WO1999013556A1 - Moteur synchrone a aimant permanent - Google Patents

Moteur synchrone a aimant permanent Download PDF

Info

Publication number
WO1999013556A1
WO1999013556A1 PCT/JP1998/003996 JP9803996W WO9913556A1 WO 1999013556 A1 WO1999013556 A1 WO 1999013556A1 JP 9803996 W JP9803996 W JP 9803996W WO 9913556 A1 WO9913556 A1 WO 9913556A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
synchronous motor
magnet synchronous
rotor
stay
Prior art date
Application number
PCT/JP1998/003996
Other languages
English (en)
French (fr)
Inventor
Hiroshi Murakami
Yukio Honda
Shizuka Yokote
Yoshinari Asano
Yukitoshi Wada
Hideo Hirose
Yasuaki Matsushita
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP09242939A external-priority patent/JP3076006B2/ja
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to DE69840793T priority Critical patent/DE69840793D1/de
Priority to EP98941739A priority patent/EP1014541B1/en
Publication of WO1999013556A1 publication Critical patent/WO1999013556A1/ja
Priority to US09/520,149 priority patent/US6940205B1/en
Priority to US11/132,386 priority patent/US7233092B2/en
Priority to US11/797,597 priority patent/US7411329B2/en
Priority to US11/797,594 priority patent/US7408279B2/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems

Definitions

  • the present invention relates to a permanent magnet synchronous motor having a permanent magnet for a field in its mouth, and more particularly to a permanent magnet synchronous motor having a concentrated winding type stay.
  • the combined magnetomotive force waveform is approximated to a sine wave by increasing the number of teeth per stay and adopting a distributed winding method. It is configured to use a rare earth magnet with high demagnetization proof strength and to detect the rotational phase of the mouth with a sensor, and to control the current phase according to the low / high position.
  • the winding efficiency is low due to the complicated winding process, and the rare earth magnet is expensive, and the sensor for detecting the rotational phase is also expensive.
  • a low-cost permanent magnet synchronous motor is divided into two cores 22 (see Fig. 17 (b)) by dividing the stay 21 into each tooth.
  • Insulated paper 28 is wound around the teeth 26 of each split core 22, and a coil wire is wound thereover to form a concentrated winding coil 23.
  • the permanent magnet 25 of the rotor 24 uses an inexpensive ferrite magnet, and the current phase control is the driving current.
  • a method was proposed in which the zero-crossing point of the induced voltage generated in the neutral coil that does not flow through was detected and the 120 ° conduction rectangular wave control was performed.
  • n is a natural number
  • a permanent magnet field of 2 n poles is arranged.
  • each tooth is , Ul, vl, wl, u2,..., V4, w4 coils are sequentially wound.
  • Each coil is connected in series with the U, V, and W phases as shown in Fig. 18 (a), or in parallel as shown in Fig. 18 (b).
  • the distance between the teeth 26, 26 is set to La and the stay 21 to reduce the magnetic flux leakage between the teeth.
  • the air gap between the mouth and the mouth is Lg
  • the length of the permanent magnet 25 of the rotor is set to be uniform at both ends in the circumferential direction.
  • a demagnetizing field is more likely to be applied to the permanent magnets at the start and at the time of step-out. That is, as shown in FIG. 20, a state occurs in which the magnetic pole generated by the stay coil 23 and the magnetic pole of the permanent magnet 25 of the rotor 24 face each other, and a part of the magnetic field generated by the coil 23 is generated.
  • the demagnetizing field 27 causes a breakdown state, resulting in demagnetization.
  • the present invention has been made in view of the above-described conventional problems, and has as its object to provide a permanent magnet synchronous motor in which the demagnetization resistance of a permanent magnet in a rotor is improved while employing a concentrated winding method. Disclosure of the invention
  • a permanent magnet synchronous motor is a permanent magnet synchronous motor having a concentrated winding type stay, wherein an interval between teeth of the stay is La, and a gap between the stay and the rotor is Lg. 0.3 Lg ⁇ L a ⁇ 2.0 Lg, and the distance between the ends of the teeth is set to 2.0 times or less of the air gap Lg, so that the demagnetizing magnetic flux Side, and the demagnetizing field is less likely to act on the rotor magnet even when the coil and the magnetic poles face each other. Improvement can be achieved. If La is too small, the magnetic flux leakage between the teeth will increase, and if split cores are used, the end edges of the stay may interfere with each other due to molding errors. Must be larger than L g.
  • Demagnetizing magnetic flux can also be obtained by setting the thickness of the teeth end of the stay to Lb and the air gap between the stay and low to Lg to be 2 Lg and Lb ⁇ 5 Lg. Can be suppressed from flowing to the tooth side and to the rotor side, and a similar effect can be obtained. If Lb is too large, the leakage magnetic flux short-circuited will be too large, and the motor output will decrease. Therefore, it is necessary to set it to less than 5 Lg. Further, by satisfying both of the above conditions, a greater demagnetization resistance can be obtained.
  • the side edge of the rose is set at one end of the teeth of the stay, that is, at the opposite end of the adjacent teeth, at the lower end in the rotation direction of the rose, or at both ends. Even by cutting, the air gap at the end of the teeth can be increased, and the demagnetizing magnetic flux can be suppressed from flowing to the low-side side, and the same effect can be obtained.
  • the thickness of the tooth end by protruding the side edge opposite to the raw side at the end of the tooth from which the side edge of the mouth is cut off at that time, Furthermore, the flow of the demagnetizing magnetic flux to the rotor side can be suppressed, and the demagnetization resistance can be further improved. Further, by satisfying the above three conditions, a greater demagnetization resistance can be obtained.
  • the permanent magnet when the permanent magnet is made of a ferrite magnet that is inexpensive but rarely demagnetized as compared with rare-earth magnets, it is not inexpensive due to the above configuration. Since the demagnetization resistance can be improved, a particularly great effect is exhibited.
  • the stays are composed of split cores, the stays can be assembled by winding the windings efficiently and independently for each of the split cores, and the productivity of the stays can be remarkably improved. Costs can be reduced.
  • the sensorless drive when applied to a sensorless drive motor, the sensorless drive generally exhibits a large effect because it is easily demagnetized.
  • the permanent magnet synchronous motor described above to the driving mode of a compressor for an air conditioner or an electric refrigerator, the cost can be reduced and a particularly great effect can be obtained.
  • FIG. 1 shows a first embodiment of a permanent magnet synchronous motor of the present invention, in which (a) is a sectional view and (b) is an enlarged sectional view of a main part.
  • FIG. 3 is a graph showing a relationship between a slit interval, a ratio of an air gap between a steady state and a low state, and a demagnetization ratio in the example.
  • FIG. 5 is an enlarged sectional view of a main part of a permanent magnet synchronous motor according to a second embodiment of the present invention.
  • FIG. 4 is a graph showing a relationship between a thickness of a tooth end, a ratio of an air gap between a stay and a mouth, and a demagnetization ratio, and a relationship between the ratio of the air gap and a torque ratio in the embodiment.
  • FIG. 7 is an enlarged sectional view of a main part of a permanent magnet synchronous motor according to a third embodiment of the present invention.
  • Fig. 4 shows a fourth embodiment of the permanent magnet synchronous motor of the present invention, where (a) is a cross-sectional view and (b) is an enlarged cross-sectional view of a main part.
  • FIG. 14 is a sectional view of Embodiment 5 of the permanent magnet synchronous motor of the present invention. [Fig. 9]
  • FIG. 13 shows a sixth embodiment of the permanent magnet synchronous motor of the present invention, in which (a) to (c) are cross-sectional views of respective modified examples, and (d) is an enlarged cross-sectional view of a main part of (a).
  • Fig. 7 shows a seventh embodiment of the permanent magnet synchronous motor of the present invention, wherein (a) to (c) are cross-sectional views of respective modified examples, and (d) is an enlarged cross-sectional view of a main part of (a).
  • FIG. 11 is a partially enlarged sectional view of a modification of FIG. 10C in the same embodiment.
  • FIG. 14 is a sectional view of Embodiment 8 of the permanent magnet synchronous motor of the present invention.
  • FIG. 1 shows a configuration of a conventional permanent magnet synchronous motor, (a) is a sectional view thereof, and (b) is a perspective view of a split core thereof.
  • Embodiment 1 of the present invention will be described with reference to FIGS.
  • 1 is a stay
  • 2 is a row
  • 1 is composed of divided cores 3 in a number corresponding to the number of slots, and coils 4 are provided in teeth 4 of each divided core 3 (not shown). )
  • the rotor 2 is constituted by fixing a permanent magnet 6 composed of a plurality of ferrite magnets to the outer periphery of a rotor core 5 formed by laminating silicon steel sheets, and a rotating shaft (not shown) fixed through the shaft core. It is rotatably supported by.
  • a stainless steel thin cylinder 7 is externally fitted around the outer periphery of the rope 2, or a reinforcing tape is wound thereon to secure necessary strength against centrifugal force.
  • the number n of pole pairs is 4, the rotor 2 is provided with eight (2 n) permanent magnets 6, and the stay 1 is composed of 12 (3n) split cores 3. .
  • the current control of the stay 1 coil is configured to detect the zero-cross point of the induced pressure generated in the neutral coil that does not supply the drive current, and to perform the 120 ° conduction rectangular wave control.
  • the distance between teeth 4 and 4 of stay 1 is La, and the size of air gap 8 between stay 1 and mouth 2 is Lg. It is set as 0.3 L g ⁇ L a ⁇ 2.0 L g.
  • Lg is set to 0.4 to 0.6 mm, while 1 ⁇ & is set to 0.4 to 0.3 mm.
  • FIG. 2 shows the relationship between LaZLg and the demagnetization rate.
  • LaZLg was set to a value greater than 2.In this case, the demagnetization ratio was 1.5% or more, making it difficult to secure the output.On the other hand, setting LaZLg to 2.0 or less reduced it. Magnetic susceptibility is 1.5% As a result, the demagnetization rate required for practical use can be secured.
  • La is larger than 0.3 Lg, the leakage magnetic flux between the teeth 4 and 4 does not become too large, and the end of the tooth is not affected by the molding error of the split core 3. The edges do not interfere with each other, making it impossible to assemble the stay 1 accurately.
  • the permanent magnet 6 of the rotor 2 is made of a ferrite magnet, it can be constructed at a lower cost than rare earth magnets and has improved demagnetization resistance as described above even if it has the property of being easily demagnetized. it can.
  • the stay 1 is composed of the split cores 3, the winding 1 can be efficiently and independently wound for each of the split cores 3 to assemble the stay 1, and the productivity of the stay 1 can be improved. Is significantly improved, and the cost can be significantly reduced.
  • the distance between teeth 4 and 4 of stay 1 is L a
  • the thickness of the end of tooth 4 of stay 1 is L b
  • the air gap between stay 1 and low 2 Assuming that the size of 8 is Lg, 0.3Lg ⁇ L a ⁇ 2.0 Lg and 2Lg ⁇ Lb ⁇ 5Lg.
  • the end thickness Lb of the teeth 4 of the stay 1 is made larger than twice the air gap Lg between the stay 1 and the rotor 2 to reduce the thickness. It is possible to further suppress the magnetic flux from flowing to the rotor side, and to improve the demagnetization resistance. In addition, since Lb is smaller than 5Lg, there is no possibility that the leakage magnetic flux short-circuited between the teeth 4 and 4 becomes too large and the motor output decreases.
  • Figures 4 (a) and 4 (b) show Lb / Lg, demagnetization rate and torque ratio when LaZLg is 1.
  • the demagnetization rate decreases as LbZLg increases.
  • the leakage flux increases and the torque decreases as shown in Fig. 4 (b). Therefore, by setting LbZLg to be larger than 2, the demagnetization rate is reduced, and LbZLg By making the value smaller than 5, torque reduction can be prevented.
  • cut-out portions are formed at the side edges of the mouth 1 and 2 at the opposite ends of the teeth 4 and 4 adjacent to the stay 1 9 is provided (Lc indicates the interval between the end of the tooth 4 and the mouth 2).
  • the cutout 9 may be provided only at one end of the teeth 4 of the stay 1, that is, at the opposite end of the teeth 4, 4 on the lower side in the rotation direction of the teeth 4.
  • the side edge opposite to the rope is protruded, and the thickness of the end of the tooth 4 is increased. Is secured. As a result, it is possible to further suppress the leakage magnetic flux from flowing to the low-speed side, and it is possible to further improve the demagnetization resistance.
  • FIGS. 1 to 3 the example in which the demagnetizing magnetic flux is prevented from flowing to the mouth 2 side by devising the shape of the teeth 4 of the stay 1 is shown.
  • the demagnetization magnetic flux passing through the permanent magnet 6 is prevented from passing through to improve the demagnetization resistance.
  • cutouts 11 are formed at the outer peripheral portions at both ends in the circumferential direction of each permanent magnet 6. As shown in Fig. 6 (b), the range of formation of this cut portion 11 is The angle Am is set to (1Z10) As ⁇ Am ⁇ (1/4) As with respect to the opening angle As of the teeth 4 of the stay 1.
  • the inner surface of the permanent magnet 6 in the radial direction of the mouth is an arc surface centered on the axis of the rotor 2 and the permanent magnet 6 has a constant thickness.
  • the inner surface in the radial direction of the permanent magnet 6 in the example is constituted by a plane 13. According to the present embodiment, the thickness of the permanent magnet 6 at the central portion in the circumferential direction is increased, so that the demagnetization resistance at the central portion is improved.
  • the permanent magnet 6 is attached to the outer peripheral surface of the opening / closing core 5 to form the rotor 2, but in the following embodiments including this embodiment, the permanent magnet 6 is used. Magnet 6 is embedded in core 5 and placed.
  • FIGS. 9 (a) to 9 (c) a permanent magnet 6 having cutouts 11 formed at the outer peripheral portions at both ends in the circumferential direction is embedded in the outer peripheral portion of the rotor core 5, and is further shown in FIG. 9 (d).
  • the notch 14 is formed in the outer peripheral edge of the rotor core 5 at a portion corresponding to the cutout 11.
  • Fig. 9 (a) shows the permanent magnet 6 whose inner surface in the rotor radial direction is an arc surface centered on the rotor center and whose permanent magnet 6 has a constant overall thickness.
  • the permanent magnet 6 has a radially inner surface formed of a flat surface 13, and the thickness of the permanent magnet 6 at the central portion in the circumferential direction is increased.
  • the number of poles Shows an example of rotor 4 with four poles.
  • the inner surface of the permanent magnet 6 in the rotor direction is an arc surface centered on the center of the rotor, but the outer surface of the permanent magnet 6 in the radial direction is the radius from the center of the rotor. It is formed by a protruding circular arc surface 15 centered on the position eccentric outward in the direction, with both sides entering the inside in the radial direction. It works.
  • the cutout portion 11 or a portion functioning similarly is formed at both ends of the permanent magnet 6, the same effects as those of the fourth and fifth embodiments can be obtained.
  • the outer periphery of the core 5 is left circular because it is an embedded type, the ferromagnetic material of the core 5 is formed on the outer periphery of the cutout 11 or a portion that functions similarly. Since the magnetic flux leaks, the magnetic flux leaks through this portion, and the magnetic circuit is short-circuited.
  • the notch 14 is provided, so that the short-circuit of the magnetic flux leak is prevented and the motor efficiency is reduced. The drop can be reliably prevented.
  • FIGS. 10 (a) to 10 (c) The outer periphery of the orifice core 5 has a cylindrical surface, and a slit 16 is formed at a portion corresponding to the cutout 11 as shown in detail in FIG. 10 (d).
  • the interior of the slit 16 may be air, but may be filled with a resin, a non-magnetic metal, or the like to ensure the strength of the rotor 2.
  • FIG. 10 (a) shows the permanent magnet 6 whose inner surface in the rotor radial direction is an arc surface centered at the center of the rotor and whose permanent magnet 6 has a constant overall thickness.
  • FIG. 10 (b) shows that the inner surface in the radial direction of the permanent magnet 6 is made up of the plane 13, and the thickness of the permanent magnet 6 at the center in the circumferential direction is increased.
  • Fig. 10 (c) shows an example of a mouth 2 with four poles, with the radially outer surface of the permanent magnet 6 eccentric radially outward from the center of the rotor.
  • the protruding arc surface 15 is formed so that both sides thereof enter the inside in the radial direction, and both sides function in the same manner as the cutout 11.
  • the radially inner surface of the permanent magnet 6 shown in FIG. It shows a projection 15 composed of a protruding arc surface 17 that is coaxial with the surface 15.
  • the opening angle Am of the slit 16 is, as shown in FIG. 12, as follows: (1Z10) As ⁇ Am ⁇ (1/4) As Is set. Also, the opening angle in a range where the slit 16 does not exist is set to be approximately equal to the staying opening angle As, and (1.0 to 1.4) As.
  • the same operation and effect as those of the sixth embodiment of FIG. 9 can be obtained simply by replacing the notch 14 with the force slit 16. If the opening angle Am of the slit 16 is smaller than (1 ⁇ 10) As, the above effect cannot be effectively obtained, and if Am is larger than (1 ⁇ 4) As, the output of the motor decreases. The cogging torque increases.
  • FIG. 13 As the permanent magnet 6 embedded in the row 2, an inverted arc-shaped permanent magnet 18 whose center of curvature is located radially outside the row 2 is used. Then, the end of the permanent magnet 18 facing the outer periphery of the rotor 2 is positioned radially inward from the outer diameter of the mouth a suitable distance, and a slit 16 is formed in a portion of the mouth magnet 5 facing the end. Has formed.
  • the distance between the end of the permanent magnet 18 and the outer diameter of the core 5 is Q
  • the size of the air gap 8 between the stay 1 and the core 2 is Lg.
  • L g ⁇ Q ⁇ 3 L g are set. If Q is smaller than Lg, the effect of preventing the demagnetizing flux from entering the permanent magnet 18 is not sufficiently obtained, and if Q is larger than 3 Lg, the magnetic field by the permanent magnet 18 is weakened and the motor output is reduced. The cogging torque increases due to a drop or a sudden change in the magnetic field.
  • the opening angle of the width of the portion corresponding to the end of one permanent magnet 18 of the slit 16 from the center of the mouth is Am and the opening angle of the tooth 4 of the stay 1 is As, (1Z10) As ⁇ Am ⁇ (1/4) As is set. Also in this case, if the opening angle Am is smaller than (1Z10) As, the above effects cannot be obtained effectively, and if the opening angle Am is larger than (14) As, the motor output decreases. Or the cogging torque increases.
  • the slits 6 are formed on the outer peripheral portion of the core 5, but a notch 19 may be formed instead of the slit 6 as shown in FIG.
  • the size of the notch 19 in the bay is set in the same manner as described above.
  • FIG. 16 shows another embodiment of the permanent magnet embedded type mouth other than the above embodiment.
  • FIGS. 16 (a) and 16 (b) show a difference in the width (opening angle) and shape of the slit 16 of the eighth embodiment.
  • FIG. 16 (c) shows the permanent magnet 6 composed of the plate-like magnet 6a.
  • Fig. 16 (d) shows multiple permanent magnets 18a and 18b in which permanent magnets 6 are arranged in parallel in the radial direction, and the slit 16 has the respective inverted arc permanent magnets 18a and 18b. It is formed at the end of b.
  • FIG. 16 (e) shows a permanent magnet 6 composed of a pair of plate-like magnets 6b arranged in a C-shape from the inside to the outside in the radial direction.
  • Fig. 16 (f) shows an example in which an inverted arc-shaped permanent magnet 18 is used as the permanent magnet 6, and a low-core core 5 has a star-shaped cross-section core in which the permanent magnets 18 are arranged and fixed on the outer periphery thereof. Consists of a core cap 5b that holds a permanent magnet 18 between the main body 5a and the core body 5a, and a thin cylinder 7 is fitted around the outer periphery of the core cap 5b to secure strength against centrifugal force. I am trying to do it.
  • a slit 16 is formed between the ends of the Rhoyu core body 5 a and the Rhoyu core cap 5 b and the thin cylinder 7.
  • the interval between the teeth in the stay is La
  • the stay The air gap between the rotor and the rotor is set to Lg and 0.3Lg is set to La a2. OLg. Since the distance between the teeth ends is smaller than 2.0 times the air gap, the demagnetizing magnetic flux is close to the mouth. The flow can be suppressed, and even if the coil and the magnetic poles face each other, the demagnetizing field does not easily act on the magnets. As a result, the demagnetization proof strength of the low magnet can be improved.
  • the demagnetizing flux is low.
  • the same effect can be obtained by suppressing the flow to the evening side. Further, by satisfying both of the above conditions, a greater demagnetization resistance can be obtained.
  • the teeth of the stay that is, at the opposite end of the adjacent teeth, at the lower end in the rotation direction of the rotor, or at both ends, cut off the side edge on the rotor side. Accordingly, the air gap at the end of the tooth can be increased, and the demagnetizing magnetic flux can be suppressed from flowing to the rotor side, and the same effect can be obtained.
  • the thickness of the tooth end is further secured. It is possible to suppress the demagnetizing magnetic flux from flowing to the low-frequency side, and to further improve the demagnetizing resistance. Further, by satisfying the above three conditions, a greater demagnetization resistance can be obtained.
  • the permanent magnet of the rotor When the permanent magnet of the rotor is made of a ferrite magnet, it is inexpensive compared to rare earth magnets, but has the property of being easily demagnetized. The effect is exhibited.
  • the stays are composed of split cores, it is possible to assemble the stays by winding the windings independently and efficiently for each split core, and the productivity of the stays is remarkably improved. Costs can be reduced.
  • the demagnetization resistance can be increased while having an inexpensive configuration.
  • the permanent magnet synchronous motor described above to the driving mode of a compressor for an air conditioner or an electric refrigerator, the cost can be reduced and a particularly great effect can be obtained.
  • the permanent magnet synchronous motor of the present invention in the permanent magnet synchronous motor configured to perform current phase control without a sensor having a concentrated winding type step, the outer periphery at both ends in the circumferential direction of the permanent magnets arranged on the outer periphery of the rotor was formed in a concave shape that entered radially inward from the outer periphery of the rotor, so that the coil and the magnetic poles of the rotor faced each other. In this case, even if a demagnetizing field is generated between the adjacent tooth ends in the Since the demagnetizing field does not easily act on the magnet, the demagnetization proof strength of the magnet can be improved.
  • Am is larger than (1/10) As, where Am is the opening angle of the recessed portion from the center of the mouth and A is the opening angle of the teeth of the stay.
  • the effect can be exhibited, and by making Am smaller than (1/4) As, it is possible to suppress the motor output and the cogging torque from increasing due to the decrease in the utilization rate of the magnetic flux generated by the permanent magnet.
  • the inner surface of the permanent magnet in the radial direction is flat, and the thickness of the permanent magnet at the center in the circumferential direction is increased, so that the demagnetization resistance at the center of the permanent magnet can be further improved.
  • the reduction is achieved by forming a recessed part at the cutouts at both ends in the circumferential direction of the permanent magnet. It is possible to realize a configuration that has a large magnetic proof strength, does not decrease the motor output, and can suppress the cogging torque by simple processing.
  • a notch ⁇ slit should be formed in the outer periphery corresponding to both circumferential ends of the permanent magnet in the mouth and core. This prevents the leakage magnetic flux from being short-circuited through the portion corresponding to the recessed shape portion of the rotatable core made of a ferromagnetic material with these notches and slits, thereby reliably preventing a reduction in motor efficiency. .
  • the end of the permanent magnet facing the rotor outer periphery is also used.
  • the above effect can be obtained by setting Q as the distance between the end of the permanent magnet and the outer diameter of the core and Lg as the air gap between the stay and the mouth, and making Q larger than Lg.
  • Q By making Q smaller than 3 Lg, it is possible to prevent the motor field from decreasing due to the weakening of the magnetic field due to the permanent magnet, and to prevent the cogging torque from increasing due to a sudden change in the magnetic field.
  • the opening angle of the width of the corresponding part from the center of the row is Am and the opening angle of the teeth of the stay is As, and Am is larger than (1Z10) As, the above-mentioned effect is surely obtained.
  • 1-4 By making it smaller than As, it is possible to prevent the output of the motor from dropping and the cogging torque from increasing.
  • the demagnetization resistance when applied to a sensorless drive motor, the demagnetization resistance can be increased while having an inexpensive configuration, so that a particularly large effect is exhibited.
  • the permanent magnet synchronous motor described above when applied to the driving mode of a compressor for an air conditioner or an electric refrigerator, the cost can be reduced and a particularly great effect can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Description

明細書
永久磁石同期電動機 技術分野
本発明は、界磁用の永久磁石を口一夕に備えている永久磁石同期電動機に関し、 特に集中巻方式のステ一夕を有する永久磁石同期電動機に関する。 背景技術
一般に、 高出力の永久磁石同期電動機においては、 ステ一夕のティース数を多 くして分布巻方式とすることによって合成起磁力波形を正弦波に近づけ、 また口 一夕の永久磁石には磁束密度が高く、 減磁耐力の大きい希土類磁石を用い、 さら に口一夕の回転位相をセンサにて検出してそのロー夕位置に応じて電流位相制御 を行うように構成されている。
しかしながら、 分布巻方式では巻線工程が複雑であるために巻線効率が低く、 また希土類磁石は高価で、 回転位相を検出するセンサも高価であるため、 コスト 高になるという問題がある。
そこで、 低価格の永久磁石同期電動機として、 図 1 7 ( a ) に示すように、 ス テ一夕 2 1を各ティース毎に分割した分割コア 2 2 (図 1 7 ( b ) 参照) にて構 成し、 各分割コア 2 2のティース 2 6に絶縁紙 2 8を巻付け、 その上にコイル線 を巻回して集中巻きのコイル 2 3を構成し、 これら集中巻きをした分割コア 2 2 を環状に組合せ、 溶接、 かしめ、 レーザ溶接などで固着して集中巻きしたステー 夕 2 1を構成し、 ロータ 2 4の永久磁石 2 5には安価なフェライト磁石を用い、 電流位相制御は駆動電流を流さない中立コイルに発生する誘導電圧のゼロクロス 点を検出して 1 2 0 ° 通電矩形波制御を行うようなものが考えられた。
このような永久磁石同期電動機においては、 等間隔に配置した 3 n個 (n個は 自然数) のステ一夕 2 1のティースを 3相 Y接続しており、 このステ一夕 2 1に 対向させて 2 nの極の永久磁石界磁を配置している。 このように集中巻方式の n 極永久磁石同期電動機は 3 n個のティースに対して 2 n極の永久磁石界磁を配す ることが好適である。 図 1 7の例では、 ロー夕 2 4の極数は 8極 (2 n、 n = 4 )、 ステ一夕のティ 一ス数は 1 2 ( 3 n、 n = 4 ) とされ、 各ティースに順次 u l 、 v l 、 wl 、 u 2 、 · · · · v 4 、 w4 のコイルが巻回されている。 そして、 各コイルが図 1 8 ( a ) のように U相、 V相、 W相に直列に、 または図 1 8 ( b ) に示すように並 列に接続されている。
ところで、 一般の永久磁石同期電動機においては、 ティース間での漏洩磁束を 少なくするため、 図 1 9に示すように、 ティース 2 6、 2 6間の間隔を L a、 ス テ一夕 2 1と口一夕 2 4間のエアギャップを L gとして、 し & >略2し に設定 されており、 またロー夕 2 4の永久磁石 2 5は周方向両端まで一様な厚さでその 端面が近接して対向されているが、 上記のような低価格な構成の永久磁石同期電 動機において同様に構成すると、 以下のような理由によって永久磁石の局部減磁 が発生して、 所要のモータ出力が得られなくなるという問題のあることが判明し た。
すなわち、 集中巻方式であるために隣接するティースが異極となってインダク 夕ンスが大きくなり、 減磁界が口一夕にかかり易くなる。 特にセンサレス駆動を 行っている場合、 起動時や脱調時には減磁界がロー夕の永久磁石にかかり易くな る。 すなわち、 図 2 0に示すように、 ステ一夕コイル 2 3による発生磁極とロー 夕 2 4の永久磁石 2 5の磁極が対向するような状態が発生し、 コイル 2 3による 発生磁界の一部が永久磁石 2 5に対する減磁界 2 7として永久磁石 2 5側に入り 込み、 特に永久磁石 2 5がフェライト磁石の場合には減磁界 2 7によって降伏状 態となつてしまい、 減磁することになる。
従来から集中巻方式の電動機は多数あるが、 ティース間隔が非常に狭く、 隣合 うティースの極性が逆になつた場合には、 永久磁石に減磁界がかかり易く、 フエ ライ卜のような保磁力の小さい永久磁石を使用すると減磁耐力が弱くなる。特に、 センサレス駆動を行う場合には起動時や脱調時に逆磁界がかかる可能性が高く、 簡単に減磁してしまうという問題があった。
本発明は、 上記従来の問題点に鑑み、 集中巻方式を採用しながら、 ロータにお ける永久磁石の減磁耐カを向上させた永久磁石同期電動機を提供することを目的 とする。 発明の開示
本発明の永久磁石同期電動機は、 集中巻方式のステ一夕を有する永久磁石同期 電動機において、 ステ一夕のティース間の間隔を L a、 ステ一夕とロータ間のェ ァギャップを L gとして、 0 . 3 L g < L a≤2 . 0 L gとしたものであり、 テ ィ一ス端部間をエアギャップ L gの 2 . 0倍以下にしているので、 減磁磁束が口 一夕側に流れるのを抑制することができ、 コイルとロー夕の磁極が対向するよう な状態になった場合でもロータ磁石に対して減磁界が作用し難くなり、 ロー夕磁 石の減磁耐力の向上を図ることができる。 なお、 L aが小さ過ぎるとティース間 での漏れ磁束が大きくなるとともに、 分割コアを採用した場合に成形誤差によつ てはステ一夕端縁同士が干渉する恐れがあるため、 0 . 3 L gより大きくする必 要がある。
また、 ステ一夕のティース端の厚みを L b、 ステ一夕とロー夕間のエアギヤッ プを L gとして、 2 L gく L b < 5 L gとすることによつても、 減磁磁束がティ ース側に流れてロータ側に流れるのを抑制でき、 同様の作用が得られる。 なお、 L bが大きすぎると短絡する漏れ磁束が大きくなり過ぎ、 モー夕出力が低下する ので、 5 L gより小さく設定する必要がある。 さらに、 上記両条件を満たすこと により、 一層大きな減磁耐カを得ることができる。
また、 ステ一夕のティースの一方の端部、 すなわち隣接するティースの対向端 部の内、 ロー夕の回転方向下手側の端部、 または両方の端部において、 ロー夕側 の側縁部を切除することによつても、 ティース端部におけるエアギャップを大き くできて減磁磁束がロー夕側に流れるのを抑制でき、 同様の作用が得られる。 さ らに、 その際に口一夕側の側縁部を切除したティースの端部において、 ロー夕側 とは反対側の側縁部を突出させてティース端部の厚みを確保することによって、 さらに減磁磁束がロータ側に流れるのを抑制でき、 減磁耐カをより向上すること ができる。 さらに、 上記 3条件を満たすことにより、 さらに大きな減磁耐カを得 ることができる。
また、 口一夕の永久磁石が、 希土類磁石に比して安価であるが減磁し易いと いう性質のあるフェライト磁石から成る場合には、 上記構成により安価でありな がら減磁耐カを向上できるため、 特に大きな効果が発揮される。 また、 ステ一夕 を分割コアにて構成すると、 各分割コア毎に独立して効率的に巻線してステ一夕 を組み立てることができ、 ステ一夕の生産性が著しく向上し、 大幅にコスト低下 を図ることができる。 また、 センサレス駆動の電動機に適用すると、 一般にセン サレス駆動の場合は減磁し易いので、 特に大きな効果を発揮する。 また、 以上の 永久磁石同期電動機をエアコンや電気冷蔵庫用のコンプレッサの駆動モー夕に適 用することにより、 それらの低コスト化を図れて特に大きな効果が得られる。 図面の簡単な説明
【図 1】
本発明の永久磁石同期電動機の実施例 1を示し、 (a ) は断面図、 (b ) は要部 の拡大断面図である。
【図 2】
同実施例におけるスリツト間隔とステ一夕 · ロー夕間のエアギャップの比と減 磁率の関係を示すグラフである。
【図 3】
本発明の永久磁石同期電動機の実施例 2の要部の拡大断面図である。
【図 4】
同実施例におけるティース端部の厚さとステ一夕 ' 口一夕間のエアギャップの 比と減磁率の関係及び同比とトルク比の関係を示すグラフである。
【図 5】
本発明の永久磁石同期電動機の実施例 3の要部の拡大断面図である。
【図 6】
本発明の永久磁石同期電動機の実施例 4を示し、 (a ) は断面図、 (b ) は要部 の拡大断面図である。
【図 7】
同実施例の作用説明図である。
【図 8】
本発明の永久磁石同期電動機の実施例 5の断面図である。 【図 9】
本発明の永久磁石同期電動機の実施例 6を示し、 (a) 〜 (c) はそれぞれ各 変形例の断面図、 (d) は (a) の要部の拡大断面図である。
【図 10】
本発明の永久磁石同期電動機の実施例 7を示し、 (a) 〜 (c) はそれぞれ各 変形例の断面図、 (d) は (a) の要部の拡大断面図である。
【図 1 1】
同実施例における図 10 (c) の変形例の部分拡大断面図である。
【図 12】
同実施例における作用説明図である。
【図 13】
本発明の永久磁石同期電動機の実施例 8の断面図である。
【図 14】
同実施例における作用説明図である。
【図 15】
同実施例における変形例の作用説明図である。
【図 16】
本発明の上記実施例以外の各種実施例の断面図である。
【図 17】
従来例の永久磁石同期電動機の構成を示し、 (a) はその断面図、 (b) はその 分割コアの斜視図である。
【図 18】
従来例におけるコイル結線図である。
【図 19】
従来例における要部の拡大断面図である。
【図 20】
従来例における減磁作用の説明図である。 発明を実施するための最良の形態
(実施例 1 )
以下、 本発明の実施例 1について、 図 1、 図 2を参照して説明する。
図 1において、 1はステ一夕、 2はロー夕であり、 ステ一夕 1はスロット数に 対応する数の分割コア 3にて構成され、 各分割コア 3のティース 4にコイル (図 示せず) が各々独立して巻回され、 集中巻方式が採用されている。 ロータ 2は珪 素鋼板を積層して成るロータコア 5の外周に複数のフェライト磁石から成る永久 磁石 6を固着して構成され、 その軸芯部に貫通固着された回転軸 (図示せず) 力 軸受にて回転自在に支持されている。 ロー夕 2の外周には、 ステンレス製の薄板 円筒 7が外嵌され、 又は補強テープが巻回されて遠心力に対して必要な強度が確 保されている。
図示例では極対数 nが 4であり、 ロータ 2には 8つ (2 n) の永久磁石 6が配 設され、 ステ一夕 1は 12個 (3n) の分割コア 3にて構成されている。 ステー 夕 1のコイルに対する電流制御は、 駆動電流を流さない中立コイルに発生する誘 導電圧のゼロクロス点を検出して 120° 通電矩形波制御を行うように構成され ている。 そして、 図 1 (b) に示すように、 ステ一夕 1のティ一ス 4、 4間の間 隔を L a、 ステ一夕 1と口一夕 2間のエアギャップ 8の大きさを Lgとして、 0. 3 L g<L a≤2. 0 L gに設定されている。 好適な具体数値例を示すと、 Lg が 0. 4〜0. 6mmに設定されるのに対して、 1^&は0. 4〜0. 3mmに設 定されている。
以上の構成において、 隣接するティース 4、 4の端部間の間隔 L aをエアギヤ ップ 8の大きさ Lgの 2. 0倍以下にしているので、 漏れ磁束が隣接するティー ス 4側に流れてロー夕 2側に流れるのを抑制でき、 ステ一夕 1のコイルと口一夕 2の磁極が対向するような状態になつた場合でもロー夕 2の永久磁石 6に対して 減磁界が作用し難くなり、 ロー夕 2における永久磁石 6の減磁耐力の向上を図る ことができる。
図 2に、 L aZL gと減磁率との関係を示す。 従来は LaZLgが 2より大き く設定されており、 その場合減磁率が 1. 5%以上になって出力確保が困難であ つたのに対して、 L aZLgを 2. 0以下に設定することにより減磁率が 1. 5% より小さくなり、 実用的に必要とされる減磁率を確保することができる。 また、 Laを 0. 3 L gより大きくしているので、 ティース 4、 4間での漏れ磁束が大 きくなり過ぎるというようなことはなく、 かつ分割コア 3の成形誤差によってテ ィ一ス端縁同士が干渉してステ一夕 1を精度良く組立てることができないという ようなこともない。
また、 ロータ 2の永久磁石 6がフェライト磁石から成っているので、 希土類磁 石に比して安価に構成でき、 しかも減磁し易いという性質があっても上記のよう に減磁耐カを向上できる。 また、 ステ一夕 1を分割コア 3にて構成すると、 各分 割コア 3毎に独立して効率的に巻線してステ一夕 1を組み立てることができ、 ス テ一夕 1の生産性が著しく向上し、 大幅にコスト低下を図ることができる。
(実施例 2 )
次に、 本発明の永久磁石同期電動機の実施例 2を図 3、 図 4を参照して説明す る。 なお、 上記実施例 1と同一の構成要素については説明を省略し、 相違点のみ を説明する。 以下の実施例についても同様である。
図 3において、 ステ一夕 1のティース 4、 4間の間隔を L a、 ステ一夕 1のテ ィ一ス 4の端部厚みを L b、 ステ一夕 1とロー夕 2間のエアギャップ 8の大きさ を Lgとして、 0. 3Lg<L a≤2. 0 Lg、 2 L g <L b < 5 L gに設定し ている。
このように、 上記第 1の実施例に加えて、 ステ一夕 1のティース 4の端部厚み Lbを、 ステ一夕 1とロータ 2間のエアギャップ Lgの 2倍より大きくすること により、 減磁磁束がロー夕側に流れるのを一層抑制することができ、 減磁耐カを 向上することができる。 また、 Lbを 5Lgより小さくしているので、 ティース 4、 4間で短絡する漏れ磁束が大きくなり過ぎてモー夕出力が低下するというよ うなこともない。
図 4 (a), (b) に L aZL gが 1の場合の L b/L gと減磁率及びトルク比 を示す。 図 4 (a) に示すように LbZLgが大きい程減磁率が小さくなるが、 大きくすると図 4 (b) に示すように漏れ磁束が増えてトルクが減少する。 そこ で、 LbZLgを 2より大きくすることにより減磁率を低くし、 かつ LbZLg を 5より小さくすることによりトルク低下を防止することができる。
なお、 ステ一夕 1のティース 4の端部厚み L bを上記のように厚くするだけで も効果が発揮される。 (実施例 3 )
次に、 本発明の永久磁石同期電動機の実施例 3を図 5を参照して説明する。 図 5において、 上記図 3に示した実施例 2の構成に付加して、 ステ一夕 1の隣 接するティース 4、 4の対向する両端部において、 口一夕 2側の側縁部に切除部 9を設けている (ティース 4の端と口一夕 2間の間隔を L cで示す。)。
ステ一夕 1のティース 4の一方の端部、 すなわち隣接するティース 4、 4の対 向端部の内、 ロー夕 2の回転方向下手側の端部のみに切除部 9を設けてもよい。 このように切除部 9を設けることによって、 ティース 4の端部におけるエアギ ャップを大きくできて減磁磁束が口一夕側に流れるのを抑制でき、 同様の作用が 得られる。
さらに、 本実施例では、 ロー夕 2側の側縁部を切除したティ一ス 4の端部にお いて、 ロー夕側とは反対側の側縁部を突出させ、 ティース 4の端部厚みを確保し ている。 これによつて、 さらに漏れ磁束がロー夕側に流れるのを抑制でき、 減磁 耐カをより向上することができる。
なお、 ステ一夕 1のティース 4の端部に切除部 9を設けるだけでも、 効果が発 揮される。
(実施例 4 )
次に、 本発明の永久磁石同期電動機の実施例 4を図 6、 図 7を参照して説明す る。 上記実施例 1〜 3では、 ステ一夕 1のティース 4の形状の工夫によって減磁 磁束が口一夕 2側に流れるのを抑制した例を示したが、 以下の実施例ではロー夕 2 側を通る減磁磁束が永久磁石 6 を通らないよ う に して減磁耐 力の向上を図ったものである。
図 6において、 各永久磁石 6の周方向両端外周部に切除部 1 1が形成されてい る。 この切除部 1 1の形成範囲は、 図 6 ( b ) に示すように、 ロー夕中心での開 き角 Amが、 ステ一夕 1のティース 4の開き角 A sに対して、 (1Z10) As <Am< (1/4) Asに設定されている。
このように、 永久磁石 6の両端部に切除部 1 1を設けることにより、 図 7に示 すように、 隣接するティ一ス 4の端部間に口一夕 2側に向けて突出する減磁界 1 2が発生しても、 その減磁界 12が切除部 1 1を通ることになるため、 永久磁石 6を減磁させるように作用せず、 永久磁石 6の減磁耐力の向上を図ることができ る。 ここで、 Amが (1Z10) Asより小さいと、 上記効果が有効に得られず、 Amが (1Z4) Asより大きくなると、 モ一夕出力が低下したり、 コギングト ルクが大きくなつたりする。
(実施例 5 )
次に、 本発明の永久磁石同期電動機の実施例 5を図 8を参照して説明する。 実 施例 4では、 永久磁石 6の口一夕径方向内側面がロー夕 2の軸心を中心とする円 弧面で、 永久磁石 6の厚さが一定のものを示したが、 本実施例での永久磁石 6の 径方向内側面を平面 13にて構成している。 本実施例によれば、 永久磁石 6の周 方向中央部の厚みが大きくなるので、 中央部での減磁耐力が向上する。
(実施例 6)
次に、 本発明の永久磁石同期電動機の実施例 6を図 9を参照して説明する。 上 記実施例 4、 5では口一夕コア 5の外周面に永久磁石 6を取付けてロー夕 2を構 成したものを例示したが、 本実施例を含めて以下の実施形例では、 永久磁石 6を 口一夕コア 5に埋め込んで配置している。
図 9 (a) 〜 (c) において、 周方向両端外周部に切除部 1 1が形成された永 久磁石 6がロータコア 5の外周部に埋め込み配置され、 さらに図 9 (d) に詳細 に示すように、 ロータコア 5の外周縁部の切除部 11に対応する部分に切欠部 1 4が凹入形成されている。 図 9 (a) は永久磁石 6のロータ径方向内側面がロー 夕中心を中心とする円弧面で、 永久磁石 6の全体的な厚みが一定のものを示す。 図 9 (b) では永久磁石 6は径方向内側面が平面 13から成っており、 永久磁 石 6の周方向中央部の厚みが大きくなつているものを示す。 図 9 (c) では極数 が 4極のロー夕 2の例を示し、 永久磁石 6のロータ怪方向内側面はロー夕中心を 中心とする円弧面であるが、 永久磁石 6のロー夕径方向外側面はロータ中心から 径方向外方に偏芯した位置を中心とする突出形円弧面 1 5にて形成してその両側 部が径方向に内側に入り込むように構成し、 その両側部が切除部 1 1と同様に機 能するようにしている。
本実施例においては、 永久磁石 6の両端部に切除部 1 1又は同様に機能する部 分を形成しているので、 上記実施例 4、 5と同様の効果を奏する。 また、 埋め込 み型であるためにロー夕コア 5の外周を円形のままにすると、 切除部 1 1又はそ れと同様に機能する部分の外周部に口一夕コア 5の強磁性体が存在するため、 漏 れ磁束がこの部分を通って磁気回路が短絡されることになるが、 本実施例では切 欠部 1 4を設けているので、 漏れ磁束の短絡を防止してモータ効率の低下を確実 に防止できる。
(実施例 7 )
次に、 本発明の永久磁石同期電動機の実施例 7を図 1 0〜図 1 2を参照して説 明する。 上記実施例 6ではロー夕コア 5の外周部における切除部 1 1に対応する 部分に切欠部 1 4を形成した例を示した力 本実施例では図 1 0 ( a ) 〜 (c ) において、 口一夕コア 5の外周は円筒面とし、 図 1 0 ( d ) に詳細に示すように、 切除部 1 1に対応する部分にスリット 1 6を形成している。 このスリット 1 6の 内部は空気でもよいが、 ロータ 2の強度を確保するために樹脂や非磁性体の金属 等を充填してもよい。
図 1 0 ( a ) は永久磁石 6のロータ径方向内側面がロー夕中心を中心とする円 弧面で、 永久磁石 6の全体的な厚みが一定のものを示す。 図 1 0 ( b ) では永久 磁石 6の径方向内側面が平面 1 3から成つて永久磁石 6の周方向中央部の厚みが 大きくなつているものを示す。 図 1 0 ( c ) では極数が 4極の口一夕 2の例を示 し、 永久磁石 6のロー夕径方向外側面をロータ中心から径方向外方に偏芯した位 置を中心とする突出形円弧面 1 5にて形成してその両側部が径方向に内側に入り 込むように構成し、 その両側部が切除部 1 1と同様に機能するようにしている。 図 1 1では、 図 1 0 ( c ) の永久磁石 6の径方向内側面を外周面の突出型円弧 面 15と同一中心の突出形円弧面 17にて構成したものを示している。
本実施例において、 スリット 16の開き角 Amは、 図 12に示すように、 ステ —夕 1のティース 4の開き角 A sに対して、 (1Z10) As<Am< (1/4) Asに設定されている。 また、 スリット 1 6の存在しない範囲の開き角がステー 夕の開き角 A sとほぼ等しく、 (1. 0〜 1. 4) A sとなるように設定されて いる。
本実施例においても、 切欠部 14力スリット 1 6に代わっただけで、 図 9の実 施例 6と同様の作用効果を奏する。 また、 そのスリット 16の開き角 Amが (1 ノ 10 ) A sより小さいと、 上記効果が有効に得られず、 Amが ( 1ノ 4 ) As より大きくなると、 モ一夕出力が低下したり、 コギングトルクが大きくなつたり する。
(実施例 8 )
次に、 本発明の永久磁石同期電動機の実施例 8を図 13〜図 15を参照して説 明する。 本実施例では、 図 13に示すように、 ロー夕 2に埋め込む永久磁石 6と して、 曲率中心がロー夕 2の径方向外側に位置する逆円弧形状の永久磁石 18を 用いている。 そして、 永久磁石 18のロー夕 2の外周部に臨む端部を口一夕外径 より適当距離径方向内側に位置させるとともに、 口一夕コア 5のこの端部に対向 する部分にスリット 16を形成している。
また、 図 14に示すように、 永久磁石 18の端部とロー夕コア 5外周径との間 の距離を Q、ステ一夕 1とロー夕 2の間のエアギャップ 8の大きさを Lgとして、 L g<Q<3 L gに設定している。 Qが Lgより小さいと、 減磁束が永久磁石 1 8に入り込むのを防止する効果が十分に得られず、 Qが 3 L gより多くなると、 永久磁石 18による磁界が弱くなつてモー夕出力が低下したり、 磁界が急変する ためコギングトルクが大きくなる。 また、 スリット 16の 1つの永久磁石 18の 端部に対応する部分の幅の口一夕中心からの開き角を Am、 ステ一夕 1のティー ス 4の開き角を A sとして、 (1Z10) Asく Am< (1/4) Asに設定し ている。 この場合も、 開き角 Amが (1Z10) Asより小さいと、 上記効果が 有効に得られず、 Amが (1 4) Asより大きくなると、 モー夕出力が低下 したり、 コギングトルクが大きくなつたりする。
また、 図 13、 図 14の例ではロー夕コア 5の外周部にスリット 6を形成した 例を示したが、 図 15に示すようにスリット 6に代えて切欠部 19を形成しても 良く、 その塲合の切欠部 19の大きさは上記と同様に設定される。
上記実施例以外のその他の永久磁石埋め込み型口一夕の実施例を図 16に示す。 図 16 (a)、 (b) は上記実施例 8のスリット 16の形成幅 (開き角) と形状の 異なったものである。 図 16 (c) は永久磁石 6が板状磁石 6 aにて構成された ものである。 図 16 (d) は永久磁石 6が径方向に並列配置した多重の逆円弧状 永久磁石 18 a、 18 bにて構成したものであり、 スリット 16はそれぞれの逆 円弧状永久磁石 18 a、 18 bの端部に形成されている。 図 16 (e) は永久磁 石 6が径方向内側から外側に向けてハ字状の配置した一対の板状磁石 6 bにて構 成したものである。 また、 図 16 ( f ) は永久磁石 6として逆円弧状永久磁石 1 8を用いたものにおいて、 ロー夕コア 5を各永久磁石 18をその外周に配置固定 する断面形状星形の口一夕コア本体 5 aと、 ロー夕コア本体 5 aとの間で永久磁 石 18を挟持する口一夕コアキャップ 5 bとから成り、 その外周に薄肉円筒 7を 外嵌して遠心力に対する強度を確保するようにしている。 そして、 ロー夕コア本 体 5 aとロー夕コアキヤップ 5 bの端部間と薄肉円筒 7の間にスリッ卜 16が形 成されている。
なお、 上記実施例ではセンサレス駆動の永久磁石同期電動機の場合について説 明したが、 センサ一式のものでも実施することができ、 その場合も同様に減磁を 抑えることができる。 産業上の利用可能性
本発明の永久磁石同期電動機によれば、 以上の説明から明らかなように、 集中 巻方式のステ一夕を有する永久磁石同期電動機において、 ステ一夕のティース間 の間隔を L a、 ステ一夕とロータ間のエアギャップを Lgとして、 0. 3Lgぐ L a≤2. OLgとしたので、 ティース端部間がエアギャップの 2. 0倍より小 さいため、 減磁磁束が口一夕側に流れるのを抑制でき、 コイルとロー夕の磁極が 対向するような状態になった場合でも口一夕磁石に対して減磁界が作用し難くな り、 ロー夕磁石の減磁耐力の向上を図ることができる。
また、 ステ一夕のティース端の厚みを L b、 ステ一夕とロー夕間のエアギヤッ プを L gとして、 2し < 13く5乙8とすることにょっても、 減磁磁束がロー 夕側に流れるのを抑制でき、 同様の作用が得られる。 さらに、 上記両条件を満た すことにより、 一層大きな減磁耐カを得ることができる。
また、 ステ一夕のティースの一方の端部、 すなわち隣接するティースの対向端 部の内、 ロータの回転方向下手側の端部、 または両方の端部において、 ロータ側 の側縁部を切除することによつても、 ティース端部におけるエアギャップを大き くできて減磁磁束がロー夕側に流れるのを抑制でき、 同様の作用が得られる。 さ らに、 その際に口一夕側の側縁部を切除したティースの端部において、 ロータ側 とは反対側の側縁部を突出させてティース端部の厚みを確保することによって、 さらに減磁磁束がロー夕側に流れるのを抑制でき、 減磁耐カをより向上すること ができる。 さらに、 上記 3条件を満たすことにより、 さらに大きな減磁耐カを得 ることができる。
また、 ロータの永久磁石がフェライト磁石から成る場合には、 希土類磁石に比 して安価であるが減磁し易いという性質があるため、 安価でありながら減磁耐カ を向上できるため、 特に大きな効果が発揮される。 また、 ステ一夕を分割コアに て構成すると、 各分割コア毎に独立して効率的に巻線してステ一夕を組み立てる ことができ、 ステ一夕の生産性が著しく向上し、 大幅にコスト低下を図ることが できる。 また、 センサレス駆動の電動機に適用すると、 安価な構成でありながら 減磁耐カを高めることができるため、 特に大きな効果を発揮する。 また、 以上の 永久磁石同期電動機をエアコンや電気冷蔵庫用のコンプレッサの駆動モー夕に適 用することにより、 それらの低コスト化を図れて特に大きな効果が得られる。 さらに、 本発明の永久磁石同期電動機によれば、 以上の説明から明らかなよう 〖こ、 集中巻方式のステ一夕を有するセンサレスで電流位相制御を行うように構成 した永久磁石同期電動機において、 ロー夕外周部に配設された永久磁石の周方向 両端部における外周を、 ロータ外周より径方向内側に入り込んだ凹入形状に形成 したので、 コイルとロータの磁極が対向するような状態になつた場合にステ一夕 の隣接するティース端部間からロータ側に向けて減磁界が発生しても、 永久磁石 に対して減磁界が作用し難いため口一夕磁石の減磁耐力の向上を図ることができ る。
その際に、 凹入形状部分の口一夕中心からの開き角を Am、 ステ一夕のティー スの開き角を A sとして、 Amを (1 / 1 0 ) A sより大きくすることで上記効 果を発揮でき、 また Amを (1 / 4 ) A sより小さくすることにより永久磁石の 発生磁束が利用率低下でモータ出力が低下したり、 コギングトルクが大きくなつ たりするのを抑制できる。
また、 永久磁石の口一夕径方向内側面を平面とし、 永久磁石の周方向中央部の 厚さを大きくすることにより、 永久磁石の中央部の減磁耐カをさらに向上するこ とができる。
また、 口一夕が口一夕コアの外周に永久磁石を取付けた表面取付型の場合、 永 久磁石の周方向両端部を切除した切除部にて凹入形状部を形成することにより、 減磁耐力が大きく、 かつモー夕出力が低下せず、 コギングトルクを抑制できる構 成を簡単な加工で実現することができる。
また、ロー夕が口一夕コアの外周部に永久磁石を埋め込んだ埋め込み型の場合、 口一夕コアにおける永久磁石の周方向両端部に対応する外周部に切欠部ゃスリッ トを形成することにより、 漏れ磁束が強磁性体から成るロー夕コァの凹入形状部 に対応する部分を通って短絡されるのをこれら切欠部ゃスリットにて防止できて モー夕効率の低下を確実に防止できる。
また、 ロータが曲率中心が口一夕の径方向外側に位置する逆円弧形状の永久磁 石をロー夕コアの外周部に埋め込んだ埋め込み型の場合においても、 永久磁石の ロー夕外周に臨む端部を口一夕外径より径方向内側に位置させるとともにロー夕 コアのこの端部に対応する部分に切欠部又はスリットを形成することにより、 上 記と同様の効果が発揮される。
その際、 永久磁石の端部とロー夕コア外周径との間の距離を Q、 ステ一夕と口 一夕の間のエアギャップを L gとして、 Qを L gより大きくすることにより上記 効果が確実に得られ、 Qを 3 L gより小さくすることにより、 永久磁石による磁 界が弱くなつてモータ出力が低下したり、 磁界の急変によりコギングトルクが大 きくなるのを防止できる。 また、 切欠部又はスリットの 1つの永久磁石の端部に 対応する部分の幅のロー夕中心からの開き角を Am、 ステ一夕のティースの開き 角を Asとして、 Amを (1Z10) Asより大きくすることにより上記効果が 確実に得られ、 Amを (1ノ4) Asより小さくすることによりモ一夕出力が低 下したり、 コギングトルクが大きくなつたりするのを防止できる。
また、 センサレス駆動の電動機に適用すると、 安価な構成でありながら減磁耐 力を高めることができるので、 特に大きな効果を発揮する。 また、 以上の永久磁 石同期電動機をエアコンや電気冷蔵庫用のコンプレッサの駆動モー夕に適用する ことにより、 それらの低コスト化を図れて特に大きな効果が得られる。

Claims

請求 通
1. 集中巻方式のステ一夕を有する永久磁石同期電動機において、 ステ一夕のテ ィ一ス間の間隔を L a、 ステ一夕とロータ間のエアギャップを Lgとして、 0. 3 Lg<L a≤2. OLgとしたことを特徴とする永久磁石同期電動機。
2. 集中巻方式のステ一夕を有する永久磁石同期電動機において、 ステ一夕のテ ィ一ス端の厚みを Lb、 ステ一夕と口一夕間のエアギャップを L gとして、 2 L gく L b< 5 L gとしたことを特徴とする永久磁石同期電動機。
3. 集中巻方式のステ一夕を有する永久磁石同期電動機において、 ステ一夕のテ ィ一ス間の間隔を L a、 ステ一夕のティース端の厚みを L b、 ステ一夕とロー夕 間のエアギャップを L gとして、 0. 3 Lg<L a≤2. O Lg, 2 L g<L b <5Lgとしたことを特徴とする永久磁石同期電動機。
4. 集中巻方式のステ一夕を有する永久磁石同期電動機において、 ステ一夕のテ ィ一スの少なくとも一方の端部の口一夕側の側縁部を切除したことを特徴とする 永久磁石同期電動機。
5. 隣接するティースの対向端部の内、 ロー夕の回転方向下手側の端部のロー夕 側の側縁部を切除したことを特徴とする請求の範囲第 4項記載の永久磁石同期電
6. ロータ側の側縁部を切除したティースの端部において、 ロータ側とは反対側 の側縁部を突出させてティース端部の厚みを確保したことを特徴とする請求の範 囲第 4項記載の永久磁石同期電動機。
7. ロー夕の永久磁石は、 フェライト磁石から成ることを特徴とする請求の範囲 第 1項〜第 6項の何れかに記載の永久磁石同期電動機。
8. ステ一夕は分割コアにて構成されていることを特徴とする請求の範囲第 1項 〜第 6項の何れかに記載の永久磁石同期電動機。
9. 集中巻方式のステ一夕を有する永久磁石同期電動機において、 口一夕外周部 に配設された永久磁石の周方向両端部における外周を、 ロー夕外周より径方向内 側に入り込んだ凹入形状に形成したことを特徴とする永久磁石同期電動機。
10. 凹入形状部分のロータ中心からの開き角を Am、 ステ一夕のティースの開 き角を A sとして、 (1/ 1 0) A sく Am< ( 1/4) A sとしたことを特徴 とする請求の範囲第 9項記載の永久磁石同期電動機。
1 1. 永久磁石の口一夕径方向内側面を平面とし、 永久磁石の周方向中央部の厚 さを大きくしたことを特徴とする請求の範囲第 9項記載の永久磁石同期電動機。
1 2. ロー夕はロータコアの外周に永久磁石を取付けた表面取付型で、 永久磁石 の周方向両端部を切除した切除部にて凹入形状部が形成されていることを特徴と する請求の範囲第 9項記載の永久磁石同期電動機。
1 3. 口一夕はロー夕コアの外周部に永久磁石を埋め込んだ埋め込み型で、 口一 夕コアにおける永久磁石の周方向両端部に対応する外周部に切欠部を形成したこ とを特徴とする請求の範囲第 9項記載の永久磁石同期電動機。
1 4. ロー夕は口一夕コアの外周部に永久磁石を埋め込んだ埋め込み型で、 口一 夕コアにおける永久磁石の周方向両端部に対応する外周部にスリッ卜を形成した ことを特徴とする請求の範囲第 9項記載の永久磁石同期電動機。
1 5. 集中巻方式のステ一夕を有する永久磁石同期電動機において、 口一夕は曲 率中心がロータの径方向外側に位置する逆円弧形状の永久磁石をロー夕コアの外 周部に埋め込んだ埋め込み型で、 永久磁石のロータ外周に臨む端部はロー夕外径 より径方向内側に位置するとともに口一夕コアのこの端部に対応する部分に切欠 部を形成したことを特徴とする永久磁石同期電動機。
1 6. 集中巻方式のステ一夕を有する永久磁石同期電動機において、 口一夕は曲 率中心がロー夕の径方向外側に位置する逆円弧形状の永久磁石を口一夕コアの外 周部に埋め込んだ埋め込み型で、 永久磁石のロータ外周に臨む端部はロー夕外径 より径方向内側に位置するとともにロー夕コアのこの端部に対応する部分にスリ ッ卜を形成したことを特徴とする永久磁石同期電動機。
1 7. 永久磁石の端部と口一夕コア外周径との間の距離を Q、 ステ一夕と口一夕 の間のエアギャップを L gとして、 L g<Q<3 L gとしたことを特徴とする請 求の範囲第 1 5項又は第 1 6項記載の永久磁石同期電動機。
1 8.切欠部又はスリツ卜の 1つの永久磁石の端部に対応する部分の幅のロータ 中心からの開き角を Am、 ステ一夕のティースの開き角を A sとして、 (1 1 0) A s<Am< ( 1/4) A sとしたことを特徵とする請求の範囲第 1 5項又 は第 1 6項記載の永久磁石同期電動機。
1 9 . センサレスで駆動するように構成されていることを特徴とする請求の範囲 第 1項〜第 1 8項の何れかに記載の永久磁石同期電動機。
2 0 . 請求の範囲第 1項〜第 1 9項の何れかに記載の永久磁石同期電動機にて 駆動されるように構成されたェアコンゃ電気冷蔵庫用のコンプレッサ。
PCT/JP1998/003996 1997-09-08 1998-09-07 Moteur synchrone a aimant permanent WO1999013556A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE69840793T DE69840793D1 (de) 1997-09-08 1998-09-07 Synchronmotor mit dauermagneten
EP98941739A EP1014541B1 (en) 1997-09-08 1998-09-07 Permanent magnet synchronous motor
US09/520,149 US6940205B1 (en) 1997-09-08 2000-03-07 Permanent magnet synchronous motor
US11/132,386 US7233092B2 (en) 1997-09-08 2005-05-19 Permanent magnet synchronous motor
US11/797,597 US7411329B2 (en) 1997-09-08 2007-05-04 Permanent magnet synchronous motor including permanent magnet with tapered outer edges and rotor core with opening
US11/797,594 US7408279B2 (en) 1997-09-08 2007-05-04 Permanent magnet synchronous motor including permanent magnet with tapered outer edges

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP9/242939 1997-09-08
JP9/242940 1997-09-08
JP24294097 1997-09-08
JP09242939A JP3076006B2 (ja) 1997-09-08 1997-09-08 永久磁石同期電動機

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/520,149 Continuation-In-Part US6940205B1 (en) 1997-09-08 2000-03-07 Permanent magnet synchronous motor

Publications (1)

Publication Number Publication Date
WO1999013556A1 true WO1999013556A1 (fr) 1999-03-18

Family

ID=26535995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003996 WO1999013556A1 (fr) 1997-09-08 1998-09-07 Moteur synchrone a aimant permanent

Country Status (4)

Country Link
EP (2) EP1624553B1 (ja)
CN (2) CN1089202C (ja)
DE (1) DE69840793D1 (ja)
WO (1) WO1999013556A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001097363A1 (fr) * 2000-06-14 2001-12-20 Matsushita Electric Industrial Co., Ltd. Moteur synchrone a aimant permanent
EP1821388A3 (en) * 1999-06-29 2008-05-21 Sanyo Electric Co., Ltd. Brushless DC motor and refrigerant compressor employing the motor

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3816727B2 (ja) 2000-05-24 2006-08-30 株式会社東芝 永久磁石式リラクタンス型回転電機
TW571487B (en) * 2001-10-16 2004-01-11 Hitachi Air Conditioning Sys Self-starting synchronous motor and compressor using the same
JP2004201428A (ja) * 2002-12-19 2004-07-15 Matsushita Electric Ind Co Ltd 電動機
JP3722822B1 (ja) 2004-05-18 2005-11-30 山洋電気株式会社 永久磁石回転モータ
JP2006191782A (ja) * 2004-12-09 2006-07-20 Yamaha Motor Co Ltd 回転電機
US20070159021A1 (en) * 2005-12-19 2007-07-12 Emerson Electric Co. Composite magnet structure for rotor
EP2128963A1 (de) * 2008-05-29 2009-12-02 Siemens Aktiengesellschaft Rotor für eine elektrische Maschine
DE102009034791A1 (de) 2009-07-25 2011-01-27 Robert Bosch Gmbh Umspritzter Eisenkern für einen Elektromotor
EP2514081A2 (en) 2009-12-14 2012-10-24 Steorn Limited Electric motor with no counter electromotive force
DE102010016105B4 (de) 2010-03-23 2015-10-08 Moog Unna Gmbh Notbetriebsfähige Pitchantriebsvorrichtung für eine Wind- oder Wasserkraftanlage
JP5516068B2 (ja) * 2010-05-24 2014-06-11 株式会社デンソー 回転電機
CN103959617B (zh) * 2011-12-05 2016-11-09 株式会社安川电机 电机
CN102545416A (zh) * 2012-03-03 2012-07-04 常州新亚电机有限公司 一种低齿槽转矩电机定子及其装配方法
CN104380584B (zh) * 2012-06-26 2018-02-27 三菱电机株式会社 永久磁铁嵌入式电动机、压缩机和制冷空调装置
CN103872871B (zh) * 2012-12-14 2017-04-12 比亚迪股份有限公司 电机
CN105075079B (zh) * 2013-02-14 2017-07-21 三菱电机株式会社 永磁铁埋入式电动机、压缩机和冷冻空调装置
US10734850B2 (en) 2013-08-09 2020-08-04 Johnson Electric International AG Single-phase motor
WO2015022803A2 (en) * 2013-08-14 2015-02-19 Yamaha Hatsudoki Kabushiki Kaisha Synchronous drive motor
CN104753213B (zh) * 2013-12-25 2018-02-09 珠海格力节能环保制冷技术研究中心有限公司 永磁直流无刷电机
CN103840570B (zh) * 2014-02-21 2017-11-24 广东威灵电机制造有限公司 电机磁瓦及具有该电机磁瓦的电机
US20160352204A1 (en) * 2014-08-08 2016-12-01 Johnson Electric S.A. Refrigeration apparatus
ITUB20150729A1 (it) * 2015-05-22 2016-11-22 Enerdrive Ltd Motore sincrono a riluttanza assistito da magneti permanenti
DE202016104036U1 (de) * 2015-08-07 2016-10-26 Johnson Electric S.A. Kühlgerät
CN106469966A (zh) * 2015-08-18 2017-03-01 德昌电机(深圳)有限公司 气流产生装置及吸尘器、干手器、干发器、吹风机
DE102016115366A1 (de) 2015-08-28 2017-03-02 Johnson Electric S.A. Einphasiger Permanentmagnetmotor
CN106487186A (zh) * 2015-08-28 2017-03-08 德昌电机(深圳)有限公司 单相永磁电机
CN106487191B (zh) * 2015-08-28 2021-06-01 德昌电机(深圳)有限公司 单相无刷电机
DE102016115586A1 (de) * 2015-08-28 2017-03-16 Johnson Electric S.A. Einphasenmotor
CN106487187B (zh) * 2015-08-28 2020-11-10 德昌电机(深圳)有限公司 单相永磁电机及使用该电机的吹风机
CN106562547A (zh) * 2015-10-09 2017-04-19 德昌电机(深圳)有限公司 吹风机
CN106571725A (zh) * 2015-10-09 2017-04-19 德昌电机(深圳)有限公司 气流调节装置
DE102016215296A1 (de) * 2016-08-17 2018-02-22 Bayerische Motoren Werke Aktiengesellschaft Stromerregter synchron-elektromotor
CN110915106B (zh) * 2017-07-20 2022-07-26 株式会社美姿把 马达以及无刷雨刮器马达
WO2023040208A1 (zh) * 2021-09-17 2023-03-23 佛山市威灵洗涤电机制造有限公司 定子冲片、定子结构、电机结构和衣物处理装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62114454A (ja) * 1985-11-11 1987-05-26 Matsushita Electric Ind Co Ltd ブラシレス電動機
JPH0360852U (ja) * 1989-10-11 1991-06-14
JPH05304737A (ja) * 1992-02-26 1993-11-16 Toshiba Corp 永久磁石形モータ
JPH06245418A (ja) * 1993-02-19 1994-09-02 Nippondenso Co Ltd 回転電機の回転子
JPH0666277U (ja) * 1993-02-19 1994-09-16 株式会社安川電機 永久磁石形同期電動機のロータ
WO1994022206A1 (en) * 1993-03-19 1994-09-29 Daikin Industries, Ltd. Ultra-high speed brushless dc motor
JPH08251891A (ja) * 1995-02-21 1996-09-27 Siemens Ag ハイブリッド励磁式回転電機
JPH08331823A (ja) * 1995-03-24 1996-12-13 Seiko Epson Corp Dcブラシレスモータおよび制御装置
JPH0956099A (ja) * 1995-06-07 1997-02-25 Matsushita Electric Ind Co Ltd 電動機の固定子及びその製造方法
JPH09182331A (ja) * 1995-12-20 1997-07-11 Yaskawa Electric Corp 永久磁石形同期回転電機の回転子

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5006045A (en) * 1987-12-24 1991-04-09 Seiko Epson Corporation Scroll compressor with reverse rotation speed limiter
JPH071990B2 (ja) * 1988-07-07 1995-01-11 三菱電機株式会社 永久磁石式回転電機
JPH03106869U (ja) * 1990-02-16 1991-11-05
JPH05176487A (ja) * 1991-10-24 1993-07-13 Toshiba Corp 永久磁石形モータ
US5250867A (en) * 1991-11-20 1993-10-05 General Electric Company Permanent magnet brushless DC motor having reduced cogging
DE4213372A1 (de) * 1992-04-23 1993-10-28 Swf Auto Electric Gmbh Elektrische Maschine, insbesondere Elektromotor
JPH06217478A (ja) 1993-01-19 1994-08-05 Toshiba Corp 永久磁石形モータ
FR2723272B1 (fr) 1994-07-27 1996-08-30 Gec Alsthom Parvex Sa Moteur synchrone comportant des aimants inseres dans un rotor
FR2743456B1 (fr) * 1996-01-04 1998-02-06 Thomson Csf Moteur electrique de type synchrone a aimants permanents et vehicule comportant un tel moteur

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62114454A (ja) * 1985-11-11 1987-05-26 Matsushita Electric Ind Co Ltd ブラシレス電動機
JPH0360852U (ja) * 1989-10-11 1991-06-14
JPH05304737A (ja) * 1992-02-26 1993-11-16 Toshiba Corp 永久磁石形モータ
JPH06245418A (ja) * 1993-02-19 1994-09-02 Nippondenso Co Ltd 回転電機の回転子
JPH0666277U (ja) * 1993-02-19 1994-09-16 株式会社安川電機 永久磁石形同期電動機のロータ
WO1994022206A1 (en) * 1993-03-19 1994-09-29 Daikin Industries, Ltd. Ultra-high speed brushless dc motor
JPH08251891A (ja) * 1995-02-21 1996-09-27 Siemens Ag ハイブリッド励磁式回転電機
JPH08331823A (ja) * 1995-03-24 1996-12-13 Seiko Epson Corp Dcブラシレスモータおよび制御装置
JPH0956099A (ja) * 1995-06-07 1997-02-25 Matsushita Electric Ind Co Ltd 電動機の固定子及びその製造方法
JPH09182331A (ja) * 1995-12-20 1997-07-11 Yaskawa Electric Corp 永久磁石形同期回転電機の回転子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1014541A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1821388A3 (en) * 1999-06-29 2008-05-21 Sanyo Electric Co., Ltd. Brushless DC motor and refrigerant compressor employing the motor
WO2001097363A1 (fr) * 2000-06-14 2001-12-20 Matsushita Electric Industrial Co., Ltd. Moteur synchrone a aimant permanent
EP1298773A1 (en) * 2000-06-14 2003-04-02 Matsushita Electric Industrial Co., Ltd. Permanent magnet synchronous motor
US20030168924A1 (en) * 2000-06-14 2003-09-11 Hiroshi Murakami Permanent magnet synchronous motor
EP1298773A4 (en) * 2000-06-14 2005-05-11 Matsushita Electric Ind Co Ltd PERMANENT MAGNET SYSCHRONMOTOR
US6936945B2 (en) 2000-06-14 2005-08-30 Matsushita Electric Industrial Co., Ltd. Permanent magnet synchronous motor

Also Published As

Publication number Publication date
EP1014541A1 (en) 2000-06-28
DE69840793D1 (de) 2009-06-10
EP1624553A3 (en) 2008-09-03
EP1624553B1 (en) 2012-02-08
EP1014541A4 (en) 2006-01-18
EP1624553A2 (en) 2006-02-08
EP1014541B1 (en) 2009-04-29
CN1089202C (zh) 2002-08-14
CN1396692A (zh) 2003-02-12
CN1228905C (zh) 2005-11-23
CN1269919A (zh) 2000-10-11

Similar Documents

Publication Publication Date Title
WO1999013556A1 (fr) Moteur synchrone a aimant permanent
JP3076006B2 (ja) 永久磁石同期電動機
US6940205B1 (en) Permanent magnet synchronous motor
JPH11146584A (ja) 永久磁石同期電動機
US5386161A (en) Permanent magnet stepping motor
US7595575B2 (en) Motor/generator to reduce cogging torque
US6995494B2 (en) Axial gap brushless DC motor
EP0823771B1 (en) Motor
JP5332082B2 (ja) モータ
US6858960B1 (en) Low cogging permanent magnet motor
EP1414140A1 (en) Electric machine, in particular an axial gap brushless DC motor
JPH0279738A (ja) 同期式acサーボモータの回転子
JP3508709B2 (ja) 磁石界磁回転形回転電機
JP4080273B2 (ja) 永久磁石埋め込み型電動機
JP2000050543A (ja) 永久磁石埋め込みモータ
JP3734889B2 (ja) ブラシレスdcモータ
JPH09298852A (ja) ブラシレスdcモータ
JPH07222385A (ja) 逆突極性円筒型磁石同期電動機
JPH10174407A (ja) モータ用電磁石部品および電動モータ
JP2591628Y2 (ja) ブラシレスモータの固定子構造
WO2018135405A1 (ja) ロータ及びそれを用いたモータ
JP5144923B2 (ja) 回転電機
US20230402885A1 (en) Variable torque constant electric machines having a radial spoked rotor with axial flux magnet plates and methods thereof
US11984763B2 (en) Electric machines having a radially embedded permanent magnet rotor and methods thereof
JP2583638Y2 (ja) インナーロータ型ブラシレスモータ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98808887.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09520149

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998941739

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998941739

Country of ref document: EP