WO1999013059A1 - β-FRUCTOFURANOSIDASE AND GENE THEREOF - Google Patents

β-FRUCTOFURANOSIDASE AND GENE THEREOF Download PDF

Info

Publication number
WO1999013059A1
WO1999013059A1 PCT/JP1998/004087 JP9804087W WO9913059A1 WO 1999013059 A1 WO1999013059 A1 WO 1999013059A1 JP 9804087 W JP9804087 W JP 9804087W WO 9913059 A1 WO9913059 A1 WO 9913059A1
Authority
WO
WIPO (PCT)
Prior art keywords
fructofuranosidase
seq
dna
amino acid
gene
Prior art date
Application number
PCT/JP1998/004087
Other languages
English (en)
French (fr)
Inventor
Koji Yanai
Akitaka Nakane
Toshiaki Kono
Original Assignee
Meiji Seika Kaisha, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Seika Kaisha, Ltd. filed Critical Meiji Seika Kaisha, Ltd.
Priority to CA002302551A priority Critical patent/CA2302551C/en
Priority to US09/508,264 priority patent/US6566111B1/en
Priority to AU90018/98A priority patent/AU9001898A/en
Priority to EP98941819A priority patent/EP1022332A4/en
Publication of WO1999013059A1 publication Critical patent/WO1999013059A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01026Beta-fructofuranosidase (3.2.1.26), i.e. invertase

Definitions

  • the present invention relates to 3-fructofuranosidase having fructotransferase activity, which can be used for producing fructo-oligosaccharides, a residue thereof, and use thereof.
  • fructooligosaccharides consist of 1-3 molecules of fructose bound to sucrose fructose at C1 and C2 positions. It has been found that it has excellent physiological effects such as a promoting action, an effect of improving lipid metabolism such as cholesterol, and a hard caries property.
  • Fructooligosaccharides are widely distributed in plants in nature, and are known to be found in, for example, asparagus, evening onion, jerusalem artichoke, and honey.
  • the technology for producing a large amount of a fructo-oligosaccharide mixture from sucrose by utilizing the transfer reaction of sucrose has been established and is industrially produced.
  • 1-guestose and nystose are one- and two-molecule fructose molecules which are strongly bound to fructose of sucrose, respectively, and are one component of a commercially produced fructooligosaccharide mixture.
  • E ⁇ new excellent properties ⁇ emerging ability while maintaining the physiological effects as fructooligosaccharides.
  • No. 7-222 923, Japanese Patent Application Laid-Open No. 6-3116 these can be said to be fructo-oligosaccharides with new features.
  • the enzyme having fructose transfer activity used in this method has, as its properties, not only a high conversion rate of sucrose to 1-kestose, but also an inhibition in each step of chromatographic separation and crystallization. It is demanded that the force of generating the second force acting on the surface be low.
  • the conversion rate of sucrose to 1-kestose is 44% when enzymes derived from Aspergillus niger, which are used for industrial production of fructo-oligo-sugar mixtures, are 44%.
  • the production rate was 7% (Japanese Patent Application No. Hei 8-646482). It can be said that this property of ⁇ 3 ⁇ 4 leaves room for improvement from the viewpoint of the production of crystals, guests and guests.
  • some of the present inventors further screened enzymes having better properties, and found new enzymes from Penicillium rockforti and Scobrariopsis brevicauris, respectively. These ⁇ properties indicate that the conversion of sucrose to 1-kestose is up to 47% and 55%, respectively, and the yield of nystose is 7% and 4%, respectively. (Japanese Patent Application No. 8-777534, Japanese Patent Application No. 8-777539). The productivity and stability of these enzymes are lower than those of enzymes derived from Aspergillus niger, leaving room for improvement from the viewpoint of production of crystals 1-guests ⁇ Things.
  • Penicillium-mouthfault and Scobrariopsis For the / 3 -fructofuranosidase gene of Previkauris, the translation regions encoding 565 and 574 amino acids, respectively, could be deduced as mature proteins, confirming the ⁇ -fructofuranosidase activity of the protein and its expression product. .
  • an object of the present invention is to provide a novel S-fructofuranosidase and its remains.
  • novel fructofuranosidase is a polypeptide comprising the amino acid sequence described in SEQ ID NO: 1 or 3 in the sequence listing or a homolog thereof.
  • the gene according to the present invention is a DNA encoding the above polypeptide.
  • the amino acid sequences shown in SEQ ID NOs: 1 and 3 according to the present invention are derived from Penicillium rockforti and Scobrariopsis brevicauris previously discovered by some of the inventors as described above. It is composed of 38- and 39-amino acids added to the C-terminal of 3-fructofuranosidase gene. At the position where it was presumed to encode the C-terminal amino acid of the ⁇ -fuctofuranosidase residue, there is actually an intronic force, and these residues are present at the C-terminal. C was found to encode an additional 38 and 39 amino acids at the ends, respectively By the addition of these C-terminal amino acids, the activity of / 3-fructofuranosidase was unexpectedly greatly improved as compared to the case without the addition of these sequences.
  • Figure 1 A, B, C, and D show the expression vector pYPENO2 and the integrated expression vector encoding an enzyme protein consisting of the amino acid sequence shown in SEQ ID NO: 1 in the sequence listing.
  • Preparation of PYPEN 01 an integrated expression vector that encodes an enzyme protein consisting of the amino acid sequence from amino acid sequence 1 to amino acid sequence 5 to 65 of the amino acid sequence shown in SEQ ID NO: 1 in the sequence listing FIG.
  • FIGS. 2A and 2B show the expression vector pYSCOP02 in which the gene encoding the enzyme protein consisting of the amino acid sequence shown in SEQ ID NO: 3 of the Sequence Listing is incorporated, and SEQ ID NO: 3 in the Sequence Listing.
  • FIG. 2 is a diagram showing a method for producing an expression vector pYSCOP01 which incorporates an enzyme protein encoding an enzyme protein consisting of an amino acid sequence from the first to the 574th amino acid in the amino acid sequence.
  • the polypeptide according to the present invention has an amino acid sequence shown in SEQ ID NO: 1 or 3 in the sequence listing.
  • the polypeptide having the amino acid sequence shown in SEQ ID NO: 1 or 3 acts as a peptide having 3-fructofuranosidase activity.
  • the polypeptide according to the present invention includes a homologue of the amino acid sequence shown in SEQ ID NO: 1 or 3 in the sequence listing; ⁇ .
  • the term “homolog” refers to the insertion, substitution or deletion of some (for example, one to several) amino acids, or one or both ends of the amino acid sequence shown in SEQ ID NOS: 1 and 3. And / 3-that has a fructofuranosidase action.
  • Such “homologs” can be selected and manufactured without particular difficulty by those skilled in the art with reference to the sequence shown in SEQ ID NO: 1 or 3. It is clear.
  • the fructofuranosidase having the amino acid sequence of SEQ ID NOs: 1 and 3 has a high transfer activity and efficiently: fructooligosaccharides. Specifically, in a reaction using 30% or more of sucrose as a substrate, the transfer activity is 4 times that of the amino acid sequence of SEQ ID NO: 1/3 / 3-fructofuranosidase compared to the hydrolysis activity. ⁇ -Fructofuranosidase having the amino acid sequence of SEQ ID NO: 3 is at least 7 times higher. Furthermore, the conversion rates of sucrose to fructo-oligosaccharide are both 50% or more.
  • novel gene encoding ⁇ -fructofuranosidase comprises the amino acid sequence shown in SEQ ID NOS: 1 or 3 or a DNA sequence encoding a homologue thereof.
  • a DNA sequence encoding the amino acid sequence shown in SEQ ID NO: 1 or 3 refers to a DNA sequence having the base sequence shown in SEQ ID NO: 2 or 4, and codons in a degenerate relationship thereof. It also means a nucleotide sequence having the same nucleotide sequence except that it is used and encoding the amino acid sequence shown in SEQ ID NO: 1 or 3.
  • a DNA fragment comprising a DNA sequence having the nucleotide sequence shown in SEQ ID NO: 2 or 4 in the sequence listing.
  • the enzyme encoded by the novel gene according to the present invention includes a homologue of the amino acid sequence shown in SEQ ID NO: 1 or 3. Therefore, the DNA fragment according to the present invention further includes a base sequence encoding this homolog.
  • nucleotide sequence of the DNA fragment according to the present invention is determined, one means for obtaining the DNA fragment is to produce it according to the technique of nucleic acid synthesis.
  • the system is preferably Penicillium rockforti or Scopulariopsis brevicaul is, preferably Benicillium rockforti I AM7254 or Scobraliopsis. Brevicaulis I F04843 strain, which can be obtained using genetic engineering techniques.
  • 3-fructofuranosidase can be produced in host cells transformed with the DNA fragment encoding it. More specifically, a DNA molecule containing a DNA fragment encoding a / 3-fructofuranosidase according to the present invention in a state capable of replicating in a host cell and expressing the gene, particularly an expression vector, Then, the host cells are transformed, and the transformants are cultured.
  • a DNA molecule particularly an expression vector, containing a gene encoding the / 3-fructofuranosidase according to the present invention.
  • This DNA molecule can be obtained by incorporating a DNA fragment encoding S-fructofuranosidase according to the invention into one vector molecule.
  • the vector is a plasmid.
  • DNA according to the present invention may be carried out according to a method commonly used in the field of genetic engineering.
  • the vector used in the present invention can be appropriately selected from viruses, plasmids, cosmid vectors, etc., while taking into consideration the type of host cell used. You. For example, when the host cell is Escherichia coli; phage I-based pacteriophage, pBR, pUC-based plasmid, Bacillus subtilis pUB-based plasmid, and yeast YEp, YCp-based vector. Can be
  • This plasmid preferably contains a selectable marker for the transformant.
  • a selectable marker a gene for drug resistance and an auxotrophic marker can be used.
  • Preferable specific examples thereof include ampicillin resistance gene, kanamycin resistance gene, tetracycline resistance gene and the like in the case of host cell bacteria, and tributophan synthesis gene (TRP1) and peracil synthesis gene in yeast.
  • a DNA molecule as an expression vector according to the present invention may contain a DNA sequence required for expression of ⁇ -fructofuranosidase, such as a promoter, a transcription initiation signal, a ribosome binding site, a translation termination signal, and a transcription termination signal. It preferably has a transcription control signal and a translation control signal.
  • promoter not only a promoter that can function in the host contained in the inserted fragment but also lactose operon in Escherichia coli
  • promoters such as tributofan operon (trp), and yeast, alcohol dehydrogenase (fei) (ADH) ⁇ acid phosphatase
  • the host cell is Bacillus subtilis, yeast, or mold
  • a secretory vector to secrete recombinant ⁇ -fructofuranosidase outside the cells.
  • any available host-vector system can be used, preferably yeast, mold and the like.
  • a filamentous fungus which does not exhibit the yS-fructofuranosidase activity described in PCTZ JP97 / 0757.
  • the recombinant novel enzyme produced by the above-mentioned transformant can be obtained as follows. First, the host cell is cultured under appropriate conditions, and a culture supernatant or cells are obtained from the resulting culture by a known method, for example, centrifugation. In the case of bacterial cells, suspend them in an appropriate buffer, disrupt cells by freeze-thawing, sonication, trituration, etc., and extract cells containing the recombinant novel enzyme by centrifugation or filtration. Get things. -Enzyme purification can be performed by appropriately combining conventional separation and purification methods.
  • methods that utilize differences in heat resistance such as heat treatment, methods that utilize differences in solubility such as salt precipitation and solvent precipitation, dialysis, ultrafiltration, gel filtration, and SDS-polyacrylamide gel electrophoresis.
  • a method using a difference in charge such as ion exchange chromatography; a method using a specific affinity such as affinity—chromatography; a method using hydrophobic affinity; Examples thereof include a method utilizing a difference in hydrophobicity such as reverse phase chromatography, and a method utilizing a difference in isoelectric point such as isoelectric focusing.
  • the method for producing fructooligosaccharides according to the present invention is carried out by bringing the above-mentioned recombinant host or recombinant 3-fructofuranosidase into contact with sucrose.
  • the mode of contacting the recombinant host or recombinant ⁇ -fructofuranosidase according to the present invention with sucrose and the conditions thereof are such that the recombinant enzyme can act on the sugar.
  • Preferred embodiments for contacting in a solution are as follows. That is, the concentration of sucrose to be used may be appropriately selected in consideration of the specific activity of the enzyme, the reaction temperature, etc., as long as the used sugar can be dissolved, but is preferably in the range of 5 to 80%. It is common and preferably in the range of 30-70%.
  • the reaction temperature and PH conditions in the reaction between sugar and phenol are strongly preferred to be performed under the optimal conditions for the recombinant novel enzyme. Therefore, the reaction is generally performed under conditions of about 30 to 80 ° C. and pH of about 4 to 10, preferably in the range of 40 to 70 ° C. and pH 5 to 7.
  • the degree of purification of the recombinant novel product can be selected as appropriate, and the crude enzyme can be used as is from the -culture supernatant of the transformant or the crushed cells, and can be obtained in various purification steps. It may be used as a purified enzyme. Further, it may be used as an enzyme isolated and purified through various purification means.
  • the enzyme may be brought into contact with sucrose in a state of being immobilized on a carrier according to a conventional method.
  • the produced fructooligosaccharide can be obtained by purifying the reaction solution according to a known method. For example, there is a method of deactivating the enzyme by heating, decolorizing with activated carbon, and desalting with an ion exchange resin.
  • Example II Determination of the translation region of the 8-fructofuranosidase residue of the AM7254 strain (Peni ci 11 ium roqueforti)
  • Aspergillus niger ATCC20611 strain was prepared according to a standard method using chromosomal DNA as type III, and PCR was performed using primers of synthetic DNAs shown in SEQ ID NOs: 5 and 6 in the sequence listing as primers.
  • An approximately 2 kbp DNA fragment containing the 2/3 fructofuranosidase gene was amplified.
  • the DNA fragment was fractionated by agarose gel electrophoresis, extracted and purified according to a standard method. It was dissolved in sterile water to give 0.1 ⁇ g fi 1 and used as a probe DNA sample.
  • chromosomal DNA was prepared from Penicillium perforum I AM7254 strain, approximately 20 ⁇ g of the chromosomal DNA sample was completely digested with the restriction enzyme Ec0RI, and then fractionated by agarose gel electrophoresis. Then, a DNA fragment around 4 kbp was recovered. Approximately 0.5 / g of the approximately 4 kbp DNA fragment thus recovered was digested with EcoRI restriction enzyme and phosphatase-treated beforehand; 1 g of igtl0 vector was ligated, and A library was prepared by packaging using the in Vitra 0 packaging kit GIGAPACK11 Gold manufactured by Yu-Gene and infecting E. coli NM514 strain.
  • Plasmid DNA was prepared from the obtained subclone by a conventional method, and the nucleotide sequence was determined using a fluorescent sequencer ALFred DNA sequencer manufactured by Pharmacia. As a result, the nucleotide sequence represented by SEQ ID NO: 7 in the sequence listing was obtained.
  • the base sequence consisting of 50 bases from the 1695th position to the 1744th position in this base sequence has a typical intron structure of filamentous fungi, it was identified as an intron.
  • the nucleotide sequence shown in SEQ ID NO: 7 in the sequence listing was Except for the nucleotide sequence, the nucleotide sequence shown in SEQ ID NO: 2 in the sequence listing was obtained as the nucleotide sequence encoding the protein.
  • the corresponding amino acid sequence is as shown in SEQ ID NO: 1 in the sequence listing.
  • Example 2 Expression of the / S-fructofuranosidase gene from Penicillium rochforti IAM 7254 strain by yeast (Saccharomyces cerevisiae)
  • PYPENO1 and pYPENO2 plasmids for expression of ⁇ -fructofuranosidase derived from Penicillium rockforti, were prepared as follows ( Figures 1A, B, C, and D).
  • pYPR2831 (H. Horiucbi et al., Agric. Biol. Chem., 54, ⁇ 71-1779, 1990) is digested with restriction enzymes EcoRI and Sa1I, and the end is digested with T4
  • plasmid p PRS01 obtained by inserting the approximately 4 kbp EcoR I DNA fragment containing the / 3-fructofuranosidase gene prepared in Example 1 into plasmid pUC118. DNA was prepared. Using this as a ⁇ type, site-directed mutagenesis was performed using the synthetic DNA of SEQ ID NO: 8 in the sequence listing as a primer, and the BamHI site present in the translation region of the 3-fructofuranosidase gene was coded. The amino acid sequence was destroyed in such a way that there was no change (p PRS 02).
  • PCR was performed using plasmid P PRS 02 as type I and the synthetic DNAs of SEQ ID NOS: 9 and 10 in the sequence listing as primers, and a portion of the translation region of the ⁇ -fructofuranosidase gene was reduced to about 1.81 ⁇ 13.
  • PCR was performed using the plasmid p PRS02 as a type II and the synthetic DNAs of SEQ ID NOS: 9 and 11 in the sequence listing as primers.
  • the DNA fragment containing the translation region of fructofuranosidase gene was A kbp BamHI DNA fragment was prepared and inserted into the BamHI site of plasmid pUC118 to obtain plasmid pPRSO3.
  • a single-stranded DNA was prepared from plasmid p PRS03, and this was used as type I.
  • the synthetic DNA of SEQ ID NO: 12 in the sequence listing was used as a primer, site-directed mutagenesis was performed, and the intron sequence was removed (p PR SO 4).
  • the translation region of the ⁇ -fructofuranosidase gene was prepared as a BamHI DNA fragment of about 1.8 kbp, which was inserted into the BamHI site of the plasmid pY2831 to insert the plasmid.
  • De p YPEN 02 was prepared. Therefore, the plasmid pYPEN02 is designed to produce an enzyme protein consisting of the amino acid sequence shown in SEQ ID NO: 1 as a mature yS-fructofuranosidase following the secretory signal sequence. .
  • Plasmids pYPEN O 1 and pYP EN 02 were applied to the yeast Saccharomyces cerevisiae MS—161 strain (Sue-, ura3, trpl) using the lithium acetate method (1, H. et al., J. Bacterid , 153, 163-168, 1983) to obtain a transformant. These transformants were cultured overnight at 30 ° C. in SD-Ura medium (0.67% yeast nitrogen base (Difco), 2% glucose, 50 gZm 1 ⁇ racil). This culture solution is added to the production medium to a final concentration of 1%.
  • Example 3 Determination of translation region of 3-fructofuranosidase gene of Scopulariopsis brevicaulis I F04843 strain A chromosomal DNA was prepared from Scobulariopsis brevicaulis I F04843 strain, and about 20 g was prepared. Was completely digested with a restriction enzyme EcoRI, and fractionated by agarose gel electrophoresis, and a DNA fragment of about 10 kbp was recovered.
  • a library was prepared by infecting the MRA (P2) strain.
  • Example 2 Using the DNA fragment of about 2 kbp used in Example 1 as a probe, plaque hybridization was performed using an ECL direct DNAZRNA labeling and detection system (Amersham), and about 15,000 Three positive clones were obtained from among the plaques. Secondary screening was performed on these positive clones, and after the positive clones were purified, phage DNA was prepared and analyzed by restriction. As a result, all clones had the same EcoR of about lOkbp. It was found to have an I DNA fragment.
  • Plasmid DNA was obtained from the obtained subclone by a standard method. The base sequence was determined using a fluorescent sequencer ALF red DNA sequencer manufactured by Pharmacia. As a result, the nucleotide sequence represented by SEQ ID NO: 13 in the sequence listing was obtained.
  • nucleotide sequence consisting of 55 nucleotides from the 1722th position to the 1-76th position in this nucleotide sequence was identified as an intron because it has a typical intron structure of filamentous fungi.
  • nucleotide sequence shown in SEQ ID NO: 4 was obtained as a nucleotide sequence encoding a protein except for the inlet sequence from the nucleotide sequence shown in SEQ ID NO: 13 in the Sequence Listing.
  • the corresponding amino acid sequence is as shown in SEQ ID NO: 3 in the sequence listing.
  • Example 4 Expression of yS-fructofuranosidase from Scopulariopsis brevicaulis strain IF04843 by yeast (Saccharomyces cerevisiae)
  • PYSCOP01 and pYSCOP02 plasmids for expressing the fructofuranosidase residue ⁇ r? From Scopulariopsis brevicaulis, were prepared as follows ( Figures 2A and B). .
  • the E-coRI DNA fragment of about 1 kbp containing the 3-fructofuranosidase residue prepared in Example 3 was used as type I, and the synthetic DNAs of SEQ ID NOS: 14 and 15 in the sequence listing were used as primers.
  • PCR was performed to prepare a part of the translation region of the fructofuranosidase residue as an approximately 1.81 ⁇ 8 & 111111 DNA fragment, which was inserted into the BamHI site of plasmid pY2831 to insert plasmid pYS C0P01 was prepared.
  • the plasmid pYPEN01 as a mature / S-fructofuranosidase following the secretory signal sequence, consists of the first to 574th amino acid sequence of the amino acid sequence shown in SEQ ID NO: 3 in the sequence listing. It is designed to produce enzyme proteins.
  • the synthesized DNA of SEQ ID NO: 17 in the sequence listing was used as a primer, site-directed mutation was performed, and the intron sequence was removed ( p S CB 02).
  • the translation region of the ⁇ -fructofuranosidase gene was prepared as a BamHI DNA fragment of about 1.9 kbp, which was inserted into the BamHI site of the plasmid pY2831 to insert the plasmid.
  • PYS COP 02 was prepared. Therefore, the plasmid pYSCOP02 is designed to produce a protein consisting of the amino acid sequence shown in SEQ ID NO: 3 as a mature iS-fructofuranosidase following the secretory signal sequence. .
  • Plasmids pYSCOP01 and pYSC ⁇ P02 were introduced into the yeast Saccharomyces cerevisiae MS-1 (buc-ura3, trpl) by the lithium acetate method to obtain transformants.
  • These transformants were cultured in SD-Ura medium at 30 overnight. This culture solution was seeded in a production medium to a final concentration of 1%, and cultured at 30 ° C for 2 days. Furanosidase activity was measured. Consequently, plasmid p YS COP 0 1 to activity der Tsutano of 4 X 1 0- 4 units Zm 1 or less in the transformant by, the transformant according plasmids pYS COP 02 6. 5 X 1 0 one An activity of 3 units / ml was detected.

Description

明 3—フルク トフラノシダーゼおよびその遺伝子
〔発 明 の 背景〕 発 明 の 分野
本発明は、 フラク トオリゴ糖製造に利用可能なフルク ト一ス転移活性を有する 3—フルク トフラノシダーゼおよびその遺 ならびにその利用に関する。
背 景 技 術
- 一般にフラクトオリゴ糖は、 ショ糖のフルクトースに 1〜3分子のフルクトー スが C 1と C 2の位置で ^結合しているものであり、 難消化性の糖で、 腸内のビ フィズス菌増殖促進作用、 コレステロ一ルなどの脂質代謝改善効果、 難う蝕性な どの優れた生理効果を有すること力 <見いだされている。
フラク トオリゴ糖は、 自然界では広く植物に分布しており、 例えばァスパラガ ス、 夕マネギ、 キクイモ、 蜂蜜などに含まれていることが知られている力 最近 では、 物由来の ^—フルク トフラノシダーゼの転移反応を利用してショ糖か らフラク トオリゴ糖混合物を大量に製造する技術力 立され、 工業的に生産され ている。
一方、 1—ゲスト一スおよびニストースはショ糖のフルクトースにそれぞれ 1 および 2分子のフルク トース力く結合したもので、 現 ¾ 業的に製造されているフ ラクトオリゴ糖混合物の一成分である。 これらをそれぞれ高純度に調製し結晶化 させることによって、 フラクトオリゴ糖としての生理効果を保持したまま、 物性 および食品加: E±、 新たな優れた特性力 <現れること力最近見いだされており (特 願平 7— 2 2 2 9 2 3、 特開平 6— 3 1 1 6 0) 、 これらは新しい特徴を有する フラク トオリゴ糖と言える。 このような状況の下、 本発明者らの一部は、 ショ糖を原料とした結晶 1—ケス トースの工業的製造法を既に出願している (特願平 8— 6 4 6 8 2、特願平 8— 7 7 5 3 4、 特願平 8— 7 7 5 3 9 ) 。 すなわち、 フルクトース転移活性を有す る酵素をショ糖に作用させて 1—ケストースに変換し、 クロマト分離法により 1 一ゲストースを純度 8 0 %以上に分画した後、 これを結晶化原液として純度が 9 5 %以上の結晶 1—ゲストースを得る方法である。 この方法において使用され るフルクトース転移活性を有する酵素には、 その性質として、 ショ糖から 1—ケ ストースへの変換率力く高いことは勿論のこと、 クロマト分離および結晶化の各工 程において阻害的に作用する二スト一スの生成力低いこと力求められている。 現 —在フラクトォリゴ糖混合物の工業的製造に利用しているァスペルギルス ·二ガー 由来の酵素を利用した場合のショ糖から 1—ケストースへの変換率は 4 4 %であ り、 この時の二スト一スの生成率は 7 %であった (特願平 8— 6 4 6 8 2 ) 。 こ の^ ¾の性質は、 結晶 1一ゲスト一スのェ ^^産という観点からは改善の余地を のこすものであるといえる。
そこで更に本発明者らの一部は、 より優れた性質の酵素のスクリーニングを行 い、 ぺニシリウム ·ロックフォルティ一とスコブラリオプシス ·ブレビカウリス よりそれぞれ新たな酵素を見出した。 これらの^^の性質は、 ショ糖から 1—ケ ストースへの変換率がそれぞれ最大で 4 7 %および 5 5 %であり、 その際のニス トースの生成率はそれぞれ 7 %および 4 %であった (特願平 8— 7 7 5 3 4、 特 願平 8— 7 7 5 3 9 ) 。 し力、し、 これら酵素の生産性や安定性は、 ァスペルギル ス ·二ガー由来の酵素と比較して低く、 結晶 1—ゲスト一スの工 ^^産という観 点からは改善の余地を残すものであつた。
そこで、 本発明者らの一部は、 酵素の生産性などを改良するための方法として 遺&?工学的手法に着目し、 ぺニシリウム *ロックフォルティ一とスコブラリオ プシス ·プレビカウリスよりそれぞれ 一フルクトフラノシダ一ゼをコ一ドする 遺伝子を単離し、 その構造解析を行った (PCTZJ P 97Z00757) 。 そ の結果、 ァスペルギルス ·二ガーの S—フルク トフラノシダ一ゼ遺伝子 (L. M. Boddy et al. Curr. Genet., 24, 60-66 (1993) ) と同様に、 ぺニシリウム ·口 ックフオルティーおよびスコブラリオプシス ·プレビカウリスの /3—フルク トフ ラノシダーゼ遺伝子には、 成熟蛋白質としてそれぞれ 565および 574ァミノ 酸をコードする翻訳領域を推定することができ、 力、つその発現産物の^—フルク トフラノシダ一ゼ活性を確認した。
〔発 明 の 概要〕
本発明者らは、 今般、 先に本発明者らの一部によって見出されたぺニシリウム .·ロックフォルティ一およびスコブラリオプシス ·プレビカウリス由来の S—フ ルク トフラノシダーゼ遺伝子の C末端に 38および 39ァミノ酸が付加されるこ とで、 その活性が向上することを見出した。
よって本発明は、 新規な S—フルクトフラノシダ一ゼおよびその遺^の提供 をその目的としている。
そして、 本発明による新規な ^—フルク トフラノシダーゼは、 配列表の配列番 号 1または 3に記載のァミノ酸配列またはその相同体を含んでなるポリべプチド όある。
また、 本発明によるその遺伝子は上記ポリべプチドをコ一ドする DNAである。 本発明による配列番号 1および 3に示されるァミノ酸配列は、 上記したように 先に本発明者らの一部によって見出されたぺニシリゥム ·ロックフォルティ一お よびスコブラリオプシス ·ブレビカウリス由来の /3—フルクトフラノシダーゼ遺 伝子の C末端に 38および 39アミノ酸力付加されて構成される。 先に本発明者 らの一部力、 β—フ クトフラノシダーゼ遺 の C末端ァミノ酸をコードして いると推定していた位置に、 実際にはイントロン力く存在し、 これら遺 が C末 端にさらに 38および 39アミノ酸をそれぞれコードしていることが見出された c これら C末端ァミノ酸の付加により /3—フラクトフラノシダ一ゼ活性は、 これら 配列の付加のないときと比較して意外にも大きく向上していた。
〔画の簡単な説明〕
図 1 A、 B、 C、 および Dは、配列表の配列番号 1に示されているアミノ酸配 列からなる酵素蛋白質をコ一ドする遺 力組み込まれた発現べクタ一 p Y P E N O 2. および配列表の配列番号 1に示されているァミノ酸配列の内 1番目から 5 6 5番目までのァミノ酸配列からなる酵素蛋白質をコードする遺^?力組み込 まれた発現ベクター P Y P E N 0 1の作製法を示した図である。
図 2 Aおよび Bは、 配列表の配列番号 3に示されているアミノ酸配列からなる 酵素蛋白質をコードする遺伝子が組み込まれた発現ベクター p Y S C O P 0 2、 および配列表の配列番号 3に示されているアミノ酸配列の内 1番目から 5 7 4番 目までのァミノ酸配列からなる酵素蛋白質をコードする遺 カ組み込まれた発 現ベクター p Y S C O P 0 1の作製法を示した図である。
〔発明の具体的説明〕
β - フルク トフラノシダ一ゼ
本発明によるポリぺプチドは、 配列表の配列番号 1または 3に示されるァミノ 酸配列を有するものである。 この配列番号 1または 3に示される了ミノ酸配列を 有するポリべプチドは 3—フルクトフラノシダーゼ作用を有する^ ¾として作用 する。 また、 本発明によるポリペプチドには、配列表の配列番号 1または 3に示 されるアミノ酸配列の相同体;^含まれる。 ここで 「その相同体」 とは、 配列番号 1および 3に示されるアミノ酸配列において、 幾つかの (例えば、 1〜数個の) アミノ酸の挿入、 置換または欠失、 若しくはその一方または両末端への付加がな されたものであって、 かつその /3—フルクトフラノシダーゼ作用を するもの をいうものとする。 このような 「相同体」 は、 配列番号 1または 3に示される配 列を参照すれば、 当業者であれば格別の困難性なしに選択し、 製造可能であるこ とは明らかである。
本発明による配列番号 1および 3に記載のァミノ酸配列を有する 一フルクト フラノシダーゼは、 その転移活性が高く、 フラクトオリゴ糖を効率良く:^する。 具体的には、 3 0 %以上のショ糖を基質として用いた反応において、転移活性が 加水分解活性に対して、配列番号 1に記載のアミノ酸配列を有する /3—フルクト フラノシダ一ゼは 4倍以上高く、 また、配列番号 3に記載のアミノ酸配列を有す る^—フルクトフラノシダーゼは 7倍以上高い。 さらに、 ショ糖からフラクトォ リゴ糖への変換率はともに 5 0 %以上である。
β - フルク トフラノシダ一ゼ遺 fe?
- 本発明による ^—フルクトフラノシダーゼをコ一ドする新規遺伝子は、配列番 号 1および 3に示されるァミノ酸配列またはその相同体をコードする D N A配列 を含んでなるものである。
~«に、 蛋白質のアミノ酸配列力与えられれば、 それをコードする塩基配列は、 いわゆるコドン表を参照して容易に定まる。 よって、配列番号 1あるいは 3に示 されるアミノ酸配列をコードする種々の塩基配列を適宜選択することが可能であ る。 従って、 本発明において 「配列番号 1あるいは 3に示されるアミノ酸配列を コードする D N A配列」 とは、 配列番号 2あるいは 4に示される塩基配列を有す るもの、 およびその縮重関係にあるコドンが使用されている以外は同一の塩基配 列を有しかつ配列番号 1あるいは 3に示されるァミノ酸配列をコードする塩基配 列をも意味するものとする。
本発明の好ましい態様によれば、 本発明による新規遺伝子の好ましい具体例と して、配列表の配列番号 2または 4に示される塩基配列を有する D N A配列を含 んでなる D N A断片が提供される。
さらに、 前記したように、 本発明による新規遺伝子がコードする酵素には、配 列番号 1あるいは 3に示されるァミノ酸配列の相同体をも包含するものである。 従って、 本発明による DNA断片には、 さらにこの相同体をコードする塩基配列 も包含される。
本発明による DN A断片はその塩基配列力定まっていることから、 その DNA 断片を取得する一つの手段は核酸合成の手法に従つて製造することである。
また、 この配歹 ijはぺニシリウム ·ロックフォルティ一 (Penici 11 m roquefor ti) あるいはスコブラリオプシス ·プレビカウリス (Scopulariopsis brevicaul is) 、 好ましくはべニシリゥム ·ロックフォルティ一 I AM7254株あるい はスコブラリオプシス ·ブレビカウリス I F04843株、 から遺 工学的 手法を用いて得ることができる。
. ^—フルク トフラノシダーゼをコ一ドする遺^の発現
本発明による;3—フルク トフラノシダーゼは、 それをコードする DN A断片に よって形質転換された宿主細胞において製造することができる。 より具体的には、 本発明による /3—フルクトフラノシダーゼをコードする DNA断片を、 宿主細胞 内で複製可能でかつ同遺伝子が発現可能な状態で含む DN A分子、 特に発現べク ター、 の形態とし、 それによつて宿主細胞の形質転換を行い、 その形質転換体を 培養する。
従って、 本発明によれば、 さらに本発明による /3—フルク トフラノシダーゼを コードする遺 を含んだ DNA分子、 特に発現ベクター、 が提供される。 この DNA分子は、 ベクタ一分子に本発明による; S—フルク トフラノシダ一ゼをコ一 ドする D N A断片を組み込むことによって得ることが出来る。 本発明の好まし tヽ 態様によれば、 このべクタ一はプラスミ ドである。
この本発明による D N A の作成は遺伝子工学の分野で慣用されている手法 に準じて実施されてよい。
本発明において利用されるベクターは、 使用する宿主細胞の種類を勘案しなが ら、 ウィルス、 プラスミ ド、 コスミ ドベクターなどから適宜選択することができ る。 例えば、 宿主細胞が大腸菌の場合は; Iファージ系のパクテリオファージ、 p BR, pUC系のプラスミ ド、 枯草菌の場合は pUB系のプラスミ ド、 酵母の 場合は YEp、 YCp系のベクターが挙げられる。
このプラスミ ドは形質転換体の選択マーカーを含むのが好ましく、 選択マーカ —としては薬剤耐性マ一力一、栄養要求マ―力一遺伝子を使用することができる。 その好ましい具体例としては、 使用する宿主細胞力細菌の場合はアンピシリン耐 性遺伝子、 カナマイシン耐性遺 、 テトラサイクリン耐性遺伝子などであり、 酵母の場合はトリブトファン合成遺伝子 (T R P 1 ) 、 ゥラシル合成遺
(URA3) 、 ロイシン合成遺 fe^ (LEU 2) などがあり、 カビの場合はハイ -グロマイシン耐性遺伝子 (Hy g) 、 ビアラホス耐性遺 (B a r) . 硝酸還 元酵素遺 (n i aD) などが挙げられる。
さらに、 本発明による発現ベクターとしての DNA分子は、 β—フルクトフラ ノシダ一ゼ遺 の発現に必要な DN Α配列、 例えばプロモーター、 転写開始信 号、 リボゾーム結合部位、 翻訳停止シグナル、 転写終結信号などの転写調節信号、 翻訳調節信号などを有しているのが好ましい。
プロモーターとしては、 挿入断片に含まれる宿主中において機能することがで きるプロモーターはもちろんのこと、 大腸菌においてはラクトースォペロン
(1 a c) 、 トリブトフアンオペロン (t r p) 等のプロモーター、 酵母ではァ ルコールデヒドロゲナーゼ遺 fei (ADH) ヽ 酸性フォスファターゼ遺^?
(PHO) 、 ガラクトース遺 (GAL) 、 グリセロアルデヒド 3リン酸デヒ ドロゲナ一ゼ遺^ (GPD) などのプロモーター、 カビでは アミラーゼ遺 ^- (amy) 、 セロピオハイドロラ一ゼ I遺伝子 (CBH I) 等のプロモータ 一が好ましく用いることができるものとして挙げられる。
また、 宿主細胞が枯草菌、 酵母、 カビの場合には、 分泌型ベクターを使用して、 菌体外に組換え^—フルク トフラノシダーゼを分泌させることも有利である。 宿 主細胞としては、 宿主一ベクター系が確立されているものであるならばいずれも 利用可能である力 好ましくは酵母、 カビなどが挙げられる。 更に、 P C TZ J P 9 7 / 0 0 7 5 7に記載の yS—フラクトフラノシダ一ゼ活性を示さない糸状 菌を用いることも好ましい。
前記した形質転換体の産生する組換え新規酵素は、 次のようにして得ることが 出来る。 まず前記の宿主細胞を適切な条件下で培養し、 得られた培養物から公知 の方法、 例えば遠心分離により培養上清あるいは菌体を得る。 菌体の場合にはこ れを適切な緩衝液中に懸濁し、 凍結融解、 超音波処理、 磨砕等により菌体を破砕 し、 遠心分離またはろ過により組換え新規酵素を含有する菌体抽出物を得る。 - 酵素の精製は、 慣用されている分離、 精製法を適宜組み合わせて すること ができる。 例えば、 熱処理のような耐熱性の差を利用する方法、 塩沈澱および溶 媒沈澱のような溶解性の差を利用する方法、 透析、 限外ろ過、 ゲルろ過および S D S—ポリアクリルアミ ドゲル電気泳動のような分子量の差を利用する方法、 イオン交換クロマトグラフィーのような電荷の差を利用する方法、 ァフィ二ティ —クロマトグラフィ一のような特異的親和性を利用する方法、 疎水クロマトグラ フィ一、逆相クロマトグラフィーのような疎水性の差を利用する方法、 更に等電 点電気泳動のような等電点の差を利用する方法等が挙げられる。
一フルクトフラノシダーゼを用いたフラク トオリゴ糖の製造
更に本発明によれば、 前記の組換え宿主または組換え; S—フルクトフラノシダ ーゼを用いた、 フラクトオリゴ糖の製造法が提供される。
すなわち、 本発明によるフラクトオリゴ糖の製造法は、 前記の組換え宿主また は,組換え 3—フルク トフラノシダ一ゼと、 スクロースとを接触させることによつ て実施される。
本発明による組換え宿主または組換え ^—フルク トフラノシダーゼと、 スクロ —スとの接触態様およびその条件は、 組換え新規酵素力該糖に作用可能な様態で ある限り特に限定されない。 溶液中で接触させる場合の好ましい態様を示せば次 の通りである。 すなわち、 スクロースの使用濃度は、 用いる糖が溶解されうる範 囲であれば、 本酵素の比活性、 反応温度等を考慮して適宜選択してよいが、 5〜 80%の範囲とするのが一般的であり、好ましくは 30〜70%の範囲である。 糖と «との反応における反応温度および P H条件は、 組換え新規酵素の最適条 件下で行うこと力く好ましい。 よって、 30~80°C程度、 pH4〜10程度の条 件下で行うのが一般的であり、 好ましくは 40~70°C、 pH5〜7の範囲であ る。
また、 組換え新規 の精製の程度も適宜選択することができ、 形質転換体の -培養上清あるいは菌体破砕物から粗酵素のまま用いることもでき、 また、 各種精 製工程で得られた精製酵素として利用してもよい。 さらには各種精製手段を経て 単離精製された酵素として用いてもよい。
更に酵素は、 常法に準じて担体に固定化された状態でスクロースと接触させて もよい。
生成したフラクトオリゴ糖は、 反応液を公知の方法に従い精製することにより 得ることが出来る。 例えば、 加熱して酵素を失活させた後、活性炭により脱色し、 さらに、 イオン交換樹脂で脱塩する方法力挙げられる。
〔実 施 例〕
実施例〗 :ぺニシリウム ·ロックフォノレティー (Peni ci 11 ium roquef ort i) I AM7254株の 8—フルクトフラノシダーゼ遺^の翻訳領域の決定
ァスペルギルス ·二ガー (Aspergillus niger ) ATCC20611 株より定法に従つ て調製した染色体 DN Aを铸型とし、 配列表の配列番号 5及び 6に記載の合成 DNAをプライマーに用いて P CRを行い、 ァスペルギルス ·二ガーの /3—フル クトフラノシダーゼ遺伝子を含む約 2 k b pの DNA断片を増幅した。 この DN A断片をァガロースゲル電気泳動で分画し、 定法に従い抽出し、精製した後、 0. 1 β g fi 1となるよう滅菌水に溶解してプローブ用 DNA試料とした。 次に、 ぺニシリウム ·口ックフォルティ一 I AM7254株より染色体 DNA を調製し、 約 20 ^ g分の染色体 DN A標品を制限酵素 E c 0 R Iで完全消化し た後、 ァガロースゲル電気泳動で分画し、 4kbp付近のDNA断片を回収した。 こうして回収した約 4 k bpの DN A断片約 0. 5 / gと、 あらかじめ制限酵 素 EcoRIで消化し、 フォスファターゼ処理を施しておいた、 ;ig t l 0べク ター 1 gを連結し、 ストラ夕ジーン社製の i n V i t r 0パッケージングキ ッ ト GIGAPACK11 Go l dを用いてパッケージングし、 大腸菌 NM51 4株に感染させることによりライブラリーを作成した。
- 上述のプローブ用 DN A試料よりプローブを作成し、 ECLダイレクト DNA ZRN Aラベリング ·検出システム (アマシャム社) を使用してプラークハイブ リダィゼーシヨンを行い、 約 25000個のプラークの中から 4個の陽性クロ一 ンを得た。 これらの陽性クローンについて 2次スクリーニングを実施し、 陽性ク ローンを純化した後、 ファージ DN Aを調製し、 制限 による解析を行った結 果、 どのクローンも同一の約 4 kb pの E c oR I DNA断片を有することが 明らかとなった。
この約 4kbpの EcoRI DNA断片より必要な領域を適宜制限酵素で小 断片化した後、 プラスミ ドベクター pUC 118または pUC 119にサブクロ 一二ングを行った。 得られたサブクローンからプラスミ ド DNAを定法により調 製し、 フアルマシア社製蛍光シークェンサ一 ALF r e d DNAシークェンサ 一を用いて塩基配列を決定した。 この結果、 配列表の配列番号 7に示される塩基 配列が得られた。
この塩基配列中の 1695番目から 1744番目までの 50塩基からなる塩基 配列は、 糸状菌の典型的なイントロンの構造を有していることから、 イントロン であると同定した。 その結果、 配列表の配列番号 7に示される塩基配列よりイン ト口ン配列を除き、 蛋白質をコ一ドする塩基配列として配列表の配列番号 2に示 される塩基配列が得られた。 また、 対応するアミノ酸配列は配列表の配列番号 1 に示される通りである。
実施例 2 :酵母 (Saccharomyces cerevisiae) によるべニシリゥム ·ロックフ オルティ一 (Penici 11 iuffl roqueforti) I AM 7254株由来の/ S—フルクトフ ラノシダ一ゼ遺伝子の発現
ぺニシリゥム ·ロックフォルティ一由来の^—フルクトフラノシダーゼ遺 の発現用プラスミ ドである pYPENO 1および p YPENO 2は以下の様にし て作製した (図 1A、 B、 C、 および D) o
- まず、 pYPR2831 (H. Horiucbi et al., Agric. Biol. Chem. , 54, Π 71 - 1779, 1990) を制限酵素 E c o R Iおよび S a 1 Iで消化した後、 末端を T4
DN Αポリメラーゼを用いて平滑ィ匕した。 これに B amH Iリンカ一 (5, - CGGATCCG-3' ) を連結し、 BamH Iで消化した後、 自己連結して酵 母用発現べク夕一PY2831を得た。
次に、 実施例 1で調製した /3—フルクトフラノシダーゼ遺伝子を含む約 4 k b pの E c oR I DN A断片をプラスミ ド pUC 118に挿入して得たプラスミ ド p PRS 01より一本鎖 DNAを調製した。 これを铸型として、 配列表の配列 番号 8の合成 DNAをプライマーとし、部位特異的変異を行い、 3—フルク トフ ラノシダーゼ遺伝子の翻訳領域内に存在する B a mH I部位を、 コ一ドしている ァミノ酸配列に変化がないような形で破壞した ( p P R S 02 ) 。
プラスミ ド P PRS 02を銪型として、 配列表の配列番号 9および 10の合成 DNAをプライマ一として P CRを行い、 β—フルクトフラノシダーゼ遺伝子の 翻訳領域の一部を約 1. 81^ 13 の8 &11 ^11 DNA断片として調製し、 これ をプラスミ ド ρΥ2831の B amH I部位に挿入してプラスミ ド p YPENO 1を作製した。 従って、 プラスミ ド pYPENO lは、 分泌シグナゾレ配列に引き 続く成熟 /3—フルクトフラノシダーゼとして、 配列表の配列番号 1に示されてい るアミノ酸配列の内 1番目から 565番目までのアミノ酸配列からなる酵素蛋白 質を生産するように設計されている。
さらに、 プラスミ ド p PRS 02を鐯型として、 配列表の配列番号 9および 1 1の合成 DNAをプライマーとして P CRを行い、 —フルク トフラノシダー ゼ遺伝子の翻訳領域を含む DN A断片を約 1. 8 k b pの B amH I DNA断 片として調製し、 これをプラスミ ド pUC 1 1 8の B amH I部位に挿入してプ ラスミ ド p PR S O 3を得た。 プラスミ ド p PRS 03より一本鎖 DNAを調製 し、 これを铸型として、 配列表の配列番号 1 2の合成 DN Aをプライマ一とし、 部位特異的変異を行い、 イントロン配列を除去した (p PR S O 4) 。 プラスミ ド P PRS 04より、 ^—フルクトフラノシダーゼ遺伝子の翻訳領域を約 1. 8 k b pの B amH I DNA断片として調製し、 これをプラスミ ド pY2831 の B a mH I部位に揷入してプラスミ ド p Y P E N 02を作製した。 従って、 プ ラスミ ド pYPEN 02は、 分泌シグナル配列に引き続く成熟 yS—フルクトフラ ノシダ一ゼとして、 配列表の配列番号 1に示されているアミノ酸配列からなる酵 素蛋白質を生産するように設計されている。
プラスミ ド pYPEN O 1および pYP EN 02を酵母サッカロミセス ·セレ ピシェ (Saccharomyces cerevisiae) MS— 1 6 1株 (Sue -, ura3, trpl) に酢 酸リチウム法 (1 , H. et al., J. Bacterid., 153, 163-168, 1983 ) で導入 し、 形質転換体を得た。 これらの形質転換体を SD— U r a培地 (0. 67%酵 母ニトロゲンベース (ディフコ) 、 2%グルコース、 50 gZm 1ゥラシル) で、 30°C、 一晩培養した。 この培養液を終濃度が 1%となるように生産培地
(0. 6 7%酵母ニトロゲンベース (ディフコ) 、 2%グルコース、 2%カザミ ノ酸、 5 0 /z gZm lゥラシル) にシードし、 30°C、 2日間培養して得た培養 上清を用いて5—フルク トフラノシダ一ゼ活性を測定した。 /3—フルクトフラノ シダーゼ活性は、 10重量%ショ糖溶液、 H5. 5、 40。C、 60分間の条件 で反応させたとき、 1分間に 1のグルコースを遊離させる活性を 1単位 とした。 その結果、 プラスミ ド p YPEN01による形質転換体では 4X10一4 単位 Zm 1以下の活性であつたのに対し、 プラスミ ド p YP EN 02による形質 転換体では 0. 38単位 Zm lの活性力く検出された。
実施例 3 : スコブラリオプシス 'ブレビカウリス (Scopulariopsis brevicaul is) I F04843株の 3—フルクトフラノシダーゼ遺伝子の翻訳領域の決定 スコブラリオプシス ·ブレビカウリス I F04843株より染色体 DNAを調 製し、 約 20 g分の染色体 DN A標品を制限酵素 E c oR Iで完全消化した後、 -ァガロースゲル電気泳動で分画し、 1 O kbp付近のDNA断片を回収した。
こうして回収した約 l Okbpの DNA断片約 0. 5 gと、 あらかじめ制限 酵素 H i n dill と E c oR Iで二重消化しておいた λ D A S H 11ベクター 1 μ gを連結し、 ストラ夕ジーン社製の i n V i t r oパッケージングキッ ト G I GAP ACKII Go 1 dを用いてパッケージングし、 大腸菌 XL I -B 1 u e
MRA (P2) 株に感染させることによりライブラリーを作成した。
^例 1で使用した約 2 kb pの DN A断片をプローブとして用い、 ECLダ ィレク ト DNAZRNAラベリング ·検出システム (アマシャム社) を使用して プラークハイブリダィゼ一シヨンを行い、 約 15000個のプラークの中から 3 個の陽性クローンを得た。 これらの陽性クローンについて 2次スクリーニングを 実施し、 陽性クローンを純ィ匕した後、 ファージ DNAを調製し、 制限隨による 解析を行った結果、 どのクローンも同一の約 l O kb pの E c oR I DNA断 片を有することが明らかとなつた。
この約 l O kb pの E c oR I D N A断片より必要な領域を適宜制限酵素で 小断片化した後にプラスミ ドベクタ一 pUC 118あるいは pUC 119にサブ クロ一ニングを行った。 得られたサブクローンからプラスミ ド DNAを定法によ り調製し、 フアルマシア社製蛍光シークェンサ一 ALF r e d DNAシークェ ンサーを用いて塩基配列を決定した。 この結果、 配列表の配列番号 13に示され る塩基配列が得られた。
この塩基配列中の 1722番目から 1 Ί 76番目までの 55塩基からなる塩基 配列は糸状菌の典型的なイントロンの構造を有していることからイントロンであ ると同定した。 その結果、 配列表の配列番号 13に示される塩基配列よりイント 口ン配列を除き、 蛋白質をコ一ドする塩基配列として配列表の配列番号 4に示さ れる塩基配列が得られた。 また、 対応するアミノ酸配列は配列表の配列番号 3に 示される通りである。
- 実施例 4 :酵母 (Saccharomyces cerevisiae) によるスコブラリオプシス ·ブ レビカウリス (Scopulariopsis brevicaulis) I F 04843株の yS—フルク ト フラノシダ一ゼ遺 の発現
スコブラリオプシス ·ブレビカウリス (Scopulariopsis brevicaulis) 由来の 一フルク トフラノシダーゼ遺 ^r?の発現用プラスミ ドである p YS COP 01 および pYS COP 02は以下のようにして作製した (図 2 Aおよび B) 。
まず、 実施例 3で調製した ;3—フルクトフラノシダーゼ遺 を含む約 1 O k b pの E c oR I DNA断片を铸型として、 配列表の配列番号 14および 15 の合成 DN Aをプライマ一として P CRを行い、 フルク トフラノシダーゼ遺 の翻訳領域の一部を約 1. 81^ の8 &111111 DN A断片として調製し、 これをプラスミ ド p Y2831の B amH I部位に挿入してプラスミ ド pYS C 0 P 01を作製した。 従って、 プラスミ ド p Y P E N 01は、 分泌シグナル配列 に引き続く成熟/ S—フルク トフラノシダーゼとして、 配列表の配列番号 3に示さ れているアミノ酸配列の内 1番目から 574番目までのアミノ酸配列からなる酵 素蛋白質を生産するように設計されている。
次に、 一フルク トフラノシダ一ゼ遺伝子を含む約 l O kb pの E c oR I DN A断片を铸型として、配列表の配列番号 14および 16の合成 DNAをブラ イマ一として P CRを行い、 β—フルクトフラノシダ一ゼ遺伝子の翻訳領域を含 む DNA断片を約 1. 9 k b pの B amH I DNA断片として調製し、 これを プラスミ ド pUC 1 1 8の B amH I部位に挿入してプラスミ ド p S C B O lを 得た。 プラスミ ド p S CB 0 1より一本鎖 DNAを調製し、 これを铸型として、 配列表の配列番号 1 7の合成 DNAをプライマ一とし、 部位特異的変異を行い、 イントロン配列を除去した (p S CB 02) 。 プラスミ ド P S C B 02より、 β- フルクトフラノシダーゼ遺伝子の翻訳領域を約 1. 9 k b pの B amH I DNA断片として調製し、 これをプラスミ ド p Y2831の B amH I部位に挿 -入してプラスミ ド PYS COP 02を作製した。 従って、 プラスミ ド pYS CO P 02は、 分泌シグナル配列に引き続く成熟 iS—フルクトフラノシダーゼとして、 配列表の配列番号 3に示されているアミノ酸配列からなる,蛋白質を生産する ように設計されている。
プラスミ ド p YS COP 0 1および p YS C〇P 02を酵母サッカロミセス · セレヒシェ (Saccharomyces cerevisiae) MS— 1 り 丄诛 (buc- ura3, t rpl) に酢酸リチウム法で導入し、 形質転換体を得た。 これらの形質転換体を SD— U r a培地で、 30で、 一晩培養した。 この培養液を終濃度が 1%となるように生 産培地にシードし、 30°C、 2日間培養して得た培養上清を用いて、実施例 2に 記載の方法でS—フルクトフラノシダ一ゼ活性を測定した。 その結果、 プラスミ ド p YS COP 0 1による形質転換体では 4 X 1 0— 4単位 Zm 1以下の活性であ つたのに対し、 プラスミ ド pYS COP 02による形質転換体では 6. 5 X 1 0 一3単位/ m 1の活性が検出された。

Claims

請 求 の 範 囲
1. 配列表の配列番号 1に記載のァミノ酸配列またはその相同体を含んでな る、 ポリべプチド。
2. 請求項 1に記載のポリペプチドをコードする、 D N A。
3. 配列表の配列番号 2に記載の塩基配列を含んでなる、 請求項 2に記載の D N A。
4. 配列表の配列番号 3に記載のァミノ酸配列またはその相同体を含んでな る、 ポリぺプチド。
- 5. 請求項 4に記載のポリペプチドをコードする、 D N A。
6. 配列表の配列番号 4に記載の塩基配列を含んでなる、請求項 5に記載の D N A。
7. 請求項 2、 3、 5、 または 6に記載の D N Aを含んでなる、 ベクタ一。
8. 請求項 7に記載のベクターで形質転換されてなる、 宿主細胞。
9. 請求項 8に記載の宿主細胞を培養し、 その宿主および Zまたはその培養 物から ーフルクトフラノシダーゼを採取する工程を含んでなる、 ^—フルクト フラノシダ一ゼの製造法。
1 0. 請求項 8に記載の宿主細胞または請求項 9に記載の方法によって得ら れた^—フルクトフラノシダ一ゼと、 スクロースとを接触させる工程を含んでな る、 フラクトオリゴ糖の製造法。
PCT/JP1998/004087 1997-09-10 1998-09-10 β-FRUCTOFURANOSIDASE AND GENE THEREOF WO1999013059A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA002302551A CA2302551C (en) 1997-09-10 1998-09-10 .beta.-fructofuranosidase and its gene
US09/508,264 US6566111B1 (en) 1997-09-10 1998-09-10 β-fructofuranosidase and gene thereof
AU90018/98A AU9001898A (en) 1997-09-10 1998-09-10 Beta-fructofuranosidase and gene thereof
EP98941819A EP1022332A4 (en) 1997-09-10 1998-09-10 BETA FRUCTOFURANOSIDASE AND GENE CODING FOR IT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/245154 1997-09-10
JP24515497 1997-09-10

Publications (1)

Publication Number Publication Date
WO1999013059A1 true WO1999013059A1 (en) 1999-03-18

Family

ID=17129429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/004087 WO1999013059A1 (en) 1997-09-10 1998-09-10 β-FRUCTOFURANOSIDASE AND GENE THEREOF

Country Status (7)

Country Link
US (1) US6566111B1 (ja)
EP (1) EP1022332A4 (ja)
KR (1) KR100576409B1 (ja)
CN (1) CN1154720C (ja)
AU (1) AU9001898A (ja)
CA (1) CA2302551C (ja)
WO (1) WO1999013059A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005085447A1 (ja) * 2004-03-04 2005-09-15 Meiji Seika Kaisha, Ltd. β-フルクトフラノシダーゼ変異体
US7084108B2 (en) 2000-11-01 2006-08-01 Praecis Pharmaceuticals, Inc. Therapeutic agents and methods of use thereof for the modulation of angiogenesis
US7588922B2 (en) * 1998-09-02 2009-09-15 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Nucleic acid molecules encoding enzymes having fructosyltransferase activity, and their use
JPWO2016143873A1 (ja) * 2015-03-11 2017-12-21 物産フードサイエンス株式会社 改良型β−フルクトフラノシダーゼ

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2303421B1 (es) * 2005-12-26 2009-06-17 Universidad Autonoma De Madrid Nueva actividad fructofuranosidasa para la obtencion del oligosacarido prebiotico 6-kestosa.
US20130216652A1 (en) 2010-11-03 2013-08-22 Nestec S.A. Intrinsic sugar reduction of juices and ready to drink products
CN103555690B (zh) * 2013-10-28 2016-05-25 光明乳业股份有限公司 一种新型果糖苷酶及其编码基因和应用
JP5882415B2 (ja) * 2013-12-27 2016-03-09 物産フードサイエンス株式会社 フルクトースが付加された糖質の製造方法
CN103773748B (zh) * 2014-01-23 2016-05-11 安徽农业大学 桑螟β-呋喃果糖苷酶、编码基因、基因载体、菌株及应用
CN108588058B (zh) * 2018-04-28 2020-04-21 南京工业大学 β-呋喃果糖苷酶突变体及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997034004A1 (fr) * 1996-03-11 1997-09-18 Meiji Seika Kaisha, Ltd. β-FRUCTOFURANNOSIDASE ET SON GENE, PROCEDE D'ISOLEMENT DU GENE DE β-FRUCTOFURANNOSIDASE, SYSTEME POUR LA PRODUCTION DE β-FRUCTOFURANNOSIDASE, ET VARIANT DE β-FRUCTOFURANNOSIDASE

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997034004A1 (fr) * 1996-03-11 1997-09-18 Meiji Seika Kaisha, Ltd. β-FRUCTOFURANNOSIDASE ET SON GENE, PROCEDE D'ISOLEMENT DU GENE DE β-FRUCTOFURANNOSIDASE, SYSTEME POUR LA PRODUCTION DE β-FRUCTOFURANNOSIDASE, ET VARIANT DE β-FRUCTOFURANNOSIDASE

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BODDY L. M., ET AL.: "PURIFICATION AND CHARACTERISATION OF AN ASPERGILLUS NIGER INVERTASE AND ITS DNA SEQUENCE.", CURRENT GENETICS, NEW YORK, NY, US, vol. 24., 1 January 1993 (1993-01-01), US, pages 60 - 66., XP002915044, ISSN: 0172-8083, DOI: 10.1007/BF00324666 *
L.M. BODDY ET AL., CURR. GENET., vol. 24, 1993, pages 60 - 66
See also references of EP1022332A4
Y. HATAKEYAMA ET AL., J.FERMENT.BIOENG., vol. 81, no. 6, 1996, pages 518 - 523

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7588922B2 (en) * 1998-09-02 2009-09-15 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Nucleic acid molecules encoding enzymes having fructosyltransferase activity, and their use
US7906707B2 (en) 1998-09-02 2011-03-15 Max-Planck-Gesellschaft zur Forderund der Wissenschaften B.V. Nucleic acid molecules encoding enzymes having fructosyltransferase activity, and their use
US7084108B2 (en) 2000-11-01 2006-08-01 Praecis Pharmaceuticals, Inc. Therapeutic agents and methods of use thereof for the modulation of angiogenesis
WO2005085447A1 (ja) * 2004-03-04 2005-09-15 Meiji Seika Kaisha, Ltd. β-フルクトフラノシダーゼ変異体
JPWO2005085447A1 (ja) * 2004-03-04 2008-01-24 明治製菓株式会社 β−フルクトフラノシダーゼ変異体
US7655449B2 (en) 2004-03-04 2010-02-02 Meiji Seika Kaisha Ltd. β-fructofuranosidase variants
JPWO2016143873A1 (ja) * 2015-03-11 2017-12-21 物産フードサイエンス株式会社 改良型β−フルクトフラノシダーゼ

Also Published As

Publication number Publication date
EP1022332A1 (en) 2000-07-26
CN1154720C (zh) 2004-06-23
CN1276008A (zh) 2000-12-06
US6566111B1 (en) 2003-05-20
CA2302551C (en) 2005-02-08
KR100576409B1 (ko) 2006-05-09
EP1022332A4 (en) 2004-11-17
AU9001898A (en) 1999-03-29
CA2302551A1 (en) 1999-03-18
KR20010015575A (ko) 2001-02-26

Similar Documents

Publication Publication Date Title
US5612196A (en) Human serun albumin, preparation and use
US5643758A (en) Production and purification of a protein fused to a binding protein
AU626521B2 (en) Production and purification of a protein fused to a binding protein
JP5224572B2 (ja) デキストラン生成酵素遺伝子、デキストラン生成酵素およびその製造方法、デキストランの製造方法
US7655449B2 (en) β-fructofuranosidase variants
WO2016119756A1 (zh) 糖基转移酶突变蛋白及其应用
WO1999013059A1 (en) β-FRUCTOFURANOSIDASE AND GENE THEREOF
EP0129073B1 (en) Hybrid dna synthesis of mature growth hormone releasing factor
JP2023504059A (ja) アスペルギルス・ニガーからのベータ-フルクトフラノシダーゼの製造のための核酸、ベクター、宿主細胞及び方法
JP4088584B2 (ja) 融合タンパク質から目的タンパク質を分離する方法。
US5514576A (en) Cloned pullulanase
JP2023504056A (ja) アスペルギルス・ジャポニカスからのフルクトシルトランスフェラーゼの製造のための核酸、ベクター、宿主細胞及び方法
JP2715000B2 (ja) 蛋白質甘味料の酵母中における発現
Soundar et al. Expression of Pig Heart Mitochondrial NADP-Dependent Isocitrate Dehydrogenase inEscherichia coli
JP3759794B2 (ja) 新規遺伝子、ベクター、それを用いた形質転換体及びその利用
RU2278160C2 (ru) РЕКОМБИНАНТНЫЙ БЕЛОК LACspCBD, ОБЛАДАЮЩИЙ БЕТА-ГАЛАКТОЗИДАЗНОЙ АКТИВНОСТЬЮ И СПОСОБНОСТЬЮ САМОПРОИЗВОЛЬНО СВЯЗЫВАТЬСЯ С ЦЕЛЛЮЛОЗОСОДЕРЖАЩИМИ СОРБЕНТАМИ, РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК, КОДИРУЮЩАЯ СИНТЕЗ РЕКОМБИНАНТНОГО БЕЛКА LACspCBD, ШТАММ Escherichia coli M15 [pREP4, pLACspCBD] - ПРОДУЦЕНТ РЕКОМБИНАНТНОГО БЕЛКА LACspCBD, СПОСОБ ПОЛУЧЕНИЯ ИММОБИЛИЗОВАННОГО РЕКОМБИНАНТНОГО БЕЛКА LACspCBD НА ЦЕЛЛЮЛОЗЕ И СПОСОБ ФЕРМЕНТАТИВНОГО РАСЩЕПЛЕНИЯ ЛАКТОЗЫ
JP3734689B2 (ja) 新規レバンフルクトトランスフェラーゼ
JPH06303981A (ja) ホルムアルデヒド脱水素酵素活性を有する蛋白質の遺伝情報を有するdna並びにホルムアルデヒド脱水素酵素の製造法
CN117587046A (zh) 重组己糖激酶及其制备方法和应用
JPH03285684A (ja) メチオニンアミノペプチダーゼのdna配列
Moo-Penn et al. The purification and physicochemical properties of a lytic enzyme induced by coliphage N20F'
JP2003512045A (ja) 蔗糖(fructose)および関連酵素からジフルクトースジアンハイドライIV(difructosedianhydrideIV)の酵素的生産およびこれを暗号化する遺伝子(genes)
WO2014116072A1 (ko) 효소 반응법을 이용한 마이오-이노시톨로부터 d-카이로-이노시톨을 생산하는 방법
CN117587041A (zh) 重组尿酸酶及其制备方法和应用
JP2001046075A (ja) 耐塩性グルタミナーゼ遺伝子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98810189.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2302551

Country of ref document: CA

Ref document number: 2302551

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020007002496

Country of ref document: KR

Ref document number: 09508264

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998941819

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1998941819

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007002496

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020007002496

Country of ref document: KR