WO1999002313A1 - Scherenangetriebener roboterarm und portalroboter - Google Patents

Scherenangetriebener roboterarm und portalroboter Download PDF

Info

Publication number
WO1999002313A1
WO1999002313A1 PCT/CH1998/000289 CH9800289W WO9902313A1 WO 1999002313 A1 WO1999002313 A1 WO 1999002313A1 CH 9800289 W CH9800289 W CH 9800289W WO 9902313 A1 WO9902313 A1 WO 9902313A1
Authority
WO
WIPO (PCT)
Prior art keywords
scissor
bars
robot arm
drive
arm according
Prior art date
Application number
PCT/CH1998/000289
Other languages
English (en)
French (fr)
Inventor
Marco Kaufmann
Hansueli Thut
Original Assignee
Asea Brown Boveri Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asea Brown Boveri Ag filed Critical Asea Brown Boveri Ag
Priority to AU79041/98A priority Critical patent/AU7904198A/en
Publication of WO1999002313A1 publication Critical patent/WO1999002313A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/023Cartesian coordinate type
    • B25J9/026Gantry-type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/106Programme-controlled manipulators characterised by positioning means for manipulator elements with articulated links
    • B25J9/1065Programme-controlled manipulators characterised by positioning means for manipulator elements with articulated links with parallelograms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H21/00Gearings comprising primarily only links or levers, with or without slides
    • F16H21/04Guiding mechanisms, e.g. for straight-line guidance

Definitions

  • the invention relates to the field of robot technology. It is based on a robot arm according to the preamble of the first claim. The invention also relates to a gantry robot in which the robot arm is used.
  • EP 0 317788 A2 discloses a conveyor which can be telescoped by telescopic drives in the form of scissor lattices.
  • a disadvantage of this telescopic drive for the solution sought, however, is the fact that the telescopic drive is pivotable and is not suitable as a self-supporting robot arm.
  • the object of the invention is namely to provide a space-saving, stable and self-supporting robot arm in which there is a linear relationship between the angle of rotation, the speed of rotation and the rotational acceleration of a drive and the kinematic parameters of the so-called TCP (Tool Center Point).
  • TCP Tool Center Point
  • the essence of the invention is that means for slidingly mounting the end rods of the scissor mechanism are provided in the connecting piece and that two half rods, which are connected to the end rods and are articulated, are provided
  • the coupling of the scissor mechanism to a drive plate is also advantageously carried out accordingly.
  • the means for plain bearing include preferably a linear plain bearing on guide shafts. Storage using rollers would also be possible.
  • a translation factor of the scissor mechanism or its cross section can be set by the choice of the lengths of the scissor bars.
  • a portal robot is specified, in which at least the robot arm and possibly the other drives are equipped with a scissor drive.
  • FIG. 3 A gantry robot, which is equipped with a robot arm according to the invention.
  • FIG. 1 shows a robot arm 1 according to the invention.
  • 3 denotes a motor which is fastened on a drive plate 11 and drives a spindle 9.
  • the spindle 9 screws through a spindle nut 10 which is arranged at a crossing point of two scissor bars 5 of a scissor mechanism 4.
  • a connection plate 2 is provided, to which a gripper, a carriage or similar manipulators can be attached.
  • the scissor mechanism 4 is connected to the connection plate 2 at three points in order to achieve a stable, non-pivotable attachment of the connection plate 2 on the one hand and to avoid a lateral displacement of the connection plate 2 when the scissor mechanism 4 is actuated on the other hand.
  • This gives a directly proportional relationship between the position, speed and acceleration of the Tool Center Point (TCP) and the corresponding angular data of the motor. In this way, the precision of the robot arm can be increased and the position control can be greatly simplified.
  • TCP Tool Center Point
  • the triple bearing comprises firstly a sliding element 15 on a round shaft 14 of the end scissor rods 6 facing the connecting plate.
  • the end scissor rods 6 are advantageously mounted on suitable rollers 15 for this purpose.
  • half-bars 7 are provided, which are connected in an articulated manner to the end scissor bars 6 and which are brought together in a common force application point 8, preferably in the center of the connecting plate 2.
  • a comparable solution can be found in the area of the drive plate 11, ie for the transmission of the movement of the motor 3 or the spindle 9 to the scissor mechanism 4.
  • the initial scissor bars 12 are also mounted on guide shafts 14 with sliding elements 15.
  • half-bars 7 are provided, which are connected in an articulated manner to the starting bars 12 and are brought together to form a common bearing point 13 in the region of the drive plate 11. In this way, the scissor mechanism is given a lateral stability, which is required for a precise and self-supporting drive of the connection plate or a manipulator connected to it.
  • a further stiffening of the scissors mechanism 4 can be achieved in that, as shown in FIG. 2 from the side, two parallel sub-mechanisms are provided which are connected to one another via cross bars 18.
  • the scissor bars 5 in the vicinity of the connection plate 2 have a shorter length than the drive plate. This is particularly advantageous if the robot arm 1 or the manipulator attached to the connection plate 2 has to be guided through a narrow section (e.g. filling boxes, filling containers, etc.).
  • a narrow section e.g. filling boxes, filling containers, etc.
  • the translation factor of the movement achieved by the pantograph effect can also be set as desired.
  • the scissor bars 5 are advantageously made of a light metal such as Aluminum or even made of fiber-reinforced plastics. With a prototype, 25 kg could be easily lifted with 2 g acceleration and positioned extremely precisely.
  • FIG. 3 shows an exemplary portal robot with three orthogonal axes x, y, z.
  • a support frame is designated.
  • a boom 17 can be moved in the y direction.
  • Robotic arms 1 are attached to the arm 17 and are also slidably supported along the x-axis.
  • the drives in the three spatial axes x, y, z can now be partially or entirely designed as scissor drives according to the invention.
  • the advantage of the scissor drives is not only the small space requirement, but also a quick response and a linear relationship between the drive data and the position data. Commercially available drive motors can also be used.
  • a gear ratio can be set almost arbitrarily not only by choosing the spindle steepness, but also by influencing the rod lengths.
  • the robot arm according to the invention can, however, not only be used in the context of portal robots, but also anywhere else where linear drives are required.
  • the robot arm is only supported on one side and can also move linearly in the room in any direction.
  • the invention results in a linearly driven robot arm that is extremely space-saving and can also be constructed to be stable and self-supporting.
  • only a small drive stroke is necessary for a large movement stroke. Large forces can be achieved with favorable engine speeds, and maintenance-intensive gears are not necessary.
  • the play caused by the elasticity of the toothed belt is completely eliminated.
  • the invention is characterized by a substantially lower manufacturing price. The load is almost unlimited.

Abstract

Ein Roboterarm, der insbesondere für einen Portalroboter geeignet ist, zeichnet sich durch einen Scherenantrieb aus. Eine Anschlussplatte wird über einen Scherenmechanismus angetrieben. Die Befestigung des Scherenmechanismus ist so gewählt, dass ein streng proportionaler Zusammenhang zwischen den Winkelgrössen des antreibenden Motors und den kinematischen Parametern der Tool Center Points (TCP) erreicht wird.

Description

B E S C H R E I B U N G
SCHEREN ANGETRIEBENER ROBOTERARM UND PORTALROBOTER
Technisches Gebiet
Die Erfindung bezieht sich auf das Gebiet der Robotertechnik. Sie geht aus von einem Roboterarm nach dem Oberbegriff des ersten Anspruchs. Die Erfindung betrifft ausserdem einen Portalroboter, bei dem der Roboterarm eingesetzt wird.
Stand der Technik
Ein solcher Roboterarm ist bereits aus der Europäischen Patentanmeldung EP 0 701 884 AI bekannt. Ein gattungsgemässer Portalroboter wird in der Deutschen
Offenlegungsschrif t DE 41 27446 AI beschrieben. Auch dort ist ein Roboterarm, der in vertikaler Richtung bewegbar ist, dargestellt. Die dafür ausgebildete Hubsäule muss jedoch als Ganzes bewegt werden, so dass die Hubsäule bei vollständigem Einfahren des Roboterarmes über den Portalrahmen ragt. Demzufolge benötigt diese Anordnung vergleichsweise viel Platz. Aus der EP 0 701 884 AI ist ein Industrieroboter bekannt, bei dem in einer Richtung eine Scherenhebeeinrichtung verwendet wird. Dabei ist ein Schenkel der Schere mit einer Antriebseinrichtung verbunden, die diesen Schenkel verschiebt, um eine Hebebewegung zu erhalten. Nachteilig an dieser Lösung ist, dass der Schwerpunkt des Arbeitsbeitsarmes nicht nur eine Hebebewegung, sondern auch eine Schiebebewegung erfährt.
Die EP 0 317788 A2 offenbart einen Förderer, der durch Teleskopantriebe in Form von Scherengittern teleskopierbar ist. Nachteilig an diesem Teleskopantrieb ist für die gesuchte Lösung jedoch die Tatsache, dass der Teleskopantrieb schwenkbar und als selbsttragender Roboterarm nicht geeignet ist.
Darstellung der Erfindung
Aufgabe der Erfindung ist es nämlich, einen platzsparenden, stabilen und selbsttragenden Roboterarm anzugeben, bei dem ein linearer Zusammenhang zwischen Drehwinkel, Drehgeschwindigkeit und Drehbeschleunigung eines Antriebes und den kinematischen Parametern des sog. TCP (Tool Center Point) herrscht. Diese Aufgabe wird durch die Merkmale der unabhängigen Ansprüche gelöst.
Kern der Erfindung ist es also, dass in dem Anschlussstück Mittel zur Gleitlagerung der Endstäbe des Scherenmechanismus vorgesehen sind und dass zwei mit den Endstäben gelenkig verbundene Halbstäbe vorgesehen sind, die zu einem
Kraftangriffspunkt des Anschlussstückes zusammengeführt sind, in welchem die Halbstäbe gelenkig gelagert sind.
Mit Vorteil wird auch die Ankopplung des Scherenmechanismus an eine Antriebsplatte entsprechend ausgeführt. Die Mittel zur Gleitlagerung umfassen vorzugsweise ein lineares Gleitlager auf Führungswellen. Eine Lagerung mittels Rollen wäre auch möglich. Ausserdem kann durch die Wahl der Längen der Scherenstäbe ein Übersetzungsfaktor des Scherenmechanismus bzw. dessen Querschnitt eingestellt werden. Zudem wird ein Portalroboter angegeben, bei dem zumindest der Roboterarm ggf. auch die übrigen Antriebe mit einem Scherenantrieb ausgerüstet sind.
Weitere vorteilhafte Ausführungsformen ergeben sich aus den entsprechenden abhängigen Ansprüchen.
Kurze Beschreibung der Zeichnungen
Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen im Zusammenhang mit den Zeichnungen näher erläutert.
Es zeigen:
Fig. 1 Einen erfindungsgemässen Roboterarm;
Fig. 2 Einen Ausschnitt aus dem Scherenmechanismus eines erfindungsgemässen Roboterarmes;
Fig. 3 Einen Portalroboter, der mit einem erfindungsgemässen Roboterarm bestückt ist.
Die in den Zeichnungen verwendeten Bezugszeichen und deren Bedeutung sind in der Bezugszeichenliste zusammengefasst aufgelistet. Grundsätzlich sind in den Figuren gleiche Teile mit gleichen Bezugszeichen versehen. Wege zur Ausführung der Erfindung
Figur 1 zeigt einen erfindungsgemässen Roboterarm 1. Mit 3 ist ein Motor bezeichnet, der auf einer Antriebsplatte 11 befestigt ist und eine Spindel 9 antreibt. Die Spindel 9 schraubt sich durch eine Spindelmutter 10, die an einem Kreuzungspunkt von zwei Scherenstäben 5 eines Scherenmechanismus 4 angeordnet ist. Am anderen Ende des Scherenmechanismus 4 ist eine Anschlussplatte 2 vorgesehen, an welche ein Greifer, ein Laufwagen oder ähnliche Manipulatoren befestigt werden können. Die Verbindung des Scherenmechanismus 4 mit der Anschlussplatte 2 erfolgt an drei Punkten, um einerseits eine stabile, nicht schwenkbare Befestigung der Anschlussplatte 2 zu erreichen und um andererseits eine seitliche Verschiebung der Anschlussplatte 2 bei der Betätigung des Scherenmechanismus 4 zu vermeiden. Dadurch erhält man eine direkt proportionale Beziehung zwischen der Position, Geschwindigkeit und Beschleunigung des Tool Center Points (TCP) und den entsprechenden Winkeldaten des Motors. Auf diese Weise können die Präzision des Roboterarms erhöht und die Positionsregelung stark vereinfacht werden.
Die dreifache Lagerung umfasst erstens ein Gleitelement 15 auf einer Rundwelle 14 der der Anschlussplatte zugewandten End-Scherenstäbe 6. Mit Vorteil werden die End-Scherenstäbe 6 zu diesem Zweck auf geeigneten Rollen 15 gelagert. Zweitens sind Halbstäbe 7 vorgesehen, die mit den End-Scherenstäben 6 gelenkig verbunden sind und die in einem gemeinsamen Kraftangriffspunkt 8, vorzugsweise im Zentrum der Anschlussplatte 2, zusammengeführt sind.
Im Bereich der Antriebsplatte 11, d.h. für die Übertragung der Bewegung des Motors 3 bzw. der Spindel 9 auf den Scherenmechanismus 4, kann eine vergleichbare Lösung getroffen werden. Die Anfangs-Scherenstäbe 12 sind zu diesem Zwecke ebenfalls auf Fehrungswellen 14 mit Gleitelementen 15 gelagert. Ausserdem sind Halbstäbe 7 vorgesehen, die mit den Anfangsstäben 12 gelenkig verbunden sind und zu einem gemeinsamen Lagerpunkt 13 im Bereich der Antriebsplatte 11 zusammengeführt sind. Auf diese Weise wird dem Scherenmechanismus eine seitliche Stabilität verliehen, die für einen präzisen und selbsttragenden Antrieb der Anschlussplatte, bzw. eines damit verbundenen Manipulators benötigt wird.
Eine weitere Versteifung des Scherenmechanismus 4 kann dadurch erreicht werden, dass, wie in Figur 2 von der Seite dargestellt wird, zwei parallele Teilmechanismen vorgesehen sind, die über Querstäbe 18 miteinander verbunden sind.
Aus Figur 1 ist ausserdem ersichtlich, dass die Scherenstäbe 5 in der Nähe der Anschlussplatte 2 eine geringere Länge aufweisen als zur Antriebsplatte hin. Dies ist speziell dann von Vorteil, wenn der Roboterarm 1 bzw. der an der Anschlussplatte 2 befestigte Manipulator durch ein Engnis (z.B. Einfüllen von Schachteln, Abfüllen von Gefässen etc.) geführt werden muss. Durch die Wahl der Längen der Scherenstäbe 5 kann nicht nur der Durchmesser des Scherenmechanismus 4 der Umgebung angepasst werden. Auch der durch den Pantographeffekt erreichte Übersetzungsfaktor der Bewegung kann wunschgemäss eingestellt werden.
Die Scherenstäbe 5 werden mit Vorteil aus einem Leichtmetall wie z.B. Aluminium oder sogar aus faserverstärkten Kunststoffen aufgebaut. Mit einem Prototyp konnten auf diese Weise problemlos 25 kg mit 2 g Beschleunigung angehoben und äusserst präzise positioniert werden.
Besonders geeignet ist der erfindungsgemässe Roboterarm für einen Portalroboter. In Figur 3 ist ein beispielhafter Portalroboter mit drei orthogonalen Achsen x, y, z dargestellt. Mit 16 ist ein Traggestell bezeichnet. Ein Ausleger 17 ist in y-Richtung fahrbar. Am Ausleger 17 sind Roboterarme 1 befestigten, die entlang der x-Achse ebenfalls verschiebbar gelagert sind. Die Antriebe in den drei Raumachsen x, y, z können nun nach der Erfindung teilweise oder insgesamt als Scherenantriebe ausgelegt sein. Der Vorteil der Scherenantriebe ist nicht nur der geringe Platzbedarf, sondern auch ein rasches Ansprechverhalten und ein linearer Zusammenhang zwischen den Antriebsdaten und den Positionsdaten. Ausserdem können handelsübliche Antriebsmotoren eingesetzt werden. Ein Übersetzungsverhältnis kann nicht nur durch Wahl der Spindelsteilheit, sondern auch durch eine Beeinflussung der Stablängen nahezu beliebig eingestellt werden. Der erfindungsgemässe Roboterarm kann aber nicht nur im Rahmen von Portalrobotern eingesetzt werden sondern auch überall sonst, wo lineare Antriebe gefordert sind. Der Roboterarm ist nur einseitig gelagert und kann in beiliebigen Richtungen auch schräg im Raum linear verfahren.
Insgesamt ergibt sich mit der Erfindung ein linear angetriebener Roboterarm, der äusserst platzsparend ist und ausserdem stabil und selbsttragend aufgebaut sein kann. Zudem ist nur ein geringer Antriebshub für einen grossen Bewegungshub notwendig. Es können grosse Kräfte mit günstigen Motordrehzahlen erreicht werden, und wartungsintensive Getriebe sind nicht notwendig. Im Gegensatz zu konventionellen Zahnriemenantrieben fällt das durch die Elastizität des Zahnriemens bedingte Spiel vollständig weg. Gegenüber einem konventionellen Ritzel-Zahnstangenantrieb zeichnet sich die Erfindung durch einen wesentlich geringeren Herstellungspreis aus. Die Traglast ist nahezu unbegrenzt.
Bezugszeichenliste
Roboterarm
Anschlussstück
Motor
Scherenmechanismus
Scherenstab
End-Scherenstab
Halbstab
Kraftangriffspunkt
Spindel
Spindelmutter
Antriebsplatte
Anfangs-Scherenstäbe
Lagerpunkt
Führungswelle
Gleit- oder Rollenelement
Traggestell
Ausleger
Querstab

Claims

P A T E N T A N S P R U E C H E
1. Roboterarm (1), insbesondere für einen Portalroboter, umfassend - ein Anschlussstück (2) zur Aufnahme insbesondere eines Greifers oder eines Laufwagens,
- einen Antrieb mit einem Motor (3) und einem Scherenmechanismus (4) mit mindestens zwei gekreuzten Scherenstäben (5) zur zielgerichteten Bewegung des Anschlussstückes (2), dadurch gekennzeichnet, dass
- in dem Anschlussstück (2) erste Mittel (14, 15) vorgesehen sind zur Gleitlagerung von zwei dem Anschlussstück (2) zugewandten End- Scherenstäben (6),
- zwei Halbstäbe (7) vorgesehen sind, die mit den End-Scherenstäben (6) gelenkig verbunden sind und zu einem Kraftangriffspunkt (8) des
Anschlussstückes (2) zusammengeführt sind, in welchem sie drehbar gelagert sind.
2. Roboterarm nach Anspruch 1, dadurch gekennzeichnet, dass der Motor (3) eine Spindel (9) antreibt, die in eine Spindelmutter (10) ein- und ausschraubbar ist, welche Spindelmutter (10) in einem Kreuzpunkt von zwei Scherenstäben (5) des Scherenmechanismus (4) angeordnet ist.
3. Roboterarm nach Anspruch 2, dadurch gekennzeichnet, dass der Motor (3) auf einer Antriebsplatte (11) befestigt ist, in welcher Antriebsplatte (11) zweite Mittel vorgesehen sind zur Gleitlagerung von zwei der Antriebsplatte (11) zugewandten Anfangs-Scherenstäben (12).
4. Roboterarm nach Anspruch 3, dadurch gekennzeichnet, dass zwei Halbstäbe (7) vorgesehen sind, die mit den Anfangs-Scherenstäben (12) gelenkig verbunden sind und zu einem gemeinsamen Lagerungspunkt (13) der Antriebsplatte (11) zusammengeführt sind, in welchem Lagerungspunkt die beiden Halbstäbe drehbar gelagert sind.
5. Roboterarm nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die ersten und zweiten Mittel eine lineare Führungswelle 15 umfassen, in der die Anfangs-Scherenstäbe bzw. die End-Scherenstäbe verschiebbar gelagert sind und insbesondere auf Gleitlager 14 oder Rollen laufen.
6. Roboter arm nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Scherenmechanismus zwei Teilmechanismen umfasst, die parallel angeordnet sind und mit Querstäben verbunden sind.
7. Roboterarm nach einem der vorstehend Ansprüche, dadurch gekennzeichnet, dass der Scherenmechanismus mindestens zwei Arten von Scherenstäben umfasst, die sich in der Länge unterscheiden.
8. Roboterarm nach Anspruch 7, dadurch gekennzeichnet, dass eine Länge der Scherenstäbe in der Nähe der Anschlussplatte geringer ist als eine
Länge der Scherenstäbe in der Nähe der Antriebsplatte.
9. Portalrobotern mit einem Traggestell, an welchem mindestens ein Roboterarm, über bis zu zwei Achsen verschiebbar oder fest gelagert ist, dadurch gekennzeichnet, dass der Roboterarm nach einem der Ansprüche
1 bis 6 ausgeführt ist.
10. Portalroboter nach Anspruch 9, dadurch gekennzeichnet, dass der Antrieb zum Verschieben des Roboterarmes entlang des Auslegers und/ oder der Antrieb zum Verschieben des Auslegers entlang des Traggestells nach der Art eines Scherenantriebes ausgebildet ist.
PCT/CH1998/000289 1997-07-11 1998-07-02 Scherenangetriebener roboterarm und portalroboter WO1999002313A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU79041/98A AU7904198A (en) 1997-07-11 1998-07-02 Pantograph-driven robot arm and gantry robot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19729657A DE19729657A1 (de) 1997-07-11 1997-07-11 Scherenangetriebener Roboterarm und Portalroboter
DE19729657.2 1997-07-11

Publications (1)

Publication Number Publication Date
WO1999002313A1 true WO1999002313A1 (de) 1999-01-21

Family

ID=7835339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1998/000289 WO1999002313A1 (de) 1997-07-11 1998-07-02 Scherenangetriebener roboterarm und portalroboter

Country Status (5)

Country Link
AU (1) AU7904198A (de)
DE (1) DE19729657A1 (de)
TW (1) TW385268B (de)
WO (1) WO1999002313A1 (de)
ZA (1) ZA986067B (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE39458E1 (en) 1994-01-14 2007-01-02 Laplink Software, Inc. Remote file transfer method and apparatus
CN103009386A (zh) * 2012-12-17 2013-04-03 东北农业大学 一种兼多自由度耦合与运动自锁功能的机器人肩部机构

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008030828B4 (de) * 2008-06-30 2010-04-15 Siemens Aktiengesellschaft Verschiebevorrichtung für einen Röntgen-C-Bogen
CN102092047A (zh) * 2010-12-24 2011-06-15 杭州厚达自动化系统有限公司 电能表上下料机械手
DE102012201059A1 (de) * 2012-01-25 2013-07-25 Krones Ag Eine Vorrichtung und ein Verfahren zum Ausleiten von Produkten, insbesondere Füllgutbehältern wie Flaschen
CN106335079A (zh) * 2015-07-17 2017-01-18 佛山市禾才科技服务有限公司 一种锥形机械手臂
CN110944930B (zh) * 2017-06-02 2022-05-13 杜克集团有限公司 具有枢转提升驱动装置的托盘机器人
CN108145744A (zh) * 2017-12-25 2018-06-12 佛山市禾才科技服务有限公司 一种类桁架式机械臂结构

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB878714A (en) * 1958-06-16 1961-10-04 Amalgamated Dental Co Ltd Hoist
DE2249927A1 (de) * 1971-10-14 1973-04-19 Del Mar Eng Lab Ausfahrbarer ausleger
FR2505434A1 (fr) * 1981-05-06 1982-11-12 Mechanikai Muevek Mecanisme articule pour produire de grandes transformations de courses rectilignes et de vitesses
DD245185A1 (de) * 1985-12-30 1987-04-29 Thuringin Sonneberg Veb Scherenausleger
US4669773A (en) * 1985-10-03 1987-06-02 Levee Robert C Roof mounted storage device
EP0317788A2 (de) 1987-11-25 1989-05-31 Salzgitter Maschinenbau Gmbh Verfahren und Vorrichtung zum Entladen von Stückgütern
DE4127446A1 (de) 1991-08-16 1993-02-18 Mannesmann Ag Portalroboter zur mehrdimensionalen bewegung von teilen
EP0701884A1 (de) 1994-09-13 1996-03-20 Roman Eissfeller Industrieroboter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8804424U1 (de) * 1988-04-02 1988-09-01 Zasche Foerdertechnik Gmbh, 8860 Noerdlingen, De

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB878714A (en) * 1958-06-16 1961-10-04 Amalgamated Dental Co Ltd Hoist
DE2249927A1 (de) * 1971-10-14 1973-04-19 Del Mar Eng Lab Ausfahrbarer ausleger
FR2505434A1 (fr) * 1981-05-06 1982-11-12 Mechanikai Muevek Mecanisme articule pour produire de grandes transformations de courses rectilignes et de vitesses
US4669773A (en) * 1985-10-03 1987-06-02 Levee Robert C Roof mounted storage device
DD245185A1 (de) * 1985-12-30 1987-04-29 Thuringin Sonneberg Veb Scherenausleger
EP0317788A2 (de) 1987-11-25 1989-05-31 Salzgitter Maschinenbau Gmbh Verfahren und Vorrichtung zum Entladen von Stückgütern
DE4127446A1 (de) 1991-08-16 1993-02-18 Mannesmann Ag Portalroboter zur mehrdimensionalen bewegung von teilen
EP0701884A1 (de) 1994-09-13 1996-03-20 Roman Eissfeller Industrieroboter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE39458E1 (en) 1994-01-14 2007-01-02 Laplink Software, Inc. Remote file transfer method and apparatus
CN103009386A (zh) * 2012-12-17 2013-04-03 东北农业大学 一种兼多自由度耦合与运动自锁功能的机器人肩部机构

Also Published As

Publication number Publication date
ZA986067B (en) 1999-02-01
TW385268B (en) 2000-03-21
AU7904198A (en) 1999-02-08
DE19729657A1 (de) 1999-01-14

Similar Documents

Publication Publication Date Title
EP2055448B1 (de) Parellelkinematische Vorrichtung
EP0000877B1 (de) Manipulator zum Positionieren von Werkstücken oder anderen Lasten
DE3317261C2 (de)
DE112006001920B4 (de) Parallelkinematische Vorrichtung mit Mitteln zur Kompensation der Haltekraft
EP0232548B1 (de) Bearbeitungsstation für grosse Werkstücke
DE10046944A1 (de) Gerät zum Simulieren einer Fahrt auf einem Fahrzeug
DE3202353A1 (de) Pantographengestaenge
DE69734079T2 (de) Elektricher Stellantrieb
EP0812652A1 (de) Vorrichtung zur Bearbeitung und/oder Montage von Werkstücken
DE3824296A1 (de) Vorrichtung zum schalten eines kraftfahrzeuggetriebes
DD202407A5 (de) Greifer fuer ein hebezeug
DE10216571A1 (de) Vorrichtung zum Verfahren eines Arbeitskopfes im Raum
WO1999008832A1 (de) Vorrichtung zum bewegen und positionieren eines gegenstandes in einer ebene
WO1999002313A1 (de) Scherenangetriebener roboterarm und portalroboter
DE3139490A1 (de) Universal-roboter
EP0967172A2 (de) Handhabungsgerät mit Balancier-Hebeeinrichtung
CH632442A5 (en) Manipulator
DE19806085B4 (de) Werkzeugmaschine zur 3-achsigen Bearbeitung von Werkstücken
EP0123221A1 (de) Handhabungssystem, insbesondere für kleine Lasten und/oder begrenzte Zugriffswege
EP1566243B1 (de) Vorrichtung zum Positionieren und Antreiben eines Arbeitswerkzeuges
DE3442940A1 (de) Hebetisch
AT411459B (de) Hubantrieb
DE102020211506B4 (de) Ausleger-Arbeitsvorrichtung
DE19652905C2 (de) Antrieb für einen Tisch einer an einer Basis befestigten Transport- oder Hubeinrichtung
AT408476B (de) Fluidbetätigter aktuator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU BR CA CH CN CZ DK ES FI GB HR HU IL JP KR MX NO NZ PL RO RU SE SG TR UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: KR

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA