WO1999007554A1 - Verfahren zum positionieren von gravierorganen - Google Patents

Verfahren zum positionieren von gravierorganen Download PDF

Info

Publication number
WO1999007554A1
WO1999007554A1 PCT/DE1998/001933 DE9801933W WO9907554A1 WO 1999007554 A1 WO1999007554 A1 WO 1999007554A1 DE 9801933 W DE9801933 W DE 9801933W WO 9907554 A1 WO9907554 A1 WO 9907554A1
Authority
WO
WIPO (PCT)
Prior art keywords
engraving
elements
printing cylinder
axial
carriage
Prior art date
Application number
PCT/DE1998/001933
Other languages
English (en)
French (fr)
Inventor
Ernst-Rudolf Gottfried Weidlich
Original Assignee
Heidelberger Druckmaschinen Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heidelberger Druckmaschinen Ag filed Critical Heidelberger Druckmaschinen Ag
Priority to DE59802360T priority Critical patent/DE59802360D1/de
Priority to EP98944982A priority patent/EP1001882B1/de
Priority to AU92521/98A priority patent/AU9252198A/en
Priority to US09/485,199 priority patent/US6357976B1/en
Priority to JP2000507112A priority patent/JP3361320B2/ja
Publication of WO1999007554A1 publication Critical patent/WO1999007554A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/02Engraving; Heads therefor
    • B41C1/04Engraving; Heads therefor using heads controlled by an electric information signal
    • B41C1/045Mechanical engraving heads
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/047Detection, control or error compensation of scanning velocity or position
    • H04N1/0473Detection, control or error compensation of scanning velocity or position in subscanning direction, e.g. picture start or line-to-line synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/19Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using multi-element arrays
    • H04N1/191Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using multi-element arrays the array comprising a one-dimensional array, or a combination of one-dimensional arrays, or a substantially one-dimensional array, e.g. an array of staggered elements
    • H04N1/1911Simultaneously or substantially simultaneously scanning picture elements on more than one main scanning line, e.g. scanning in swaths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/04Scanning arrangements
    • H04N2201/047Detection, control or error compensation of scanning velocity or position
    • H04N2201/04701Detection of scanning velocity or position
    • H04N2201/0471Detection of scanning velocity or position using dedicated detectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/04Scanning arrangements
    • H04N2201/047Detection, control or error compensation of scanning velocity or position
    • H04N2201/04701Detection of scanning velocity or position
    • H04N2201/04715Detection of scanning velocity or position by detecting marks or the like, e.g. slits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/04Scanning arrangements
    • H04N2201/047Detection, control or error compensation of scanning velocity or position
    • H04N2201/04701Detection of scanning velocity or position
    • H04N2201/04739Detection of scanning velocity or position by detecting the scanning head or scanning carriage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/30084Milling with regulation of operation by templet, card, or other replaceable information supply
    • Y10T409/301176Reproducing means
    • Y10T409/301624Duplicating means
    • Y10T409/302464Duplicating means including plural cutters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/303752Process

Definitions

  • the invention relates to the field of electronic reproduction technology and relates to a method for positioning engraving elements in an electronic engraving machine for engraving printing cylinders for gravure printing, in which at least two engraving strands of predetermined strand widths lying next to one another in the axial direction are engraved, each with an associated engraving element be, as well as an electronic engraving machine and a position measuring device for performing the method.
  • an engraving element which has, for example, an engraving stylus as a cutting tool, moves continuously or step by step along a rotating printing cylinder in the axial direction.
  • the engraving stylus which is controlled by an engraving control signal, cuts a sequence of depressions arranged in an engraving grid, hereinafter referred to as cups, into the outer surface of the printing cylinder.
  • the engraving control signal is formed by superimposing an engraving signal representing the tonal values between "black” and "white” with a periodic raster signal. While the periodic raster signal causes the engraving stylus to vibrate, the engraving signal controls the depths of the cells engraved in the outer surface of the printing cylinder in accordance with the tonal values to be reproduced.
  • a multiplicity of axially adjacent, strip-shaped cylinder regions, called engraving strands, must be engraved simultaneously with one engraving element each.
  • the various print pages of a print job are engraved in the individual engraving lines.
  • the engraving elements assigned to the individual engraving strands are mounted on an engraving carriage which moves along the printing cylinder in the axial direction during the engraving.
  • a prerequisite for good reproduction quality is that the string widths of the individual engraving strands are kept exactly in the axial direction of the printing cylinder.
  • the distances between the engraving stylus tips of the individual engraving elements in the axial direction of the printing cylinder must be adjusted to the required strand widths with high accuracy by axially shifting the engraving elements on the engraving carriage and then the engraving carriage with the engraving elements are displaced relative to the printing cylinder in such a way that the engraving stylus tips are positioned on the respective axial starting position of the engraving strands.
  • the conventional positioning of the engraving stylus tips of the engraving elements on the strand widths is carried out essentially manually by an operator, by initially roughly adjusting the axial spacing of the engraving elements corresponding to the strand widths and then the engraving stylus tips of the engraving organs with visual observation of the engraving stylus tips with the aid of a special microscope device (stylus allocation guide ) and manually operable spindle drives.
  • the object of the present invention is to improve a method for positioning engraving members in an electronic engraving machine for engraving printing cylinders for gravure printing and an electronic engraving machine for carrying out the method in such a way that the setting of the axial distances between the engraving members in a short time done automatically with high accuracy.
  • the invention is explained in more detail below with reference to the figure.
  • the figure shows a basic block diagram of an engraving machine with a
  • Printing cylinder (1) which is driven in rotation by a cylinder drive (2).
  • the engraving elements (3 A , 3 B ) are designed in the exemplary embodiment as electromagnetic engraving elements with engraving styluses as cutting tools.
  • the engraving elements (3 A , 3 B ) are mounted on individual engraving supports (4 A , 4 B ), which can be moved against each other in the axial direction of the printing cylinder (1) by means of suitable motor drives (5 A , 5 B ) on an engraving carriage (6) can be locked on the engraving carriage (6) in the set positions of the engraving elements (3 A , 3 B ).
  • the motorized drives (5 A , 5 B ) can be designed, for example, as chain, gear, toothed belt or, as in the exemplary embodiment, as spindle drives.
  • the engraving supports (4 A , 4 B ) can also be moved by manually operated fine drives.
  • the engraving carriage (6) is used for the axial positioning of the engraving members (3 A , 3 B ) relative to the printing cylinder (1) and for the advancement of the engraving members (3 A , 3 B ) during the engraving via a spindle (7) by an engraving carriage drive (8 ) moved in the axial direction of the printing cylinder (1).
  • the spindle drives (5 A , 5 B ) for the engraving supports (4 A , 4 B ) and the engraving carriage drive (8) for the engraving carriage (6) are designed as precision drives with stepper motors.
  • Each stepper motor is controlled by a motor cycle sequence, one cycle of which corresponds to one increment traveled by the engraving support (4 A , 4 B ) or the engraving carriage (6).
  • the axial position of the engraving support (4 A , 4 B ) or the engraving carriage (6) can be determined by counting the cycles of the motor cycle sequence or the engraving support (4 A , 4 B ) or the engraving carriage (6) by counting down a predetermined number be moved from clocks to a defined axial position.
  • Such positioning drives are known and commercially available.
  • Each engraving element (3 A , 3 B ) cuts with its engraving stylus (9 A , 9 B ) engraving line for engraving line a series of cups arranged in an engraving grid in the outer surface of the rotating printing cylinder (1), while the engraving carriage (6) engages with the Engraving elements (3 A , 3 B ) are moved in the feed direction along the printing cylinder (1).
  • the wells are engraved on individual engraving lines which run in a circumferential direction around the printing cylinder (1), the engraving carriage (6) carrying out an axial feed step to the next engraving line after the engraving of the wells of one engraving line.
  • Such an engraving method is known, for example, in US Pat. No. 4,013,829.
  • the cups can also be engraved in a helix-shaped engraving line around the printing cylinder (1), the engraving carriage (6) then carrying out a continuous feed movement during the engraving.
  • the engraving stylus (9 A , 9 B ) of the engraving elements (3 A , 3 B ) are controlled by engraving control signals (GS A , GS B ).
  • the engraving control signals (GS A GS B ) are formed in engraving amplifiers (10 A , 10 B ) from the superimposition of a periodic raster signal (R) with engraving signal values (G A , G B ) which represent the tonal values of the wells to be engraved between "black""and” white "represent.
  • the engraving signal values (G) determine the respective depth of penetration of the engraving stylus (9 A , 9 B ) in accordance with the tonal values to be engraved Shell surface of the printing cylinder (1).
  • the frequency of the raster signal (R), the peripheral speed of the printing cylinder (1) and the axial feed increment of the engraving carriage (6) determine the geometry of the engraving raster with respect to the raster angle and raster width.
  • the analog engraving signal values (G A , G B ) are obtained in A / D converters (11 A , 11 B ) from engraving data (GD A , GD B ), which are stored in engraving data memories (12 A , 12 B ) and from these engraving lines read out for the engraving line and fed to the A / D converter (11 A , 11 B ).
  • Each engraving location for a well on the printing cylinder (1) is assigned an engraving date of at least one byte, which, among other things, contains the tonal value to be engraved between "black” and "white” as engraving information.
  • Each engraving location in the engraving grid is defined by location coordinates (x, y) of an XY coordinate system which is oriented in the circumferential direction and in the axial direction.
  • the engraving carriage drive (8) generates the location coordinates (x) of the engraving locations in the feed direction and a position sensor (13) mechanically coupled to the printing cylinder (1) generates the corresponding location coordinates (y) of the engraving locations in the circumferential direction.
  • the location coordinates (x, y) are fed to a control unit (16) via lines (14, 15).
  • the control unit (16) controls the engraving data memory (12 A , 12 B ) when reading out the engraving data (GD A , GD B ) as well as the entire process of engraving in the engraving machine.
  • the addresses of the engraving data memories (12 A , 12 B ) are calculated in the control unit (16) from the location coordinates (x, y).
  • the control unit (16) also generates reading pulse sequences with which the engraving data (GD A , GD B ) are read out from the engraving data memories (12 A , 12 B ). Addresses, reading pulse sequences and corresponding control commands are fed to the engraving data memories (12 A , 12 B ) via lines (17 A , 17 B ).
  • the control unit (16) also generates the periodic raster signal (R), which reaches the engraving amplifier (10 A , 10 B ) via a line (18).
  • the axial distances between the engraving stylus tips of the engraving elements (3 A , 3 B ) must be set exactly to the specified strand widths (SB) of the engraving strands (A, B), which is described in more detail below .
  • reference positions (RP A , RP B ) are first defined, the axial distances from which correspond to the specified strand widths (SB).
  • the position of the reference positions (RP A , RP B ) in relation to the printing cylinder (1) is in principle arbitrary. However, it proves expedient if the reference positions (RP A , RP B ) coincide with the axial starting positions for the engraving of the engraving strands (A, B) on the printing cylinder (1), since in this case the Engraving stylus tips make additional positioning of the engraving carriage (6) at the starting positions unnecessary.
  • the positioning of the engraving stylus tips on the reference positions (RP A , RP B ) takes place in the exemplary embodiment shown by automatic axial displacement of the individual engraving supports (4 A , 4 B ) on the engraving carriage (6) with the aid of the spindle drives (5 A , 5 B ) the reference positions (RP A , RP B ).
  • the control unit (16) generates corresponding control signals (S A , S B ) which are fed to the spindle drives (5 A , 5 B ) via lines (19 A , 19 B ).
  • the engraving machine has a position measuring device (20, 21, 22), which in the exemplary embodiment consists essentially of a In the axial direction of the printing cylinder (1) movable measuring carriage (20) with a video camera (21) and an image evaluation stage (22) for evaluating the video images recorded by the video camera (28).
  • the measuring carriage (20) is moved, for example, by means of a spindle (23) from a measuring carriage drive (24), which is also designed as a precision drive with a stepper motor.
  • a measuring mark superimposed on the video image generated by the video camera (21) is exactly on the measuring vehicle drive (24)
  • the predetermined x-location coordinate of the reference position (RP, RP B ) and corresponding control commands are transmitted from the control unit (16) via a line (25) to the test vehicle drive (24).
  • the control and monitoring of the axial displacement of the engraving element in question (3 A , 3 B ) takes place as a function of the result of the electronic evaluation of the video image recorded with the video camera (21) in the image evaluation stage (22).
  • the axial deviation of the actual position of a reference point of the engraving member in question (3A, 3B) from the displayed measuring mark or from the associated reference position (RP A , RP B ) in or against the feed direction is determined as a measuring signal (M ) transmitted via a line (26) to the control unit (16) and converted there into a corresponding control signal (S A , S B ) for the spindle drives (5 A , 5 B ).
  • the image evaluation and control of the axial displacement of the engraving element (3 A , 3 B ) can be carried out in various ways.
  • the axial deviation between the starting position of the reference point of the engraving element (3 A , 3 B ) assumed during the rough positioning and the measuring position as the target position can be determined, stored and stored in an equivalent distance of the engraving support (4 A , 4 B ) can be converted.
  • the axial deviation between the actual position and the target position can be continuously determined in the video image during the axial displacement of the engraving member (3 A , 3 B ) and transmitted to the control unit as a measurement signal (M) until the target position is reached.
  • the reference point of an engraving member (3 A , 3 B ) for controlling the axial displacement can in principle lie in a plane running perpendicular to the axial direction of the printing cylinder (1) and through the engraving stylus tip of the engraving member (3 A , 3 B ).
  • the reference point of an engraving element (3 A , 3 B ) is expediently chosen to be the engraving stylus tip itself or at least one well that has been experimentally engraved on the impression cylinder (1) with the relevant engraving element (3 A , 3 B ).
  • an acoustic or opti - A signal is generated, which signals an operator the exact positioning.
  • an auxiliary device (not shown), for example in the form of a light barrier oriented perpendicular to the axial direction, can be provided, which provides the operator with a different optical or acoustic signal if the engraving stylus tip is the reference point of an engraving element (3 ) is within the permissible measuring range of the position measuring device (20, 21, 22). If the stylus tips of the.
  • Engraving elements (3A, 3B) are used as reference points for the axial displacement of the engraving stylus tips, the exact positioning of the engraving stylus tips on the individual reference positions (RP A , RP B ) takes place expediently before the printing cylinder (1) is inserted into the engraving machine .
  • the video camera (21) is shifted in every reference position (RP A , RP B ) on the measuring carriage (20) perpendicular to the axial direction in such a way that it delivers a sharp video image of the respective engraving stylus tip as a reference point.
  • the engraving elements (3 A , 3 B ) are roughly placed on theirs after inserting the impression cylinder (1) into the engraving machine Reference positions (RP A , RP B ) are set and then at least one cup per engraving element (3 A> 3 B ) is engraved on the printing cylinder (1). After the engraving of these cells, the video camera (21) is moved one after the other to the individual reference positions (RP A , RP B ). In each reference position (RP A , RP B ), a video image of the trial-engraved well is then recorded as a reference point and evaluated accordingly.
  • the rough positioning of the engraving elements (3 A , 3 B ) can, as described above, be carried out with the position measuring device (20, 21, 22) and the auxiliary device.
  • an electron beam or laser beam engraving element can also be used.
  • the axis of the machining beam can serve as a reference point.
  • the position measuring device (20, 21, 22) can also be used to set the measuring carriage (20) to the individual reference positions (RP A , RP B ).
  • a magnetically readable scale is arranged in the axial direction, which is read and evaluated by a reading head located on the measuring carriage (20).
  • the position measuring device (20, .21, 22) can advantageously also be used in the engraving of the engraving strands (A, B) for the continuous monitoring of the actual positions of the engraving stylus tips of the engraving members.
  • the method according to the invention is particularly suitable for the precise positioning of a large number of engraving elements for the engraving of engraving strands, since the preparation phase for the engraving is shortened considerably and a high engraving accuracy is achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Or Reproduction Of Printing Formes (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Positionieren von Gravierorganen (3) in einer elektronischen Graviermaschine zur Gravur von Druckzylindern (1) für den Tiefdruck, bei dem mindestens zwei nebeneinander liegende Gravierstränge (A, B) vorgegebener Strangbreiten (SB) mit jeweils einem zugeordneten Gravierorgan (3) graviert werden. Für die Gravierorgane (3) werden axiale Referenzpositionen (RP) vorgegeben, deren axiale Abstände zueinander den vorgegebenen Strangbreiten (SB) der Gravierstränge (A, B) entsprechen. Eine elektronische Positionsmeßeinrichtung (20, 21, 22), die im wesentlichen aus einer Videokamera (21) und einer Bildauswertestufe (22) besteht, wird nacheinander auf die axialen Referenzpositionen (RP) positioniert. In jeder Referenzposition (RP) wird die axiale Abweichung der Gravierstichelspitze des entsprechenden Gravierorgans (3) oder die Abweichung mindestens eines mit dem entsprechenden Gravierorgan (3) probeweise gravierten Näpfchens von der Referenzposition (RP) mit der Positionsmeßeinrichtung (20, 21, 22) festgestellt. Die Gravierorgane (3) werden dann automatisch um die festgestellten Abweichungen verschoben und genau auf den Referenzpositionen (RP) positioniert.

Description

Verfahren zum Positionieren von Gravierorganen
Die Erfindung bezieht sich auf das Gebiet der elektronischen Reproduktionstechnik und betrifft ein Verfahren zum Positionieren von Gravierorganen in einer elektronischen Graviermaschine zur Gravur von Druckzylindern für den Tiefdruck, bei dem auf dem Druckzylinder mindestens zwei in Achsrichtung nebeneinander liegende Gravierstränge vorgegebener Strangbreiten mit jeweils einem zugeordneten Gravierorgan graviert werden, sowie eine elektronischen Graviermaschine und eine Positionsmeßeinrichtung zur Durchführung des Verfahrens.
Bei der Gravur von Druckzylindern in einer elektronischen Graviermaschine bewegt sich ein Gravierorgan, das beispielsweise einen Gravierstichel als Schneidwerkzeug aufweist, in axialer Richtung kontinuierlich oder schrittweise an einem rotierenden Druckzylinder entlang. Der von einem Graviersteuersignal gesteuerte Gravierstichel schneidet eine Folge von in einem Gravurraster angeordneten Vertiefungen, im folgenden Näpfchen genannt, in die Mantelfläche des Druckzylinders. Das Graviersteuersignal wird aus der Überlagerung eines die Tonwerte zwischen "Schwarz" und "Weiß" repräsentierenden Graviersignals mit einem periodischen Rastersignal gebildet. Während das periodische Rastersignal eine vibrie- rende Hubbewegung des Gravierstichels bewirkt, steuert das Graviersignal entsprechend den wiederzugebenden Tonwerten die Tiefen der in die Mantelfläche des Druckzylinders gravierten Näpfchen.
Für den Magazindruck müssen auf einem Druckzylinder eine Vielzahl axial neben- einander liegender, streifenförmige Zylinderbereiche, Gravierstränge genannt, mit jeweils einem Gravierorgan gleichzeitig graviert werden. In den einzelnen Graviersträngen werden beispielsweise die verschiedenen Druckseiten eines Druckauftrages graviert. Die den einzelnen Graviersträngen zugeordneten Gravierorgane sind auf einem Gravierwagen montiert, der sich bei der Gravur in Achsrichtung an dem Druckzylinder entlang bewegt.
Voraussetzung für eine gute Reproduktionsqualität ist das passergenaue Einhalten der Strangbreiten der einzelnen Gravierstränge in Achsrichtung des Druckzylinders. Um eine passergenaue Gravur der Gravierstränge zu erreichen, müssen nach dem herkömmlichen Verfahren die Abstände zwischen den Gravierstichelspitzen der einzelnen Gravierorgane in Achsrichtung des Druckzylinders durch axiales Verschieben der Gravierorgane auf dem Gravierwagen mit hoher Genauigkeit auf die geforderten Strangbreiten eingestellt und dann der Gravierwagen mit den Gravierorganen relativ zum Druckzylinder derart verschoben werden, daß die Gravierstichelspitzen auf den jeweiligen axialen Gravur-Startposition der Gravierstränge positioniert sind.
Das herkömmliche Positionieren der Gravierstichelspitzen der Gravierorgane auf die Strangbreiten erfolgt im wesentlichen manuell durch einen Bediener, indem dieser die den Strangbreiten entsprechenden axialen Abstände der Gravierorgane zueinander zunächst grob einstellt und dann die Gravierstichelspitzen der Gravierorgane unter visueller Beobachtung der Gravierstichelspitzen mit Hilfe einer speziellen Mikroskopeinrichtung (Stichelzuordnungslehre) und von Hand betätigbarer Spindelantriebe fein positioniert.
Diese manuelle Vorgehensweise ist zeitraubend, insbesondere dann, wenn eine große Anzahl von Graviersträngen zu gravieren und somit eine große Anzahl von Gravierorganen zu positionieren ist. Außerdem hängt die Justiergenauigkeit im wesentlichen von der Sorgfalt des Bedieners ab.
Aus der WO-OS 95/31332 ist bereits eine Einrichtung zum automatischen axialen Positionieren einer Vielzahl von Gravierorganen bei der Gravur von Druckzylindern mit Hilfe von motorischen Antrieben für die einzelnen, auf einem Gravierwagen angeordneten Gravierorgane und einer Sensorüberwachung bekannt.
Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zum Positionieren von Gravierorganen in einer elektronischen Graviermaschine zur Gravur von Druckzy- lindern für den Tiefdruck sowie eine elektronische Graviermaschine zur Durchführung des Verfahrens derart zu verbessern, daß die Einstellung der axialen Abstände der Gravierorgane zueinander in kurzer Zeit mit hoher Genauigkeit automatisch erfolgt.
Diese Aufgabe wird bezüglich des Verfahrens durch die Merkmale des Anspruchs 1 , bezüglich der Graviermaschine durch die Merkmale des Anspruchs 15 und bezüglich der Positionsmeßeinrichtung durch die Merkmale des Anspruchs 19 gelöst.
Vorteilhafte Weiterbildungen und Ausgestaltungen der Erfindung sind in den Un- teransprüchen angegeben.
Die Erfindung wird nachfolgend anhand der Figur näher erläutert. Die Figur zeigt ein prinzipielles Blockschaltbild einer Graviermaschine mit einem
Druckzylinder (1 ), der von einem Zylinderantrieb (2) rotatorisch angetrieben wird.
® DDiiee GGrraavviieerrmmaasscchhiinnee iisstt bbeeiissppiieellsswweeiissee ein HelioKlischograph der Firma Hell Gravüre Systems GmbH, Kiel, DE.
Auf dem Druckzylinder (1 ) sollen mehrere in Achsrichtung des Druckzylinders (1 ) nebeneinander liegende Gravierstränge, im Ausführungsbeispiel zwei Gravierstränge (A, B) mit gleichen axialen Strangbreiten (SB), mit jeweils einem zugeordneten Gravierorgan (3A, 3B) graviert werden. Die Gravierorgane (3A, 3B) sind im Ausführungsbeispiel als elektromagnetische Gravierorgane mit Graviersticheln als Schneidwerkzeuge ausgebildet.
Die Gravierorgane (3A, 3B) sind auf einzelnen Graviersupporten (4A, 4B) montiert, die mittels geeigneter motorischer Antriebe (5A, 5B) auf einem Gravierwagen (6) in Achsrichtung des Druckzylinders (1 ) gegeneinander verschiebbar und auf dem Gravierwagen (6) in den eingestellten Positionen der Gravierorgane (3A, 3B) arretierbar sind. Die motorischen Antriebe (5A, 5B) können beispielsweise als Ketten-, Zahnrad-, Zahnriemen- oder, wie im Ausführungsbeispiels, als Spindelantriebe ausgebildet sein. Alternativ können die Graviersupporte (4A, 4B) auch durch ma- nuell betätigte Feinantriebe verschoben werden.
Der Gravierwagen (6) wird zur axialen Positionierung der Gravierorgane (3A, 3B) relativ zum Druckzylinder (1 ) und zum Vorschub der Gravierorgane (3A, 3B) während der Gravur über eine Spindel (7) von einen Gravierwagenantrieb (8) in Achs- richtung des Druckzylinders (1 ) bewegt.
Die Spindelantriebe (5A, 5B) für die Graviersupporte (4A, 4B) und der Gravierwagenantrieb (8) für den Gravierwagen (6) sind als Präzisionsantriebe mit Schrittmotoren ausgebildet. Jeder Schrittmotor wird den durch eine Motortaktfolge ange- steuert, von der ein Takt jeweils einem zurückgelegten Weginkrement des Graviersupports (4A, 4B) oder des Gravierwagens (6) entspricht. Somit kann durch Zählen der Takte der Motortaktfolge jeweils die axiale Position des Graviersupports (4A, 4B) oder des Gravierwagens (6) festgestellt bzw. der Graviersupport (4A, 4B) oder der Gravierwagen (6) durch Rückwärtszählen einer vorgegebenen Anzahl von Takten auf eine definierte axiale Position verschoben werden. Derartige Positionierungsantriebe sind bekannt und im Handel erhältlich. Jedes Gravierorgan (3A, 3B) schneiden mit seinem Gravierstichel (9A, 9B) Gravierlinie für Gravierlinie eine Folge von in einem Gravurraster angeordneten Näpfchen in die Mantelfläche des rotierenden Druckzylinders (1 ), während sich der Gravierwagen (6) mit den Gravierorganen (3A, 3B) in Vorschubrichtung an dem Druckzy- linder (1 ) entlang bewegt.
Die Gravur der Näpfchen erfolgt auf einzelnen, kreisförmig in Umfangsrichtung um den Druckzylinder (1 ) verlaufenden Gravierlinien, wobei der Gravierwagen (6) jeweils nach der Gravur der Näpfchen einer Gravierlinie einen axialen Vorschub- schritt zur nächsten Gravierlinie ausführt. Ein derartiges Gravierverfahren ist beispielsweise in der US-PS 4,013,829 bekannt.
Alternativ kann die Gravur der Näpfchen auch in einer helixförmig um den Druckzylinder (1 ) verlaufenden Gravierlinie erfolgen, wobei der Gravierwagen (6) dann während der Gravur eine kontinuierliche Vorschubbewegung ausführt.
Die Gravierstichel (9A, 9B) der Gravierorgane (3A, 3B) werden durch Graviersteuersignale (GSA, GSB) gesteuert. Die Graviersteuersignale (GSA GSB) werden in Gravierverstärkern (10A, 10B) aus der Überlagerung eines periodischen Rastersi- gnals (R) mit Graviersignalwerten (GA, GB) gebildet, welche die Tonwerte der zu gravierenden Näpfchen zwischen "Schwarz" und "Weiß" repräsentieren. Während das periodische Rastersignal (R) eine vibrierende Hubbewegung der Gravierstichel (9A, 9B) zur Erzeugung des Gravurrasters bewirkt, bestimmen die Graviersignalwerte (G) entsprechend den zu gravierenden Tonwerten die jeweilige Eindringtiefe der Gravierstichel (9A, 9B) in die Mantelfläche des Druckzylinders (1 ).
Die Frequenz des Rastersignals (R), die Umfangsgeschwindigkeit des Druckzylinders (1 ) und die axiale Vorschubschrittweite des Gravierwagens (6) legen die Geometrie des Gravurrasters bezüglich Rasterwinkel und Rasterweite fest.
Die analogen Graviersignalwerte (GA, GB) werden in A/D-Wandlern (11A, 11 B) aus Gravurdaten (GDA, GDB) gewonnen, die in Gravurdatenspeichern (12A, 12B) gespeichert und aus diesen Gravierlinie für Gravierlinie ausgelesen und den A/D- Wandlem (11A, 11B) zugeführt werden. Dabei ist jedem Gravierort für ein Näpf- chen auf dem Druckzylinder (1 ) ein Gravurdatum von mindestens einem Byte zugeordnet, welches unter anderem als Gravierinformation den zu gravierenden Tonwert zwischen "Schwarz" und "Weiß" enthält. Jeder Gravierort in dem Gravurraster ist durch Ortskoordinaten (x, y) eines XY- Koordinatensystems definiert, das in Umfangsrichtung und in Achsrichtung orientiert ist. Der Gravierwagenantrieb (8) erzeugt die Ortskoordinaten (x) der Gravierorte in Vorschubrichtung und ein mit dem Druckzylinder (1 ) mechanisch ge- koppelter Positionsgeber (13) erzeugt die entsprechenden Ortskoordinaten (y) der Gravierorte in Umfangsrichtung. Die Ortskoordinaten (x, y) werden über Leitungen (14, 15) einem Steuerwerk (16) zugeführt.
Das Steuerwerk (16) steuert die Gravurdatenspeicher (12A, 12B) beim Auslesen der Gravurdaten (GDA, GDB) sowie die gesamten Abläufe bei der Gravur in der Graviermaschine.
Aus den Ortskoordinaten (x, y) werden in dem Steuerwerk (16) die Adressen der Gravurdatenspeicher (12A, 12B) berechnet. Das Steuerwerk (16) erzeugt außer- dem Lesetaktfolgen, mit denen die Gravurdaten (GDA, GDB) aus den Gravurdatenspeichern (12A, 12B) ausgelesen werden. Adressen, Lesetaktfolgen und entsprechende Steuerbefehle werden den Gravurdatenspeichern (12A, 12B) über Leitungen (17A, 17B) zugeführt.
Das Steuerwerk (16) erzeugt außerdem das periodische Rastersignal (R), das über eine Leitung (18) an die Gravierverstärker (10A, 10B) gelangt.
Vor der Gravur der Gravierstränge (A, B) müssen die axialen Abstände der Gravierstichelspitzen der Gravierorgane (3A, 3B) genau auf die vorgegebenen Strang- breiten (SB) der Gravierstränge (A, B) eingestellt werden, was nachfolgend näher beschrieben wird.
Zur Einstellung der axialen Abstände zwischen den Gravierstichelspitzen werden zunächst Referenzpositionen (RPA, RPB) definiert, deren axialen Abstände von- einander den vorgegebenen Strangbreiten (SB) entsprechen. Die Lage der Referenzpositionen (RPA, RPB) in bezug auf den Druckzylinder (1 ) ist prinzipiell beliebig. Es erweist sich aber als zweckmäßig, wenn die Referenzpositionen (RPA, RPB) mit den axialen Startpositionen für die Gravur der Gravierstränge (A, B) auf dem Druckzylinder (1 ) zusammenfallen, da sich in diesem Fall nach der Abstand- seinstellung der Graviestichelspitzen eine zusätzliche Positionierung des Gravierwagens (6) auf den Startpositionen erübrigt. Die Positionierung der Gravierstichelspitzen auf die Referenzpositionen (RPA, RPB) erfolgt im dargestellten Ausführungsbeispiel durch automatisches axiales Verschieben der einzelnen Graviersupporte (4A, 4B) auf dem Gravierwagen (6) mit Hilfe der Spindelantriebe (5A, 5B) auf die Referenzpositionen (RPA, RPB). Dazu er- zeugt das Steuerwerk (16) entsprechende Steuersignale (SA, SB), die den Spindelantrieben (5A, 5B) über Leitungen (19A, 19B) zugeführt werden.
Zur Steuerung und Überwachung der axialen Verschiebung der Gravierstichelspitzen der Gravierorgane (3A, 3B) auf die Referenzpositionen (RPA, RPB) weist die Graviermaschine erfindungsgemäß eine Positionsmeßeinrichtung (20, 21 , 22) auf, die im Ausführungsbeispiel im wesentlichen aus einem in Achsrichtung des Druckzylinders (1) verschiebbaren Meßwagen (20) mit einer Videokamera (21) und aus einer Bildauswertestufe (22) zur Auswertung der von der Videokamera (28) aufgenommenen Videobilder besteht. Der Meßwagen (20) wird beispielsweise mittels einer Spindel (23) von einem Meßwagenantrieb (24) bewegt, der ebenfalls als Präzisionsantrieb mit einem Schrittmotor ausgebildet ist.
Durch Vorgabe der x-Ortskoordinate der Referenzposition (RPA, RPB) eines der Gravierorgane (3A, 3B) wird eine in das von der Videokamera (21) erzeugte Video- bild eingeblendete Meßmarke mittels des Meßwagenantriebs (24) genau auf der Referenzposition (RPA, RPB) positioniert. Die vorgegebene x-Ortskoordinate der Referenzposition (RP , RPB) und entsprechende Steuerbefehle werden von dem Steuerwerk (16) über eine Leitung (25) an den Meßwagenantrieb (24) übermittelt.
Nachdem die in das Videobild eingeblendete Meßmarke auf einer der beiden Referenzpositionen (RPA, RPB) positioniert ist, wird die axiale Verschiebung des entsprechenden Gravierorgans (3A, 3B) durch ein Steuersignal (SA, SB) an den zugehörigen Spindelantrieb (5A, 5B) für den Graviersupport (4A, 4B) aus einer Startposition heraus gestartet, welcher der Graviersupport (4A, 4B) durch eine vor- angegangene manuelle oder motorische Grobeinstellung im Erfassungsbereich der Videokamera (21 ) eingenommen hat.
Die Steuerung und Überwachung der axialen Verschiebung des betreffenden Gravierorgans (3A, 3B) erfolgt in Abhängigkeit von dem Ergebnis der elektronischen Auswertung des mit der Videokamera (21 ) aufgenommenen Videobildes in der Bildauswertestufe (22). Bei der elektronischen Auswertung des Videobildes wird die axiale Abweichung der Istposition eines Bezugspunktes des betreffenden Gravierorgans (3A, 3B) von der eingeblendeten Meßmarke bzw. von der zugehörigen Referenzposition (RPA, RPB) in oder entgegen der Vorschubrichtung festgestellt, als Meßsignal (M) über eine Leitung (26) an das Steuerwerk (16) übermittelt und dort in ein entsprechendes Steuersignal (SA, SB) für den Spindelantriebe (5A, 5B) umgesetzt.
Dabei kann die Bildauswertung und Steuerung der axialen Verschiebung des Gravierorgans (3A, 3B) auf verschiedene Art und Weise erfolgen. Es kann beispiels- weise im Videobild nur einmalig die axiale Abweichung zwischen der bei der Grobpositionierung eingenommenen Startposition des Bezugspunktes des Gravierorgans (3A, 3B) als Istposition und der Meßmarke als Sollposition ermittelt, gespeichert und in eine äquivalente Wegstrecke des Graviersupport (4A, 4B) umgerechnet werden. Alternativ dazu kann während der axialen Verschiebung des Gravier- organs (3A, 3B) im Videobild laufend die axiale Abweichung zwischen Istposition und Sollposition ermittelt und als Meßsignal (M) an das Steuerwerk übermittelt werden bis die Sollposition erreicht ist.
Der Bezugspunkt eines Gravierorgans (3A, 3B) für die Steuerung der axialen Ver- Schiebung kann prinzipiell in einer senkrecht zur Achsrichtung des Druckzylinders (1 ) und durch die Gravierstichelspitze des Gravierorgans (3A, 3B) verlaufenden Ebene liegen. In zweckmäßiger Weise wird als Bezugspunkt eines Gravierorgans (3A, 3B) die Gravierstichelspitze selbst oder mindestens ein Näpfchen gewählt, das probeweise mit dem betreffenden Gravierorgan (3A, 3B) auf dem Druckzylinder (1 ) graviert wurde.
Falls die Graviersupporte (4A, 4B) mit den Gravierorganen (3A, 3B) nicht motorisch, wie in der Figur dargestellt, sondern durch manuell betätigte Feinantriebe axial positioniert werden, kann in dem Steuerwerk (16) auch ein akustisches oder opti- sches Signal erzeugt werden, welches einem Bediener die exakte Positionierung signalisiert. Bei manueller Grobpositionierung der Gravierorgane (3) kann eine nicht dargestellte Hilfseinrichtung, beispielsweise in Form einer senkrecht zur Achsrichtung ausgerichteten Lichtschranke, vorgesehen werden, welche dem Bediener ein anderes optisches oder akustisches Signal liefert, wenn sich die Gra- vierstichelspitze als Bezugspunkt eines Gravierorgans (3) innerhalb des zulässigen Meßbereichs der Positionsmeßeinrichtung (20, 21 , 22) befindet. Falls die Gravierstichelspitzen der. Gravierorgane (3A, 3B) als Bezugspunkte für die axiale Verschiebung der Gravierstichelspitzen verwendet werden, erfolgt die exakte Positionierung der Gravierstichelspitzen auf die einzelnen Referenzpositionen (RPA, RPB) in zweckmäßiger Weise bevor der Druckzylinder (1 ) in die Gra- iermaschine eingebracht wird. Die Videokamera (21 ) wird dabei in jeder Referenzposition (RPA, RPB) auf dem Meßwagens (20) senkrecht zur Achsrichtung derart verschoben, daß sie ein scharfes Videobild der jeweiligen Gravierstichelspitze als Bezugspunkt liefert.
Falls dagegen die mit den Gravierorganen (3A, 3B) probeweise gravierten Näpfchen als Bezugspunkte für die axiale Verschiebung der Gravierstichelspitzen Verwendung finden, werden die Gravierorgane (3A, 3B) nach Einlegen des Druckzylinders (1 ) in die Graviermaschine grob auf ihre Referenzpositionen (RPA, RPB) eingestellt und dann mindestens ein Näpfchen pro Gravierorgan (3A> 3B) auf dem Druckzylinder (1 ) graviert. Nach der Gravur dieser Näpfchen wird die Videokamera (21 ) nacheinander auf die einzelnen Referenzpositionen (RPA, RPB) gefahren. In jeder Referenzposition (RPA, RPB) wird dann ein Videobild des probeweise gravierten Näpfchens als Bezugspunkt aufgenommen und entsprechend ausgewertet. Die Grobpositionierung der Gravierorgane (3A, 3B) kann dabei, wie zuvor beschrie- ben, mit der Positionsmeßeinrichtung (20, 21 , 22) und der Hilfseinrichtung erfolgen.
Die Erfindung ist nicht auf die dargestellten Ausführungsbeispiele beschränkt.
Alternativ zu einem elektromagnetischen Gravierorgan mit einem Gravierstichel als Schneidwerkzeug kann auch ein Elektronenstrahl- oder Laserstrahlgravierorgan verwendet werden. In diesem Fall kann die Achse des Bearbeitungsstrahl als Bezugspunkt dienen.
Auch für die Positionsmeßeinrichtung (20, 21 , 22) sind andere Ausführungsformen denkbar. Zur Einstellung des Meßwagens (20) auf die einzelnen Referenzpositionen (RPA, RPB) kann beispielsweise auch ein handelsübliches Längenmeßsystem MR-MAGNESCALE ® der Firma Sony Magnescale Inc. Tokyo, JP, verwendet werden. In diesem Fall ist in Achsrichtung ein magnetisch lesbarer Maßstab ange- ordnet, der von einem am Meßwagen (20) befindlichen Lesekopf gelesen und ausgewertet wird. Die Positionsmeßeinrichtung (20,.21 , 22) kann in vorteilhafter Weise auch bei der Gravur der Gravierstränge (A, B) zur laufenden Überwachung der Istpositionen der Gravierstichelspitzen der Gravierorgane verwendet werden.
Das erfindungsgemäße Verfahren ist insbesondere zum genauen Positionieren einer großen Anzahl von Gravierorganen für die Gravur von Graviersträngen geeignet, da die Vorbereitungsphase für die Gravur wesentlich verkürzt und eine hohe Graviergenauigkeit erreicht wird.

Claims

Patentansprüche
1 . Verfahren zum Positionieren von Gravierorganen in einer elektronischen Graviermaschine zur Gravur von Druckzylindern für den Tiefdruck, bei dem min- destens zwei in Achsrichtung des Druckzylinders (1 ) nebeneinander liegende
Gravierstränge (A, B) vorgegebener Strangbreiten (SB) in Form von Näpfchen mit jeweils einem zugeordneten Gravierorgan (3) graviert werden,die Gravierorgane (3) vor der Gravur axial zum Druckzylinder (1 ) positioniert werden und - die Gravierorgane (3) bei der Gravur eine axiale Vorschubbewegung am
Druckzylinder (1 ) entlang ausführen, dadurch gekennzeichnet, daß
- für die Gravierorgane (3) axiale Referenzpositionen (RP) vorgegeben werden, deren axialen Abstände zueinander den vorgegebenen Strangbreiten (SB) der Gravierstränge (A, B) entsprechen, - eine elektronische Positionsmeßeinrichtung (20, 21 , 22) nacheinander auf die axialen Referenzpositionen (RP) positioniert wird,
- in jeder Referenzposition (RP) die axiale Abweichung eines Bezugspunktes des zugeordneten Gravierorgans (3) von der Referenzposition (RP) mit der Positionsmeßeinrichtung (20, 21 , 22) festgestellt wird und - die Gravierorgane (3) mit ihren Bezugspunkten axial um die festgestellten
Abweichungen auf die zugehörigen Referenzpositionen (RP) verschoben werden.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet daß die Gravierorga- ne (3) axial verschoben werden, bis die Positionsmeßeinrichtung (20, 21 , 22) jeweils die lagemäßige Übereinstimmung des Bezugspunktes mit der entsprechenden Referenzposition (RP) festgestellt hat.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß - die Gravierorgane (3) auf einem Gravierwagen (6) verschiebbar und arretierbar angeordnet sind,
- die Gravierorgane (3) nach dem Verschieben auf die zugehörigen Referenzpositionen (RP) an dem Gravierwagen (6) arretiert werden und
- der Gravierwagen (6) mit den arretierten Gravierorganen (3) bei der Gravur der Gravierstränge (A, B) die Vorschubbewegung am Druckzylinder (1 ) entlang ausführt.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Bezugspunkt eines Gravierorgans (3) in einer senkrecht zur Achse des Druckzylinders (1 ) und durch das die Näpfchen erzeugende Element des Gravierorgans (3) verlaufenden Ebene liegt.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Bezugspunkt des Gravierorgans (3) die Spitze des Gravierstichels (9) eines elektromagnetischen Gravierorgans (3) ist.
6. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Bezugspunkt eines Gravierorgans (3) mindestens ein probeweise mit dem Gravierorgan (3) auf dem Druckzylinder (1 ) graviertes Näpfchen ist.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet daß die Positionsmeßeinrichtung (20, 21 , 22) aus einer Videokamera (21 ) zur Aufnahme des Videobildes des Bezugspunktes eines Gravierorgans (3) und einer Bildauswertestufe (22 ) zur Ermittlung der Abweichung des Bezugspunktes von der zugeordneten Referenzposition (RP) durch elektronische Auswertung des Videobildes besteht.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Videokamera (21 ) auf einem Meßwagen (20) angeordnet ist, der in Achsrichtung des Druckzylinders (1 ) verschiebbar und positionierbar ist.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß die Videokamera (21 ) mittels eines Antriebs (24) für den Meßwagen (20) automatisch auf den Referenzpositionen (RP) positioniert wird.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Referenzpositionen (RP) mit den Gravur-Startpositionen der Gravierstränge (A, B) auf dem Druckzylinder (1 ) übereinstimmen.
1 1 . Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet. daß der Gravierwagen (6) vor der Gravur derart verschoben wird, daß die Re- ferenzpostionen (RP) der Gravierorgane (3) mit den Gravur-Startpositionen der
Gravierstränge (A, B) auf dem Druckzylinder (1 ) übereinstimmen.
12. Verfahren nach einem der Ansprüche 1 bis 1 1 , dadurch gekennzeichnet. daß jedes Gravierorgan (3) auf dem Gravierwagen (6) mittels einer Verschie- bevorichtung (4, 5) automatisch auf die zugeordnete Referenzposition (RP) verschoben wird.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß die Verschiebevorrichtung (4, 5) in Abhängigkeit von den mit der Positionsmeßeinrichtung (20, 21 , 22) festgestellten Abweichungen gesteuert wird.
14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet. daß die Gravierorgane (3) vor Feststellung der Abweichungen grob auf den Referenzpositionen (RP) positioniert werden.
15. Graviermaschine zur Gravur von mindestens zwei in Achsrichtung eines Druckzylinders (1 ) nebeneinander liegenden Graviersträngen (A, B) vorgegebener Strangbreiten (SB) mit jeweils einem zugeordneten Gravierorgan (3), bestehend aus
- einem rotationsfähig gelagerten Druckzylinder (1 ), der von einem ersten Antrieb (2) gedreht wird, - einem Gravierwagen (6), der mittels eines zweiten Antriebs (8) in Achsrichtung des Druckzylinders (1 ) bewegbar ist und
- Gravierorganen (3) zur Gravur der Gravierstränge (A, B), welche auf dem Gravierwagen (6) verschiebbar und arretierbar angeordnet sind, gekennzeichnet durch - eine in Achsrichtung des Druckzylinders (1 ) verschiebbare und auf vorgegebene axiale Referenzpositionen (RP) für die Gravierorgane (3) positionierbare Positionsmeßeinrichtung (20, 21 , 22) zur Feststellung der genauen Positionierung der Gravierorgane (3) auf ihren Referenzpositionen (RP) und
- eine durch die Positionsmeßeinrichtung (20, 21 , 22) gesteuerte Verschiebe- Vorrichtung (4, 5) für jedes Gravierorgan (3) auf dem Gravierwagen (6) zur automatischen Verschiebung der Gravierorgane (3) auf ihre Referenzpositionen (RP).
16. Graviermaschine nach Anspruch 15, dadurch gekennzeichnet, daß die Posi- tionsmeßeinrichtung (20, 21 , 22) aus folgenden Komponenten besteht:
- einer auf einem Meßwagen (20) montierten Videokamera (21 ) zur Aufnahme der Videobilder der Bezugspunkte der Gravierorgane (3) und - einer Bildauswertestufe (22) zur Ermittlung der axialen Abweichungen der Bezugspunkte von den vorgegebenen Referenzpositionen (RP) durch Auswertung der mit der Videokamera (21 ) aufgenommenen Videobilder.
17. Graviermaschine nach Anspruch 15 und 16, dadurch gekennzeichnet daß der Meßwagen (20) mit der Videokamera (21 ) in Achsrichtung des Druckzylinders (1 ) verschiebbar ist.
18. Graviermaschine nach einem der Ansprüche 15 bis 18, dadurch gekenn- zeichnet, daß der Meßwagen (20) mit der Videokamera (21 ) durch einen Antrieb (24) automatisch auf die vorgegebenen axialen Referenzpositionen (RP) positionierbar ist.
19. Positionsmeßeinrichtung für eine Graviermaschine zur Gravur von Näpfchen auf einem Druckzylindern (1 ) mittels Gravierorganen (3), dadurch gekennzeichnet, daß
- eine auf einem Meßwagen (20) montierte Videokamera (21 ) vorgesehen ist, um Videobilder der Gravierstichelspitzen der Gravierorgane (3) oder von probeweise mit den Gravierorganen (3) gravierten Näpfchen als tatsächliche axiale Istpositionen der grob auf vorgegebene Referenzpositionen (RP) verschobenen Gravierorgane (3) aufzunehmen,
- der Meßwagen (20) in Achsrichtung eines Druckzylinders (1 ) verschiebbar und auf die vorgegebenen Referenzpositionen (RP) für die Gravierorgane (3) positionierbar ist und - eine Bildauswertestufe (22) zur Feststellung der axialen Abweichungen der
Istpositionen der Gravierorgane (3)von den Referenzpositionen (RP) durch Auswertung der aufgenommenen Videobilder vorhanden ist.
PCT/DE1998/001933 1997-08-08 1998-07-11 Verfahren zum positionieren von gravierorganen WO1999007554A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE59802360T DE59802360D1 (de) 1997-08-08 1998-07-11 Verfahren zum positionieren von gravierorganen
EP98944982A EP1001882B1 (de) 1997-08-08 1998-07-11 Verfahren zum positionieren von gravierorganen
AU92521/98A AU9252198A (en) 1997-08-08 1998-07-11 Method for positioning engraving organs
US09/485,199 US6357976B1 (en) 1997-08-08 1998-07-11 Method for positioning engraving organs
JP2000507112A JP3361320B2 (ja) 1997-08-08 1998-07-11 彫刻機構を位置決めする方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19734411.9 1997-08-08
DE19734411A DE19734411A1 (de) 1997-08-08 1997-08-08 Verfahren zum Positionieren von Gravierorganen

Publications (1)

Publication Number Publication Date
WO1999007554A1 true WO1999007554A1 (de) 1999-02-18

Family

ID=7838415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1998/001933 WO1999007554A1 (de) 1997-08-08 1998-07-11 Verfahren zum positionieren von gravierorganen

Country Status (8)

Country Link
US (1) US6357976B1 (de)
EP (1) EP1001882B1 (de)
JP (1) JP3361320B2 (de)
CN (1) CN1273551A (de)
AU (1) AU9252198A (de)
DE (2) DE19734411A1 (de)
ES (1) ES2166617T3 (de)
WO (1) WO1999007554A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10010904A1 (de) * 2000-03-07 2001-09-13 Heidelberger Druckmasch Ag Verfahren zur Gravur von Druckzylindern
DE10032991A1 (de) * 2000-07-06 2002-01-24 Heidelberger Druckmasch Ag System zur Linerarbewegung von mehreren Gravursupporten
EP1289256A2 (de) * 2001-08-07 2003-03-05 Heidelberger Druckmaschinen Aktiengesellschaft Druck- oder Bebilderungssystem
WO2004056568A2 (de) * 2002-12-20 2004-07-08 Giesecke & Devrient Gmbh Verfahren und vorrichtung zur herstellung von stichtiefdruckplatten und damit hergestellte druckplatte

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19722762A1 (de) * 1997-06-02 1998-12-03 Heidelberger Druckmasch Ag Verfahren zur Erzeugung eines Probeschnitts
DE19722996A1 (de) * 1997-06-02 1998-12-03 Heidelberger Druckmasch Ag Verfahren zur Signalverarbeitung
DE19805179B4 (de) * 1998-02-10 2005-03-10 Hell Gravure Systems Gmbh Verfahren zur Gravur von Druckformen
DE19814939A1 (de) * 1998-04-03 1999-10-07 Heidelberger Druckmasch Ag Verfahren zum Positionieren von Gravierorganen
DE19920170A1 (de) * 1999-05-03 2000-11-09 Heidelberger Druckmasch Ag Graviermaschine
US20090168111A9 (en) * 1999-09-01 2009-07-02 Hell Gravure Systems Gmbh Printing form processing with fine and coarse engraving tool processing tracks
DE10045682A1 (de) * 2000-09-15 2002-03-28 Koenig & Bauer Ag Einrichtung zum Bebildern von zylindrischen Oberflächen in Druckmaschinen
JP4853753B2 (ja) * 2001-09-18 2012-01-11 澁谷工業株式会社 レーザモジュールの照射位置調節装置
CH707775A1 (de) * 2013-03-18 2014-09-30 Rieter Ag Maschf Vorrichtung zur Bearbeitung von Laufflächen an Kopfendstücken von Wanderdeckeln.
CN109976104A (zh) * 2019-04-20 2019-07-05 田菱智能科技(昆山)有限公司 一种直接数码制版机丝印免对位制版设备
CN112356559B (zh) * 2020-11-23 2022-05-27 固高科技股份有限公司 调整网穴位置的雕刻控制方法、装置和电雕控制系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5438422A (en) * 1993-02-25 1995-08-01 Ohio Electronic Engravers, Inc. Error detection apparatus and method for use with engravers
US5492057A (en) * 1994-05-12 1996-02-20 Ohio Electronic Engravers, Inc. Method and apparatus for positioning at least one engraving head
WO1996033869A1 (en) * 1995-04-26 1996-10-31 Ohio Electronic Engravers, Inc. Method and apparatus for engraving using multiple engraving heads

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL167897C (nl) * 1975-02-28 1982-02-16 Hell Rudolf Dr Ing Gmbh Inrichting voor het vervaardigen van gerasterde drukvormen overeenkomstig een beeldorigineel.
DE4120746A1 (de) * 1991-06-24 1993-01-14 Guenter Heilig Automatische werkzeugvermessung
US5424845A (en) * 1993-02-25 1995-06-13 Ohio Electronic Engravers, Inc. Apparatus and method for engraving a gravure printing cylinder
US5671063A (en) * 1993-02-25 1997-09-23 Ohio Electronic Engravers, Inc. Error tolerant method and system for measuring features of engraved areas
ES2163875T3 (es) * 1997-06-02 2002-02-01 Heidelberger Druckmasch Ag Procedimiento para la grabacion de cilindros de impresion.
US5947020A (en) * 1997-12-05 1999-09-07 Ohio Electronic Engravers, Inc. System and method for engraving a plurality of engraved areas defining different screens

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5438422A (en) * 1993-02-25 1995-08-01 Ohio Electronic Engravers, Inc. Error detection apparatus and method for use with engravers
US5492057A (en) * 1994-05-12 1996-02-20 Ohio Electronic Engravers, Inc. Method and apparatus for positioning at least one engraving head
WO1996033869A1 (en) * 1995-04-26 1996-10-31 Ohio Electronic Engravers, Inc. Method and apparatus for engraving using multiple engraving heads

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10010904A1 (de) * 2000-03-07 2001-09-13 Heidelberger Druckmasch Ag Verfahren zur Gravur von Druckzylindern
DE10032991A1 (de) * 2000-07-06 2002-01-24 Heidelberger Druckmasch Ag System zur Linerarbewegung von mehreren Gravursupporten
EP1289256A2 (de) * 2001-08-07 2003-03-05 Heidelberger Druckmaschinen Aktiengesellschaft Druck- oder Bebilderungssystem
EP1289256A3 (de) * 2001-08-07 2004-12-29 Heidelberger Druckmaschinen Aktiengesellschaft Druck- oder Bebilderungssystem
WO2004056568A2 (de) * 2002-12-20 2004-07-08 Giesecke & Devrient Gmbh Verfahren und vorrichtung zur herstellung von stichtiefdruckplatten und damit hergestellte druckplatte
WO2004056568A3 (de) * 2002-12-20 2005-01-13 Giesecke & Devrient Gmbh Verfahren und vorrichtung zur herstellung von stichtiefdruckplatten und damit hergestellte druckplatte
EP1578604B2 (de) 2002-12-20 2014-06-18 Giesecke & Devrient GmbH Verfahren und vorrichtung zur herstellung von stichtiefdruckplatten

Also Published As

Publication number Publication date
US6357976B1 (en) 2002-03-19
CN1273551A (zh) 2000-11-15
ES2166617T3 (es) 2002-04-16
JP2001513462A (ja) 2001-09-04
EP1001882B1 (de) 2001-12-05
AU9252198A (en) 1999-03-01
JP3361320B2 (ja) 2003-01-07
DE19734411A1 (de) 1999-02-11
EP1001882A1 (de) 2000-05-24
DE59802360D1 (de) 2002-01-17

Similar Documents

Publication Publication Date Title
EP1001882B1 (de) Verfahren zum positionieren von gravierorganen
EP0986465B1 (de) Verfahren zur gravur von druckzylindern
DE69826709T2 (de) System und verfahren zur gravur mehrerer gravuren mit unterschiedlichen gravurparametern
DE19717990B4 (de) System und Verfahren zum Messen des Volumens einer gravierten Fläche
EP1054769B1 (de) Verfahren zur gravur von druckformen
EP0986466B1 (de) Verfahren zur erzeugung und auswertung eines probeschnitts
EP1597537B1 (de) Verfahren zur qualitätskontrolle von zweidimensionalen matrix-codes an metallischen werkstücken mit einem bildveratrbeitungsgerät
DE10116672B4 (de) Verfahren und Vorrichtung zur Materialbearbeitung
DE112008003863T5 (de) Verfahren zum Erzeugen eines Antriebsmusters für ein Galvano-Scannersystem
EP0966353B1 (de) Verfahren und einrichtung zur gravur von druckzylindern
DE19835303B4 (de) Verfahren zur Erzeugung und Auswertung einer Probegravur
DE19733442A1 (de) Verfahren und Einrichtung zur Gravur von Druckformen
DE19814939A1 (de) Verfahren zum Positionieren von Gravierorganen
DE10149828A1 (de) Verfahren zur Lagekorrektur eines Gravierorgans
EP1185418B1 (de) Verfahren zum ausmessen von näpfchen
EP1386727B1 (de) Verfahren zur Verbesserung der Qualität eines in einen Druckformzylinder gravierten Bildes
EP2058122B1 (de) Verfahren und Vorrichtung zur Gravur von Druckzylindern
DE19841602A1 (de) Verfahren zur Gravur von Druckzylindern
DE19811637A1 (de) Ermittlung der Nullposition eines Gravierorgans
DE10144198A1 (de) Verfahren zur Positionierung von Gravierorganen
DE10012520A1 (de) Verfahren zur Herstellung von Druckzylindern
WO1994000802A1 (de) Verfahren und vorrichtung zur lagekontrolle eines druckbildes auf einer druckform
DE10159241A1 (de) Verfahren zur Gravur von Druckformen
WO1999036264A1 (de) Verfahren zur mitteltonkorrektur

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98809843.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN JP RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1998944982

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09485199

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998944982

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWG Wipo information: grant in national office

Ref document number: 1998944982

Country of ref document: EP