WO1999009354A1 - Hitzeschildkomponente mit kühlfluidrückführung - Google Patents

Hitzeschildkomponente mit kühlfluidrückführung Download PDF

Info

Publication number
WO1999009354A1
WO1999009354A1 PCT/DE1998/002273 DE9802273W WO9909354A1 WO 1999009354 A1 WO1999009354 A1 WO 1999009354A1 DE 9802273 W DE9802273 W DE 9802273W WO 9909354 A1 WO9909354 A1 WO 9909354A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat shield
hollow body
insert
support structure
cooling fluid
Prior art date
Application number
PCT/DE1998/002273
Other languages
English (en)
French (fr)
Inventor
Heinrich Pütz
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP98948745A priority Critical patent/EP1005620B1/de
Priority to JP2000509979A priority patent/JP2001515197A/ja
Priority to DE59804685T priority patent/DE59804685D1/de
Publication of WO1999009354A1 publication Critical patent/WO1999009354A1/de
Priority to US09/507,355 priority patent/US6276142B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • F23M5/02Casings; Linings; Walls characterised by the shape of the bricks or blocks used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/205Cooling fluid recirculation, i.e. after having cooled one or more components the cooling fluid is recovered and used elsewhere for other purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/221Improvement of heat transfer
    • F05B2260/224Improvement of heat transfer by increasing the heat transfer surface
    • F05B2260/2241Improvement of heat transfer by increasing the heat transfer surface using fins or ribs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00012Details of sealing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03044Impingement cooled combustion chamber walls or subassemblies

Definitions

  • the invention relates to a heat shield component which is part of a hot gas wall to be cooled. Furthermore, the invention relates to a heat shield arrangement which lines a hot gas space, in particular a combustion chamber of a gas turbine system, and has a plurality of heat shield components.
  • Craemer proposes a panel consisting of four components that is to be mounted on the inside of a combustion chamber housing.
  • the upper layer facing the hot gas space consists of a refractory metal, but can also be formed from a ceramic material.
  • Below this is a layer of steel wool-like metallic filaments. This rests on a ner larger number of columnar supports. These pillar-like supports and the cavities in between form the third layer.
  • the columnar supports are attached to a fourth metallic layer.
  • the steel-wool-like metallic filaments of the second layer absorb heat energy from the layer above, which forms the inner wall of the burner, and pass it on to the air flow guided between the column-like supports.
  • the cavities of the third layer are connected via channels that lead through the fourth layer and the burner housing to a space outside the burner, which is fed with air via a compressor. The compressed air can pass through these channels as a coolant into the cavity formed by the layers.
  • a second type of channel is distributed over the front and middle area of the combustion chamber, through which air originating from the exterior of the combustion chamber reaches the combustion chamber through the combustion chamber housing and the layered panels.
  • Craemer's proposal has the disadvantage that cool air flows into the combustion chamber over the entire area of the combustion chamber without having participated in the combustion. As a result, the temperature at the exit of the combustion chamber drops.
  • EP 0 224 817 B1 describes a heat shield arrangement, in particular for structural parts of gas turbine systems.
  • the heat shield arrangement has an inner lining made of heat-resistant material, which is composed of heat shield elements anchored to the support structure to cover the entire surface. These heat shield elements are arranged next to one another, leaving gaps for the flow of cooling fluid, and are heat-mobile.
  • Each of these heat shield elements has a hat part and a shaft part in the manner of a mushroom.
  • the hat part is a flat or spatial, polygonal plate body with straight or curved border lines.
  • the shaft part connects the central area of the plate body with the support structure.
  • the hat part preferably has a triangular shape, which means that identical hat parts can be used to produce an inner lining of almost any geometry.
  • the hat parts and possibly other parts of the heat shield elements consist of a high-temperature-resistant material, in particular a steel.
  • the support structure has bores through which a cooling fluid, in particular air, can flow into an intermediate space between the hat part and the support structure and from there through the gaps for the cooling fluid to flow into a space area surrounded by the heat shield elements, for example a combustion chamber of a gas turbine system. This flow of cooling fluid reduces the penetration of hot gas into the space.
  • the wall is preferably arranged between a hot space and a cooling fluid space. It is assembled from individual wall elements, each of the wall elements being a plate body made of highly heat-resistant material. Each plate body has parallel cooling channels distributed over its base area, which communicate with the cooling fluid space at one end and with the hot space at the other end. The cooling fluid flowing into the hot space and guided through the cooling fluid channels forms a cooling fluid film on the surface of the wall element and / or adjacent wall elements facing the hot space.
  • the post-published WO 98/13645 AI describes a heat shield component with cooling fluid return with a hot gas wall to be cooled, an inlet channel for cooling fluid and an outlet channel for the cooling fluid, the inlet channel being directed towards the hot gas wall and expanding in the direction of the hot gas wall.
  • the inlet duct is largely surrounded by the outlet duct.
  • the support structure is designed as a two-wall structure with an outer wall and an inner wall which is arranged parallel to the same and is adjacent, leaving an intermediate space.
  • the heat shield component has a fastening part on the outlet duct, with which the outlet duct is placed on the outer wall and fastened thereon.
  • the outer wall Inside the outlet duct, the outer wall has an opening through which the inlet duct is passed leaving a gap.
  • the inner wall has a further opening into which the inlet channel is inserted over a short length. Cooling fluid can be supplied to the heat shield component via the inlet channel and can be removed via the outlet channel.
  • the inlet duct is covered with a cover wall which has impingement cooling openings. Through the baffle cooling opening from the inlet channel supplied cooling fluid impact against the hot gas wall, which is cooled.
  • the object of the invention is to provide a heat shield component that can be cooled with a cooling fluid for a hot gas chamber of a system, and a heat shield arrangement with heat shield components that enable economical operation of the system.
  • the object directed to the heat shield component is achieved according to the invention by a heat shield component which can be attached to a support structure, with an outer hollow body which encloses an insert with an intermediate space formed between the outer hollow body and the insert, the outer hollow body having a first bottom side which can be applied to a hot gas and Has side walls and wherein the insert has side walls and a second bottom side with a plurality of openings for the passage of cooling fluid into the intermediate space, the outer hollow body and the insert each being attachable to the support structure.
  • the heat shield component can be attached to the support structure without the heat shield component having to penetrate the support structure.
  • the support structure can largely be designed with a closed surface, with smaller openings, such as bores or the like, being provided, for example for fastening the heat shield component in the support structure, which are mechanically simple to attach.
  • the side walls of the insert can preferably be placed on the support structure in such a way that an interior space is formed which is delimited by the insert and the support structure.
  • an interior fluidically connected via the openings to the intermediate space is formed, into which a cooling fluid can first be introduced, which through the openings into the Intermediate space flows and impinges against the first bottom side to cool it.
  • the upper edges of the side walls of the hollow body rest on the support structure along the full circumference of the heat shield components and cause the space in which the cooling fluid is located to be largely sealed off from the hot gas space.
  • the side walls of the hollow body advantageously have a geometry which makes it possible to introduce a seal between the hollow body and the supporting structure.
  • the seal can be designed, for example, as a press seal. Due to the geometry of the hollow body, the seal lies on the cold side of the heat shield component.
  • the insert is more preferably interchangeable.
  • the heat shield component is designed such that the insert or the outer hollow body can in each case be replaced alone.
  • a first and a second outer hollow body can preferably be attached next to one another on the supporting structure, a side wall of the first outer hollow body and a side wall of the second outer hollow body being adjacent while leaving a gap, the side walls each having a surface contour such that the gap is wound .
  • the gap forms a throttle point, via which it is difficult for hot gas guided outside the heat shield component to penetrate into the gap or for cooling fluid emerging from the heat shield component to pass through the gap. This can be achieved, for example, by interlocking steps or toothing of adjacent side walls of hollow bodies.
  • the inner bottom side of the hollow body can preferably have cooling fins or the like, as a result of which cooling with a cooling fluid can be optimized.
  • the heat shield components are preferably attached to the supporting structure by means of a centrally attached retaining bolt.
  • the retaining pin can be provided with disc springs so that greater flexibility is guaranteed if the heat shield component exceeds the permissible expansion.
  • the retaining bolt can be attached to the hot side of the heat shield component. But it is also possible that the retaining bolt is located on the cold side of the heat shield component. The latter has an advantageous effect on the corrosion properties of the heat shield component.
  • the bottom side of the hollow body can optionally have a triangular, quadrangular (in particular square or trapezoidal) or hexagonal base area. Other suitable geometries are also possible.
  • the typical order of magnitude is 200 mm edge length.
  • the wall thickness of the bottom side of the hollow body is preferably less than 10 mm, particularly preferably between 3 and 5 mm. This ensures a relatively small temperature difference between the inside and outside surface of the bottom side of the hollow body. This means that the heat shield component can withstand high load changes.
  • the heat shield component consists of a heat-resistant material, in particular a metal or a metal alloy. It is advantageous to manufacture the heat shield component, in particular the hollow body, as an investment casting.
  • a plurality of heat shield components arranged side by side on a support structure comprises, one heat shield component being attachable to the support structure and having an outer hollow body which encloses an insert with an intermediate space formed between the outer hollow body and the insert, the outer hollow body having a first bottom side which can be exposed to hot gas and has side walls and wherein the insert has side walls and a second bottom side with a plurality of openings for the passage of cooling fluid into the intermediate space, wherein the outer hollow body and the insert are each attachable to the support structure and wherein one can be exposed to a hot gas through the bottom sides of the heat shield components Wall of a hot gas-carrying component, in particular a combustion chamber of a gas turbine system, is formed.
  • a hot gas-carrying component in particular a combustion chamber of a gas turbine, can be lined with such a heat shield arrangement, the heat shield arrangement protecting the supporting structure, which can be, for example, a wall of the combustion chamber, against the effects of heat from the hot gas.
  • the individual heat shield components can be cooled with a closed cooling fluid circuit.
  • the support structure for the heat shield components preferably has an inlet channel for cooling fluid and an outlet channel into the intermediate space for cooling fluid in a first region within the side walls of the insert.
  • cooling fluid can be guided via the inlet channel into the use of a heat shield component, from which the cooling fluid passes through the openings into the intermediate space for impact cooling of the respective first bottom side.
  • the cooling fluid can be removed from the intermediate space via the outlet channel.
  • the inlet duct is further preferably connected to a supply duct which is arranged outside the hot gas space and the outlet duct is connected to a discharge duct which is likewise arranged outside the hot gas space. Cooling fluid can thus be supplied to the inlet channel via the supply channel and the cooling fluid heated after the impingement cooling can be discharged via the outlet channel and a discharge channel. This allows cooling fluid to be guided into a closed cooling fluid circuit.
  • the cooling fluid can preferably be supplied from a compressor, in particular a gas turbine, via the supply duct to the heat shield component and is discharged via the discharge duct, in particular being supplied to a burner.
  • the cooling fluid can thus easily be removed from a compressor and, after cooling, can be fed to a burner for combustion when heated. All of the compressor air can thus be supplied to the combustion.
  • Hot gas temperature is adjustable. This is associated with a reduction in nitrogen oxide pollution. Due to the closed cooling air return, there is also no flow around the edges of a heat shield component, so that a largely uniform temperature distribution with low thermal stresses arises in its material.
  • the supply of the heat shield components with cooling air and the return of the heated cooling air to a burner of the gas turbine system is preferably carried out via axially parallel Supply channels.
  • the ducts can be expanded as required in the radial direction and their cross-sections adapted to the required cooling air quantities. All heat shield components therefore have essentially identical cooling air entry conditions.
  • the flow path to the heat shield components or heated cooling air to the burner has only a small pressure drop due to its shortness.
  • the heat shield components arranged on an outside of a rotationally symmetrical hot gas-carrying component, in particular a combustion chamber of a gas turbine system are preferably supplied via the guide vanes of the first row of guide vanes of the gas turbine. If the amount of cooling air that can be guided through the guide vanes is not sufficient for sufficient cooling of the heat shield components, it is possible to guide supply channels past the hot gas-carrying component, in particular the combustion chamber, to the outside thereof.
  • the return of the heated cooling air is preferably carried out via separate discharge channels which lead directly to a burner of the gas turbine system. It is also possible to have the outlet duct of the heat shield components open directly into a main duct, in which the compressor air is fed to the burner. As a result, the heat absorbed in the heat shield components can be fed back to the gas turbine process in a particularly favorable manner.
  • 1 shows a gas turbine system, partially cut open in the longitudinal direction, with an annular combustion chamber, 2 shows a longitudinal section through a heat shield component
  • Support structure, feed and discharge channel and 3 shows a sectional view of the side walls of adjacent hollow bodies, which are applied to a support structure.
  • the gas turbine system 10 has a shaft 26 and has a compressor 9, an annular combustion chamber 11 and the blading (guide blades 18, moving blades 27) connected in series in the axial direction.
  • Combustion air is compressed and heated in the compressor 9, which air is partially supplied as a cooling fluid 4 to a heat shield arrangement 20.
  • the compressed air is fed to a plurality of burners 25, which are arranged in a ring around the annular combustion chamber 11.
  • a heat shield component is shown schematically in FIG.
  • the heat shield component has the overall reference number 1. It has a hollow body 100 on the bottom side 101 of which can be exposed to hot gas. This (“first”) bottom side 101 is exposed to a hot gas flow 29.
  • the hollow body 100 is laterally delimited by the side walls 102. These side walls 102 stand with their lower edge on the Support structure 17.
  • In the hollow body 100 there is a further smaller hollow body than the insert 110.
  • This insert 110 has passage openings 113 on its bottom side 111.
  • the insert 110 is laterally delimited by its side walls 112.
  • the edge of the side walls 112 stands on the support structure 17. This forms an interior space 150 which is delimited by the insert 110 and the support structure 17.
  • an intermediate space 151 is thereby formed, which is limited by the insert 110, the hollow body 100 and the supporting structure 17.
  • the support structure 17 In the area 162, which is located between the side walls 112 of the insert 110, the support structure 17 has one or more inlet channels 3 through which a cooling fluid 4 can get into the interior 150.
  • the support structure 17 also has outlet channels 5 in the intermediate space 151.
  • cooling fluid 4 flows through the inlet channels 3 into the interior 150 of the insert 110 and passes through the through openings 113 into the intermediate space 151, where it strikes the inside 103 of the bottom side 101.
  • the cooling fluid that is heated after the impingement cooling is discharged from the intermediate space via the
  • the cooling fluid 4 is thus guided in a closed circuit. This prevents the cooling fluid 4 from entering the hot gas space 37.
  • seals 34 make it possible to prevent leakage flows between the support structure 17 and the side wall 102 of the hollow body 100 seated thereon.
  • the seals 34 are designed here as squeeze seals, the side wall 102 of the hollow body 100 having a shoulder through which the seal 34 is pressed onto the support structure 17 in the region of the connection point between the side wall 102 of the hollow body 100 and the support structure 17.
  • the supply of cooling fluid 4 takes place in such a way that the cooling fluid 4 is supplied to the inlet ducts 3 from a compressor 9 through a supply duct 12.
  • This supply channel 12 is located outside the hot gas space 37.
  • the cooling fluid 4 is discharged via a discharge channel 13 which is also outside the hot gas space 37.
  • the cooling fluid 4 can be supplied to the burner 25, for example, through this discharge channel 13.
  • the heat shield component 1 is fixed on the supporting structure 17 by a holding bolt 130.
  • This holding bolt 130 is arranged in the middle of the rectangular embodiment shown. Its axis is aligned along the major axis 32 of the heat shield component.
  • the retaining bolt is designed with a thickening on the hot side of the heat shield component 1 and is mounted on the support structure 17 with its thinner end.
  • the retaining bolt can be provided with disc springs, not shown here, in order to compensate for exceeding the permissible thermal expansion of the heat shield component 1.
  • the insert 110 and the hollow body 100 are mechanically detachably connected only via the retaining bolt 130, the inserts can be exchanged for other inserts which are used in the
  • the cooling conditions for the bottom side 101 of the hollow body 100 can be adapted to the specific requirements which result from the position of the heat shield component 1 in the hot gas duct.
  • the heat shield arrangement is made up of a plurality of heat shield components arranged on the support structure 17. ten formed, with only two heat shield components 100 and 100A being shown for a better overview, two side walls 102 and 102A of two adjacent hollow bodies 100 and 100A and part of the support structure 17 being visible. 115 and 115A indicate cooling fins running radially to the side walls 102 on the first bottom side.
  • the bottom sides 101 and 101A of the heat shield components 100 and 100A form a wall 160 which can be attached to a hot gas with the bottom sides of the heat shield components which are not shown in any more detail.
  • the adjacent side walls 102 of the hollow body 100 have a mutually corresponding surface contour.
  • This surface contour is designed such that the side wall 102A of the hollow body 100A shown in the drawing on the right side has a shoulder 105 which corresponds to a counter-shoulder 104 of the side wall 102 of the hollow body 100 shown on the left side.
  • This shape with shoulder 105 and counter shoulder 104 ensures that no linear gap 36 leads from the hot gas space 37 to the supporting structure 17.
  • the hollow bodies 100 can be produced using the precision casting process, geometries such as the one described do not pose any manufacturing difficulties. Of course, it is also possible to choose other geometries for the side walls 102 and 102A of the hollow bodies 100 and 100A, in which a linear gap between the hot gas space 37 and the support structure 17 is avoided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Control Of Combustion (AREA)

Abstract

Die Erfindung betrifft eine Hitzeschildkomponente (1) mit einem äußeren Hohlkörper (100) und einem Einsatz (110), die jeweils auf einer Tragstruktur (17) anbringbar sind. Der äußere Hohlkörper (100) umschließt den Einsatz (110) unter Belassung eines Zwischenraums (151). Der äußere Hohlkörper (100) weist eine einem Heißgas aussetzbare erste Bodenseite (101) auf. Der Einsatz (110) weist eine zweite Bodenseite (111) mit einer Mehrzahl von Öffnungen (113) zum Durchlaß von Kühlfluid (4) in den Zwischenraum (151) zu einer Prallkühlung der ersten Bodenseite (101) auf. Die Erfindung betrifft weiterhin eine Hitzeschildanordnung (20).

Description

Beschreibung
HΓΓZESCHILDKOMPONENTE MIT KÜHLFLUIDRÜCKFÜHRUNG
Die Erfindung betrifft eine Hitzeschildkomponente, die Teil einer zu kühlenden Heißgaswand ist. Des weiteren betrifft die Erfindung eine Hitzeschildanordnung, die einen Heißgasraum, insbesondere eine Brennkammer einer Gasturbinenanlage, aus- kleidet und eine Mehrzahl von Hitzeschildkomponenten aufweist.
Aufgrund der in Heißgaskanälen oder anderen Heißgasräumen herrschenden hohen Temperaturen ist es erforderlich, die In- nenwandung eines Heißgaskanales bestmöglichst temperaturresi- stent zu gestalten. Hierzu bieten sich zum einen hochwarmfe- ste Werkstoffe, wie z.B. Keramiken an. Der Nachteil keramischer Werkstoffe liegt sowohl in ihrer starken Sprödigkeit als auch in ihrem ungünstigen Wärme- und Temperaturleitver- halten. Als Alternative zu keramischen Werkstoffen für Hitzeschilde bieten sich hochwarmfeste metallische Legierungen auf Eisen-, Chrom-, Nickel- oder Kobaldbasis an. Da die Einsatztemperatur von hochwarmfesten Metalllegierungen aber deutlich unter der maximalen Einsatztemperatur von keramischen Werk- Stoffen liegt, ist es erforderlich, metallische Hitzeschilde in Heißgaskanälen zu kühlen.
Eine Möglichkeit wird z.B. vorgeschlagen von Craemer in US 4,838,031 vom 13. Juni 1989. Craemer schlägt ein aus vier Komponenten bestehendes Panel vor, daß an der Innenseite eines Brennkammergehäuses zu montieren ist. Dabei besteht die obere, dem Heißgasraum zugewandte Schicht aus einem Refrak- tärmetall, kann aber auch von einem keramischen Werkstoff gebildet werden. Darunter schließt sich eine Schicht an aus stahlwollartigen metallischen Filamenten. Diese ruht auf ei- ner größeren Anzahl von säulenartigen Stützen. Diese säulenartigen Stützen und die dazwischenliegenden Hohlräume bilden die dritte Schicht. Die säulenartigen Stützen sind auf einer vierten metallischen Schicht angebracht. Die stahlwol- lartigen metallischen Filamente der zweiten Schicht nehmen Wärmeenergie von der darüberliegenden, die innere Brennerwandung bildenden Schicht auf und geben sie an den zwischen den säulenartigen Stützen geführten Luftstrom weiter. Die Hohlräume der dritten Schicht sind dabei über Kanäle, die durch die vierte Schicht und das Brennergehäuse führen mit einem Raum außerhalb des Brenners verbunden, der über einen Verdichter mit Luft gespeist wird. Durch diese Kanäle kann die verdichtete Luft als Kühlmittel in den von den Schichten gebildeten Hohlraum gelangen.
Darüber hinaus befinden sich über den vorderen und mittleren Bereich der Brennkammer verteilt eine zweite Art von Kanälen, durch die vom Brennkammeräußeren herrührende Luft durch das Brennkammergehäuse und die Schichtpanelen in die Brennkammer gelangt.
Der Vorschlag von Craemer weist den Nachteil auf, daß über den gesamten Bereich der Brennkammer kühle Luft in die Brennkammer strömt, ohne an der Verbrennung teilgenommen zu haben. Als Folge davon sinkt die Temperatur am Ausgang der Brennkammer.
In der EP 0 224 817 Bl ist eine Hitzeschildanordnung, insbesondere für Strukturteile von Gasturbinenanlagen, beschrie- ben. Die Hitzeschildanordnung weist eine Innenauskleidung aus hitzebeständigem Material auf, welche flächendeckend zusammengesetzt ist aus an der Tragstruktur verankerten Hitzeschildelementen. Diese Hitzeschildelemente sind unter Belassung von Spalten zur Durchströmung von Kühlfluid nebeneinan- der angeordnet und wärmebeweglich. Jedes dieser Hitzeschild- elemente weist nach Art eines Pilzes einen Hutteil und einen Schaftteil auf. Der Hutteil ist ein ebener oder räumlicher, polygonaler Plattenkörper mit geraden oder gekrümmten Beran- dungslinien. Der Schaftteil verbindet den Zentralbereich des Plattenkörpers mit der Tragstruktur. Der Hutteil hat vorzugsweise eine Dreiecksform, wodurch durch identische Hutteile eine Innenauskleidung nahezu beliebiger Geometrie herstellbar ist. Die Hutteile sowie gegebenenfalls sonstige Teile der Hitzeschildelemente bestehen aus einem hochwarmfesten Werk- stoff, insbesondere einem Stahl. Die Tragstruktur weist Bohrungen auf, durch welche ein Kühlfluid, insbesondere Luft, in einen Zwischenraum zwischen Hutteil und Tragstruktur einströmen kann und von dort durch die Spalte zur Durchströmung des Kühlfluids in einen von den Hitzeschildelementen umgebenen Raumbereich, beispielsweise eine Brennkammer einer Gasturbinenanlage, einströmen kann. Diese Kühlfluidströmung vermindert das Eindringen von heißem Gas in den Zwischenraum.
In der DE 35 42 532 AI ist eine Wand, insbesondere für Gas- turbinenanlagen beschrieben, die Kühlfluidkanäle aufweist.
Die Wand ist vorzugsweise bei Gasturbinenanlagen zwischen einem Heißraum und einem Kühlfluidraum angeordnet. Sie ist aus einzelnen Wandelementen zusammengefügt, wobei jedes der Wandelemente ein aus hochwarmfesten Material gefertigter Plat- tenkörper ist. Jeder Plattenkörper weist über seine Grundfläche verteilte, parallele Kühlkanäle auf, die an einem Ende mit dem Kühlfluidraum und an dem anderen Ende mit dem Heißraum kommunizieren. Das in den Heißraum einströmende, durch die Kühlfluidkanäle geführte Kühlfluid bildet auf der dem Heißraum zugewandten Oberfläche des Wandelementes und/oder benachbarter Wandelemente einen Kühlfluidfilm.
Zusammenfassend liegt all diesen Hitzeschildanordnungen insbesondere für Gasturbinen-Brennkammern das Prinzip zugrunde, daß Verdichterluft als Kühlmedium für die Brennkammer und de- ren Auskleidung, sowie als Sperrluft benutzt wird. Die Kühl- und Sperrluft tritt in die Brennkammer ein, ohne an der Verbrennung teilgenommen zu haben. Diese kalte Luft vermischt sich mit dem Heißgas. Dadurch sinkt die Temperatur am Brenn- kammerausgang. Daher sinkt die Leistung der Gasturbine und der Wirkungsgrad des thermodynamischen Prozesses. Eine Kompensation kann teilweise dadurch erfolgen, daß eine höhere Flammentemperatur eingestellt wird. Hierdurch jedoch ergeben sich sodann Werkstoffprobleme und es müssen höhere Emissions- werte in Kauf genommen werden. Ebenfalls nachteilig an den angegebenen Anordnungen ist es, daß sich durch den Eintritt des Kühlfluids in die Brennkammer bei der dem Brenner zugeführten Luft Druckverluste ergeben.
In der nachveröffentlichten WO 98/13645 AI ist eine Hitzeschildkomponente mit Kühlfluidrückführung mit einer zu kühlenden Heißgaswand, einem Einlaßkanal für Kühlfluid und einem Auslaßkanal für das Kühlfluid beschrieben, wobei der Einlaßkanal zur Heißgaswand hingerichtet ist und sich in Richtung zur Heißgaswand erweitert. Der Einlaßkanal ist weitgehend vom Auslaßkanal umgeben. Die Tragstruktur ist als Zweiwandstruktur ausgebildet mit einer Außenwand und einer zu dieser parallel angeordneten, unter Belassung eines Zwischenraums benachbarten Innenwand. Zur Befestigung an der Tragstruktur weist die Hitzeschildkomponente am Auslaßkanal ein Befestigungsteil auf, mit dem der Auslaßkanal auf die Außenwand aufgesetzt und an dieser befestigt ist. Innerhalb des Auslaßkanals weist die Außenwand eine Öffnung auf, durch die der Einlaßkanal unter Belassung eines Spalts durchgeführt ist. Die Innenwand weist eine weitere Öffnung auf, in die der Einlaßkanal über eine kurze Länge eingeschoben ist. Über den Einlaßkanal ist der Hitzeschildkomponente Kühlfluid zuführbar, welches über den Auslaßkanal abführbar ist. Der Einlaßkanal ist mit einer Abdeckwand abgedeckt, die Prallkühlöffnungen aufweist. Durch die Prallkühlöffnung kann aus dem Einlaßkanal zugeführtes Kühlfluid gegen die Heißgaswand prallen, wobei diese gekühlt wird.
Aufgabe der Erfindung ist es, für einen Heißgasraum einer An- läge eine Hitzeschildkomponente, die mit einem Kühlfluid kühlbar ist, sowie eine Hitzeschildanordnung mit Hitzeschildkomponenten anzugeben, die einen ökonomischen Betrieb der Anlage ermöglicht.
Die auf die Hitzeschildkomponente gerichtete Aufgabe wird erfindungsgemäß gelöst durch eine Hitzeschildkomponente die auf einer Tragstruktur anbringbar ist, mit einem äußeren Hohlkörper der einen Einsatz mit einem zwischen dem äußeren Hohlkörper und dem Einsatz gebildeten Zwischenraum umschließt, wobei der äußere Hohlkörper eine einem Heißgas ansetzbare erste Bodenseite und Seitenwände aufweist und wobei der Einsatz Seitenwände und eine zweite Bodenseite mit einer Mehrzahl von Öffnungen zum Durchlaß von Kühlfluid in den Zwischenraum aufweist, wobei der äußere Hohlkörper und der Einsatz jeweils auf der Tragstruktur anbringbar sind. Die Hitzeschildkomponente ist auf der Tragstruktur anbringbar, ohne daß die Tragstruktur von der Hitzeschildkomponente durchdrungen sein muß. Dadurch ist die Tragstruktur weitgehend mit einer geschlossenen Oberfläche ausgestaltbar, wobei allenfalls klei- nere Öffnungen, wie Bohrungen oder ähnliches, beispielsweise zur Befestigung der Hitzeschildkomponente in der Tragstruktur vorzusehen sind, die mechanisch einfach anbringbar sind.
Vorzugsweise sind die Seitenwände des Einsatzes so auf die Tragstruktur aufsetzbar, daß ein Innenraum gebildet ist, der von dem Einsatz und der Tragstruktur begrenzt ist. Dadurch ist ein über die Öffnungen mit dem Zwischenraum strömungstechnisch verbundener Innenraum gebildet, in den zunächst ein Kühlfluid einleitbar ist, welches durch die Öffnungen in den Zwischenraum strömt und gegen die erste Bodenseite zu deren Kühlung prallt.
Insbesondere stehen die Oberkanten der Seitenwände des Hohl- körpers entlang des vollen Umfangs der Hitzeschildkomponenten auf der Tragstruktur auf und bewirken eine weitgehende Abdichtung des Raumes, in dem sich das Kühlfluid befindet, gegenüber dem Heißgasraum. Vorteilhaft besitzen die Seitenwände des Hohlkörpers eine Geometrie, die es ermöglicht, eine Dich- tung zwischen Hohlkörper und Tragstruktur einzubringen. Die Dichtung kann beispielsweise als eine Quetschdichtung ausgeführt sein. Bedingt durch die Geometrie des Hohlkörpers liegt die Dichtung dabei auf der kalten Seite der Hitzeschildkomponente.
Weiter bevorzugt ist der Einsatz austauschbar. Dadurch ist die Hitzeschildkomponente so ausgestaltet, daß gegebenenfalls der Einsatz oder der äußere Hohlkörper jeweils allein austauschbar ist.
Bevorzugtermaßen sind ein erster und ein zweiter äußerer Hohlkörper nebeneinander auf der Tragstruktur anbringbar, wobei eine Seitenwand des ersten äußeren Hohlkörpers und eine Seitenwand des zweiten äußeren Hohlkörpers unter Belassung eines Spalts benachbart sind, wobei die Seitenwände jeweils eine solche Oberflächenkontur aufweisen, daß der Spalt gewunden ist. Dadurch bildet der Spalt eine Drosselstelle, über die nur erschwert außerhalb der Hitzeschildkomponente geführtes Heißgas in den Spalt eindringen oder aus der Hitzeschild- komponente austretendes Kühlfluid durch den Spalt treten kann. Dies kann beispielsweise durch ineinandergreifende Stufen oder Verzahnungen benachbarter Seitenwände von Hohlkörpern erreicht werden. Dadurch wird in den Spalt tretendes Kühlfluid oder Heißgas mehrfach umgelenkt. Bevorzugt kann die innere Bodenseite des Hohlkörpers Kühlrippen oder dergleichen aufweisen, wodurch die Kühlung mit einem Kühlfluid optimierbar ist.
Die Befestigung der Hitzeschildkomponenten an der Tragstruktur erfolgt bevorzugt über einen zentral angebrachten Haltebolzen. Der Haltebolzen kann mit Tellerfedern versehen werden, damit eine größere Nachgiebigkeit gewährleistet ist, wenn die Hitzeschildkomponente die zulässige Dehnung über- schreitet. Aus Gründen einfacher Montage kann der Haltebolzen auf der heißen Seite der Hitzeschildkomponente angebracht werden. Es ist aber auch möglich, daß der Haltebolzen auf der kalten Seite der Hitzeschildkomponente sich befindet. Letzteres wirkt sich vorteilhaft auf die Korrosionseigenschaften der Hitzeschildkomponente aus.
Die Bodenseite des Hohlkörpers kann wahlweise eine dreieckige, viereckige, (insbesondere quadratische oder trapezförmige) oder sechseckige Grundfläche besitzen. Auch andere geeig- nete Geometrien sind möglich. Für quadratische Bodenseiten des Hohlkörpers liegt die typische Größenordnung bei 200 mm Kantenlänge. Die Wandstärke der Bodenseite des Hohlkörpers liegt vorzugsweise unter 10 mm, besonders bevorzugt zwischen 3 bis 5 mm. Hierdurch wird ein relativ kleiner Temperaturun- terschied zwischen Innen- und Außenoberfläche der Bodenseite des Hohlkörpers gewährleistet. Damit ist eine hohe Lastwechselbeständigkeit der Hitzeschildkomponente erreichbar.
Die Hitzeschildkomponente besteht aus einem warmfesten Mate- rial, insbesondere einem Metall oder einer Metallegierung. Vorteilhaft ist es, die Hitzeschildkomponente, insbesondere den Hohlkörper, als Feingußteil zu fertigen.
Die auf die Hitzeschildanordnung gerichtete Aufgabe wird er- findungsgemäß gelöst durch eine Hitzeschildanordnung die eine Mehrzahl von nebeneinander an einer Tragstruktur angeordneten Hitzeschildkomponenten umfaßt, wobei eine Hitzeschildkomponente auf der Tragstruktur anbringbar ist und einen äußeren Hohlkörper aufweist, der einen Einsatz mit einem zwischen dem äußeren Hohlkörper und dem Einsatz gebildeten Zwischenraum umschließt, wobei der äußere Hohlkörper eine einem Heißgas ausetzbare erste Bodenseite und Seitenwände aufweist und wobei der Einsatz Seitenwände und eine zweite Bodenseite mit einer Mehrzahl von Öffnungen zum Durchlaß von Kühlfluid in den Zwischenraum aufweist, wobei der äußere Hohlkörper und der Einsatz jeweils auf der Tragstruktur anbringbar sind und wobei durch die Bodenseiten der Hitzeschildkomponenten eine einem Heißgas aussetzbare Wand einer heißgasführenden Komponente, insbesondere einer Brennkammer einer Gasturbinenanla- ge, gebildet ist.
Eine heißgasführende Komponente, insbesondere eine Brennkammer einer Gasturbine, ist mit einer solchen Hitzeschildanordnung auskleidbar, wobei die Hitzeschildanordnung die Trag- Struktur, die beispielsweise eine Wand der Brennkammer sein kann, gegen eine Hitzeeinwirkung durch das Heißgas schützt. Die einzelnen Hitzeschildkomponenten sind mit einem geschlossenen Kühlfluidkreislauf kühlbar.
Vorzugsweise weist die Tragstruktur für die Hitzeschildkomponenten jeweils in einem ersten Bereich innerhalb der Seitenwände des Einsatzes einen Einlaßkanal für Kühlfluid und einen Auslaßkanal in den Zwischenraum für Kühlfluid auf. Hierdurch ist Kühlfluid über den Einlaßkanal in den Einsatz einer Hit- zeschildkomponente führbar, aus der das Kühlfluid durch die Öffnungen in den Zwischenraum zu einer Prallkühlung der jeweiligen ersten Bodenseite tritt. Das Kühlfluid kann aus dem Zwischenraum über den Auslaßkanal abgeführt werden. Weiter bevorzugt ist der Einlaßkanal mit einem Zufuhrkanal verbunden der außerhalb des Heißgasraumes angeordnet ist und der Auslaßkanal ist mit einem Abfuhrkanal verbunden, der ebenfalls außerhalb des Heißgasraumes angeordnet ist. Somit kann eine Zufuhr von Kühlfluid zum Einlaßkanal über den Zufuhrkanal erfolgen und eine Abfuhr des nach der Prallkühlung erwärmten Kühlfluids über den Auslaßkanal und einen Abfuhrkanal erfolgen. Hierdurch ist eine Führung von Kühlfluid in einen geschlossen Kühlfluidkreislauf möglich.
Bevorzugtermaßen ist das Kühlfluid von einem Verdichter, insbesondere einer Gasturbine, über den Zufuhrkanal der Hitzeschildkomponente zuführbar und wird über den Abfuhrkanal abgeführt, insbesondere wird es dabei einem Brenner zugeführt. Das Kühlfluid ist somit einfach einem Verdichter entnehmbar und nach einer Kühlung erwärmt einem Brenner zur Verbrennung zuführbar. Somit ist sämtliche Verdichterluft der Verbrennung zuführbar.
Auf diese Weise wird gewährleistet, daß das Kühlfluid lediglich die Hitzeschildkomponente durchströmt und nicht in den Heißgasraum einzudringen vermag. Durch diese vollständige Rückführung der Kühlluft aus den Hitzeschildkomponenten fällt eine Mischung von Heißgas und Kühlfluid demnach weg, so daß in einer Gasturbinenanlage gegebenenfalls eine niedrigere
Heißgastemperatur einstellbar ist. Dies ist mit einer Reduzierung der Stickoxidbelastung verbunden. Durch die geschlossene Kühlluftrückführung tritt ebenfalls keine Kantenumströ- mung einer Hitzeschildkomponente auf, so daß sich in deren Material eine weitgehend gleichmäßige Temperaturverteilung mit geringen thermischen Spannungen einstellt.
Die Versorgung der Hitzeschildkomponenten mit Kühlluft und die Rückführung der erwärmten Kühlluft zu einem Brenner der Gasturbinenanlage erfolgt vorzugsweise über achsparallele Versorgungskanäle. Die Kanäle lassen sich in radialer Richtung beliebig erweitern und ihre Querschnitte der erforderlichen Kühlluftmengen anpassen. Alle Hitzeschildkomponenten haben somit im wesentlichen identische Kühllufteintrittsbedin- gungen. Der Strömungsweg zu den Hitzeschildkomponenten bzw. erwärmten Kühlluft zu dem Brenner ist aufgrund seiner Kürze mit lediglich geringen Druckverlusten behaftet.
Des weiteren entfallen Druckverluste dadurch, daß kein Kühl- fluid in den Heißgasraum eindringt. Die Versorgung der an einer Außenseite einer rotationssymmetrischen heißgasführenden Komponente, insbesondere einer Brennkammer einer Gasturbinenanlage, angeordneten Hitzeschildkomponenten, erfolgt vorzugsweise über die Leitschaufeln der ersten Leitschaufelreihe der Gasturbine. Falls die durch die Leitschaufeln führbare Menge an Kühlluft nicht für eine ausreichende Kühlung der Hitzeschildkomponenten ausreicht, ist es möglich, Versorgungskanäle an der heißgasführenden Komponente, insbesondere der Brennkammer, vorbei an deren Außenseite zu führen.
Die Rückführung der erwärmten Kühlluft erfolgt vorzugsweise über separate Abfuhrkanäle, die unmittelbar zu einem Brenner der Gasturbinenanlage führen. Es ist ebenfalls möglich, den Auslaßkanal der Hitzeschildkomponenten unmittelbar in einen Hauptkanal, in welchen die Verdichterluft dem Brenner zugeführt wird, münden zu lassen. Hierdurch kann die in die Hitzeschildkomponenten aufgenommene Wärme wieder besonders günstig dem Gasturbinenprozeß zugeführt werden.
Im folgenden wird ein Ausführungsbeispiel an Hitzeschildkomponente und eine Hitzeschildanordnung in einer Gasturbinenanlage gegeben. Dabei zeigen:
FIG 1 eine teilweise in Längsrichtung aufgeschnittene Gastur- binenanlage mit einer Ringbrennkammer, FIG 2 einen Längsschnitt durch eine Hitzeschildkomponente mit
Tragstruktur, Zufuhr- und Abfuhrkanal und FIG 3 eine Schnittdarstellung der Seitenwände benachbarter Hohlkörper, die auf einer Tragstruktur aufgebracht sind.
FIG 1 zeigt eine Gasturbinenanlage 10, die teilweise längs aufgeschnitten dargestellt ist. Die Gasturbinenanlage 10 hat eine Welle 26 und weist in axialer Richtung hintereinander geschaltet einen Verdichter 9, eine Ringbrennkammer 11 sowie die Beschaufelung (Leitschaufeln 18, Laufschaufeln 27) auf. In dem Verdichter 9 wird Verbrennungsluft verdichtet und erwärmt, die teilweise als Kühlfluid 4 einer Hitzeschildanordnung 20 zugeführt wird. Die verdichtete Luft wird einer Mehr- zahl von Brennern 25 zugeführt, die kreisringförmig um die Ringbrennkammer 11 angeordnet sind. Ein in den Brennkammern 25 nicht dargestellter, mit der Verdichterluft verbrannter Brennstoff bildet in der Brennkammer 11 ein Heißgas 29, welches aus der Brennkammer 11 in die Beschaufelung der Gastur- binenanlage 10 (Leitschaufel 18,27) einströmt und damit einer Rotation der Welle 26 hervorruft.
Dabei ist vorgesehen, die ganze Brennkammer-Wand mit den erfindungsgemäßen Hitzeschildkomponenten, die die Form von hoh- len Kacheln haben, auszukleiden bzw. aus solchen Kacheln, die auf einer Tragstruktur außerhalb des Brennraums gehalten werden, aufzubauen.
In FIG 2 ist eine Hitzeschildkomponente schematisch darge- stellt. Die Hitzeschildkomponente trägt insgesamt das Bezugszeichen 1. Sie weist einen Hohlkörper 100 auf dessen Bodenseite 101 einem Heißgas aussetzbar ist. Diese ("erste") Bodenseite 101 ist einem Heißgasstrom 29 ausgesetzt. Seitlich begrenzt wird der Hohlkörper 100 durch die Seitenwände 102. Diese Seitenwände 102 stehen mit ihrem unteren Rand auf der Tragstruktur 17 auf. In dem Hohlkörper 100 befindet sich ein weiterer kleinerer Hohlkörper als Einsatz 110. Dieser Einsatz 110 weist an seiner Bodenseite 111 Durchlaßöffnungen 113 auf. Seitlich begrenzt wird der Einsatz 110 durch seine Seitenwän- de 112. Mit ihrem Rand stehen die Seitenwände 112 auf der Tragstruktur 17 auf. Dadurch ist ein Innenraum 150 gebildet, der durch den Einsatz 110 und die Tragstruktur 17 begrenzt ist. Weiterhin ist dadurch ein Zwischenraum 151 gebildet, der durch den Einsatz 110, den Hohlkörper 100 und die Tragstruk- tur 17 begrenzt ist. Im Bereich 162, der sich zwischen den Seitenwänden 112 des Einsatzes 110 befindet, weist die Tragstruktur 17 ein oder mehrere Einlaßkanäle 3 auf, durch welche ein Kühlfluid 4 in den Innenraum 150 gelangen kann. Die Tragstruktur 17 weist weiterhin Auslaßkanäle 5 in den Zwischenraum 151 auf. Zu einer Prallkühlung der Bodenseite
101 strömt Kühlfluid 4 durch die Einlaßkanäle 3 in den Innenraum 150 des Einsatzes 110 und gelangt durch die Durchlaßöffnungen 113 in den Zwischenraum 151, wobei es gegen die Innenseite 103 der Bodenseite 101 prallt. Das nach der Prallküh- lung erwärmte Kühlfluid wird aus dem Zwischenraum über die
Auslaßkanäle 5 abgeführt, wie es durch Pfeile in FIG 2 angedeutet ist. Das Kühlfluid 4 wird somit in einem geschlossenen Kreislauf geführt. Dadurch wird vermieden, daß das Kühlfluid 4 in den Heißgasraum 37 gelangt.
Durch die Anbringung von Dichtungen 34 ist es möglich, Leckageströme zwischen der Tragstruktur 17 und der darauf aufsitzenden Seitenwand 102 des Hohlkörpers 100 zu unterbinden. Die Dichtungen 34 sind hier als Quetschdichtungen ausgebildet, wobei die Seitenwand 102 des Hohlkörpers 100 eine Schulter aufweist, durch welche die Dichtung 34 im Bereich der Verbindungsstelle zwischen der Seitenwand 102 des Hohlkörpers 100 und der Tragstruktur 17 auf die Tragstruktur 17 aufgepreßt wird. Die Versorgung mit Kühlfluid 4 erfolgt in der Weise, daß von einem Verdichter 9 durch einen Zufuhrkanal 12 das Kühlfluid 4 den Einlaßkanälen 3 zugeführt wird. Dieser Zufuhrkanal 12 liegt dabei außerhalb des Heißgasraumes 37. Abgeführt wird das Kühlfluid 4 über einen ebenfalls außerhalb des Heißgasraumes 37 liegenden Abfuhrkanal 13. Durch diesen Abfuhrkanal 13 kann das Kühlfluid 4 beispielsweise dem Brenner 25 zugeführt werden.
Die Hitzeschildkomponente 1 wird in dem dargestellten Ausführungsbeispiel auf der Tragstruktur 17 fixiert durch einen Haltebolzen 130. Dieser Haltebolzen 130 ist in der Mitte der dargestellten rechteckigen Ausführungsform angeordnet. Seine Achse ist entlang der Hauptachse 32 der Hitzeschildkomponente ausgerichtet. Der Haltebolzen ist im Ausführungsbeispiel mit einer Verdickung auf der heißen Seite der Hitzeschildkomponente 1 ausgeführt und mit seinem dünneren Ende an der Tragstruktur 17 anmontiert. Der Haltebolzen kann mit hier nicht dargestellten Tellerfedern versehen werden, um ein Über- schreiten der zulässigen Wärmedehnung der Hitzeschildkomponente 1 zu kompensieren.
Wenn der Einsatz 110 und der Hohlkörper 100 mechanisch lösbar nur über den Haltebolzen 130 verbunden sind, können die Ein- sätze gegen andere Einsätze vertauscht werden, die in den
Zwischenraum 35 zwischen dem Hohlkörper 100 und dem Einsatz 110 ein anderes Kühlfluidströmungsfeld erzeugen. Dadurch können die Kühlbedingungen für die Bodenseite 101 des Hohlkörpers 100 an die spezifischen Anforderungen angepaßt werden, die sich aus der Lage der Hitzeschildkomponente 1 im Heißgaskanal ergeben.
In FIG 3 ist ein Ausschnitt aus einer Hitzeschildanordnung dargestellt. Die Hitzeschildanordnung wird aus einer Mehrzahl von an der Tragstruktur 17 angeordneten Hitzeschildkomponen- ten gebildet, wobei zur besseren Übersicht nur zwei Hitzeschildkomponenten 100 und 100A dargestellt sind, wobei zwei Seitenwände 102 und 102A zweier benachbarter Hohlkörper 100 und 100A sowie ein Teil der Tragstruktur 17 zu erkennen sind. Mit 115 und 115A sind dabei radial zu den Seitenwänden 102 verlaufende Kühlrippen auf der ersten Bodenseite angedeutet. Die Bodenseiten 101 und 101A der Hitzeschildkomponenten 100 und 100A bilden mit den Bodenseiten der nicht näher dargestellten Hitzeschildkomponenten eine einem Heißgas ansetzbare Wand 160.
Die benachbarten Seitenwände 102 der Hohlkörper 100 weisen eine sich gegenseitig entsprechende Oberflächenkontur auf. Diese Oberflächenkontur ist so gestaltet, daß die Seitenwand 102A des in der Zeichnung auf der rechten Seite dargestellten Hohlkörpers 100A eine Schulter 105 aufweist, der eine Gegenschulter 104 der Seitenwand 102 des auf der linken Seite dargestellten Hohlkörpers 100 korrespondiert. Durch diese Formgebung mit Schulter 105 und Gegenschulter 104 wird erreicht, daß vom Heißgasraum 37 her kein linearer Spalt 36 zu der Tragstruktur 17 führt.
Hierdurch ist ein noch besserer Schutz der Tragstruktur 17 vor Erhitzung durch das Heißgas im Heißgasraum 37 gewährlei- stet. Da die Hohlkörper 100 im Feingußverfahren herstellbar sind, bereiten Geometrien, wie die beschriebene, keine Herstellungsschwierigkeiten. Selbstverständlich ist es auch möglich, andere Geometrien für die Seitenwände 102 und 102A der Hohlkörper 100 und 100A zu wählen, bei denen ein linearer Spalt zwischen Heißgasraum 37 und Tragstruktur 17 vermieden wird.

Claims

Patentansprüche
1. Hitzeschildkomponente (1) die auf einer Tragstruktur (17) anbringbar ist, mit einem äußeren Hohlkörper (100) der einen Einsatz (110) mit einem zwischen dem äußeren Hohlkörper (100) und dem Einsatz (110) gebildeten Zwischenraum (151) umschließt, wobei der äußere Hohlkörper (100) eine einem Heißgas ausetzbare erste Bodenseite (101) und Seitenwände (102) aufweist und wobei der Einsatz (110) Seitenwände (112) und eine zweite Bodenseite (111) mit einer Mehrzahl von Öffnungen (113) zum Durchlaß von Kühlfluid (4) in den Zwischenraum (151) aufweist, wobei der äußere Hohlkörper (100) und der Einsatz (110) jeweils auf der Tragstruktur (17) anbringbar sind.
2. Hitzeschildkomponente (1) nach Anspruch 1, wobei die Seitenwände (112) des Einsatzes (110) so auf die Tragstruktur
(17) aufsetzbar sind, daß ein Innenraum (150) gebildet ist, der von dem Einsatz (110) und der Tragstruktur (17) begrenzt ist.
3. Hitzeschildkomponente (1) nach Anspruch 1 oder 2, wobei der Einsatz (110) austauschbar ist.
4. Hitzeschildkomponente (1) nach Anspruch 1, 2 oder 3, wobei ein erster äußerer Hohlkörper (100) und ein zweiter äußerer Hohlkörper (100A) nebeneinander auf der Tragstruktur (17) anbringbar sind, so daß eine Seitenwand (102) des ersten äußeren Hohlkörpers (100) und eine Seitenwand (102A) des zweiten äußeren Hohlkörpers (100A) unter Belassung eines Spalts (36) benachbart sind, welche Seitenwände (102,102A) jeweils eine solche Oberflächenkontur aufweisen, daß der Spalt (36) gewunden ist.
5. Hitzeschildkomponente (1) nach einem der Ansprüche 1 bis
4, wobei die Bodenseite (101) auf ihrer dem Zwischenraum (151) zugewandten Fläche (103) Kühlrippen (115) oder dergleichen Strukturelemente aufweist.
6. Hitzeschildkomponente (1) nach einem der Ansprüche 1 bis
5, mit einem zentral angeordneten Haltebolzen (130) zur Befestigung an der Tragstruktur (17).
7. Hitzeschildkomponente (1) nach einem der Ansprüche 1 bis
6, bei der die Seitenwände (102) des Hohlkörpers (106) so ausgebildet sind, daß eine Dichtung (34) gegenüber der Tragstruktur (17) anbringbar ist.
8. Hitzeschildkomponente (1) nach einem der Ansprüche 1 bis
7, bei der die Bodenseite (101) des Hohlkörpers (100) dreieckig, sechseckig oder viereckig, insbesondere quadratisch oder trapezförmig, ist.
9. Hitzeschildanordnung (20), die eine Mehrzahl von nebeneinander an einer Tragstruktur (17) angeordneten Hitzeschildkomponenten umfaßt, wobei eine Hitzeschildkomponente (1) auf der Tragstruktur (17) anbringbar ist und einen äußeren Hohlkörper (100) aufweist, der einen Einsatz (110) mit einem zwischen dem äußeren Hohlkörper (100) und dem Einsatz (110) gebildeten Zwischenraum (151) umschließt, wobei der äußere Hohlkörper (100) eine einem Heißgas ausetzbare erste Bodenseite (101) und Seitenwände (102) aufweist und wobei der Einsatz (110) Seitenwände (112) und eine zweite Bodenseite (111) mit einer Mehrzahl von Öffnungen (113) zum Durchlaß von Kühlfluid (4) in den Zwischenraum (151) aufweist, wobei der äußere Hohlkörper (100) und der Einsatz (110) jeweils auf der Tragstruktur (17) anbringbar sind und durch die Bodenseiten (101 und 111) der Hitzeschildkomponenten (1) eine einem Heißgas aussetzbare Wand (160) einer heißgasführenden Komponente, insbesondere einer Brennkammer einer Gasturbinenanlage, gebildet ist.
10. Hitzeschildanordnung (20) nach Anspruch 11, d a d u r c h g e k e n n z e i c h n e t, daß die die Tragstruktur (17) für eine Hitzeschildkomponente (1) jeweils in einem ersten Bereich (162) innerhalb der Seitenwände (112) des Einsatzes (110) einen Einlaßkanal (3) für Kühlfluid (4) und einen Auslaßkanal (5) in den Zwischenraum (150) für Kühlfluid (4) aufweist.
11. Hitzeschildanordnung (20) nach Anspruch 10, d a d u r c h g e k e n n z e i c h n e t, daß der Einlaßkanal (3) mit einem Zufuhrkanal (12) verbunden ist, der außerhalb des Heißgasraums (37) angeordnet ist, und der Auslaßkanal (5) mit einem Abfuhrkanal (13) verbunden ist, der ebenfalls außerhalb des Heißgasraums (37) angeordnet ist.
12. Hitzeschildanordnung (20) nach Anspruch 11, d a d u r c h g e k e n n z e i c h n e t, daß das Kühlfluid (4) von einem Verdichter (9) über den Zufuhrkanal (12) der Hitzeschildkomponente (1) zugeführt und über den Abfuhrkanal (13) abgeführt wird, insbesondere dabei zu einem Brenner (25) geführt wird.
PCT/DE1998/002273 1997-08-18 1998-08-07 Hitzeschildkomponente mit kühlfluidrückführung WO1999009354A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP98948745A EP1005620B1 (de) 1997-08-18 1998-08-07 Hitzeschildkomponente mit kühlfluidrückführung
JP2000509979A JP2001515197A (ja) 1997-08-18 1998-08-07 冷却流体帰還路付きの断熱構成要素および高温ガス案内構成要素に対する断熱装置
DE59804685T DE59804685D1 (de) 1997-08-18 1998-08-07 Hitzeschildkomponente mit kühlfluidrückführung
US09/507,355 US6276142B1 (en) 1997-08-18 2000-02-18 Cooled heat shield for gas turbine combustor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE29714742.0 1997-08-18
DE29714742U DE29714742U1 (de) 1997-08-18 1997-08-18 Hitzeschildkomponente mit Kühlfluidrückführung und Hitzeschildanordnung für eine heißgasführende Komponente

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/507,355 Continuation US6276142B1 (en) 1997-08-18 2000-02-18 Cooled heat shield for gas turbine combustor

Publications (1)

Publication Number Publication Date
WO1999009354A1 true WO1999009354A1 (de) 1999-02-25

Family

ID=8044728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1998/002273 WO1999009354A1 (de) 1997-08-18 1998-08-07 Hitzeschildkomponente mit kühlfluidrückführung

Country Status (5)

Country Link
US (1) US6276142B1 (de)
EP (1) EP1005620B1 (de)
JP (1) JP2001515197A (de)
DE (2) DE29714742U1 (de)
WO (1) WO1999009354A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1247943A1 (de) * 2001-04-04 2002-10-09 Siemens Aktiengesellschaft Formstück zur Bildung eines kühlbaren Turbinen-Mantelrings
EP1420208A1 (de) * 2002-11-13 2004-05-19 Siemens Aktiengesellschaft Brennkammer
EP1431661A1 (de) * 2002-12-19 2004-06-23 Siemens Aktiengesellschaft Ströhmungsführungskörper
EP1443275A1 (de) * 2003-01-29 2004-08-04 Siemens Aktiengesellschaft Brennkammer
US6837053B2 (en) * 2001-06-20 2005-01-04 Siemens Aktiengesellschaft Gas turbine combustion chamber and air guidance method therefore
EP2522907A1 (de) * 2011-05-12 2012-11-14 Siemens Aktiengesellschaft Hitzeschildanordnung
WO2014108828A2 (en) 2013-01-10 2014-07-17 Queensbrook Limited Biodegradable synthetic polymer material

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10003728A1 (de) 2000-01-28 2001-08-09 Siemens Ag Hitzeschildanordnung für eine Heißgas führende Komponente, insbesondere für Strukturteile von Gasturbinen
US20030163997A1 (en) * 2000-10-10 2003-09-04 Herman H. Viegas Cryogenic refrigeration unit suited for delivery vehicles
US20020129613A1 (en) * 2000-10-10 2002-09-19 Thermo King Corporation Cryogenic refrigeration unit suited for delivery vehicles
EP1248023A1 (de) * 2001-04-04 2002-10-09 Siemens Aktiengesellschaft Dichtungssystem, insbesondere zur Verwendung in einer Gasturbine, und Gasturbine
US6751966B2 (en) 2001-05-25 2004-06-22 Thermo King Corporation Hybrid temperature control system
DE10224724A1 (de) 2001-06-04 2003-01-30 Thermo King Corp Steuerverfahren für ein CRYO-Kühlsystem mit Eigenantrieb
EP1284390A1 (de) 2001-06-27 2003-02-19 Siemens Aktiengesellschaft Hitzeschildanordnung für eine Heissgas führende Komponente, insbesondere für Strukturteile von Gasturbinen
US6698212B2 (en) 2001-07-03 2004-03-02 Thermo King Corporation Cryogenic temperature control apparatus and method
US6631621B2 (en) 2001-07-03 2003-10-14 Thermo King Corporation Cryogenic temperature control apparatus and method
US6694765B1 (en) 2002-07-30 2004-02-24 Thermo King Corporation Method and apparatus for moving air through a heat exchanger
EP1400751A1 (de) * 2002-09-17 2004-03-24 Siemens Aktiengesellschaft Brennkammer für eine Gasturbine
US6792757B2 (en) 2002-11-05 2004-09-21 Honeywell International Inc. Gas turbine combustor heat shield impingement cooling baffle
EP1507116A1 (de) * 2003-08-13 2005-02-16 Siemens Aktiengesellschaft Hitzeschildanordnung für eine ein Heissgas führende Komponente, insbesondere für eine Brennkammer einer Gasturbine
US7000396B1 (en) * 2004-09-02 2006-02-21 General Electric Company Concentric fixed dilution and variable bypass air injection for a combustor
EP1672281A1 (de) * 2004-12-16 2006-06-21 Siemens Aktiengesellschaft Hitzeschildelement
WO2008017551A2 (de) * 2006-08-07 2008-02-14 Alstom Technology Ltd Brennkammer einer verbrennungsanlage
EP2049840B1 (de) * 2006-08-07 2018-04-11 Ansaldo Energia IP UK Limited Brennkammer einer verbrennungsanlage
US8522557B2 (en) 2006-12-21 2013-09-03 Siemens Aktiengesellschaft Cooling channel for cooling a hot gas guiding component
DE102007008319A1 (de) * 2007-02-16 2008-08-21 Rolls-Royce Deutschland Ltd & Co Kg Verfahren zur Prallluftkühlung für Gasturbinen
DE102007062699A1 (de) * 2007-12-27 2009-07-02 Rolls-Royce Deutschland Ltd & Co Kg Brennkammerauskleidung
US7874138B2 (en) * 2008-09-11 2011-01-25 Siemens Energy, Inc. Segmented annular combustor
US8015817B2 (en) * 2009-06-10 2011-09-13 Siemens Energy, Inc. Cooling structure for gas turbine transition duct
CH703656A1 (de) * 2010-08-27 2012-02-29 Alstom Technology Ltd Von Heissgasen durchströmbarer Gehäusekörper mit innerem Hitzeschild.
EP2549063A1 (de) * 2011-07-21 2013-01-23 Siemens Aktiengesellschaft Hitzeschildelement für eine Gasturbine
EP2728255A1 (de) * 2012-10-31 2014-05-07 Alstom Technology Ltd Heißgas-Segmentanordnung
US8984896B2 (en) 2013-08-23 2015-03-24 Pratt & Whitney Canada Corp. Interlocking combustor heat shield panels
US9534784B2 (en) 2013-08-23 2017-01-03 Pratt & Whitney Canada Corp. Asymmetric combustor heat shield panels
US9470421B2 (en) * 2014-08-19 2016-10-18 General Electric Company Combustor cap assembly
GB201501971D0 (en) * 2015-02-06 2015-03-25 Rolls Royce Plc A combustion chamber
US10520194B2 (en) 2016-03-25 2019-12-31 General Electric Company Radially stacked fuel injection module for a segmented annular combustion system
US10641176B2 (en) 2016-03-25 2020-05-05 General Electric Company Combustion system with panel fuel injector
US10641491B2 (en) 2016-03-25 2020-05-05 General Electric Company Cooling of integrated combustor nozzle of segmented annular combustion system
US10830442B2 (en) 2016-03-25 2020-11-10 General Electric Company Segmented annular combustion system with dual fuel capability
US10584876B2 (en) 2016-03-25 2020-03-10 General Electric Company Micro-channel cooling of integrated combustor nozzle of a segmented annular combustion system
US10584880B2 (en) 2016-03-25 2020-03-10 General Electric Company Mounting of integrated combustor nozzles in a segmented annular combustion system
US10605459B2 (en) 2016-03-25 2020-03-31 General Electric Company Integrated combustor nozzle for a segmented annular combustion system
US11428413B2 (en) 2016-03-25 2022-08-30 General Electric Company Fuel injection module for segmented annular combustion system
US10563869B2 (en) 2016-03-25 2020-02-18 General Electric Company Operation and turndown of a segmented annular combustion system
RU170277U1 (ru) * 2016-07-29 2017-04-19 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный технический университет" Камера сгорания газотурбинного двигателя с ламинаризационными панелями
US11156362B2 (en) 2016-11-28 2021-10-26 General Electric Company Combustor with axially staged fuel injection
US10690350B2 (en) 2016-11-28 2020-06-23 General Electric Company Combustor with axially staged fuel injection
US10739001B2 (en) 2017-02-14 2020-08-11 Raytheon Technologies Corporation Combustor liner panel shell interface for a gas turbine engine combustor
US10718521B2 (en) 2017-02-23 2020-07-21 Raytheon Technologies Corporation Combustor liner panel end rail cooling interface passage for a gas turbine engine combustor
US10823411B2 (en) 2017-02-23 2020-11-03 Raytheon Technologies Corporation Combustor liner panel end rail cooling enhancement features for a gas turbine engine combustor
US10830434B2 (en) 2017-02-23 2020-11-10 Raytheon Technologies Corporation Combustor liner panel end rail with curved interface passage for a gas turbine engine combustor
US10677462B2 (en) 2017-02-23 2020-06-09 Raytheon Technologies Corporation Combustor liner panel end rail angled cooling interface passage for a gas turbine engine combustor
US10941937B2 (en) 2017-03-20 2021-03-09 Raytheon Technologies Corporation Combustor liner with gasket for gas turbine engine
US11994293B2 (en) 2020-08-31 2024-05-28 General Electric Company Impingement cooling apparatus support structure and method of manufacture
US11994292B2 (en) 2020-08-31 2024-05-28 General Electric Company Impingement cooling apparatus for turbomachine
US11371702B2 (en) 2020-08-31 2022-06-28 General Electric Company Impingement panel for a turbomachine
US11614233B2 (en) 2020-08-31 2023-03-28 General Electric Company Impingement panel support structure and method of manufacture
US11460191B2 (en) 2020-08-31 2022-10-04 General Electric Company Cooling insert for a turbomachine
US11255545B1 (en) 2020-10-26 2022-02-22 General Electric Company Integrated combustion nozzle having a unified head end
US11767766B1 (en) 2022-07-29 2023-09-26 General Electric Company Turbomachine airfoil having impingement cooling passages

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB849255A (en) * 1956-11-01 1960-09-21 Josef Cermak Method of and arrangements for cooling the walls of combustion spaces and other spaces subject to high thermal stresses
US4422300A (en) * 1981-12-14 1983-12-27 United Technologies Corporation Prestressed combustor liner for gas turbine engine
GB2166120A (en) * 1984-09-15 1986-04-30 Yeate And Hanson Ind Ltd Linings
EP0224817A1 (de) 1985-12-02 1987-06-10 Siemens Aktiengesellschaft Hitzeschildanordnung, insbesondere für Strukturteile von Gasturbinenanlagen
US4838031A (en) 1987-08-06 1989-06-13 Avco Corporation Internally cooled combustion chamber liner
US5363643A (en) * 1993-02-08 1994-11-15 General Electric Company Segmented combustor
WO1998013645A1 (de) 1996-09-26 1998-04-02 Siemens Aktiengesellschaft Hitzeschildkomponente mit kühlfluidrückführung und hitzeschildanordnung für eine heissgasführende komponente

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3803086C2 (de) * 1987-02-06 1997-06-26 Gen Electric Brennkammer für ein Gasturbinentriebwerk
DE58908665D1 (de) * 1988-06-13 1995-01-05 Siemens Ag Hitzeschildanordnung mit geringem kühlfluidbedarf.
US5167487A (en) * 1991-03-11 1992-12-01 General Electric Company Cooled shroud support
US5273396A (en) * 1992-06-22 1993-12-28 General Electric Company Arrangement for defining improved cooling airflow supply path through clearance control ring and shroud
US5363654A (en) * 1993-05-10 1994-11-15 General Electric Company Recuperative impingement cooling of jet engine components
DE4343332C2 (de) * 1993-12-20 1996-06-13 Abb Management Ag Vorrichtung zur Konvektivkühlung einer hochbelasteten Brennkammer
US5480281A (en) * 1994-06-30 1996-01-02 General Electric Co. Impingement cooling apparatus for turbine shrouds having ducts of increasing cross-sectional area in the direction of post-impingement cooling flow
DE4436728A1 (de) * 1994-10-14 1996-04-18 Abb Research Ltd Verfahren und Vorrichtung für eine schadstoffarme gestufte Verbrennung
DE4443864A1 (de) * 1994-12-09 1996-06-13 Abb Management Ag Gek}hltes Wandteil

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB849255A (en) * 1956-11-01 1960-09-21 Josef Cermak Method of and arrangements for cooling the walls of combustion spaces and other spaces subject to high thermal stresses
US4422300A (en) * 1981-12-14 1983-12-27 United Technologies Corporation Prestressed combustor liner for gas turbine engine
GB2166120A (en) * 1984-09-15 1986-04-30 Yeate And Hanson Ind Ltd Linings
EP0224817A1 (de) 1985-12-02 1987-06-10 Siemens Aktiengesellschaft Hitzeschildanordnung, insbesondere für Strukturteile von Gasturbinenanlagen
US4838031A (en) 1987-08-06 1989-06-13 Avco Corporation Internally cooled combustion chamber liner
US5363643A (en) * 1993-02-08 1994-11-15 General Electric Company Segmented combustor
WO1998013645A1 (de) 1996-09-26 1998-04-02 Siemens Aktiengesellschaft Hitzeschildkomponente mit kühlfluidrückführung und hitzeschildanordnung für eine heissgasführende komponente

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1247943A1 (de) * 2001-04-04 2002-10-09 Siemens Aktiengesellschaft Formstück zur Bildung eines kühlbaren Turbinen-Mantelrings
US6676370B2 (en) 2001-04-04 2004-01-13 Siemens Aktiengesellschaft Shaped part for forming a guide ring
US6837053B2 (en) * 2001-06-20 2005-01-04 Siemens Aktiengesellschaft Gas turbine combustion chamber and air guidance method therefore
EP1420208A1 (de) * 2002-11-13 2004-05-19 Siemens Aktiengesellschaft Brennkammer
EP1431661A1 (de) * 2002-12-19 2004-06-23 Siemens Aktiengesellschaft Ströhmungsführungskörper
US7051531B2 (en) 2002-12-19 2006-05-30 Siemens Aktiengesellschaft Flow control body
EP1443275A1 (de) * 2003-01-29 2004-08-04 Siemens Aktiengesellschaft Brennkammer
EP2522907A1 (de) * 2011-05-12 2012-11-14 Siemens Aktiengesellschaft Hitzeschildanordnung
WO2012152530A1 (de) * 2011-05-12 2012-11-15 Siemens Aktiengesellschaft Hitzeschildanordnung
WO2014108828A2 (en) 2013-01-10 2014-07-17 Queensbrook Limited Biodegradable synthetic polymer material

Also Published As

Publication number Publication date
DE29714742U1 (de) 1998-12-17
DE59804685D1 (de) 2002-08-08
EP1005620B1 (de) 2002-07-03
JP2001515197A (ja) 2001-09-18
US6276142B1 (en) 2001-08-21
EP1005620A1 (de) 2000-06-07

Similar Documents

Publication Publication Date Title
EP1005620B1 (de) Hitzeschildkomponente mit kühlfluidrückführung
EP0928396B1 (de) Hitzeschildkomponente mit kühlfluidrückführung und hitzeschildanordnung für eine heissgasführende komponente
EP1654495B1 (de) Hitzeschildanordnung für eine ein heissgas führende komponente, insbesondere für eine brennkammer einer gasturbine
EP0244693B1 (de) Heissgasüberhitzungsschutzeinrichtung für Gasturbinentriebwerke
DE60202212T2 (de) Kühlbares segment für turbomaschinen und turbinen mit brennkammer
DE69723495T2 (de) Kühlung von Gasturbinenbrennkammerwand
EP1032791B1 (de) Brennkammer sowie verfahren zur dampfkühlung einer brennkammer
DE102005038395B4 (de) Brennkammerkühlung mit geneigten segmentierten Flächen
DE60012289T2 (de) Brennkammer für eine Gasturbine
DE3113380A1 (de) Einsatz fuer den brenner eines gasturbinentriebwerks
EP1836442A1 (de) Hitzeschildelement
DE2617999A1 (de) Kuehlring fuer brennkammern
EP2812636B1 (de) Ringbrennkammer-bypass
DE3200972A1 (de) Brennereinsatz, insbesondere fuer ein gasturbinentriebwerk
DE112007002152T5 (de) Prallplattenkuppelanordnung für einen Turbinenmotor
CH703549B1 (de) Brennkammerflammrohr mit Kühlsystem.
EP1409926B1 (de) Prallkühlvorrichtung
DE19538746A1 (de) Segmentierter Mittelkörper für eine Doppelring-Brennkammer
WO2016156370A1 (de) Umführungs-hitzeschildelement
DE1601563B2 (de) Luftgekühlte Laufschaufel
EP1165942A1 (de) Strömungsmaschine mit einer kühlbaren anordnung von wandelementen und verfahren zur kühlung einer anordnung von wandelementen
EP1512911B1 (de) Anordnung zur Kühlung hoch wärmebelasteter Bauteile
EP2271876B1 (de) Brenneranordnung für fluidische brennstoffe und verfahren zum herstellen einer brenneranordnung
EP1422479B1 (de) Brennkammer zur Verbrennung eines brennbaren Fluidgemisches
EP1707758B1 (de) Brennkammerschalenelement und Brennkammer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998948745

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09507355

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998948745

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998948745

Country of ref document: EP