WO1999003754A1 - Emballage permettant de stocker un produit sous atmosphere controlee et son procede de fabrication - Google Patents

Emballage permettant de stocker un produit sous atmosphere controlee et son procede de fabrication Download PDF

Info

Publication number
WO1999003754A1
WO1999003754A1 PCT/GB1998/001869 GB9801869W WO9903754A1 WO 1999003754 A1 WO1999003754 A1 WO 1999003754A1 GB 9801869 W GB9801869 W GB 9801869W WO 9903754 A1 WO9903754 A1 WO 9903754A1
Authority
WO
WIPO (PCT)
Prior art keywords
package
atmosphere
product
layers
strips
Prior art date
Application number
PCT/GB1998/001869
Other languages
English (en)
Inventor
Jeffrey Martin Davis
Original Assignee
American Home Products Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by American Home Products Corporation filed Critical American Home Products Corporation
Priority to AU82241/98A priority Critical patent/AU8224198A/en
Publication of WO1999003754A1 publication Critical patent/WO1999003754A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B29/00Packaging of materials presenting special problems
    • B65B29/10Packaging two or more different substances isolated from one another in the package but capable of being mixed without opening the package, e.g. forming packages containing a resin and hardener isolated by a frangible partition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/24Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants
    • B65D81/26Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants with provision for draining away, or absorbing, or removing by ventilation, fluids, e.g. exuded by contents; Applications of corrosion inhibitors or desiccators
    • B65D81/266Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants with provision for draining away, or absorbing, or removing by ventilation, fluids, e.g. exuded by contents; Applications of corrosion inhibitors or desiccators for absorbing gases, e.g. oxygen absorbers or desiccants

Definitions

  • the present invention relates to a package and to a method for the manufacture thereof.
  • the package is particularly well suited to storage of materials which need to 5 be kept in a controlled atmosphere environment, such as pharmaceutical products.
  • FR-A-2660634 Airsec Industries discloses a packaging for pharmaceutical products comprising a half shell made from injected plastics material and having two chambers. One of the chambers contains a desiccant which is held in place by a semi- permeable membrane. The other chamber houses a pharmaceutical product and is connected to the first chamber by a passageway. Air passing through the passageway
  • WO 96/07601 discloses a blister package for moisture sensitive pharmaceutical preparations.
  • the rigid moulded construction of this package is expensive and inconvenient with respect to manufacture and use.
  • GB 2246107 W R Grace
  • WO 88/01592 Garwood
  • WO 87/02965 Garwood
  • the present invention seeks to provide a package which is more convenient to manufacture, store and use than the packs previously known in the art.
  • a package for storing a product in a controlled atmosphere comprising a first pack layer of relatively lower puncture resistance, a second pack layer of gas/vapour permeable material and a third pack layer of relatively higher puncture resistance wherein the second layer is intercalated between the first and third layers such that the first and second layers define a first space suitable for housing a product and the second and third layers define a second space suitable for housing an atmosphere-modifying material, such that any gas or vapour trapped in the package is able to pass between the first and second spaces but wherein the product may be physically separated from the atmosphere-modifying material.
  • the first space is adapted to house a product in the form of a pharmaceutical preparation such as a tablet or powder.
  • the second space is adapted to house an atmosphere modifying material in the form of a desiccant such as silica gel powder.
  • a desiccant such as silica gel powder.
  • the first pack layer of lower puncture resistance is a multilayer laminate, preferably a paper/aluminium foil/polyethylene laminate.
  • the second pack layer of gas/vapour permeable material is a semi- permeable membrane formed, for example, from spun bonded polythene.
  • the third pack layer of relatively higher puncture resistance is a multilayer laminate, preferably a polyethylene terephthalate/aluminium foil/polyethylene laminate.
  • the package takes the form of a sachet.
  • the first, second and third pack layers are substantially conterminous.
  • overlapping edges of the first, second and third pack layers are heat-sealed, and optionally crimped.
  • an atmosphere-modifying material is contained within the interstices of the second pack layer of gas/vapour permeable material.
  • the package comprises a packaged product comprising an atmosphere sensitive product in the first space and an atmosphere modifying material in the second space.
  • the atmosphere sensitive product is a water-sensitive pharmaceutical product such as an effervescent tablet and the atmosphere modifying material is a desiccant.
  • the atmosphere sensitive product may be an oxygen-sensitive pharmaceutical product and the atmosphere modifying material may be an oxygen-removing material such as iron filings.
  • the present invention further provides a method for preparing a package as claimed in any one of the preceding claims by: a) combining strips of the first, second and third pack layers; b) introducing a product between the first and second layers and introducing an atmosphere modifying material between the second and third layers; and c) separating units of packaging from the combined strips.
  • the strips are combined by heat sealing along their long edges. Preferably they are combined by passage over rollers. Suitably the finished packages are separated by heat sealing and, if necessary, cutting the combined strips across their width.
  • all three of the strips are combined at substantially the same time.
  • two of the strips are combined in a first operation and the remaining strip is combined with the strips combined from the first operation as part of a second operation .
  • Figure 1 is a cut-away (schematic) representation of a package in accordance with the present invention with the three layers cut away in turn to show the internal construction (the layers are in fact conterminous and of substantially the same size in this embodiment);
  • Figure 2 is a cross section (again in schematic form) through the package of Figure 1 along the line II-II of Figure 1 ;
  • Figure 3 is a schematic representation of a first method of manufacture of the package of Figures 1 and 2;
  • Figure 4 is a schematic representation of an alternative method of manufacture of the package of Figures 1 and 2.
  • the package comprises three substantially square, conterminous and mutually overlaid pack layers in the form of sheets (1,2,3).
  • the first sheet (1) provides a barrier of relatively lower puncture resistance and is a multilayer laminate consisting of paper (on the external face which forms part of the outside of the package) aluminium foil (in the middle) and polyethylene (on the internal face).
  • This first sheet is adjacent to and overlays a second pack layer of gas/vapour permeable material which provides a semi-permeable barrier in the form of a membrane (2) having a relatively high puncture resistance compared to the first sheet.
  • the membrane is formed of spun bonded polythene of the type sold under the trade name "Tyvek 1073B" by the Du Pont Corporation.
  • a third pack layer (3) (again providing a barrier of relatively high puncture resistance compared to the first pack layer) in the form of a multilayer laminate consisting of polyethylene (on the internal face), aluminium foil (in the middle) and polyethyleneterephthalate (on the external face).
  • the second sheet (2) is intercalated between the first sheet (1) and the third sheet (3)
  • first sheet (1) and semi-permeable membrane (2) form a first space (4) suitable for housing a pharmaceutical product such as the effervescent tablet (5) shown.
  • semi-permeable membrane (2) and the third sheet (3) form a second space (6) suitable for housing an atmosphere-modifying material such as the desiccant material (7) shown.
  • the semi-permeable membrane is substantially impervious to the pharmaceutical and desiccant materials housed in the internal spaces (4 and 6) but is permeable to air and water vapour. Any water vapour present in space (4) is free to pass through the semi-permeable membrane (2) where it is absorbed by the desiccant material (7). This ensures the maintenance of a substantially water vapour-free atmosphere in the said first space (4) thus ensuring that the pharmaceutical tablet housed therein is kept dry and prevented from deteriorating during storage.
  • the user To retrieve the product from the package the user simply punctures the first pack layer (1) (eg by tearing) and retrieves the product from the first space ready for use.
  • the higher puncture resistance of the second and third pack sheets prevents the user from disturbing or releasing the atmosphere modifying material in the second space during this operation.
  • FIG 3 is a schematic illustration of apparatus suitable for manufacturing the package of Figures 1 and 2 above. It will be appreciated that this is based on generally conventional strip packaging equipment.
  • the apparatus comprises two mutually opposing rollers (9 A, 9), over the first of which is suspended a tablet feeding device (10) and over the second of which is suspended a desiccant feeding device (11).
  • a long strip (12) about 5cm wide (or as appropriate to the intended size of the pack) of the semi-permeable membrane material is fed continuously between the two rollers (9,9 A) to emerge along a line substantially tangential to both rollers.
  • a similar sized strip (13) about 5cm wide of the laminate material forming the barrier of lower puncture resistance making up the first barrier ( 1 ) of the package is fed over the first roller (9 A) such that the strip follows the circumference of the roller up to the point where the rollers meet and then continues parallel with and adjacent to the strip of semi-permeable material.
  • a 5cm strip (14) of the laminate material forming the barrier of higher puncture resistance is fed over the second roller (9) to emerge from the roller parallel with and adjacent to the semi- permeable material, but on the opposite side to the lower puncture resistance strip (13).
  • the tablet feeding device (10) is operable to introduce individual tablets between the lower puncture resistance strip (13) and the semi-permeable strip (12) and the desiccant feeding device (11) is operable to introduce measured quantities of desiccant material between the semi-permeable strip (14) and the higher puncture resistance strip (14).
  • the tablets are introduced at a rate of about one tablet per 5cm of strip length (corresponding to one tablet per finished package; although it will be appreciated that more than one tablet per package could be included if desired, and if so the rate of introduction would be correspondingly increased).
  • the desiccant material in the form of silica gel powder
  • the strips pass between the two rollers (8,9) their long edges are heated to bond the strips together along their length.
  • the strips are bonded together by heat-sealing in a direction transverse to the direction of movement (ie across their widths) to seal individual sachets of about 5cm by 5cm. These are then separated by a cutting tool (not shown) to provide the final sealed sachets.
  • FIG 4 shows a schematic representation of an alternative apparatus for manufacturing the package of Figures 1 and 2.
  • This alternative apparatus has two sets of mutually opposing rollers (15, 16 and 17, 18).
  • a desiccant feeding device (19) is positioned immediately above the meeting point of the first pair of rollers (15, 16) and a tablet feeding device (20) is positioned immediately above the meeting point of the second pair of rollers (17, 18).
  • the strip follows a path around approximately a quarter of the circumference of the roller until it reaches the meeting point with roller (16) at which point the strip is fed off along a line substantially tangential to both of the said rollers.
  • a similar strip (22), about 5cm wide (or again as appropriate to the intended size of the pack), of the laminate material used for the barrier of higher puncture resistance is fed in a similar way over the second roller (16) but in the converse direction.
  • the desiccant feeding device (19) introduces measured quantities of silica gel desiccant (eg approximately 0.1 g per 5 cm of strip length) between the strips.
  • silica gel desiccant eg approximately 0.1 g per 5 cm of strip length
  • the strips pass between the rollers they are heated from the laminate material side only (the Tyvek® material should not normally be heated directly) to bond the strips together along their length.
  • the strips are bound together by heat-sealing in a direction transverse to the direction of movement (ie across their widths) to seal individual sachets of about 5cm by 5cm (each sachet thereby containing eg about 0.1 g of desiccant material).
  • the bonded strips are then passed through the second set of rollers (17,18).
  • the combined strips follow a path around approximately a quarter of the circumference of the first roller (17) until they reach the meeting point with roller (18) at which point the strips are fed off along a line substantially tangential to both of the said rollers.
  • a similar strip, (23) about 5cm wide, of the laminate material used for the barrier of lower puncture resistance is fed in a similar way over the second roller (18) but in the converse direction.
  • the tablet feeding device (20) introduces individual tablets between the remaining strip (23) and the previously bonded strips which are the output from the first set of rollers.
  • the tablets are suitably introduced at a rate of about one tablet per 5cm of strip length.
  • the strips are heated to bond the three strips together along their length.
  • the strips are bond together by heat-sealing in a direction transverse to the direction of movement (ie across their widths) to seal individual sachets of about 5cm by 5cm in a continuous strip (24).
  • the seals from the second set of rollers are contrived to be coincident with the seals from the first set. These sachets are then separated by a cutting tool (not shown) to provide the final sealed sachets.
  • machinery used for the purpose of making strip packs sometimes uses reciprocating jaws instead of rollers, and such machinery may also be used to manufacture the packs of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Food Science & Technology (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Packages (AREA)

Abstract

L'invention concerne un emballage permettant de stocker un produit sous atmosphère contrôlée. Cet emballage est constitué d'une première couche (1) d'une résistance à la perforation relativement faible, d'une deuxième couche 82) d'un matériau perméable au gaz/à la vapeur, et d'une troisième couche (3) d'une résistance à la perforation relativement élevée. La deuxième couche (2) est placée entre la première (1) et la troisième (3) couches, de sorte que la première (1) et la deuxième (2) couches définissent un premier espace (4) destiné à recevoir un produit (5), la deuxième (2) et la troisième (3) couches définissant un second espace (6) conçu pour loger une substance modifiant l'atmosphère (7). Le gaz ou la vapeur enfermés dans l'emballage peuvent ainsi venir s'intercaler entre le premier (4) et le second (6) espaces, le produit (5) restant néanmoins physiquement séparé de ladite substance modifiant l'atmosphère (7).
PCT/GB1998/001869 1997-07-15 1998-07-14 Emballage permettant de stocker un produit sous atmosphere controlee et son procede de fabrication WO1999003754A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU82241/98A AU8224198A (en) 1997-07-15 1998-07-14 Package for storing a product in a controlled atmosphere and method of making it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB9714738.3 1997-07-15
GBGB9714738.3A GB9714738D0 (en) 1997-07-15 1997-07-15 Novel package

Publications (1)

Publication Number Publication Date
WO1999003754A1 true WO1999003754A1 (fr) 1999-01-28

Family

ID=10815784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB1998/001869 WO1999003754A1 (fr) 1997-07-15 1998-07-14 Emballage permettant de stocker un produit sous atmosphere controlee et son procede de fabrication

Country Status (3)

Country Link
AU (1) AU8224198A (fr)
GB (1) GB9714738D0 (fr)
WO (1) WO1999003754A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009155387A2 (fr) * 2008-06-20 2009-12-23 Boston Scientific Scimed, Inc. Ensemble de conditionnement
US20100268187A1 (en) * 2009-04-17 2010-10-21 Ranbaxy Laboratories Limited Packaging for sirolimus and composition thereof
US8235209B2 (en) 2010-08-11 2012-08-07 Boston Scientific Scimed, Inc. Medical device packaging and methods for preparing and packaging medical devices
EP2341008B1 (fr) * 1999-03-10 2013-04-24 Biogaia Ab Dispositif destiné a l'ajout d'un composant a un paquet
JP2014189311A (ja) * 2013-03-27 2014-10-06 Fujimori Kogyo Co Ltd 帯状フィルムを用いた製袋充填方法および製袋充填装置
US8973748B2 (en) 2011-01-19 2015-03-10 Boston Scientific Scime, Inc. Medical device packaging and methods for preparing and packaging medical devices
US9096368B2 (en) 2011-01-19 2015-08-04 Boston Scientific Scimed, Inc. Medical device packaging and methods for preparing and packaging medical devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1140952A (fr) * 1956-01-04 1957-08-22 Emballage protecteur contre l'humidité
GB1073786A (en) * 1964-03-26 1967-06-28 Participations Et Procedes Ind Containers incorporating dehydrating devices
US3391047A (en) * 1965-12-13 1968-07-02 Schweizeerische Ind Ges Apparatus for manufacturing dual-compartment sachets
WO1996008424A1 (fr) * 1994-09-14 1996-03-21 Sealed Air (Nz) Limited Conditionnement de la viande et d'autres produits alimentaires

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1140952A (fr) * 1956-01-04 1957-08-22 Emballage protecteur contre l'humidité
GB1073786A (en) * 1964-03-26 1967-06-28 Participations Et Procedes Ind Containers incorporating dehydrating devices
US3391047A (en) * 1965-12-13 1968-07-02 Schweizeerische Ind Ges Apparatus for manufacturing dual-compartment sachets
WO1996008424A1 (fr) * 1994-09-14 1996-03-21 Sealed Air (Nz) Limited Conditionnement de la viande et d'autres produits alimentaires

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2341008B1 (fr) * 1999-03-10 2013-04-24 Biogaia Ab Dispositif destiné a l'ajout d'un composant a un paquet
WO2009155387A2 (fr) * 2008-06-20 2009-12-23 Boston Scientific Scimed, Inc. Ensemble de conditionnement
WO2009155387A3 (fr) * 2008-06-20 2010-03-04 Boston Scientific Scimed, Inc. Ensemble de conditionnement
US9095324B2 (en) 2008-06-20 2015-08-04 Boston Scientific Scimed, Inc. Package assembly
US20100268187A1 (en) * 2009-04-17 2010-10-21 Ranbaxy Laboratories Limited Packaging for sirolimus and composition thereof
US8235209B2 (en) 2010-08-11 2012-08-07 Boston Scientific Scimed, Inc. Medical device packaging and methods for preparing and packaging medical devices
US8973748B2 (en) 2011-01-19 2015-03-10 Boston Scientific Scime, Inc. Medical device packaging and methods for preparing and packaging medical devices
US9096368B2 (en) 2011-01-19 2015-08-04 Boston Scientific Scimed, Inc. Medical device packaging and methods for preparing and packaging medical devices
JP2014189311A (ja) * 2013-03-27 2014-10-06 Fujimori Kogyo Co Ltd 帯状フィルムを用いた製袋充填方法および製袋充填装置

Also Published As

Publication number Publication date
GB9714738D0 (en) 1997-09-17
AU8224198A (en) 1999-02-10

Similar Documents

Publication Publication Date Title
US10239680B2 (en) Blister package containing the laminated sheet and container
KR100961028B1 (ko) 포장체용 분위기 개량성 테이프, 분위기 개량성 테이프가 부착된 포장체 및 그 제조방법, 분위기 개량성 테이프가 부착된 포장 용기, 결합구 및 결합구가 부착된 포장체
US5554423A (en) Tubular element for the formation of bags for the vacuum-packing
AU643536B2 (en) Package
US20040131805A1 (en) Films having a desiccant material incorporated therein and methods of use and manufacture
JP5030952B2 (ja) 薬剤包装用包装材及び薬剤包装用袋
US20060269708A1 (en) Films having a desiccant material incorporated therein and methods of use and manufacture
CN104169187A (zh) 压出式包装或泡罩包装用叠层体以及压出式包装或泡罩包装
JP2606590Y2 (ja) 良好なガス遮断特性を有する積層材料
CA2482107C (fr) Balle de meche pour filtre fortement comprimee et procede de production de cette balle
WO1999003754A1 (fr) Emballage permettant de stocker un produit sous atmosphere controlee et son procede de fabrication
US7600635B2 (en) Highly compressed filter tow bales and process for their production
EP0903220A2 (fr) Film stratifié facilement déchirable et rétractable et sac fabriqué à partir de celui-ci
JP7038569B2 (ja) ブリスターパック用積層体、及びそれを用いたブリスターパック
CN214190807U (zh) 一种药品包装袋
CN203410812U (zh) 包装体外诊断药的包装袋以及包装体
JP3007467U (ja) 使い捨てカイロ
JP3744960B2 (ja) 自立性包装袋およびその製造法
JP2019089561A5 (fr)
JPH05124654A (ja) 包装袋
JPH0610790Y2 (ja) 青果物鮮度保持材
JPH0350049Y2 (fr)
KR100511441B1 (ko) 면봉과 액체약품이 내장된 용지의 제조방법
JPS6037791B2 (ja) プラスチックフイルムに通液性を遮断して通気性のみを付与する方法
JPH08217089A (ja) 自立性包装袋およびその製造法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA