WO1999001720A1 - Drehwinkelsensor - Google Patents

Drehwinkelsensor Download PDF

Info

Publication number
WO1999001720A1
WO1999001720A1 PCT/EP1998/003936 EP9803936W WO9901720A1 WO 1999001720 A1 WO1999001720 A1 WO 1999001720A1 EP 9803936 W EP9803936 W EP 9803936W WO 9901720 A1 WO9901720 A1 WO 9901720A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation
rotation angle
angle
scanning elements
code track
Prior art date
Application number
PCT/EP1998/003936
Other languages
English (en)
French (fr)
Inventor
Bernhard Pohl
Original Assignee
Zf Luftfahrttechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zf Luftfahrttechnik Gmbh filed Critical Zf Luftfahrttechnik Gmbh
Priority to EP98938664A priority Critical patent/EP0993591B1/de
Priority to DE59803350T priority patent/DE59803350D1/de
Publication of WO1999001720A1 publication Critical patent/WO1999001720A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/249Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using pulse code
    • G01D5/2492Pulse stream
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/22Analogue/digital converters pattern-reading type
    • H03M1/24Analogue/digital converters pattern-reading type using relatively movable reader and disc or strip
    • H03M1/28Analogue/digital converters pattern-reading type using relatively movable reader and disc or strip with non-weighted coding

Definitions

  • the present invention relates to a rotation angle sensor with two parts which can be rotated relative to one another, a plurality of scanning elements being arranged on the first part, and a self-contained annular code track being arranged on the second part.
  • angle of rotation sensors are used, for example, in automotive engineering as steering angle sensors. They have a discrete angular resolution, which depends, among other things, on the number and arrangement of the scanning elements, as well as on the Gray code used.
  • the individual scanning elements deliver either a "High” or a “Low” at their output, depending on the Gray code, so that all outputs together form a binary data word, in which each digit corresponds to an output of a scanning element.
  • the scanning elements are designed as fork light barriers.
  • the Gray code is designed as a ring track with translucent and opaque areas.
  • the number of sensor elements required and the code length are specified for different resolutions.
  • the advantages of such a steering angle sensor are a compact design, freedom from wear and the property that a digital code is formed directly from the outputs of the fork light barriers.
  • signal transmission devices for data transmission between two rotatable systems, in which, depending on an angle of rotation, rich, certain transmitter elements are assigned to certain receiver elements.
  • Such signal transmission devices are also used in helicopter technology, where measurement and control data are exchanged between the helicopter cell and a rotor.
  • the object of the invention is to create a very simple rotation angle sensor with a resolution of 45 °, in which 8 rotation angle ranges can be clearly distinguished from one another, and which delivers a 3-bit signal in which each value identifies one of the 8 rotation angle ranges.
  • the object is achieved by a rotation angle sensor which also has the features of the characterizing part of the main claim.
  • the combination of features according to the invention has the advantage that a unique 3-bit signal is generated directly, to which the various rotation angle ranges can be clearly assigned. All of the 8 possible data words from this 3-bit signal are used. With a rotation, the 3-bit signal changes every 45 °. In each case, one scanning element passes over a boundary in the Gray code.
  • the rotation angle sensor is split.
  • the individual parts (boards) that can be rotated relative to one another must be divided.
  • the part on which the code track is applied leaves divide advantageously along the 180 ° division of the code track, without creating disruptive joints for coding in homogeneous areas of the code track.
  • various sensors can be used as scanning elements, such as mechanical sliding contacts, Hall sensors, or sensors that are based on the capacitive, inductive or acoustic principle.
  • the areas of the code track differ in their electrical, magnetic or acoustic properties.
  • Optical fork light barriers can also be used in combination with a code track with translucent and opaque sections.
  • a particularly simple geometric arrangement can, however, be achieved if the scanning elements are reflective light barriers, one area of the code track is light-reflecting and the other area of the code track is light-absorbing. In this embodiment of the invention, it is not necessary - as with fork light barriers - to arrange the light transmitters and light receivers of the light barrier on both sides of the code track.
  • Another advantage of the reflex light barriers is the high angular accuracy in the switching range.
  • a simple geometric structure is achieved in that the two parts which are rotatable relative to one another are disc-shaped and axially opposed.
  • Fig. 3 shows a development of the traces of the rotation angle sensor
  • FIGS. 5 and 6 show the two parts of a signal transmission device using the rotation angle sensor.
  • FIG. 1 shows schematically the geometrical arrangement of the reflective light barriers AI, A2, B, C on a circular disk-shaped circuit board 10.
  • the circuit board 10 can, for example, be connected in a rotationally fixed manner to a helicopter main rotor, the axis of rotation of the circuit board being orthogonal to the center point denoted by 16 cuts. For a central passage, it has a bore 17 in the region of the axis of rotation.
  • the reflective light barriers AI, A2, B, C of the angle of rotation sensor are arranged on the circle radius 14.
  • Fig. 2 shows schematically a circuit board on which the scanning track is arranged.
  • the scanning track has a light-reflecting area 20 and a light-absorbing area 22 and is arranged in the same radius area as the reflected light barriers on the circuit board 10 (FIG. 1).
  • the reflecting part of the code track can be designed, for example, as a tin-plated conductor track, and the light-absorbing part can be provided with a matt black lacquer.
  • the board 18 also has a bore 19 in the region of the axis of rotation.
  • the views of the two boards 10, 18 shown are congruent with a small axial distance, so that the reflective light barriers AI, A2, B, C interact with the scanning track 20, 22.
  • the circuit board 10 can be rotated and the circuit board 18 can be connected in a rotationally fixed manner to a housing (not shown).
  • FIG. 3 shows a sketch of the geometric development of the arrangements according to FIGS. 1 and 2.
  • rotation of the plate 10 corresponds to that in FIG Fig. 1 indicated by an arrow direction of rotation of a relative movement of the board 10 relative to the board 18 to the right.
  • the views of FIG. 1 and FIG. 2 face each other in the assembled state.
  • the reflected light barrier B is just at the boundary from the absorbing area 22 to the reflecting area 20. If the movement continues by 22.5 ° in accordance with the direction of the arrow, the center position of the angle of rotation range 1 (0 ° - 45 ° ) of the table according to FIG. 4.
  • the reflex light barriers A2, AI and B are located in the reflecting area 20 of the code track and accordingly have a voltage applied to their output.
  • this is identified in each case by a “1”.
  • the reflex light barrier C is located in the light-absorbing area 22 of the code track. There is no voltage at your output. This is identified by a "0".
  • the two outputs of the reflective light barriers A2 and AI are linked with an "exclusive or” link.
  • the result is the signal "A”, which forms a 3-bit signal ABC together with the signals of the reflective light barriers B and C.
  • the 3-bit signal ABC is represented in binary and decimal form.
  • the output of a reflex light barrier changes at each limit of a 45 ° rotation angle range.
  • all 8 possible values of the signal ABC are in each case at a full revolution generated once. There is a clear correlation between these values and certain rotation angle ranges.
  • This very simple rotation angle sensor with a resolution of 45 ° can advantageously be used in a signal transmission device shown in FIGS. 5 and 6 for the transmission of 4 data channels between a rotating system and a fixed system.
  • Several transmitters (T1 - T8) are arranged on a transmitting system (10) and several receivers (R1 - R4) are arranged on an opposite receiving system (18).
  • the transmitters and receivers are each evenly distributed on annular areas 12, so that each transmitter faces each receiver when the rotating system is rotated fully.
  • the rotation angle sensor (AI, A2, B, C, 20, 22) according to the invention serves to detect the respective rotation angle ranges.
  • a transmitter switchover device uses the signal ABC of the rotation angle sensor for the rotation angle-dependent assignment of data channels to transmitters.
  • Such a signal transmission device is wear-free, compact and enables high transmission rates between a fixed and a rotating system.
  • the use of the rotation angle sensor according to the invention is also very advantageous because the signal ABC can be processed directly by the transmitter switching device without further processing.
  • circuit board 12 track, data transmission

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Optical Transform (AREA)

Abstract

Der erfindungsgemäße Drehwinkelsensor trägt auf einem ersten Teil mehrere Abtastelemente an den Drehwinkelstellungen 0° (B), 45° (A1), 135° (A2), 270° (C) und auf einem zweiten Teil eine ringförmige geschlossene Codespur, die in zwei jeweils 180° umschließende Bereiche (20, 22) unterteilt ist. Die Ausgänge der Abtastelemente an den Drehwinkelstellungen 45° (A1) und 135° (A2) sind durch ein 'Exklusiv Oder' Logikgatter miteinander verknüpft. Der Ausgang dieses Gatters bildet zusammen mit den Ausgängen der Abtastelemente an den Drehwinkelstellungen 0° (B) und 270° (C) ein 3-Bit Signal. Jeder Wert dieses Signals entspricht einem von insgesamt 8, jeweils 45° umfassenden Drehwinkelbereichen.

Description

Drehwinkelsensor
Die vorliegende Erfindung betrifft einen Drehwinkelsensor mit zwei gegeneinander verdrehbaren Teilen, wobei auf dem ersten Teil mehrere Äbtastelemente angeordnet sind, und auf dem zweiten Teil eine in sich geschlossene ringförmige Codespur angeordnet ist.
Solche Drehwinkelsensoren werden beispielsweise in der Kraftfahrzeugtechnik als Lenkwinkelsensoren eingesetzt. Sie haben eine diskrete Winkelauflösung, die unter anderem von der Zahl und Anordnung der Abtastelemente, sowie von dem verwendeten Gray-Code abhängen. Die einzelnen Abtastelemente liefern an Ihrem Ausgang abhängig vom Gray-Code entweder ein „High" oder ein „Low", so daß alle Ausgänge zusammen ein binäres Datenwort bilden, bei dem jede Stelle (Digit) einem Ausgang eines Abtastelements entspricht.
In VDI Berichte Nr. 819, 1990, Seiten 127 ff. ist ein derartiger Lenkwinkelsensor offenbart, der auf optischer
Basis funktioniert. Die Abtastelemente sind als Gabellichtschranken ausgebildet. Der Gray-Code ist als Ringspur mit lichtdurchlässigen und lichtundurchlässigen Bereichen ausgebildet. Für verschiedene Auflösungen ist die Anzahl der benötigten Sensorelemente und die Codelänge angegeben. Die Vorteile eines derartigen Lenkwinkelsensors sind eine kompakte Bauform, Verschleißfreiheit und die Eigenschaft, daß von den Ausgängen der Gabellichtschranken direkt ein digitaler Code gebildet wird.
Ein anderes Anwendungsgebiet sind Signalübertragungseinrichtungen zur Datenübertragung zwischen zwei verdrehbaren Systemen, bei denen, abhängig von einem Drehwinkelbe- reich, bestimmte Senderelemente bestimmten Empfängerelementen zugeordnet werden. Solche Signalübertragungseinrichtungen finden auch in der Hubschraubertechnik Anwendung, wo Meß- und Steuerdaten zwischen der Hubschrauberzelle und einem Rotor ausgetauscht werden. Zur Übertragung von 4 Datenkanälen kann es beispielsweise erforderlich sein, 8 jeweils 45° umschließende Drehwinkelbereiche voneinander zu unterscheiden.
Aufgabe der Erfindung ist, einen sehr einfach aufgebauten Drehwinkelsensor mit einer Auflösung von 45° zu schaffen, bei dem 8 Drehwinkelbereiche eindeutig voneinander unterscheidbar sind, und der ein 3-Bit Signal liefert, bei dem jeder Wert einer der 8 Drehwinkelbereiche kenn- zeichnet.
Erfindungsgemäß wird die Aufgabe von einem auch die Merkmale des kennzeichnenden Teils des Hauptanspruchs aufweisenden Drehwinkelsensor gelöst.
Die erfindungsgemäße Merkmalskombination hat den Vorteil, daß direkt ein eindeutiges 3-Bit Signal erzeugt wird, dem eindeutig die verschiedenen Drehwinkelbereiche zugeordnet werden können. Von diesem 3-Bit Signal werden alle der 8 möglichen Datenworte benutzt. Bei einer Verdrehung ändert sich das 3-Bit Signal alle 45°. Dabei überstreicht jeweils ein Abtastelement eine Grenze im Gray-Code.
In vielen Einbaufällen kann es für Montage und War- tungsarbeiten vorteilhaft sein, wenn der Drehwinkelsensor geteilt ausgeführt ist. Hierfür sind die einzelnen, gegeneinander verdrehbaren Teile (Platinen) geteilt auszuführen. Das Teil, auf welchem die Codespur aufgebracht ist, läßt sich vorteilhaft entlang der 180° Teilung der Codespur teilen, ohne daß für die Codierung störende Fugen in homogenen Bereichen der Codespur entstehen.
Grundsätzlich können als Abtastelemente verschiedene Sensoren verwendet werden, wie beispielsweise mechanische Schleifkontakte, Hall-Sensoren, oder Sensoren, die auf dem kapazitiven, induktiven oder akustischen Prinzip beruhen. Je nach verwendetem Sensorprinzip unterscheiden sich die Bereiche der Codespur in ihren elektrischen, magnetischen oder akustischen Eigenschaften. Ebenso sind auch optische Gabellichtschranken verwendbar, in Kombination mit einer Codespur mit lichtdurchlässigen und lichtundurchlässigen Abschnitten. Eine besonders einfache geometrische Anordnung läßt sich jedoch erzielen, wenn die Abtastelemente Reflexlichtschranken sind, ein Bereich der Codespur lichtreflektierend ist, und der andere Bereich der Codespur lichtabsorbierend ist. Bei dieser Ausgestaltung der Erfindung ist es nicht -wie bei Gabellichtschranken- erforder- lieh, die Lichtsender und Lichtempfänger der Lichtschranke beiderseits der Codespur anzuordnen. Ein weiterer Vorteil der Reflexlichtschranken ist die hohe Winkelgenauigkeit im Umschaltbereich .
Ein einfacher geometrischer Aufbau wird dadurch erzielt, daß die beiden, gegeneinander verdrehbaren Teile scheibenförmig ausgebildet sind, und sich axial gegenüberstehen.
Bei entsprechend groß gewähltem Radius der Spur, sind im Bereich der Drehachse keine Funktionselemente des Drehwinkelsensors angeordnet, so daß entlang der Drehachse ein zentraler Durchlaß vorgesehen werden kann. Durch einen sol- chen zentralen Durchlaß können bei einem Hubschrauberrotor beispielsweise mechanische oder hydraulische Elemente m vorteilhafter Weise hmdurchgefuhrt werden.
Im folgenden wird die Erfindung anhand der beiliegenden Zeichnungen naher erläutert, wobei
Fig. 1 den Teil des Drehwinkelsensors, welcher die Ab- tastelemente aufweist,
Fig. 2 den Teil des Drehwinkelsensors, welcher die Codespur aufweist,
Fig. 3 eine Abwicklung der Spuren des Drehwinkelsensors
Fig. 4 eine Tabelle mit Drehwinkelbereichen, Ausgangen der Reflexlichtschranken und entsprechendem 3-Bιt Signal,
Fig. 5 und Fig. 6 die beiden Teile einer Signaluberrra- gungsemπchtung zeigen, m der der Drehwinkelsensor verwendet wird.
Fig. 1 zeigt schematisch, die geometrische Anordnung der Reflexlichtschranken AI, A2, B, C auf einer kreisschei- benformigen Platine 10. Die Platine 10 kann beispielsweise drehfest mit einem Hubschrauberhauptrotor verbunden sein, wobei die Rotationsachse die Platine m dem mit 16 bezeichneten Mittelpunkt orthogonal schneidet. Für einen zentralen Durchlaß weist Sie im Bereich der Drehachse eine Bohrung 17 auf. Auf dem Kreisradius 14 sind die Reflexlichtschranken AI, A2, B, C des Drehwinkelsensors angeordnet. Fig. 2 zeigt schematisch eine Platine, auf der die Abtastspur angeordnet ist. Die Abtastspur weist einen lichtreflektierenden Bereich 20 und einen lichtabsorbierenden Bereich 22 auf und ist im selben Radiusbereich angeord- net, wie die Reflexlichtschranken auf der Platine 10 (Fig. 1) •
Der reflektierende Teil der Codespur kann beispielsweise als verzinnte Leiterbahn ausgebildet sein, und der lichtabsorbierende Teil kann mit einem mattschwarzen Lack versehen sein.
Auch die Platine 18 weist im Bereich der Drehachse eine Bohrung 19 auf.
Im montierten Zustand stehen sich die dargestellten Ansichten der beiden Platinen 10, 18 deckungsgleich mit einem geringen axialen Abstand gegenüber, so daß die Reflexlichtschranken AI, A2, B, C mit der Abtastspur 20, 22 zusammenwirken. Beispielsweise kann die Platine 10 verdrehbar sein und die Platine 18 drehfest mit einem nicht dargestellten Gehäuse verbunden sein.
Bei einer Verdrehung der Platine 10 gegenüber der Pla- tine 18 überstreicht alle 45° jeweils eine der Reflexlichtschranken AI, A2, B, C eine Grenze zwischen reflektierendem Bereich 20 und absorbierendem Bereich 22 der Abtastspur. Der Ausgang der jeweiligen Reflexlichtschranke ändert sich dabei .
Fig. 3 zeigt eine Skizze der geometrischen Abwicklung der Anordnungen gemäß den Figuren 1 und 2. In der Abwicklung entspricht eine Drehung der Platine 10 gemäß der in Fig. 1 durch einen Pfeil gekennzeichneten Drehrichtung einer Relativbewegung der Platine 10 gegenüber der Platine 18 nach rechts. Dabei ist zu beachten, daß sich die Ansichten von Fig. 1 und Fig. 2 im montierten Zustand gegenüberste- hen. In der in Fig. 3 dargestellten Stellung befindet sich die Reflexlichtschranke B gerade an der Grenze vom absorbierenden Bereich 22 zum reflektierenden Bereich 20. Wird entsprechend der Pfeilrichtung um 22,5° weiterbewegt, so wird die Mittelstellung des Drehwinkelbereichs 1 (0° - 45°) der Tabelle gemäß Fig. 4 erreicht. Bei dieser Stellung befinden sich die Reflexlichtschranken A2, AI und B im reflektierenden Bereich 20 der Codespur und haben an Ihrem Ausgang demgemäß eine Spannung anliegen. In der dritten Spalte „Reflexlichtschranke" der Tabelle Fig. 4 ist dies jeweils durch eine „1" gekennzeichnet. Die Reflexlichtschranke C befindet sich im lichtabsorbierenden Bereich 22 der Codespur. An Ihrem Ausgang liegt keine Spannung an. Dies ist durch eine „0" gekennzeichnet.
Erfindungsgemäß werden die beiden Ausgänge der Reflexlichtschranken A2 und AI mit einer „Exklusiv Oder" Verknüpfung verknüpft. Als Ergebnis erhält man das Signal „A", welches zusammen mit den Signalen der Reflexlichtschranken B und C ein 3-Bit Signal ABC bildet. In den beiden letzten Spalten der Tabelle gemäß Fig. 4 ist das 3-Bit Signal ABC binär und dezimal dargestellt.
An jeder Grenze eines jeweils 45° umfassenden Drehwinkelbereichs ändert sich der Ausgang einer Reflexlicht- schranke. Wie aus der Tabelle Fig. 4 ersichtlich ist, werden mit der erfindungsgemäßen Anordnung bei einer vollen Umdrehung alle 8 möglichen Werte des Signals ABC jeweils einmal erzeugt. Es besteht ein eindeutiger Zusammenhang dieser Werte zu bestimmten Drehwinkelbereichen.
Dieser sehr einfache Drehwinkelsensor mit einer Auflö- sung von 45° kann vorteilhaft in einer in den Figuren 5 und 6 dargestellten Signalübertragungseinrichtung zur Übertragung von 4 Datenkanälen zwischen einem rotierenden System und einem feststehenden System verwendet werden. Dabei sind auf einem sendenden System (10) mehrere Sender (Tl - T8) und auf einem gegenüberliegenden empfangenden System (18) mehrere Empfänger (Rl - R4) angeordnet. Die Sender und Empfänger sind jeweils auf ringförmigen Bereichen 12 gleichmäßig verteilt angeordnet, so daß bei einer vollen Drehung des rotierenden Systems nacheinander jeder Sender jedem Empfänger gegenübersteht. Der erfindungsgemäße Drehwinkelsensor (AI, A2, B, C, 20, 22) dient zur Erfassung der jeweiligen Drehwinkelbereiche. Eine hier nicht dargestellte Senderumschalteinrichtung verwendet das Signal ABC des Drehwinkelsensors zur drehwinkelabhängigen Zuordnung von Datenkanälen zu Sendern.
Eine derartige Signalübertragungseinrichtung ist verschleißfrei, kompakt und ermöglicht hohe Übertragungsraten zwischen einem feststehenden und einem rotierenden System. Die Verwendung des erfindungsgemäßen Drehwinkelsensors ist auch deshalb sehr vorteilhaft, weil das Signal ABC direkt ohne weitere Aufbereitung von der Senderumschalteinrichtung verarbeitet werden kann. Bezugszeichen
Tl Sender (LED)
T2 Sender (LED) T3 Sender (LED)
T4 Sender (LED)
T5 Sender (LED)
T6 Sender (LED)
T7 Sender (LED) T8 Sender (LED)
Rl Empfänger (Fotodiode)
R2 Empfänger (Fotodiode)
R3 Empfänger (Fotodiode)
R4 Empfänger (Fotodiode) AI Reflexlichtschranke
A2 Reflexlichtschranke
B Reflexlichtschranke
C Reflexlichtschranke
10 Platine 12 Spur, Datenübertragung
14 Spur, Drehwinkelsensor
16 Drehzentrum
17 Bohrung
18 Platine 19 Bohrung
20 Abtastspur, reflektierend
22 Abtastspur, absorbierend

Claims

P a t e n t a n s p r ü c h e
1. Drehwinkelsensor mit zwei gegeneinander verdrehba- ren Teilen, wobei auf dem ersten Teil (10) mehrere Abtastelemente angeordnet sind, und auf dem zweiten Teil (18) eine in sich geschlossene ringförmige Codespur (20, 22) vorgesehen ist, dadurch g e k e n n z e i c h n e t , daß auf dem ersten Teil jeweils ein Abtastelement an den Drehwin- kelstellungen 0° (B) , 45° (AI), 135° (A2), 270° (C) angeordnet ist, und die Codespur in zwei verschiedene jeweils 180° umschließende Bereiche (20, 22) unterteilt ist, und daß ein Logikgatter mit einer „Exklusiv Oder" Verknüpfung vorgesehen ist, durch den die Ausgänge der Abtastelemente an den Drehwinkelstellungen 45° (AI) und 135° (A2) verknüpft sind.
2. Drehwinkelsensor nach Anspruch 1, dadurch g e k e n n z e i c h n e t , daß die Abtastelemente (AI, A2, B, C) Reflexlichtschranken sind, ein Bereich (20) der Codespur lichtreflektierend ist, und der andere Bereich (22) der Codespur lichtabsorbierend ist.
3. Drehwinkelsensor nach einem der Ansprüche 1 oder 2, dadurch g e k e n n z e i c h n e t , daß die beiden gegeneinander verdrehbaren Teile (10, 18) scheibenförmig ausgebildet sind, und sich axial gegenüberstehen.
4. Drehwinkelsensor nach Anspruch 3, dadurch g e - k e n n z e i c h n e t , daß im Bereich der Drehachse ein zentraler Durchlaß (17, 19) vorgesehen ist.
5. Verfahren zur Messung eines Drehwinkels mit einem Drehwinkelsensor nach einem der Ansprüche 1 bis 4 dadurch g e k e n n z e i c h n e t , daß die Ausgänge des Logikgatters und die Ausgänge der beiden Abtastelemente an den Drehwinkelstellungen 0° (B) und 270° (C) ein 3-Bit Signal für die Drehwinkelstellung bilden.
6. Verwendung des Drehwinkelsensors nach einem der Ansprüche 1 bis 4 und des Verfahrens zur Messung des Dreh- winkeis nach Anspruch 5 in einer Signalübertragungseinrichtung zur Übertragung von Daten auf mehreren Datenkanälen zwischen einem rotierenden System und einem feststehenden System, wobei auf einem sendenden System (10), welches das rotierende oder das feststehende sein kann, mehrere Sender (Tl - T8) und auf einem gegenüberliegenden empfangenden System (18) mehrere Empfänger (Rl - R4) angeordnet sind, wobei die Sender und Empfänger jeweils auf ringförmigen Bereichen gleichmäßig verteilt angeordnet sind, so daß bei einer vollen Drehung des rotierenden Systems nacheinander jeder Sender jedem Empfänger gegenübersteht, der Drehwinkelsensor (AI, A2, B, C, 20, 22) zur Identi izierung eines von 8 jeweils 45° umschließenden Drehwinkelbereichen zwischen rotierendem und feststehendem System dient, und eine Senderumschalteinrichtung zur drehwinkelabhängigen Zuord- nung von Datenkanälen zu Sendern vorgesehen ist.
PCT/EP1998/003936 1997-07-03 1998-06-27 Drehwinkelsensor WO1999001720A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP98938664A EP0993591B1 (de) 1997-07-03 1998-06-27 Drehwinkelsensor
DE59803350T DE59803350D1 (de) 1997-07-03 1998-06-27 Drehwinkelsensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19728313.6 1997-07-03
DE19728313A DE19728313A1 (de) 1997-07-03 1997-07-03 Drehwinkelsensor

Publications (1)

Publication Number Publication Date
WO1999001720A1 true WO1999001720A1 (de) 1999-01-14

Family

ID=7834449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/003936 WO1999001720A1 (de) 1997-07-03 1998-06-27 Drehwinkelsensor

Country Status (3)

Country Link
EP (1) EP0993591B1 (de)
DE (2) DE19728313A1 (de)
WO (1) WO1999001720A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1178338A2 (de) * 2000-07-31 2002-02-06 Litton Systems, Inc. Parallele Datenübermittlung durch segmentierte Wellenleiter mit grossem Durchmesser

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009008470A1 (de) * 2009-02-15 2010-08-26 Mähner, Bernward Verfahren und Vorrichtung zur räumlichen Vermessung eines sich bewegenden Objektes
DE102011109269B3 (de) * 2011-08-03 2012-11-29 Maschinenfabrik Reinhausen Gmbh Stellungsmeldeanordnung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1498409A (en) * 1975-05-22 1978-01-18 British Aircraft Corp Ltd Electrical apparatus
JPS5746543A (en) * 1980-09-03 1982-03-17 Hitachi Ltd Light signal transmission device
JPS57175211A (en) * 1981-04-23 1982-10-28 Hitachi Constr Mach Co Ltd Angle detector of rotating body
JPS6055805A (ja) * 1983-08-31 1985-04-01 Toshiba Corp 車両の制御装置
EP0332244A1 (de) * 1988-02-22 1989-09-13 Dynamics Research Corporation Absolutkodierer mit einer einzigen Spur

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3035012C2 (de) * 1980-09-17 1982-08-12 Fa. Carl Zeiss, 7920 Heidenheim Einrichtung zur Winkelmessung
DE3035774A1 (de) * 1980-09-23 1982-05-27 Robert Bosch Gmbh, 7000 Stuttgart Digitaler positionsgeber
US4665359A (en) * 1984-09-13 1987-05-12 Sangamo Weston, Inc. Method and apparatus for detecting tampering with a meter having an encoded register display
US4901072A (en) * 1988-02-17 1990-02-13 Westinghouse Electric Corp. Position detector utilizing gray code format
DE3939353A1 (de) * 1989-11-24 1991-05-29 Schueler Ben Michael Messverfahren und -vorrichtung
JP2754422B2 (ja) * 1990-07-18 1998-05-20 株式会社ニコン アブソリュート・エンコーダ
DE4300663C1 (de) * 1993-01-13 1994-06-23 Kostal Leopold Gmbh & Co Kg Optischer Lenkwinkelsensor
DE19506019C2 (de) * 1995-02-22 2000-04-13 Telefunken Microelectron Verfahren zum Betrieb eines optischen Lenkwinkelsensors
DE19534995A1 (de) * 1995-09-21 1997-03-27 Bosch Gmbh Robert Sensor zur Lenkradwinkelerfassung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1498409A (en) * 1975-05-22 1978-01-18 British Aircraft Corp Ltd Electrical apparatus
JPS5746543A (en) * 1980-09-03 1982-03-17 Hitachi Ltd Light signal transmission device
JPS57175211A (en) * 1981-04-23 1982-10-28 Hitachi Constr Mach Co Ltd Angle detector of rotating body
JPS6055805A (ja) * 1983-08-31 1985-04-01 Toshiba Corp 車両の制御装置
EP0332244A1 (de) * 1988-02-22 1989-09-13 Dynamics Research Corporation Absolutkodierer mit einer einzigen Spur

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 006, no. 119 (E - 116) 3 July 1982 (1982-07-03) *
PATENT ABSTRACTS OF JAPAN vol. 007, no. 018 (P - 170) 25 January 1983 (1983-01-25) *
PATENT ABSTRACTS OF JAPAN vol. 009, no. 191 (M - 402) 7 August 1985 (1985-08-07) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1178338A2 (de) * 2000-07-31 2002-02-06 Litton Systems, Inc. Parallele Datenübermittlung durch segmentierte Wellenleiter mit grossem Durchmesser
EP1178338A3 (de) * 2000-07-31 2004-04-07 Litton Systems, Inc. Parallele Datenübermittlung durch segmentierte Wellenleiter mit grossem Durchmesser

Also Published As

Publication number Publication date
DE59803350D1 (de) 2002-04-18
DE19728313A1 (de) 1999-01-07
EP0993591A1 (de) 2000-04-19
EP0993591B1 (de) 2002-03-13

Similar Documents

Publication Publication Date Title
EP0699151B1 (de) Sensor zur erfassung des lenkwinkels
DE69209157T2 (de) Vorrichtung zur Messung eines Drehwinkels
EP1364186B1 (de) Multiturn-codedrehgeber
EP0845659B1 (de) Abtastelement für eine Positionsmesseinrichtung
EP0774648B1 (de) Winkelsensor
EP0258725B1 (de) Kapazitiver Drehgeber zum Steuern und Positionieren von bewegten Gegenständen
EP0893668A1 (de) Winkelsensor
EP1238251A1 (de) Vorrichtung zur messung des winkels und/oder der winkelgeschwindigkeit eines drehbaren körpers und/oder des auf ihn wirkenden drehmoments
DE102015203752A1 (de) Sensorvorrichtung zum Erfassen einer Wählhebelposition und Wählhebelvorrichtung für ein Kraftfahrzeug
EP1457762B1 (de) Vorrichtung zur Messung der Position, des Weges oder des Drehwinkels eines Objektes
DE19649906C2 (de) Sensor zur Erfassung von Drehwinkeln
EP0902255B1 (de) Winkelsensor
EP0993591B1 (de) Drehwinkelsensor
EP1770372B1 (de) Positionsmesseinrichtung
EP1770375B1 (de) Positionsmesseinrichtung mit zwei Massverkörperungen deren Codespuren sich gegenseitig überlappen
EP0993666B1 (de) Signalübertragungseinrichtung
DE3011671A1 (de) Druckgeber
DE10057662A1 (de) Absolutwertgeber, insbesondere für ein rotierendes System
DE19918313A1 (de) Winkelsensor
DE10031969C2 (de) Winkelsensor
EP0430288A2 (de) Drehwinkelgeber
EP0989677B1 (de) Kodierer zur Umwandlung einer analogen Eingabe in Digitalsignale
DE102022124159B4 (de) Positionssensorvorrichtung
DE102017102639A1 (de) Rändelradschalter mit Magnetkodierung und Magnetsensoren
DE3417905A1 (de) Impulsgeber mit einer elektromechanischen kontaktvorrichtung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998938664

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09445502

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998938664

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998938664

Country of ref document: EP