調節弁55は制御機構90の作用を切って完全に閉じており、さらに開閉弁51は開いており、吸収媒体貯蔵空間12と再生器2は連通している。さらに弁52は開いており、冷媒貯蔵空間14から蒸発器3に冷媒が送られる。さらに開閉弁72、73は開いており、蒸発器3には冷熱媒体(冷水)が通水される。さらに開閉弁70、71は閉じており、再生器2には冷熱媒体(冷水)は流動しない。さらに3方弁50は経路21方向が閉じており、再生器2と吸収媒体経路22は直接連通していない。さらにヒートポンプの圧縮機7は停止し、溶液ポンプ6は運転し、また空調機は運転する。
【0038】
このように設定されたヒートポンプの作用について説明すると、図7において蒸発器3には、冷媒貯蔵空間14から冷媒が供給され(弁52には温度式膨張弁やフロート弁等の流量調節機構を装着しても差し支えない)、また蒸発器3では吸収器1からの冷媒蒸気の吸引作用を受けて冷媒が蒸発する。その際冷水は伝熱管31を介して冷媒に蒸発熱を奪われて冷却される。蒸発器3で蒸発した冷媒は経路47を経て吸収器1に流入し吸収される。吸収器1では、蒸発器3から経路47を経て流入した冷媒が吸収媒体に吸収され、吸収熱は吸収媒体と温水が伝熱管30を介して熱交換して温水に伝達される。
【0039】
この時温水は吸収媒体を冷却することによって自らは加熱され温度上昇するが、その熱は図2における空調機の送風機140の作用によってもたらされる再生空気と温水熱交換器120において熱交換し、再生空気の加熱に使用される。吸収媒体は再生器2から経路27、開閉弁51、経路28を経て吸収媒体貯蔵空間12を経由し、経路29および吸収媒体の経路22を経てポンプ6に流入し、ポンプ6の作用によって経路23を経て熱交換器5で吸収器1から戻る吸収媒体と熱交換した後経路24を経て吸収器1に流入し蒸発器3からの冷媒を吸収して希釈されたのち経路25、熱交換器5、経路26を経て再生器2に還流し循環経路を循環する。この場合再生器2では吸収媒体の濃縮作用は行われないので吸収媒体は再生器2を単に通過するのみである。希釈された吸収媒体は吸収媒体貯蔵空間12に流入し、内部に貯蔵した吸収媒体を徐々に希釈する。
【0040】
これまでの図7の運転方法におけるヒートポンプの作用の過程を図8を用いて説明する。図8はヒートポンプの作用の過程を示すデューリング線図である。図8において吸収媒体貯蔵空間12中の吸収媒体は通常この運転方法の開始時には十分に吸収能力を持ったCの状態(図中では吸収媒体の冷媒濃度20%)で貯蔵されている。この状態の吸収媒体(水アンモニア溶液)をポンプ6の作用によって吸収器1に送り、75℃程度の温水と熱交換させると、冷媒(アンモニア)を10℃程度で蒸発させることができる吸収作用が発生し、冷媒を吸収して(状態A)自らは希釈され、再生器2を経て吸収媒体貯蔵空間12に戻る。吸収媒体貯蔵空間12には多量の吸収媒体を保有しているので吸収媒体は吸収器1から戻る吸収媒体によって徐々に希釈され、最終的に冷媒濃度が30%まで希釈された時点で吸収温度が次第に低下し始めるまで運転を継続することができる。このように吸収媒体貯蔵空間12と冷媒貯蔵空間14に吸収媒体と冷媒を貯蔵することによって冷熱と温熱の蓄熱作用が得られる。
【0041】
また蒸発器3では吸収器1からの冷媒蒸気の吸引作用を受けて冷媒が蒸発する(状態H)。蒸発した冷媒は経路47を経て吸収器に流入し吸収され(状態A)、この吸収器による作用は公知の吸収冷凍サイクルによる作用と同じ運転で、吸収媒体は希釈作用を受ける。蒸発器では蒸発の際には蒸発熱を冷水から奪うことによって冷水を冷却する。冷却した冷水は空調機に移送され処理空気の冷却冷却に使用する。また吸収の際の吸収熱は温水によって冷却され(図中では80℃)て空調機に移送されデシカントの再生に使用する。このように第3の運転モードによって、ヒートポンプでは、濃度ポテンシャルの形態で貯蔵した吸収媒体の作用によって、圧縮機を運転することなく冷水の冷却と温水の加熱の両方の作用を同時に行うことができる。
【0042】
このようにしてヒートポンプでできた冷温水は空調機に送られ次のようにして冷房作用を行う。図2において、空調される室内101の空気(処理空気)は経路107を経て送風機102に吸引され昇圧されて経路108をへてデシカントロータ103に送られデシカントロータの吸湿剤で空気中の水分を吸着され絶対湿度が低下する。また吸着の際、吸着熱によって空気は温度上昇する。湿度が下がり温度上昇した空気は経路109を経て顕熱熱交換器104に送られ外気(再生空気)と熱交換して冷却される。冷却された空気は経路110を経て冷水熱交換器115に送られさらに冷却される。冷却された処理空気は加湿器105に送られ水噴射または気化式加湿によって等エンタルピ過程で温度低下し経路111を経て空調空間101に戻される。
【0043】
デシカントロータはこの過程で水分を吸着したため、再生が必要で、この実施例では外気を再生用空気として用いて次のように行われる。外気(OA)は経路124を経て送風機140に吸引され昇圧されて顕熱熱交換器104に送られ、処理空気を冷却して自らは温度上昇し経路125を経て次の顕熱熱交換器121に流入し、再生後の高温の空気と熱交換して温度上昇する。さらに顕熱熱交換器121を出た再生空気は経路126を経て温水熱交換器120に流入し温水によって加熱され60〜80℃まで温度上昇し、相対湿度が低下する。温水熱交換器120を出て相対湿度が低下した再生空気はデシカントロータ103を通過してデシカントロータの水分を除去し再生作用をする。デシカントロータ103を通過した再生空気は経路128を経て顕熱熱交換器121に流入し、再生前の再生空気の余熱を行ったのち経路129を経て排気として外部に捨てられる。このようにして、本発明のヒートポンプをデシカント空調機と組合わせることによって、冷房運転を行うことができる。なおこのようなデシカント空調機の作用は図9において示した従来例と同様で冷却、加熱の熱源が、冷媒の代りにから冷水、温水から伝達される点のみが異なっており、従って図10のモリエル線図が適用できるため、モリエル線図上による作用の説明は省略する。
【0044】
このようにして図7の運転方法によれば、貯蔵した吸収媒体の希釈を行いながら冷房運転ができるため、圧縮機を運転せずに冷房運転を行うことができる。従って前記図3の運転方法には蓄熱作用がある。
【0045】
このように本発明によれば、濃縮した吸収媒体と冷媒を貯蔵することによって、冷却作用および加熱作用の両方を吸収媒体の濃度ポテンシャルの形態で蓄熱し、また蓄熱を取り出す際には冷却作用および加熱作用の両方の作用として同時に取り出すことができ、さらに吸収媒体を濃縮し蓄熱する運転の際に、ヒートポンプへの外部からの入熱を吸収器を作動させて吸収器の温熱媒体(温水)に排出することで、デシカント再生のために適温な温水が得られるとともに、ヒートポンプの作動圧力を上昇させずに済む効果が得られる。
【0046】
【発明の効果】
以上説明したように本発明によれば、冷却作用および加熱作用の両方の作用を吸収媒体の濃度ポテンシャルの形態で貯蔵する運転として、蓄熱運転または蓄熱を保持しつつ冷房を行う運転の際に、圧縮した冷媒の一部を吸収器に導き吸収作用によって吸収器の温熱媒体(温水)を加熱して、デシカント再生のために適温な温水を得るとともに、ヒートポンプの機内圧の上昇を抑制することによって、多機能で、信頼性が高く、かつ安価な蓄熱機能を備えたヒートポンプを提供することができる。
【図面の簡単な説明】
【図1】本発明に係るヒートポンプの一実施例の基本構成を示す説明図。
【図2】本発明を実施するデシカント空調機の一実施例の基本構成を示す説明図。
【図3】本発明に係るヒートポンプの第1の運転方法を示す説明図。
【図4】図3のヒートポンプのサイクルをデューリング線図で示す説明図。
【図5】本発明に係るヒートポンプの第2の運転方法を示す説明図。
【図6】図5のヒートポンプのサイクルをデューリング線図で示す説明図。
【図7】本発明に係るヒートポンプの第3の運転方法を示す説明図。
【図8】図7のヒートポンプのサイクルをデューリング線図で示す説明図。
【図9】従来のデシカント空調の基本構成を示す説明図。
【図10】従来のデシカント空調の空気のデシカント空調サイクルをモリエル線図で示す説明図。
【符号の説明】
1・・・吸収器
2・・・再生器
3・・・蒸発器
4・・・凝縮器
5・・・熱交換器
6・・・溶液ポンプ
7・・・圧縮機
12・・・吸収媒体貯蔵空間
14・・・冷媒貯蔵空間
21・・・吸収媒体(溶液)経路
22・・・吸収媒体(溶液)経路
23・・・吸収媒体(溶液)経路
24・・・吸収媒体(溶液)経路
25・・・吸収媒体(溶液)経路
26・・・吸収媒体(溶液)経路
27・・・吸収媒体(溶液)経路
28・・・吸収媒体(溶液)経路
29・・・吸収媒体(溶液)経路
30・・・伝熱管(温水)
31・・・伝熱管(冷水)
32・・・伝熱管(冷水)
40・・・冷媒経路
41・・・冷媒経路
42・・・冷媒経路
43・・・冷媒経路
44・・・冷媒経路
45・・・冷媒経路
46・・・冷媒経路
50・・・3方弁
51・・・弁
52・・・弁
53・・・3方弁
55・・・調節弁
56・・・弁
60・・・冷水経路
61・・・冷水経路
62・・・冷水経路
63・・・冷水経路
64・・・冷水経路
65・・・冷水経路
70・・・弁
71・・・弁
72・・・弁
73・・・弁
80・・・温水経路
81・・・温水経路
90・・・制御機構
91・・・圧力検出器
92・・・制御信号経路
93・・・制御信号経路
101・・・空調空間
102・・・送風機
103・・・デシカントロータ
104・・・顕熱熱交換器
105・・・加湿器
106・・・給水管
107・・・空気経路
108・・・空気経路
109・・・空気経路
110・・・空気経路
111・・・空気経路
115・・・冷水熱交換器
117・・・冷水経路
118・・・冷水経路
119・・・空気経路
120・・・温水熱交換器
121・・・顕熱熱交換器
122・・・温水経路
123・・・温水経路
124・・・空気経路
125・・・空気経路
126・・・空気経路
127・・・空気経路
128・・・空気経路
129・・・空気経路
130・・・空気経路
140・・・送風機
150・・・温水ポンプ
160・・・冷水ポンプ
201・・・冷媒経路
202・・・冷媒経路
203・・・冷媒経路
204・・・冷媒経路
220・・・凝縮器
240・・・蒸発器
250・・・膨張弁
260・・・圧縮機
a・・・吸収媒体サイクルの状態点
b・・・吸収媒体サイクルの状態点
c・・・吸収媒体サイクルの状態点
d・・・吸収媒体サイクルの状態点
e・・・吸収媒体サイクルの状態点
f・・・吸収媒体サイクルの状態点
A・・・吸収媒体サイクルの状態点
B・・・吸収媒体サイクルの状態点
C・・・吸収媒体サイクルの状態点
D・・・吸収媒体サイクルの状態点
E・・・吸収媒体サイクルの状態点
F・・・吸収媒体サイクルの状態点
K・・・デシカント空調の空気の状態点
L・・・デシカント空調の空気の状態点
M・・・デシカント空調の空気の状態点
N・・・デシカント空調の空気の状態点
P・・・デシカント空調の空気の状態点
Q・・・デシカント空調の空気の状態点
R・・・デシカント空調の空気の状態点
S・・・デシカント空調の空気の状態点
T・・・デシカント空調の空気の状態点
U・・・デシカント空調の空気の状態点
V・・・デシカント空調の空気の状態点
X・・・デシカント空調の空気の状態点
SA・・・給気
RA・・・還気
EX・・・排気
OA・・・外気
ΔQ・・・冷房効果
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat pump and an operation method thereof, and more particularly, to a heat pump used as a heat source device for a desiccant air conditioning system.
[0002]
[Prior art]
A desiccant air conditioner is described in US Pat. No. 2,700,537. In the desiccant type air conditioner shown in this known example, a heat source having a temperature of about 100 to 150 ° C. is required as a heat source for regeneration of the desiccant (humectant), and an electric heater and a boiler are used exclusively as the heat source. It was. Recently, by improving the desiccant, a desiccant air conditioner that can regenerate the desiccant even at a temperature of 60 to 80 ° C. has been developed, and it can be operated with a low-temperature heat source for regenerating the desiccant and cooling the treated air. Desiccant air conditioners that combine electric vapor compression heat pumps or refrigerators have been developed.
[0003]
FIG. 9 is an example of a desiccant air conditioner that combines a known electric vapor compression heat pump or refrigerator, and FIG. 10 is a Mollier diagram showing the operating state of the air conditioner of the example of FIG. In FIG. 9, reference numeral 101 is an air-conditioned space, 102 is a blower, 103 is a desiccant rotor containing a desiccant material that can selectively contact with processing air and regenerated air, 104 is a sensible heat exchanger, and 105 is humidification. , 106 is a humidifier water supply pipe, 107 to 113 are air passages for treated air, 140 is a regenerative air blower, 220 is a condenser and a heat exchanger (heater) for refrigerant and regenerated air, and 121 is sensible heat. An exchanger, 124 to 129 are air passages for regenerated air, 201 to 204 are refrigerant paths, 240 is an evaporator and a heat exchanger (cooler) for refrigerant and processing air, 250 is an expansion valve, and 260 is a compressor. Also, in the figure, circled alphabets K to V are symbols indicating air conditions corresponding to those in FIG. 10, SA represents supply air, RA represents return air, OA represents outside air, and EX represents exhaust. .
[0004]
The operation of this conventional example will be described. In FIG. 9, the air (process air) in the air-conditioned room 101 is sucked into the blower 102 through the path 107 and pressurized and sent to the desiccant rotor 103 through the path 108. Moisture in the air is adsorbed by the hygroscopic agent and absolute humidity decreases. During adsorption, the temperature of the air rises due to the heat of adsorption. The air whose humidity has decreased and its temperature has risen is sent to the sensible heat exchanger 104 via the path 109 and is cooled by exchanging heat with the outside air (regenerated air). The cooled air is sent to the cooler 240 via the path 110 and is cooled by the action of the refrigerator, and is sent to the humidifier 105 via the path 112 and the temperature is lowered in the isenthalpy process by water injection or vaporization type humidification, and the path 113 is passed. After that, it is returned to the conditioned space 101.
[0005]
Since the desiccant adsorbs moisture in this process, it needs to be regenerated. In this conventional example, the desiccant is performed as follows using outside air. The outside air (OA) is sucked into the blower 140 via the path 124, is pressurized and sent to the sensible heat exchanger 104, cools the processing air, and rises in temperature by itself, and passes through the path 125 to the next sensible heat exchanger 121. The heat rises by exchanging heat with the hot air after regeneration. Further, the regenerative air that has exited the sensible heat exchanger 121 flows into the heater 220 via the path 126, is heated by the condensation heat of the refrigerator, rises in temperature to 60 to 80 ° C., and the relative humidity decreases. Regenerated air whose relative humidity has decreased passes through the desiccant rotor 103 to remove moisture from the desiccant rotor. The regenerated air that has passed through the desiccant rotor 103 flows into the sensible heat exchanger 121 via the path 128, and after regenerating the regenerated air before regeneration, the regenerated air is discarded to the outside via the path 129.
[0006]
The process up to now will be described with reference to the Mollier diagram (FIG. 10). In FIG. 10, the air in the air-conditioned room 101 (process air: state K) is sucked into the blower 102 via the path 107, and the pressure is increased. The moisture in the air is adsorbed by the desiccant rotor 103 and is absorbed by the desiccant rotor 103, and the absolute humidity decreases and the temperature of the air rises due to the heat of adsorption (state L). The air whose humidity has fallen and the temperature has risen is sent to the sensible heat exchanger 104 via the path 109 and is cooled by exchanging heat with the outside air (regeneration air) (state M). The cooled air is sent to the cooler 240 via the path 110 and cooled by the action of the refrigerator (state N), sent to the humidifier 105 via the path 112, and the temperature is lowered in the isenthalpy process by water injection or vaporization type humidification. (State P) and then returned to the conditioned space 101 via the path 113. In this way, an enthalpy difference ΔQ is generated between the return air (K) and the supply air (P) in the room, and the air-conditioned space 101 is thereby cooled.
[0007]
The regeneration of the desiccant is performed as follows. The outside air (OA: state Q) is sucked into the blower 140 via the path 124, is pressurized and sent to the sensible heat exchanger 104, cools the processing air, and rises in temperature by itself (R) through the path 125. It flows into the sensible heat exchanger 121 and heat-exchanges with the high-temperature air after regeneration to increase the temperature (state S). Furthermore, the regenerated air that has exited the sensible heat exchanger 121 flows into the heater 220 via the path 126, is heated by the heat of condensation of the heat pump, rises in temperature to 60 to 80 ° C., and the relative humidity decreases (state T). Regenerated air whose relative humidity has decreased passes through the desiccant rotor 103 and removes moisture from the desiccant rotor (state U). Regenerated air that has passed through the desiccant rotor 103 flows into the sensible heat exchanger 121 via the path 128, and after regenerating the pre-regenerated air, the temperature of the regenerated air itself decreases (state V) and then passes through the path 129 as external exhaust. Thrown away. In this way, by repeating the regeneration of the desiccant and the dehumidification and cooling of the processing air, air conditioning by the desiccant has been performed.
[0008]
In the desiccant air conditioner configured as described above, the combined vapor compression refrigeration cycle requires a condensation temperature of about 80 ° C. and an evaporation temperature of about 10 ° C. In recent years, it has been desired to use a natural refrigerant such as ammonia that does not use a conventional chlorofluorocarbon system and has little impact on the natural environment as a refrigerant for the vapor compression refrigeration cycle, and the compressor is stopped during the summer. However, when a so-called heat storage function that can perform cooling is required, ammonia is used as a refrigerant in the refrigeration cycle to achieve such a condensation temperature, the pressure is 42 kg / cm. 2 However, there is a disadvantage that the device becomes abnormally high and the device is expensive, and if it is intended to have a heat storage function, a heat storage tank having both a low temperature of about 10 ° C and a high temperature of about 80 ° C is required, It has been found that there are drawbacks that make the equipment extremely complex and expensive.
[0009]
Therefore, as a result of various studies, the inventor has an absorber, a regenerator, and a compressor, and compresses the refrigerant vapor of the regenerator and the path of the absorption medium circulating between the absorber and the regenerator with the compressor. A heat pump having a refrigerant path to be transferred to an absorber, provided with an evaporator having a heat exchange relationship with a heat medium for extracting the cooling action of the regenerator to the outside, and further having a heat exchange relationship with an absorption medium in the regenerator Providing a condenser, further providing a refrigerant storage space for storing the refrigerant condensed by introducing the refrigerant vapor compressed by the compressor to the condenser, and further providing an absorption medium storage space for storing the absorption medium concentrated by the regenerator, Further, attention was paid to a heat pump in which the refrigerant space of the evaporator was connected to the refrigerant storage space and the absorber, and by using this, it was obtained that these problems could be solved. In this case, the heat input from the outside to the heat pump is operated and discharged to the heat medium (hot water) of the absorber, so that hot water having an appropriate temperature for desiccant regeneration is obtained and the operating pressure of the heat pump It has been found that an effect can be obtained that does not need to be raised.
[0010]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described points. As an operation for storing both the cooling operation and the heating operation in the form of the concentration potential of the absorption medium, the heat storage operation or the operation for cooling while maintaining the heat storage is performed. At the same time, the thermal medium (hot water) of the absorber is heated to obtain hot water at an appropriate temperature for desiccant regeneration, and by suppressing the increase in the internal pressure of the heat pump, it is multifunctional, highly reliable, and It aims at providing the heat pump provided with the cheap heat storage function, and its operating method.
[0011]
[Means for Solving the Problems]
According to the present invention, an absorber, a regenerator, and a compressor are provided, and the path of the absorption medium circulating between the absorber and the regenerator and the refrigerant vapor of the regenerator are compressed by the compressor into the absorber. Having a refrigerant path to be transferred, providing an evaporator having a heat exchange relationship with a heat medium for extracting the cooling action of the regenerator to the outside, and providing a condenser having a heat exchange relationship with an absorption medium in the regenerator, A refrigerant storage space for storing the refrigerant condensed by introducing the refrigerant vapor compressed by the compressor to the condenser is provided, an absorption medium storage space for storing the absorption medium concentrated by the regenerator is provided, and the refrigerant space of the evaporator is In the operation method of the heat pump connected to the refrigerant storage space and the absorber, a part of the compressed refrigerant when the compressor is operated to compress the refrigerant vapor of the regenerator and condense the refrigerant in the condenser To be absorbed into the absorber You have me.
[0012]
According to the present invention, there is provided an absorber that absorbs refrigerant vapor with an absorption medium, a regenerator that separates the refrigerant vapor from the absorption medium, and a compressor that compresses the refrigerant vapor, between the absorber and the regenerator. And a heat exchanger that has a refrigerant path for compressing the refrigerant vapor of the regenerator by the compressor and transferring the refrigerant vapor to the absorber, and is in a heat exchange relationship with the heat medium that extracts the cooling action of the regenerator to the outside. An evaporator is provided, a condenser having a heat exchange relationship with an absorption medium in the regenerator is provided, a refrigerant storage space is provided for storing refrigerant condensed by introducing refrigerant vapor compressed by the compressor to the condenser. A storage space is connected to the evaporator, an absorption medium storage space for storing the absorption medium concentrated in the regenerator is provided, the absorption medium storage space is connected to the circulation path of the generator and the absorption medium, and the refrigerant of the evaporator The space is the refrigerant storage space and the space In the heat pump connected to the collector, the discharge path of the compressor is divided into a first path and a second path, and the first path is connected to the condenser via a first valve. Furthermore, the second path is connected to the absorber via a second valve, and the compressor is operated to compress the refrigerant vapor of the regenerator and open the first valve to condense the condensation. When the refrigerant is condensed in the vessel, a part of the refrigerant compressed by adjusting the second valve opening is introduced into the absorber and absorbed.
[0013]
Further, according to the present invention, the absorber that absorbs the refrigerant vapor by the absorption medium and heats the heating medium with the absorption heat, the regenerator that takes the regeneration heat from the cold medium and separates the refrigerant vapor from the absorption medium, and compresses the refrigerant vapor. A regeneration path having a compressor, a circulation path for an absorption medium circulating between the absorber and the regenerator, and a refrigerant path for compressing the refrigerant vapor of the regenerator by the compressor and transferring it to the absorber. An evaporator having a heat exchange relationship with the same cooling medium that flows in the path of the cooling medium that extracts the cooling action of the cooler to the outside is provided, and the cooling medium is cooled so that the cooling medium can selectively flow through the regenerator or the evaporator. The medium path is connected to an external cooling medium connection port via an on-off valve, and a condenser having a heat exchange relationship with the absorption medium in the regenerator is provided, and the condenser is compressed by the compressor. The refrigerant vapor is condensed by the path and the condenser that branches and guides it. A path for guiding the refrigerant to the refrigerant storage space is provided, the refrigerant storage space is connected to the evaporator, an absorption medium storage space for storing the absorption medium concentrated in the regenerator is provided, and the absorption medium storage space is connected to the generator. In the heat pump configured to connect, connect the absorption medium storage space to the absorption medium circulation path exiting the regenerator via an on-off valve, and connect the refrigerant space of the evaporator to the absorber. The discharge path is divided into a first path and a second path, the first path is connected to the condenser via a first valve, and the second path is a second path. The compressor is connected to the absorber via a valve, the regenerator is provided with a pressure detector, and a control mechanism for adjusting the opening of the second valve is provided by a signal of the pressure detector, and the compressor Is operated to compress the refrigerant vapor of the regenerator and open the first valve. When the refrigerant is condensed in the condenser, the pressure of the regenerator is detected. When the pressure of the regenerator increases, the second valve is opened, and when the pressure of the regenerator decreases, the second pressure is opened. A part of the refrigerant compressed by adjusting the opening degree of the second valve so as to close the second valve is introduced into the absorber and absorbed. Therefore, when performing the heat storage operation and the operation method of concentrating the absorption medium in the operation method for maintaining the heat storage, the absorber is operated, and the heat input from the outside to the heat pump is used as the absorption heat to the heat medium (hot water) of the absorber. By discharging, it is possible to obtain hot water at an appropriate temperature for desiccant regeneration, and it is possible to obtain the effect of not increasing the operating pressure of the heat pump, so it has a multi-function, highly reliable and inexpensive heat storage function In addition, it is possible to provide a heat pump and a desiccant air-conditioning system, and further, a natural refrigerant such as a water-ammonia-based absorption working medium can be used.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a heat pump according to the present invention will be described with reference to FIGS.
[0015]
FIG. 1 is a diagram showing a basic configuration of a heat pump embodying the present invention, and FIG. 2 is a diagram showing a basic configuration of a desiccant air conditioner combined with the heat pump of FIG. In FIG. 1, a heat pump embodying the present invention absorbs refrigerant vapor with an absorbing medium and heats a heating medium (warm water) with absorbed heat through a heat transfer tube 30 and regenerative heat through a heat transfer tube 32. A regenerator 2 for separating the refrigerant vapor from the medium (cold water) and separating the refrigerant vapor from the absorption medium; a heat exchanger 5 for the absorption medium; and a compressor 7 for compressing the refrigerant vapor. A heat pump having absorption medium circulation paths 21, 22, 23, 24, 25, and 26 that circulate between them, and a discharge path of the compressor 7 that sends the refrigerant obtained by compressing the refrigerant vapor of the regenerator 2 by the compressor 7 is a first. The first path 43 is connected to the condenser 4 via the first valve 56, and the second path 42 is further connected to the second valve 55. The regenerator 2 is cooled by the heat transfer tube 32. An evaporator 3 having a heat exchange relationship is provided via the heat transfer pipe 31 and the same cooling medium that flows through the paths 62 and 63 of the cooling medium taken out to the outside, and the cooling medium is the regenerator 2 or the evaporation medium. The cooling medium passages 62 and 63 are connected via the on-off valves 70 and 71, and the passages 67 and 68 are connected to the cooling medium connection ports 72 and 73 and the passages 64 and 65 so that the vessel 3 can selectively flow. 60 and 61, and further provided with a condenser 4 in a heat exchange relationship with the absorption medium in the regenerator 2, and further provided with a path 44 for guiding the condensed refrigerant to the refrigerant storage space 14. Further, the refrigerant storage space 14 is connected to the evaporator 3 via the refrigerant path 45, the valve 52, and the refrigerant path 46, and an absorption medium storage space 12 for storing the absorption medium concentrated in the regenerator 2 is further provided. Medium storage space 12 Is connected to the generator 2 via a path 27, an on-off valve 51 and a path 28, and further through the absorption medium storage space 12 and the absorption medium circulation path 21 and path 29 exiting the regenerator, via a three-way valve 50. And the refrigerant space of the evaporator 3 is connected to the absorber 1 via the path 47. Further, the regenerator 2 is provided with a pressure detector 91, and the signal from the pressure detector 91 A control mechanism 90 for adjusting the opening degree of the second valve 55 is provided, the compressor 7 is operated to compress the refrigerant vapor of the regenerator 2, and the first valve 56 is opened to allow the refrigerant to pass through the condenser 4. When the pressure in the regenerator increases, the second valve 55 is opened. When the pressure in the regenerator 2 decreases, the second valve is detected. A part of the refrigerant compressed by adjusting the opening degree of the second valve 55 so as to close 55 is an absorber. It is obtained by adapted to introduce absorbed.
[0016]
The desiccant air conditioner shown in FIG. 2 is supplied from the heat pump shown in FIG. 1 through the cold water passage (cold water) and the hot medium (hot water) through the cold water passages 60 and 61 and the hot water passages 80 and 81, respectively. Connected to the machine and configured to circulate.
[0017]
The desiccant air conditioner of FIG. 2 is configured as follows. The air-conditioned space 101 is connected to the suction port of the processing air blower 102 via the path 107, the discharge port of the blower 102 is connected to the desiccant rotor 103 via the path 108, and the processing air outlet of the desiccant rotor 103 is the regeneration air Is connected to the sensible heat exchanger 104 having a heat exchange relationship with the sensible heat exchanger 104 via the path 109, and the outlet of the processing air of the sensible heat exchanger 104 is connected to the chilled water heat exchanger 115 via the path 110. The processing air outlet of the humidifier 115 is connected to the humidifier 105 via a path 119, and the processing air outlet of the humidifier 105 is connected to the conditioned space 101 via a path 111 to form a processing air cycle. On the other hand, the regeneration air path connects the outside air to the suction port of the regenerative air blower 140 via the path 124, and the discharge port of the blower 140 connects to the sensible heat exchanger 104 that has a heat exchange relationship with the processing air. The regenerative air outlet of the sensible heat exchanger 104 is connected to the low temperature side inlet of another sensible heat exchanger 121 via the path 125, and the low temperature side outlet of the sensible heat exchanger 121 is the hot water heat exchanger. 120 is connected to the regeneration air outlet of the hot water heat exchanger 120 via the passage 127 and the regeneration air outlet of the desiccant rotor 103 is sensible heat exchange. A cycle in which the high temperature side inlet of the heat exchanger 121 is connected via the path 128, and the high temperature side outlet of the sensible heat exchanger 121 is connected to the external space via the path 129 to take in the regenerative air from the outside and exhaust it to the outside. The It is formed. The hot water inlet of the hot water heat exchanger 120 is connected to the outlet 81 of the hot water path of the heat pump via the path 122, and the hot water outlet of the hot water heat exchanger 120 is the inlet of the hot water path of the heat pump via the path 123 and the hot water pump 150. Connect to 80. The cold water inlet of the chilled water heat exchanger 115 is connected to the outlet 61 of the chilled water path of the heat pump via the path 117, and the chilled water outlet of the chilled water heat exchanger 115 is connected to the inlet of the chilled water path of the heat pump via the path 118 and the pump 160. 60 to connect. In the figure, alphabets K to V circled are symbols indicating air states corresponding to those in FIG. 8, SA represents supply air, RA represents return air, OA represents outside air, and EX represents exhaust. .
[0018]
The operation method of the present embodiment will be described below.
[0019]
First, in the case of performing a heat storage operation, such operation is generally performed as a reserve of cooling capacity to cover part of the cooling load during the daytime using late-night power in the summer. In this operation mode, the heat pump is set and operated as shown in FIG. In FIG. 3, the on-off valve 56 is open, and the path 41 and the path 43 communicate with each other. Further, the control valve 55 detects the pressure of the regenerator 2 so as to keep the pressure of the regenerator 2 at a set value by the action of the control mechanism 90, and when the pressure of the regenerator 2 rises, the second valve When the pressure in the regenerator 2 drops, the opening of the second valve is adjusted so that the second valve is closed, and a part of the compressed refrigerant is introduced into the absorber 1 and absorbed. Further, the on-off valve 51 is open, and the absorbent medium storage space 12 and the regenerator 2 are in communication. Further, the valve 52 is closed, and the refrigerant storage space 14 and the evaporator 3 are not in communication. Further, the on-off valves 72 and 73 are closed, and no cold medium (cold water) flows through the evaporator 3. Furthermore, the on-off valves 70 and 71 are closed, and no cold medium (cold water) flows through the regenerator 2. Furthermore, the direction of the path 21 of the three-way valve 50 is closed, and the regenerator 2 and the absorption medium path 22 are not in direct communication. In the air conditioner, the blower 102 is stopped in FIG. 2 and the air supply to the air-conditioned space is stopped. Further, the air blower 140 is operated to continue air blowing so that the desiccant can be regenerated. Furthermore, cold water is stopped and only hot water is operated. Furthermore, the compressor 7 and the solution pump 6 of the heat pump are operated.
[0020]
The operation of the heat pump thus set will be described. When the compressor 7 is operated in FIG. 3, refrigerant vapor is generated from the absorption medium in the regenerator 2, and the refrigerant is compressed and passes through the paths 41 and 43. 2 flows into the condenser 4 in a heat exchange relationship with the heat exchanger 2. The refrigerant is condensed in the condenser 4 by removing heat from the absorption medium of the regenerator 2. At this time, the regeneration heat when the refrigerant vapor is generated from the absorption medium in the regenerator 2 is covered by the condensation heat of the refrigerant, but the condensation heat is generally larger than the regeneration heat because the power of the compressor is applied, Therefore, the absorption medium temperature and pressure in the regenerator 2 tend to increase. However, when the pressure of the absorption medium in the regenerator 2 rises due to the action of the pressure detector 91, the control mechanism 90, and the control valve 55 provided in the regenerator 2, the control valve 55 opens, and refrigerant vapor is supplied to the absorber 1. The excess vapor is sent and absorbed by the absorber 1, and when the pressure of the absorption medium in the regenerator 2 decreases, the control valve 55 is closed, and the refrigerant vapor sent to the absorber 1 is throttled to hold the refrigerant vapor in the regenerator 2. Thus, the pressure of the regenerator 2 can be kept at a set value. The refrigerant vapor sent to the absorber 1 is absorbed by the absorption medium, and the absorption heat is cooled by heat exchange between the absorption medium and the heating medium via the heat transfer tube 30.
[0021]
At this time, the hot water itself is heated by the cooling of the absorption medium and the temperature rises, but the heat is exchanged with the outside air brought about by the action of the blower 140 of the air conditioner in FIG. Is done. At this time, the desiccant rotor 103 is regenerated by regenerated air whose temperature has risen and relative humidity has decreased. The condensed refrigerant is guided and stored in the refrigerant storage space 14 via the path 44. The absorption medium is concentrated in the regenerator 2 and then flows from the regenerator 2 through the path 27, the on-off valve 51 and the path 28, through the absorption medium storage space 12, and into the pump 6 through the path 29 and the absorption medium path 22. Then, after exchanging heat with the absorbing medium returning from the absorber 1 by the heat exchanger 5 through the path 23 by the action of the pump 6, it flows into the absorber 1 through the path 24 and absorbs a part of the refrigerant from the compressor 7. After being slightly diluted, the refrigerant is refluxed to the regenerator 2 through the path 25, the heat exchanger 5, and the path 26, and is circulated through the circulation path. In such an operation method, some of the refrigerant absorbs the refrigerant in the absorber 1 and dilutes the absorption medium, but most of the refrigerant is separated from the same absorption medium and flows into the condenser 4 to be condensed. Therefore, as a whole, the concentration of the absorption medium proceeds, and when the refrigerant is sufficiently stored in the refrigerant storage space 14, the operation in this operation mode is stopped and the operation mode is shifted to the next operation mode.
[0022]
The heat storage process by concentration of the absorption medium so far will be described with reference to FIG. FIG. 4 is a Düring diagram showing the process of concentration of the absorbing medium. In FIG. 4, the absorbing medium in the regenerator 2 is in a state C, and the refrigerant vapor (state E) is separated by the action of the compressor 7. The separated refrigerant is compressed (state F), most of which is sent to the condenser 4 and condensed (state G), and the remaining part is decompressed via the control valve 55 and sent to the absorber 1 to be absorbed by the absorption medium. (State A). The absorption medium circulating in the absorption medium path exits the regenerator 2 (state C) and is heated by the heat exchanger (state D), flows into the absorber 1 and absorbs the refrigerant vapor (state A), and then exchanges heat. It is cooled by the regenerator (state B) and returns to the regenerator 2 again. The condensation heat at the time of condensation heats the absorption medium in the regenerator 2 to cover the regeneration heat. Also, the absorbed heat at the time of absorption is cooled by warm water (80 ° C. in the figure), transferred to an air conditioner, and used for regeneration of the desiccant. In this operation method, cold water is not produced, and as described above, hot water is produced and used for heating the regeneration air of the desiccant, and the hot water is cooled and returned to the heat pump. When this operation mode ends, the condensed refrigerant (state G) and the concentrated absorption medium (state C) are stored in the storage spaces.
[0023]
In this operation method, if the supply of the compressed refrigerant vapor sent from the second path to the absorber 1 is stopped, the heat input (compressor power) to the heat pump is gradually accumulated, and the absorption medium temperature rises. Finally, when the temperature of the absorption medium in the absorber 1 becomes equal to or higher than the hot water temperature (80 ° C. or higher in the figure), heat dissipation to the hot water starts to be performed. At this time, the absorption medium temperatures of the absorber 1 and the regenerator 2 are almost the same because no heat is radiated to the outside, so that the temperature of the regenerator 2 rises to near the temperature of hot water. Since the regeneration heat of the regenerator 2 is transmitted from the condenser 4 as described above, the condensation temperature also rises above the hot water temperature. In order to regenerate the desiccant, the hot water temperature needs to be 60 to 80 ° C. Therefore, the condensation temperature rises to about 80 ° C., and the condensation pressure at that time is 42 kg / cm. 2 As a result, the pressure ratio of the compressor becomes abnormally high, and the wall pressure of the devices becomes extremely thick in order to secure the pressure resistance of the component devices, resulting in a high pressure that is not suitable for practical use. However, according to the present invention, the internal pressure is 20 kg / cm by introducing the refrigerant into the absorber 1 using the second path as in this operation method. 2 The following can be suppressed. As described above, according to the present invention, the heat storage operation can be performed while suppressing the increase in the internal pressure of the heat pump. The operation method according to the embodiment of FIG. 3 can obtain a heat storage action, that is, a storage action of the cooling action by separating the refrigerant from the absorption medium and storing it in the form of concentration potential in the operation method shown in FIG. 7 described later. I will explain it again. In this operation method, only the desiccant is regenerated by warm water in the air conditioner. This operation will be described below.
[0024]
In FIG. 2, hot water flows into the air conditioner from the heat pump via a path 81. In this operation method, the outside air is taken in via the path 124 and flows into the sensible heat exchanger 104 by the action of the blower 140, but the sensible heat exchanger 104 stops the processing air system that circulates in the conditioned space. Therefore, it does not act, and therefore it flows into another sensible heat exchanger 121 via the path 125 without changing its temperature, and heat exchanges with the regenerated air after regeneration of the desiccant to increase the temperature, and then hot water heat exchange via the path 126 It flows into the vessel 120, where it is heated by warm water and the temperature rises and the relative humidity decreases. The regenerative air that has exited the hot water heat exchanger 120 flows into the sensible heat exchanger 121 via the path 128 to reheat the regenerated air, and is then exhausted to the outside via the path 129.
[0025]
Thus, according to the present invention, the desiccant of the stopped air conditioner can be simultaneously regenerated during the heat storage operation. Thermal storage operation is normally performed at midnight, and the relative humidity often increases due to a decrease in temperature at midnight in the summer. Therefore, if the desiccant is left in contact with such outside air, the desiccant absorbs moisture. The ability to start cooling the next morning may be insufficient, but performing regeneration of the desiccant in this way at the same time as late-night heat storage has the effect of smoothly showing the ability at the start of operation the next day. is there.
[0026]
Next, an operation method and an operation in the case where the cooling operation is performed while holding the heat storage by using the heat storage together will be described. Such operation is for performing cooling operation without using much heat storage in preparation for full-scale cooling operation during the day, after the heat storage is completed using midnight power. Normally, the cooling load is the largest during the time period from noon to 4:00 pm, and it is effective to use heat storage intensively during that time period. Is effective as a whole.
[0027]
In this operation method, the heat pump is set and operated as shown in FIG. In FIG. 5, the on-off valve 56 is open, and the path 41 and the path 43 communicate with each other. Further, the control valve 55 detects the pressure of the regenerator 2 so as to keep the pressure of the regenerator 2 at a set value by the action of the control mechanism 90, and when the pressure of the regenerator 2 rises, the second valve When the pressure in the regenerator 2 drops, the opening of the second valve is adjusted so that the second valve is closed, and a part of the compressed refrigerant is introduced into the absorber 1 and absorbed. Further, the on-off valve 51 is opened, and the absorbent medium storage space 12 and the regenerator 2 are in communication. Further, the valve 52 is open, and the refrigerant is sent from the refrigerant storage space 14 to the evaporator 3. Further, the on-off valves 72 and 73 are opened, and a cold medium (cold water) is passed through the evaporator 3. Further, the on-off valves 70 and 71 are closed, and the cold medium (cold water) does not flow into the regenerator 2. Furthermore, the direction of the path 21 of the three-way valve 50 is closed, and the regenerator 2 and the absorption medium path 22 are not in direct communication. Further, the compressor 7 and the solution pump 6 of the heat pump are operated, and the air conditioner is operated.
[0028]
The operation of the heat pump set in this way will be described. When the compressor 7 is operated in FIG. 5, refrigerant vapor is generated from the absorption medium in the regenerator 2, and the refrigerant is compressed and passes through the paths 41 and 43. 2 flows into the condenser 4 in a heat exchange relationship with the heat exchanger 2. The refrigerant is condensed in the condenser 4 by removing heat from the absorption medium of the regenerator 2. At this time, the regeneration heat when the refrigerant vapor is generated from the absorption medium in the regenerator 2 is covered by the condensation heat of the refrigerant, but the condensation heat is generally larger than the regeneration heat because the power of the compressor is applied, Therefore, the absorption medium temperature and pressure in the regenerator 2 tend to increase. However, when the pressure of the absorption medium in the regenerator 2 rises due to the action of the pressure detector 91, the control mechanism 90, and the control valve 55 provided in the regenerator 2, the control valve 55 opens, and refrigerant vapor is supplied to the absorber 1. The excess vapor is sent and absorbed by the absorber 1, and when the pressure of the absorption medium in the regenerator 2 decreases, the control valve 55 is closed, and the refrigerant vapor sent to the absorber 1 is throttled to hold the refrigerant vapor in the regenerator 2. Thus, the pressure of the regenerator 2 can be kept at a set value.
[0029]
There is another refrigerant flow in this mode of operation. Refrigerant is supplied to the evaporator 3 from the refrigerant storage space 14 (the valve 52 may be provided with a flow rate adjusting mechanism such as a temperature type expansion valve or float valve). The refrigerant evaporates due to the suction action of the refrigerant vapor. At that time, the cold water is cooled by removing heat of evaporation from the refrigerant through the heat transfer pipe 31. The refrigerant evaporated in the evaporator 3 flows into the absorber 1 through the path 47 and is absorbed. In the absorber 1, the refrigerant flowing from the evaporator 3 via the path 47 and the refrigerant compressed from the regenerator 2 by the compressor 7 and flowing via the path 42 are absorbed by the absorbing medium, and the absorbed heat is absorbed by the absorbing medium and the heating medium. (Hot water) is cooled by exchanging heat through the heat transfer tube 30. At this time, the hot water is heated by itself by cooling the absorption medium, and the temperature rises. However, the heat is exchanged with the regenerated air brought about by the action of the air conditioner blower 140 in FIG. Used for air heating. The refrigerant compressed by the compressor 7 and condensed by the condenser 4 is guided to the refrigerant storage space 14 via the path 44. The absorbing medium flows from the regenerator 2 through the path 27, the on-off valve 51 and the path 28, through the absorbing medium storage space 12, into the pump 6 through the path 29 and through the path 22 of the absorbing medium. After exchanging heat with the absorbing medium returning from the absorber 1 by the heat exchanger 5 via the path 23, the refrigerant flows from the compressor 7 and the evaporator 3 through the path 24 and flows into the absorber 1 and is diluted. 25, the heat exchanger 5 and the path 26 are returned to the regenerator 2 to circulate through the circulation path.
[0030]
The process of the action of the heat pump in the conventional operation method will be described with reference to FIG. FIG. 6 is a Duhring diagram showing the process of operation of the heat pump. In FIG. 6, the absorbing medium in the regenerator 2 is in the state C, and the refrigerant vapor (state E) is separated by the action of the compressor. The separated refrigerant is compressed (state F), most of which is sent to the condenser 4 and condensed (state G), and the remaining part is decompressed via the control valve 55 and sent to the absorber 1 to be absorbed by the absorption medium. However, the operation by this compressor is the operation by the same cycle as the heat storage operation described above, and the absorbing medium is subjected to the concentration operation in the regenerator 2. In the evaporator 3, the refrigerant evaporates due to the suction action of the refrigerant vapor from the absorber 1 (state H).
[0031]
The evaporated refrigerant flows into the absorber through the path 47 and is absorbed (state A), and the operation by this absorber is the same operation as the operation by the known absorption refrigeration cycle, and the absorption medium undergoes dilution in the absorber. In the evaporator, the cold water is cooled by removing the heat of evaporation from the cold water during the evaporation. The cooled cold water is transferred to an air conditioner and used for cooling and cooling the processing air. The absorption medium circulating in the absorption medium path exits the regenerator 2 (state C) and is heated by the heat exchanger (state D), flows into the absorber 1 and flows from the compressor and from the evaporator. Are simultaneously absorbed (state A), cooled by a heat exchanger (state B), and returned to the regenerator again. Also, the absorbed heat at the time of absorption is cooled by warm water (80 ° C. in the figure), transferred to an air conditioner, and used for regeneration of the desiccant. As described above, in the second operation mode, the heat pump can simultaneously cool the cold water and heat the hot water while simultaneously concentrating and diluting the absorption medium.
[0032]
In this operation method, if the supply of the compressed refrigerant vapor sent from the second path to the absorber 1 is stopped, only the absorber 1 exists as a device that can release heat from the heat pump to the outside. The heat input to the compressor (compressor power) is gradually accumulated in the absorption medium, the absorption medium temperature rises, and finally the temperature of the absorption medium in the absorber 1 exceeds the hot water temperature (80 ° C. or more in the figure). At that point, heat is released to the hot water. At this time, the absorption medium temperatures of the absorber 1 and the regenerator 2 are almost the same because no heat is radiated to the outside, so that the temperature of the regenerator 2 rises to near the temperature of hot water. Since the regeneration heat of the regenerator 2 is transmitted from the condenser 4 as described above, the condensation temperature also rises above the hot water temperature. In order to regenerate the desiccant, the hot water temperature needs to be 60 to 80 ° C. Therefore, the condensation temperature rises to about 80 ° C., and the condensation pressure at that time is 42 kg / cm. 2 As a result, the pressure ratio of the compressor becomes abnormally high, and the wall pressure of the devices becomes extremely thick in order to secure the pressure resistance of the component devices, resulting in a high pressure that is not suitable for practical use. However, according to the present invention, the internal pressure is 20 kg / cm by introducing the refrigerant into the absorber 1 using the second path as in the present operation method. 2 The following can be suppressed. As described above, according to the present invention, the heat storage operation can be performed while suppressing the increase in the internal pressure of the heat pump.
[0033]
The cold / hot water produced by the heat pump in this way is sent to the air conditioner and performs the cooling action as follows. In FIG. 2, the air in the room 101 to be air-conditioned (process air) is sucked into the blower 102 through the passage 107, pressurized, and sent to the desiccant rotor 103 through the passage 108, and moisture in the air is absorbed by the desiccant rotor hygroscopic agent. Adsorption reduces absolute humidity. During adsorption, the temperature of the air rises due to the heat of adsorption. The air whose humidity has decreased and its temperature has risen is sent to the sensible heat exchanger 104 via the path 109 and is cooled by exchanging heat with the outside air (regenerated air). The cooled air is sent to the cold water heat exchanger 115 via the path 110 and further cooled. The cooled processing air is sent to the humidifier 105 and the temperature is lowered in the isenthalpy process by water jetting or vaporization type humidification, and is returned to the conditioned space 101 via the path 111.
[0034]
Since the desiccant rotor has adsorbed moisture in this process, regeneration is necessary. In this embodiment, the outside air is used as regeneration air as follows. The outside air (OA) is sucked into the blower 140 via the path 124, is pressurized and sent to the sensible heat exchanger 104, cools the processing air, and rises in temperature by itself, and passes through the path 125 to the next sensible heat exchanger 121. The heat rises by exchanging heat with the hot air after regeneration. Furthermore, the regenerative air that has exited the sensible heat exchanger 121 flows into the hot water heat exchanger 120 via the path 126 and is heated by the hot water to rise in temperature to 60 to 80 ° C., thereby reducing the relative humidity. The regenerated air that has exited the hot water heat exchanger 120 and has a reduced relative humidity passes through the desiccant rotor 103 to remove the moisture in the desiccant rotor and regenerates the air. The regenerated air that has passed through the desiccant rotor 103 flows into the sensible heat exchanger 121 via the path 128, and after regenerating the regenerated air before regeneration, the regenerated air is discarded to the outside via the path 129. Thus, a normal cooling operation can be performed by combining the heat pump of the present invention with a desiccant air conditioner. The operation of such a desiccant air conditioner is the same as that of the conventional example shown in FIG. 9 except that the heat source for cooling and heating is transmitted from cold water and hot water instead of the refrigerant. Since the Mollier diagram is applicable, description of the action on the Mollier diagram is omitted.
[0035]
Thus, according to the operation method of FIG. 5, since the cooling operation can be performed while simultaneously performing the concentration and dilution of the absorption medium, the concentration of the absorption medium stored in the heat storage operation can be minimized. Cooling operation can be performed while maintaining heat storage.
[0036]
Next, an operation method and an operation in the case of performing the cooling operation without consuming the heat storage and operating the compressor by the operation method of FIG. 7 will be described. Such an operation is for performing cooling operation by turning off the power of the compressor as a peak cut of electric power during the daytime. Normally, the cooling load is the largest during the time period from noon to 4:00 pm, and it is effective to use heat storage intensively during the time period. Therefore, the operation in the main operation mode is effective.
[0037]
In the operation method of FIG. 7, the heat pump is set and operated as follows. In FIG. 7, the on-off valve 56 is closed, and the path 41 and the path 43 do not communicate with each other. Further, the control valve 55 is completely closed by cutting off the control mechanism 90, and the on-off valve 51 is open, so that the absorbent medium storage space 12 and the regenerator 2 are in communication. Further, the valve 52 is open, and the refrigerant is sent from the refrigerant storage space 14 to the evaporator 3. Further, the on-off valves 72 and 73 are opened, and a cold medium (cold water) is passed through the evaporator 3. Further, the on-off valves 70 and 71 are closed, and the cold medium (cold water) does not flow into the regenerator 2. Furthermore, the direction of the path 21 of the three-way valve 50 is closed, and the regenerator 2 and the absorption medium path 22 are not in direct communication. Further, the compressor 7 of the heat pump is stopped, the solution pump 6 is operated, and the air conditioner is operated.
[0038]
The operation of the heat pump thus set will be described. In FIG. 7, the evaporator 3 is supplied with refrigerant from the refrigerant storage space 14 (the valve 52 is equipped with a flow rate adjusting mechanism such as a temperature expansion valve or a float valve). In the evaporator 3, the refrigerant evaporates due to the suction action of the refrigerant vapor from the absorber 1. At that time, the cold water is cooled by removing heat of evaporation from the refrigerant through the heat transfer pipe 31. The refrigerant evaporated in the evaporator 3 flows into the absorber 1 through the path 47 and is absorbed. In the absorber 1, the refrigerant flowing from the evaporator 3 through the path 47 is absorbed by the absorption medium, and the absorption heat is transferred to the hot water through heat exchange between the absorption medium and the hot water via the heat transfer pipe 30.
[0039]
At this time, the hot water is heated by itself by cooling the absorption medium, and the temperature rises. However, the heat is exchanged with the regenerated air brought about by the action of the air conditioner blower 140 in FIG. Used for air heating. The absorbing medium flows from the regenerator 2 through the path 27, the on-off valve 51 and the path 28, through the absorbing medium storage space 12, and flows into the pump 6 through the path 29 and the absorbing medium path 22. After the heat exchange with the absorption medium returning from the absorber 1 through the heat exchanger 5 through the heat exchanger 5, the refrigerant flows into the absorber 1 through the path 24, absorbs the refrigerant from the evaporator 3, is diluted, and then the path 25, the heat exchanger 5. Then, it returns to the regenerator 2 through the path 26 and circulates in the circulation path. In this case, the regenerator 2 does not concentrate the absorption medium, so the absorption medium simply passes through the regenerator 2. The diluted absorption medium flows into the absorption medium storage space 12 and gradually dilutes the absorption medium stored inside.
[0040]
The process of the operation of the heat pump in the operation method of FIG. 7 will be described with reference to FIG. FIG. 8 is a Duhring diagram showing the process of operation of the heat pump. In FIG. 8, the absorbing medium in the absorbing medium storage space 12 is normally stored in a C state (in the figure, the refrigerant concentration of the absorbing medium is 20%) having a sufficient absorbing capacity at the start of this operation method. When the absorbing medium (aqueous ammonia solution) in this state is sent to the absorber 1 by the action of the pump 6 and heat exchanged with hot water of about 75 ° C., the absorbing action that can evaporate the refrigerant (ammonia) at about 10 ° C. is achieved. Is generated, absorbs the refrigerant (state A), is diluted, and returns to the absorption medium storage space 12 through the regenerator 2. Since the absorption medium storage space 12 has a large amount of absorption medium, the absorption medium is gradually diluted by the absorption medium returning from the absorber 1 and finally the absorption temperature is reduced to the point when the refrigerant concentration is diluted to 30%. The operation can be continued until it gradually begins to decline. By storing the absorption medium and the refrigerant in the absorption medium storage space 12 and the refrigerant storage space 14 in this way, a heat storage effect of cold and warm is obtained.
[0041]
In the evaporator 3, the refrigerant evaporates due to the suction action of the refrigerant vapor from the absorber 1 (state H). The evaporated refrigerant flows into the absorber through the path 47 and is absorbed (state A), and the operation of this absorber is the same operation as that of the known absorption refrigeration cycle, and the absorption medium is diluted. In the evaporator, the cold water is cooled by removing the heat of evaporation from the cold water during the evaporation. The cooled cold water is transferred to an air conditioner and used for cooling and cooling the processing air. Also, the absorbed heat at the time of absorption is cooled by warm water (80 ° C. in the figure), transferred to an air conditioner, and used for regeneration of the desiccant. Thus, in the third operation mode, the heat pump can simultaneously perform both the cooling of the cold water and the heating of the hot water without operating the compressor by the action of the absorbing medium stored in the form of the concentration potential. .
[0042]
The cold / hot water produced by the heat pump in this way is sent to the air conditioner and performs the cooling action as follows. In FIG. 2, air (processed air) in the room 101 to be air-conditioned is sucked into the blower 102 through the passage 107, pressurized and sent to the desiccant rotor 103 through the passage 108, and moisture in the air is absorbed by the desiccant rotor's moisture absorbent. Adsorption reduces absolute humidity. During adsorption, the temperature of the air rises due to the heat of adsorption. The air whose humidity has decreased and its temperature has risen is sent to the sensible heat exchanger 104 via the path 109 and is cooled by exchanging heat with the outside air (regenerated air). The cooled air is sent to the cold water heat exchanger 115 via the path 110 and further cooled. The cooled processing air is sent to the humidifier 105 and the temperature is lowered in the isenthalpy process by water jetting or vaporization type humidification, and is returned to the conditioned space 101 via the path 111.
[0043]
Since the desiccant rotor has adsorbed moisture in this process, regeneration is necessary. In this embodiment, the outside air is used as regeneration air as follows. The outside air (OA) is sucked into the blower 140 via the path 124, is pressurized and sent to the sensible heat exchanger 104, cools the processing air, and rises in temperature by itself, and passes through the path 125 to the next sensible heat exchanger 121. The heat rises by exchanging heat with the hot air after regeneration. Further, the regenerative air that has exited the sensible heat exchanger 121 flows into the hot water heat exchanger 120 via the path 126 and is heated by the hot water to rise in temperature to 60 to 80 ° C., and the relative humidity is lowered. The regenerated air that has exited the hot water heat exchanger 120 and has a reduced relative humidity passes through the desiccant rotor 103 to remove the moisture in the desiccant rotor and regenerates it. The regenerated air that has passed through the desiccant rotor 103 flows into the sensible heat exchanger 121 via the path 128, and after regenerating the regenerated air before regeneration, the regenerated air is discarded to the outside via the path 129. Thus, a cooling operation can be performed by combining the heat pump of the present invention with a desiccant air conditioner. The operation of such a desiccant air conditioner is the same as that of the conventional example shown in FIG. 9 except that the heat source for cooling and heating is transmitted from cold water and hot water instead of the refrigerant. Since the Mollier diagram is applicable, description of the action on the Mollier diagram is omitted.
[0044]
Thus, according to the operation method of FIG. 7, since the cooling operation can be performed while diluting the stored absorption medium, the cooling operation can be performed without operating the compressor. Therefore, the operation method of FIG. 3 has a heat storage effect.
[0045]
As described above, according to the present invention, by storing the concentrated absorption medium and the refrigerant, both the cooling action and the heating action are stored in the form of the concentration potential of the absorption medium, and when taking out the heat storage, the cooling action and It can be taken out at the same time as both heating effects, and when operating to concentrate and store heat in the absorption medium, heat input from the outside to the heat pump is activated to the heat medium (hot water) of the absorber By discharging, it is possible to obtain hot water having an appropriate temperature for desiccant regeneration and to obtain an effect of not increasing the operating pressure of the heat pump.
[0046]
【The invention's effect】
As described above, according to the present invention, as an operation for storing both the cooling action and the heating action in the form of the concentration potential of the absorption medium, during the heat storage operation or the operation of cooling while holding the heat storage, By introducing a part of the compressed refrigerant to the absorber and heating the thermal medium (hot water) of the absorber by the absorption action, obtaining hot water at an appropriate temperature for desiccant regeneration, and suppressing the increase in the internal pressure of the heat pump Thus, it is possible to provide a heat pump having a heat storage function that is multifunctional, highly reliable, and inexpensive.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a basic configuration of an embodiment of a heat pump according to the present invention.
FIG. 2 is an explanatory diagram showing a basic configuration of an embodiment of a desiccant air conditioner for carrying out the present invention.
FIG. 3 is an explanatory view showing a first operation method of the heat pump according to the present invention.
4 is an explanatory diagram showing a cycle of the heat pump of FIG.
FIG. 5 is an explanatory view showing a second operation method of the heat pump according to the present invention.
6 is an explanatory diagram showing a cycle of the heat pump in FIG.
FIG. 7 is an explanatory view showing a third operation method of the heat pump according to the present invention.
FIG. 8 is an explanatory diagram showing a cycle of the heat pump of FIG.
FIG. 9 is an explanatory diagram showing a basic configuration of a conventional desiccant air conditioner.
FIG. 10 is an explanatory diagram showing a Desiccant air conditioning cycle of air in a conventional desiccant air conditioner in a Mollier diagram.
[Explanation of symbols]
1 ... Absorber
2 ... Regenerator
3. Evaporator
4 ... Condenser
5 ... Heat exchanger
6 ... Solution pump
7 ... Compressor
12 ... Absorbing medium storage space
14 ... Refrigerant storage space
21 ... Absorption medium (solution) path
22 ... Absorption medium (solution) path
23 ... Absorption medium (solution) path
24 ... Absorption medium (solution) path
25 ... Absorption medium (solution) path
26 ... Absorption medium (solution) path
27 ... Absorption medium (solution) path
28 ... Absorption medium (solution) path
29 ... Absorption medium (solution) path
30 ... Heat transfer tube (hot water)
31 ... Heat transfer tube (cold water)
32 ... Heat transfer tube (cold water)
40: Refrigerant path
41 ... Refrigerant path
42 ... Refrigerant path
43 ... Refrigerant path
44 ... Refrigerant path
45 ... Refrigerant path
46 ... Refrigerant path
50 ... 3-way valve
51 ... Valve
52 ... Valve
53 ... 3-way valve
55 ... Control valve
56 ... Valve
60 ... cold water route
61 ... cold water route
62 ... Cold water path
63 ... Cold water path
64 ... cold water route
65 ... cold water route
70 ... Valve
71 ... Valve
72 ... Valve
73 ... Valve
80 ... Warm water route
81 ... Warm water path
90 ... Control mechanism
91 ... Pressure detector
92 ... Control signal path
93 ... Control signal path
101 ... Air-conditioned space
102 ... Blower
103 ... Desiccant rotor
104 ... Sensible heat exchanger
105 ... Humidifier
106 ... water supply pipe
107 ... Air path
108 ... Air path
109 ... Air path
110 ... Air path
111 ... Air path
115 ... cold water heat exchanger
117 ... Cold water path
118 ... Cold water path
119 ... Air path
120 ... Hot water heat exchanger
121 ... Sensible heat exchanger
122 ... hot water route
123 ... hot water route
124 ... Air path
125 ... Air path
126 ... Air path
127 ... Air path
128 ... Air path
129 ... Air path
130 ... Air path
140 ... Blower
150 ... Hot water pump
160 ... cold water pump
201: Refrigerant path
202 ... Refrigerant path
203 ... Refrigerant path
204: Refrigerant path
220 ... Condenser
240 ... Evaporator
250 ... Expansion valve
260 ... Compressor
a: Absorption medium cycle state point
b: Absorption medium cycle state point
c: Absorption medium cycle state point
d: Absorption medium cycle state point
e ... Absorption medium cycle state point
f: Absorption medium cycle state point
A: Absorption medium cycle state point
B: Absorption medium cycle state point
C: Absorption medium cycle state point
D: Absorption medium cycle state point
E: Absorption medium cycle state point
F: Absorption medium cycle state point
K ... Air condition point of desiccant air conditioning
L ... Air condition point for desiccant air conditioning
M: Air condition point for desiccant air conditioning
N ... Air condition point of desiccant air conditioning
P ... Air condition point for desiccant air conditioning
Q ... Air condition point for desiccant air conditioning
R ... Air condition point for desiccant air conditioning
S ・ ・ ・ Air condition point of desiccant air conditioning
T ・ ・ ・ Air condition point of desiccant air conditioning
U ... Air condition point for desiccant air conditioning
V ... Air condition point of desiccant air conditioning
X ... Air condition point of desiccant air conditioning
SA ... Air supply
RA ... Return
EX ... Exhaust
OA ... Outside air
ΔQ ... Cooling effect

Claims (3)

吸収器と再生器と圧縮機とを有し、吸収器と再生器との間を循環する吸収媒体の経路および再生器の冷媒蒸気を圧縮機で圧縮して吸収器に移送する冷媒経路を有し、前記再生器の冷却作用を外部に取り出す熱媒体と熱交換関係にある蒸発器を設け、前記再生器内の吸収媒体と熱交換関係にある凝縮器を設け、前記圧縮機で圧縮した冷媒蒸気を該凝縮器に導き凝縮した冷媒を貯蔵する冷媒貯蔵空間を設け、再生器で濃縮した吸収媒体を貯蔵する吸収媒体貯蔵空間を設け、前記蒸発器の冷媒空間を前記冷媒貯蔵空間および前記吸収器に接続したヒートポンプの運転方法において、前記圧縮機を運転して前記再生器の冷媒蒸気を圧縮して前記凝縮器で冷媒を凝縮させる際に、圧縮した一部の冷媒を吸収器に導入し吸収させることを特徴とするヒートポンプの運転方法。It has an absorber, a regenerator, and a compressor, and has a path for an absorbing medium that circulates between the absorber and the regenerator, and a refrigerant path that compresses the refrigerant vapor of the regenerator by the compressor and transfers it to the absorber. And a refrigerant having a heat exchange relationship with a heat medium for extracting the cooling action of the regenerator to the outside, a condenser having a heat exchange relationship with an absorption medium in the regenerator, and a refrigerant compressed by the compressor A refrigerant storage space is provided for storing the condensed refrigerant by introducing the vapor into the condenser, an absorption medium storage space for storing the absorption medium concentrated by the regenerator is provided, and the refrigerant space of the evaporator is the refrigerant storage space and the absorption When operating the compressor to compress the refrigerant vapor of the regenerator and condense the refrigerant with the condenser in the operation method of the heat pump connected to the condenser, a part of the compressed refrigerant is introduced into the absorber. Heat characterized by absorbing Method of operating a pump. 冷媒蒸気を吸収媒体で吸収する吸収器と冷媒蒸気を吸収媒体から分離する再生器と冷媒蒸気を圧縮する圧縮機を有し、該吸収器と該再生器との間を循環する吸収媒体の循環経路および再生器の冷媒蒸気を圧縮機で圧縮して吸収器に移送する冷媒経路を有し、前記再生器の冷却作用を外部に取り出す熱媒体と熱交換関係にある蒸発器を設け、前記再生器内の吸収媒体と熱交換関係にある凝縮器を設け、前記圧縮機で圧縮した冷媒蒸気を該凝縮器に導き凝縮した冷媒を貯蔵する冷媒貯蔵空間を設け該冷媒貯蔵空間を前記蒸発器と接続し、再生器で濃縮した吸収媒体を貯蔵する吸収媒体貯蔵空間を設け該吸収媒体貯蔵空間を前記発生器および吸収媒体の循環経路と接続し、前記蒸発器の冷媒空間を前記冷媒貯蔵空間および前記吸収器に接続したヒートポンプにおいて、前記圧縮機の吐出経路は第1の経路と第2の経路に分岐して構成されており、第1の経路は第1の弁を介して前記凝縮器に接続し、さらに第2の経路は第2の弁を介して前記吸収器に接続しており、前記圧縮機を運転して前記再生器の冷媒蒸気を圧縮しかつ第1の弁を開いて前記凝縮器で冷媒を凝縮させる際に、第2の弁開度を調節して圧縮した一部の冷媒を吸収器に導入し吸収させることを特徴とするヒートポンプ。An absorber that absorbs refrigerant vapor with an absorbing medium, a regenerator that separates the refrigerant vapor from the absorbing medium, and a compressor that compresses the refrigerant vapor, and circulation of the absorbing medium that circulates between the absorber and the regenerator A refrigerant path that compresses the refrigerant vapor of the path and the regenerator with a compressor and transfers the refrigerant vapor to an absorber, and is provided with an evaporator that is in a heat exchange relationship with a heat medium that extracts the cooling action of the regenerator to the outside. A condenser having a heat exchange relationship with an absorption medium in the chamber is provided, a refrigerant storage space is provided for storing refrigerant condensed by introducing the refrigerant vapor compressed by the compressor to the condenser, and the refrigerant storage space is connected to the evaporator. An absorption medium storage space for storing the absorption medium concentrated by the regenerator is connected, the absorption medium storage space is connected to the generator and the circulation path of the absorption medium, and the refrigerant space of the evaporator is connected to the refrigerant storage space and Heat connected to the absorber In the pump, the discharge path of the compressor is configured to be branched into a first path and a second path, and the first path is connected to the condenser via a first valve. This path is connected to the absorber via a second valve, the compressor is operated to compress the refrigerant vapor of the regenerator, and the first valve is opened to condense the refrigerant with the condenser. A heat pump characterized in that when the second valve opening is adjusted, a part of the compressed refrigerant is introduced into the absorber and absorbed. 冷媒蒸気を吸収媒体で吸収し吸収熱で温熱媒体を加熱する吸収器と再生熱を冷熱媒体から奪って冷媒蒸気を吸収媒体から分離する再生器と冷媒蒸気を圧縮する圧縮機を有し、該吸収器と該再生器との間を循環する吸収媒体の循環経路および再生器の冷媒蒸気を圧縮機で圧縮して吸収器に移送する冷媒経路を有し、前記再生器の冷却作用を外部に取り出す冷熱媒体の経路を流動するものと同じ冷熱媒体と熱交換関係にある蒸発器を設け、前記冷熱媒体が前記再生器または該蒸発器を選択的に流動できるよう冷熱媒体の経路を開閉弁を介して外部との冷熱媒体の接続口と接続し、前記再生器内の吸収媒体と熱交換関係にある凝縮器を設け、該凝縮器には前記圧縮機で圧縮した冷媒蒸気を分岐して導く経路と凝縮器で凝縮した冷媒を前記冷媒貯蔵空間に導く経路を設け、該冷媒貯蔵空間を前記蒸発器と接続し、再生器で濃縮した吸収媒体を貯蔵する吸収媒体貯蔵空間を設け該吸収媒体貯蔵空間を前記発生器と接続し、前記吸収媒体貯蔵空間を再生器を出た吸収媒体の循環経路と開閉弁を介して接続し、前記蒸発器の冷媒空間を前記吸収器に接続するよう構成したヒートポンプにおいて、前記圧縮機の吐出経路は第1の経路と第2の経路に分岐して構成されており、第1の経路は第1の弁を介して前記凝縮器に接続し、さらに第2の経路は第2の弁を介して前記吸収器に接続しており、前記再生器には圧力検出器を設け、該圧力検出器の信号により第2の弁の開度を調節する制御機構を設けて、前記圧縮機を運転して前記再生器の冷媒蒸気を圧縮しかつ第1の弁を開いて前記凝縮器で冷媒を凝縮させる際に、前記再生器の圧力を検出して、再生器の圧力が上昇する場合には第2の弁を開き、再生器の圧力が降下する場合には第2の弁を閉じるように第2の弁の開度を調節して圧縮した一部の冷媒を吸収器に導入し吸収させることを特徴とするヒートポンプ。An absorber that absorbs the refrigerant vapor with the absorption medium and heats the heating medium with the absorbed heat; a regenerator that takes the regenerative heat from the cold medium and separates the refrigerant vapor from the absorption medium; and a compressor that compresses the refrigerant vapor, There are a circulation path of an absorption medium that circulates between the absorber and the regenerator, and a refrigerant path that compresses the refrigerant vapor of the regenerator by the compressor and transfers it to the absorber. An evaporator having a heat exchange relationship with the same cooling medium as that flowing through the path of the cooling medium to be taken out is provided, and an opening / closing valve is provided for the cooling medium path so that the cooling medium can selectively flow through the regenerator or the evaporator. A condenser having a heat exchange relationship with the absorption medium in the regenerator is provided, and the refrigerant vapor compressed by the compressor is branched and guided to the condenser. The refrigerant condensed in the passage and the condenser is The refrigerant storage space is connected to the evaporator, the absorption medium storage space for storing the absorption medium concentrated by the regenerator is provided, the absorption medium storage space is connected to the generator, and the absorption medium In the heat pump configured to connect the storage space to the absorption medium circulation path exiting the regenerator through an on-off valve and connect the refrigerant space of the evaporator to the absorber, the discharge path of the compressor is the first The first path is connected to the condenser via a first valve, and the second path is connected to the absorber via a second valve. The regenerator is provided with a pressure detector, a control mechanism for adjusting the opening of the second valve according to the signal of the pressure detector is provided, and the compressor is operated to perform the regeneration. The refrigerant vapor in the condenser is compressed and the first valve is opened to draw the refrigerant in the condenser. When contracting, the pressure of the regenerator is detected. When the pressure of the regenerator increases, the second valve is opened, and when the pressure of the regenerator decreases, the second valve is closed. A heat pump characterized in that a part of the refrigerant compressed by adjusting the opening of the second valve is introduced into the absorber and absorbed.
JP00822296A 1996-01-16 1996-01-22 Heat pump and operation method thereof Expired - Fee Related JP3743581B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP00822296A JP3743581B2 (en) 1996-01-22 1996-01-22 Heat pump and operation method thereof
US08/783,042 US5791157A (en) 1996-01-16 1997-01-14 Heat pump device and desiccant assisted air conditioning system
CNB971004250A CN1172127C (en) 1996-01-16 1997-01-16 Heat pump and air-conditioning system using drying-agent for assisting
CNA2004100301908A CN1536280A (en) 1996-01-16 1997-01-16 Heat pump device and air conditioner system using drying agent as auxiliary action
US09/057,588 US5966955A (en) 1996-01-16 1998-04-09 Heat pump device and desiccant assisted air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00822296A JP3743581B2 (en) 1996-01-22 1996-01-22 Heat pump and operation method thereof

Publications (2)

Publication Number Publication Date
JPH09196502A JPH09196502A (en) 1997-07-31
JP3743581B2 true JP3743581B2 (en) 2006-02-08

Family

ID=11687170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00822296A Expired - Fee Related JP3743581B2 (en) 1996-01-16 1996-01-22 Heat pump and operation method thereof

Country Status (1)

Country Link
JP (1) JP3743581B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5978158B2 (en) * 2013-03-21 2016-08-24 株式会社デンソー Air conditioning system
CN103697543A (en) * 2013-12-25 2014-04-02 刘拴强 Air conditioning device capable of treating air heat and humidity load and producing cold water or hot water simultaneously
CN103712291B (en) * 2013-12-25 2017-01-11 刘拴强 Air conditioning device capable of manufacturing coolants or heating media and simultaneously treating air heat loads and humidity loads
CN105650786B (en) * 2016-02-22 2018-09-14 青岛海信电子设备股份有限公司 It is a kind of with water cycle air-conditioning system and water cycle control method

Also Published As

Publication number Publication date
JPH09196502A (en) 1997-07-31

Similar Documents

Publication Publication Date Title
US5791157A (en) Heat pump device and desiccant assisted air conditioning system
US7260945B2 (en) Desiccant-assisted air conditioning system and process
JPH1096542A (en) Air conditioning system
JP2994303B2 (en) Air conditioning system and operating method thereof
JPH09196482A (en) Desiccant air-conditioning apparatus
JP3743581B2 (en) Heat pump and operation method thereof
JPH1026369A (en) Air conditioning system and control method
JPH11132502A (en) Dehumidifying air conditioner system
JP4255056B2 (en) Interconnection system of combined heat source system and air conditioning system
JP3434109B2 (en) Desiccant air conditioner
JP3743580B2 (en) heat pump
JP3743579B2 (en) heat pump
JP3037648B2 (en) Dehumidification air conditioning system
WO1999014538A1 (en) Air conditioning system
JP2971841B2 (en) Air conditioning system
JP2971842B2 (en) Absorption heat pump and air conditioning system using the same as heat source
JP2000329375A (en) Air conditioner, air conditioning/refrigerating system and operating method for air conditioner
JPH09257280A (en) Desiccant air conditioner
JP3434110B2 (en) Desiccant air conditioner
JP2972834B2 (en) Desiccant air conditioner
JPH09196499A (en) Heat pump
JP3765932B2 (en) Dehumidification air conditioner and dehumidification air conditioning system
JPH09318126A (en) Air-conditioning system
JPH1026434A (en) Air conditioning system
JP3480772B2 (en) Absorption heat pump

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees