WO1998055809A1 - Installation de refrigeration - Google Patents

Installation de refrigeration Download PDF

Info

Publication number
WO1998055809A1
WO1998055809A1 PCT/JP1998/002441 JP9802441W WO9855809A1 WO 1998055809 A1 WO1998055809 A1 WO 1998055809A1 JP 9802441 W JP9802441 W JP 9802441W WO 9855809 A1 WO9855809 A1 WO 9855809A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
refrigerant circuit
primary
circuit
Prior art date
Application number
PCT/JP1998/002441
Other languages
English (en)
French (fr)
Inventor
Akitoshi Ueno
Yuji Fujimoto
Takenori Mezaki
Yoshihiro Nishioka
Yasutoshi Mizutani
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to US09/147,563 priority Critical patent/US6212898B1/en
Priority to AU75493/98A priority patent/AU730288B2/en
Priority to JP50205699A priority patent/JP3870423B2/ja
Priority to EP98923092A priority patent/EP0930474B1/en
Priority to DE69831923T priority patent/DE69831923T2/de
Publication of WO1998055809A1 publication Critical patent/WO1998055809A1/ja
Priority to NO990397A priority patent/NO990397D0/no

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47FSPECIAL FURNITURE, FITTINGS, OR ACCESSORIES FOR SHOPS, STOREHOUSES, BARS, RESTAURANTS OR THE LIKE; PAYING COUNTERS
    • A47F3/00Show cases or show cabinets
    • A47F3/04Show cases or show cabinets air-conditioned, refrigerated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets

Definitions

  • the present invention relates to a refrigeration apparatus including a primary-side refrigerant circuit and a secondary-side refrigerant circuit, and exchanging heat between these refrigerant circuits, and in particular, a refrigeration apparatus including a plurality of use-side heat exchangers. It is related to.
  • a refrigeration apparatus has a primary refrigerant circuit in which a primary refrigerant circulates and a secondary refrigerant in which a secondary refrigerant circulates, as disclosed in Japanese Patent Application Laid-Open No. 5-55567. There is a binary refrigeration cycle with a circuit. Then, the refrigerant in the primary refrigerant circuit and the refrigerant in the secondary refrigerant circuit exchange heat in the refrigerant heat exchanger.
  • the refrigerant heat exchanger is also called a cascade heat exchanger.
  • Some refrigeration systems of this type are provided with a plurality of secondary refrigerant circuits for one primary refrigerant circuit in order to enhance versatility.
  • a plurality of use side heat exchangers use the primary side refrigerant circuit as a heat source.
  • the above-mentioned conventional refrigeration system has a configuration in which a plurality of cooling units are provided on the indoor side, and a secondary-side refrigerant circuit is provided in each of these cooling units. That is, the liquid-side piping and the liquid-side piping of the primary-side refrigerant circuit are each branched, and the branch pipe is led to each cooling unit. Then, in the refrigerant heat exchangers of the respective cooling units, heat is exchanged between the primary refrigerant and the secondary refrigerant.
  • Each of the cooling units is arranged in series with the liquid-side pipe of the primary-side refrigerant circuit. As a result, the primary refrigerant flows through each cooling unit in order, and heat exchange between the primary refrigerant and the secondary refrigerant occurs in each cooling unit. —Solution 1
  • each of the cooling units contains a refrigerant heat exchanger. Therefore, a refrigerant heat exchanger corresponding to the number of secondary refrigerant circuits was required.
  • each of the above cooling units had to be provided with a closed-circuit secondary-side refrigerant circuit connecting a compressor, a condenser, an expansion valve, and an evaporator. For this reason, the circuit configuration was complicated as a whole.
  • the conventional refrigeration apparatus could only be applied to a cooling unit having the above-described closed circuit.
  • cooling units are respectively arranged in a plurality of refrigeration showcases, and the plurality of cooling units are connected to one outdoor unit. Therefore, each refrigeration showcase requires a refrigerant heat exchanger and a secondary-side refrigerant circuit in a closed circuit.
  • the above showcases include refrigerated showcases that contain only the use-side heat exchangers (evaporators) of the unit refrigeration cycle, in addition to refrigerated showcases that contain a refrigeration circuit.
  • refrigerated showcases that contain only the use-side heat exchangers (evaporators) of the unit refrigeration cycle, in addition to refrigerated showcases that contain a refrigeration circuit.
  • the conventional refrigeration system could only be applied to a refrigeration showcase with a refrigeration circuit, and could not be applied to a plurality of types of showcases having different cooling temperatures.
  • the present invention has been made in view of these points, and in a refrigeration apparatus that uses a heat source of one primary-side refrigerant circuit with a plurality of use-side heat exchangers, while simplifying the circuit configuration,
  • An object is to enable the use side heat exchanger to be applied in various forms.
  • a refrigerant heat exchanger is provided only in one unit, and a closed circuit is configured between the refrigerant heat exchanger and the use-side heat exchanger.
  • the first solution means comprises a primary refrigerant circuit (10), a secondary refrigerant circuit (20), and the primary refrigerant circuit (10).
  • the secondary-side refrigerant circuit (20) includes a plurality of use-side heat exchangers (lib, 3c) in which the refrigerant circulates with the refrigerant heat exchanger (5). Further, the one use side heat exchanger (lib) is provided in one unit (2a) together with the refrigerant heat exchanger ( 5 ). In addition, the other use side heat exchanger (3c) is connected to the refrigerant heat exchanger (5) by refrigerant pipes (LL-A, GL-A) extending from the unit (2a).
  • the refrigerant in the primary-side refrigerant circuit (10) and the refrigerant in the secondary-side refrigerant circuit (20) exchange heat.
  • the refrigerant circulates between the use side heat exchanger (lib) of the unit (2a) and the refrigerant heat exchanger (5).
  • the coolant circulates between the other use-side heat exchanger (3c) and the refrigerant heat exchanger (5) via the refrigerant pipes (LL-A, GL-A). Then, each of the use side heat exchangers (lib, 3c) performs a predetermined cooling operation.
  • the use-side heat exchanger (3c) disposed outside the unit (2a) uses the refrigerant heat exchanger ( 5 ) as a heat source, and the refrigerant heat exchanger (5) is disposed in the unit (2a).
  • the second solving means circulates through a primary refrigerant circuit (10), a secondary refrigerant circuit (11, 12), and the primary refrigerant circuit (10).
  • a plurality of the secondary-side refrigerant circuits (11, 12) are provided, and each of the secondary-side refrigerant circuits (11, 12) is provided on a use side through which a refrigerant circulates with the refrigerant heat exchanger (5).
  • the one secondary-side refrigerant circuit (11) is provided in the main unit (2a) together with the refrigerant heat exchanger (5).
  • a use-side heat exchanger (3c) of the other secondary-side refrigerant circuit (12) is provided in the sub-unit (3a), and the refrigerant pipe (LL-A, LL-A) extends from the main unit (2a).
  • the third solution means comprises a primary refrigerant circuit (10), a secondary refrigerant circuit (11), and a refrigerant circulating through the primary refrigerant circuit (10).
  • the secondary-side refrigerant circuit (11) includes a plurality of use-side heat exchangers (lib, 3c) in which the refrigerant circulates with the refrigerant heat exchanger (5) and is connected in parallel with each other. I have. Further, the one use side heat exchanger (lib) is provided in the main unit (2a) together with the refrigerant heat exchanger (5). In addition, the other use-side heat exchanger (3c) is provided in the subunit (3a) and is connected to the refrigerant heat exchanger (5) by the refrigerant pipe (LL-A, GA) extending from the main unit (2a). It is connected to the.
  • LL-A, GA refrigerant pipe
  • a fourth solution means comprises a primary refrigerant circuit (10), a secondary refrigerant circuit (12), and the primary refrigerant circuit (10).
  • the primary-side refrigerant circuit (10) includes a first use-side heat exchanger (lib) connected in parallel with the refrigerant heat exchanger (5)
  • the secondary-side refrigerant circuit (12) includes: Refrigerant heat exchanger A second use-side heat exchanger (3c) through which the refrigerant circulates between (5) and (5).
  • the first use side heat exchanger (lib) is provided in one unit (2a) together with the refrigerant heat exchanger (5).
  • the second use side heat exchanger (3c) is connected to the refrigerant heat exchanger (5) by refrigerant pipes (LL-A, GL-A) extending from the unit (2a).
  • the first use side heat exchanger (lib) forms a part of the primary side refrigerant circuit (10). That is, while the first use side heat exchanger (lib) is used as the use side heat exchanger of the unitary refrigeration cycle, the unit (2a) accommodating the first use side heat exchanger (lib) is connected to the refrigerant heat exchanger (lib). 5) is provided. Then, the refrigerant heat exchanger (5) serves as a heat source of the second usage-side heat exchanger (3c). Further, as shown in FIG. 9, the fifth solution means comprises a primary refrigerant circuit (10), a secondary refrigerant circuit (12), and a refrigerant circulating through the primary refrigerant circuit (10).
  • the primary-side refrigerant circuit (10) includes a first use-side heat exchanger (lib) connected in parallel with the refrigerant heat exchanger (5), and the secondary-side refrigerant circuit (12) includes: Refrigerant heat exchanger
  • the first use side heat exchanger (lib) is provided in the main unit (2a) together with the refrigerant heat exchanger (5).
  • the second use-side heat exchanger (3c) is provided in the subunit (3a), and the refrigerant pipes (LL-A, GL-A) extending from the main unit (2a) are connected to the refrigerant heat exchanger (5). ) It is connected to the.
  • the sixth solution means comprises a primary refrigerant circuit (10), a secondary refrigerant circuit (11), and a refrigerant circulating through the primary refrigerant circuit (10).
  • secondary refrigerant circuit 10
  • secondary refrigerant circuit 11
  • the primary-side refrigerant circuit (10) includes a first use-side heat exchanger (lib) connected in parallel with the refrigerant heat exchanger (5), and the secondary-side refrigerant circuit (11) includes: Refrigerant heat exchanger
  • (3c) are individually provided in the sub-unit () and connected to the refrigerant heat exchanger (5) by refrigerant pipes (LL-A, GL-A) extending from the main unit ().
  • a seventh solution is the second solution or the fifth solution, wherein the subunit (3a) is provided with a secondary compressor (3b).
  • the discharge side of the secondary compressor (3b) is connected to the gas side of the refrigerant heat exchanger (5) via a gas pipe (GL-A).
  • the liquid side of the use side heat exchanger (3c) of the subunit (3a) is connected to the liquid side of the refrigerant heat exchanger (5) via the pressure reducing mechanism (EV-2) and the liquid pipe (LL-A).
  • the refrigerant discharged from the secondary compressor (3b) flows into the refrigerant heat exchanger ( 5 ) through the gas pipe (GL-A), and the refrigerant in the primary refrigerant circuit (10) And heat exchange to condense. Thereafter, the condensed refrigerant is depressurized by the decompression mechanism (EV-2) and evaporated by the use side heat exchanger (3c), and a predetermined cooling operation is performed.
  • the eighth solution is the third solution or the sixth solution described above, wherein the secondary refrigerant circuit (11) of the main unit (2a) is connected to the secondary compressor (3b) by the pressure reduction.
  • the mechanism (EV-1), the use side heat exchanger (lib), and the refrigerant heat exchanger (5) are connected in order.
  • liquid side of the use side heat exchanger (3c) of the unit (3a) is connected to the liquid side of the refrigerant heat exchanger (5) by a liquid pipe (LL-A).
  • gas side of (3c) is connected to the suction side of the secondary compressor (3b) by a gas pipe (Gre A).
  • the refrigerant discharged from the secondary compressor (3b) is condensed in the refrigerant heat exchanger (5), and a part is evaporated in the use side heat exchanger (lib) of the main unit (2a).
  • the other condensed refrigerant evaporates in the utilization heat exchanger (3c) of the subunit (3a) via the liquid pipe (L and A).
  • a predetermined cooling operation is performed in each use side heat exchanger (lib, 3c).
  • the ninth solution means is the second solution means, the third solution means, the fifth solution means or the sixth solution means, wherein the primary refrigerant circuit (10) is a refrigerant heat exchanger.
  • It has a user-side heat exchanger (4b) connected in parallel with (5) and provided in the subunit (4a). Further, the liquid side of the use side heat exchanger (4b) is connected to the liquid side of the refrigerant heat exchanger (5) by a liquid pipe (LL-B), and the gas of the use side heat exchanger (4b) is connected. Side is connected to the gas side of the refrigerant heat exchanger (5) by a gas pipe (GL-B).
  • LL-B liquid pipe
  • GL-B gas pipe
  • part of the primary refrigerant circuit (10) constitutes a unit refrigeration cycle.
  • the use-side heat exchanger (3c) of the binary refrigeration cycle and the use-side heat exchanger (4b) of the unitary refrigeration cycle coexist. are doing.
  • the use-side heat exchanger (lib, 3c, 4b) is configured so that the inside air of the food showcase is removed. The air is cooled by performing heat exchange with the air.
  • This specification simplifies the configuration of the food showcase and reduces the installation space for the showcase.
  • one refrigerant heat exchanger (5) is used for a plurality of times. It can function as a heat source for the side heat exchanger (lib, 3c).
  • the refrigerant heat exchanger ( 5 ) can be evaporated in each use-side heat exchanger (lib, 3c).
  • the second solution it is not necessary to provide the refrigerant heat exchanger (5) in the subunit (3a), so that the circuit configuration can be simplified. Further, in addition to the effect of the first solving means, since a plurality of secondary refrigerant circuits (11, 12) are provided, it is necessary to set a cooling capacity and the like for each secondary refrigerant circuit (11, 12). Can be.
  • the third solution it is not necessary to provide the refrigerant heat exchanger (5) in the unit (3a), so that the circuit configuration can be simplified. Furthermore, in addition to the effect of the first solving means, since the secondary-side refrigerant circuit (11) is provided with a plurality of use-side heat exchangers (lib, 3c), it is possible to facilitate pipe connection and the like. .
  • the main unit (2a) is provided with a compressor and the like, while the subunit (3a) is provided with only the use side heat exchanger (3c).
  • a configuration can be employed.
  • a plurality of types of units (2a, 3c) having different cooling temperatures can coexist, so that versatility can be improved.
  • the first use side heat exchanger (lib) is provided in the primary side refrigerant circuit (10) in parallel with the refrigerant heat exchanger (5). Since the unit (lib) is provided in one unit (2a) together with the refrigerant heat exchanger (5), the unit (2a) having no compressor or the like can be configured. As a result, the applicable range of the unit (2a) can be expanded. Further, the circuit configuration can be simplified as in the first solution. Further, according to the fifth solution, the second use side heat exchanger (3c) is provided in the subunit (3a), so that the compressor of the subunit (3a) can be omitted. . As a result, the circuit configuration can be simplified. Further, similarly to the second and third solutions, a plurality of types of units (2a, 3c) can coexist, so that versatility can be improved.
  • a plurality of second-use-side heat exchangers (3c) are provided in each subunit (3a), so that it is possible to easily cope with a plurality of cooling targets. it can.
  • the circuit configuration can be simplified similarly to the first solution.
  • a plurality of types of units (2a, 3c) can coexist, so that versatility can be improved.
  • the secondary unit (3b) is provided in the subunit (3a), so that the subunit (3a) can generate a low temperature or the like. Can be expanded.
  • the main unit (2a) is provided with the secondary compressor (3b) and the like, the subunit (3a) having only the use-side heat exchanger (3c) can be used. Can be configured. As a result, the configuration of the entire circuit can be reliably simplified.
  • the food showcase is cooled, so that the showcase in a limited space can be used effectively without fail.
  • the configuration of the food showcase itself can be simplified.
  • the installation space for the food showcase can be reduced.
  • FIG. 1 is a diagram showing an arrangement state of each showcase.
  • FIG. 2 is a schematic diagram of a pipe connection state of each showcase.
  • FIG. 3 is a refrigerant piping system diagram of the outdoor unit and the master unit in the first embodiment.
  • FIG. 4 is a diagram showing a piping configuration of the refrigerator.
  • FIG. 5 is a diagram showing a piping configuration of the refrigerator.
  • FIG. 6 is a diagram corresponding to FIG. 3 in the second embodiment.
  • FIG. 7 is a diagram illustrating a piping configuration of a refrigerator according to the second embodiment.
  • FIG. 8 is a diagram corresponding to FIG. 3 in the third embodiment.
  • FIG. 9 is a diagram corresponding to FIG. 3 in the fourth embodiment.
  • FIG. 10 is a diagram corresponding to FIG. 3 in the fifth embodiment.
  • FIG. 11 is a diagram corresponding to FIG. 3 in the sixth embodiment.
  • the refrigeration apparatus of the present invention is applied to a showcase installed in a food section of a supermarket or the like.
  • Fig. 1 shows the arrangement of showcases at the food counter. Each showcase is equipped with cooling units (2, 3A, 3B, 4A, 4B).
  • Fig. 2 shows the outline of the piping connection of the cooling units (2, 3A, 3B, 4A, 4B) of each showcase, and Figs. 3 to 5 show the details of the piping connection.
  • the refrigeration system includes one outdoor unit (1) and five cooling units (2, 3A, 3B, 4A, 4B).
  • the cooling units (2, 3A, 3B, 4A, 4B) cool the inside of each showcase.
  • the master unit (2), the refrigerator units (3A, 3B) and the refrigerator units (4A, 4B) are connected to the outdoor unit (1) by refrigerant piping.
  • Each of the refrigerators (3A, 3B) generates a predetermined low temperature (for example, ⁇ 40 ° C.), and cools the inside of the refrigerator showcase.
  • the refrigerant heat exchanger (5) is a cascade type heat It is also called an exchange, and is provided in the master unit (2).
  • the master unit (2) generates a predetermined low temperature (for example, ⁇ 40 ° C.) in the same manner as the freezing slave units (3A, 3B), and cools the inside of the freezing showcase.
  • a predetermined low temperature for example, ⁇ 40 ° C.
  • the refrigerant circulates between the outdoor unit (1) and generates a predetermined low temperature (for example, ⁇ 15 ° C.) to cool the inside of the refrigerator store case. I do.
  • Outdoor unit each device (unit) that performs the above-described cooling operation.
  • the outdoor unit (1) is installed outside the building.
  • the casing (la) of the outdoor unit (1) contains a primary compressor (lb) and an outdoor heat exchanger (lc) connected to each other by a refrigerant pipe.
  • a primary liquid pipe (LL) is connected to the liquid side of the outdoor heat exchanger (lc), and a primary gas pipe (GL) is connected to the suction side of the primary compressor (lb). ing.
  • the primary liquid pipe (LL) and the primary gas pipe (GL) extend from the casing (la) and are connected to the master unit (2).
  • the parent machine (2) constitutes a main unit, and the casing () of the parent machine (2) houses the refrigerant heat exchanger (5).
  • a primary liquid pipe (LL) and a primary gas pipe (GL) extending from the outdoor unit (1) are connected to the refrigerant heat exchanger (5).
  • a first flow divider (6) and a second flow divider (7) are provided inside the master unit (2).
  • first branch (6) three upstream branch pipes (LL-1, LL-2, LL-3) are branched, and one upstream branch pipe (LL-1) is branched in the second branch. Connected to the container (7).
  • second flow divider (7) three downstream branch pipes (LL-4, LL-5, LL-6) are further branched, and the respective downstream branch pipes (LL-4, LL-5, LL-6) is connected to the refrigerant heat exchanger (5).
  • the refrigerant heat exchanger (5) is a plate heat exchanger.
  • the refrigerant heat exchanger (5) The first primary passage (5a), the second primary passage (5b), and the third primary passage corresponding to the downstream branch pipes (LL- 4 , LL-5, LL-6) (5c) is formed.
  • Each of the downstream branch pipes (LL-4, LL-5, LL-6) is provided with an electric expansion valve (EV-A, EV-B, EV-C).
  • the electric expansion valves (EV-A, EV-B, EV-C) individually control the evaporation temperature of the refrigerant in the primary passages (5a, 5b, 5c) by controlling the extent of the expansion. .
  • Each of the primary passages (5a, 5b, 5c) of the refrigerant heat exchanger (5) is not necessarily a single passage, but a number of plates may be overlapped and each of the primary passages (5a, 5b, 5c). 5a, 5b, 5c) may be constituted by a plurality of passages.
  • the primary gas pipe (GL) is provided with the first merge header (8) and the second merge header (9) located inside the master unit.
  • Outlet pipes (GL-1, GL-2, GL-3) for the primary refrigerant of the refrigerant heat exchanger (5) are connected to the first merge header (8), and the merge pipe (GL- 4) is connected.
  • the merge pipe (GL-4) is connected to a second merge header (9), and the second merge header (9) is connected to the suction side of the primary compressor (lb).
  • a primary refrigerant circuit do) is formed between the primary compressor (lb) and the refrigerant heat exchanger (5).
  • the refrigerant discharged from the primary compressor (lb) is condensed in the outdoor heat exchanger (lc). After a part of the condensed refrigerant is decompressed by the electric expansion valves (EV-A, EV-B, EV-C), it evaporates in the refrigerant heat exchanger (5). Return to).
  • the primary-side refrigerant performs this circulation operation.
  • the master unit (2) houses a first usage-side refrigerant circuit (11) that exchanges heat with the primary-side refrigerant in the refrigerant heat exchanger (5).
  • the first usage-side refrigerant circuit (11) includes a secondary-side compressor (11a), a first secondary-side passage (5A) of a refrigerant heat exchanger (5), and an electric expansion valve (EV-1). ) And the use side heat exchanger (lib) are connected by refrigerant piping (11c).
  • the first usage-side refrigerant circuit (11) is a closed circuit configured to enable refrigerant circulation,
  • the first secondary passage (5A) exchanges heat with the first primary passage (5a). That is, the refrigerant discharged from the secondary-side compressor (11a) is combined with the refrigerant in the first primary-side passage (5a) in the first secondary-side passage (5A) of the refrigerant heat exchanger (5). Condenses by heat exchange.
  • the first use-side refrigerant circuit (11) forms a binary refrigeration cycle with the primary-side refrigerant circuit (10).
  • the second secondary passage (5B) and the third secondary passage (5C) of the refrigerant heat exchanger (5) are connected by a liquid pipe (LL-A) and a gas pipe (GL-A). Connected to refrigeration units (3A, 3B).
  • LL-A liquid pipe
  • GL-A gas pipe
  • Each of the refrigerators (3A, 3B) constitutes a unit and has the same configuration as each other. Therefore, here, one refrigerator (3A) will be described with reference to FIG.
  • the refrigerator (3A) is constituted by a vapor compression refrigeration cycle.
  • the casing () of the refrigerator (3A) contains a secondary compressor (3b), a use side heat exchanger (), and an electric expansion valve (EV-2).
  • a gas pipe (GL-A) is connected to the discharge side of the secondary compressor (3b), and a liquid pipe (LL-A) is connected to the liquid side of the use side heat exchanger (3c). ing.
  • the gas pipe (GL-A) and the liquid pipe (LL-A) are connected to a second secondary passage (5B) of the refrigerant heat exchanger (5).
  • a closed-circuit second use-side refrigerant circuit (12) is configured between the refrigerator subunit (3A) and the second secondary-side passage (5B).
  • the second usage-side refrigerant circuit (12) forms a binary refrigeration cycle with the primary-side refrigerant circuit (10), like the first usage-side refrigerant circuit (11).
  • the other refrigeration handset (3B) constitute the second use-side refrigerant circuit (12) in closed circuit between a third secondary passage of the refrigerant heat exchanger (5) (5 C) ing.
  • first use side refrigerant circuit (11) and the second use side refrigerant circuit (12) constitute a secondary side refrigerant circuit (20) of the present invention.
  • Refrigerator
  • Each of the refrigerator units (4A, 4B) also constitutes a unit and has the same configuration as each other. Therefore, here, one refrigerator (4A) will be described with reference to FIG.
  • the casing (4a) of the refrigerator (4A) contains a use-side heat exchanger (4b) and an electric expansion valve (EV-3).
  • a gas pipe (GL-B) is connected to the gas side of the use side heat exchanger (4b), and a liquid pipe (LL-B) is connected to the liquid side of the use side heat exchanger (4b).
  • the liquid pipe (LL-B) is introduced into the master unit (2), and is connected to the first flow divider (6) via the upstream branch pipe (LL-2).
  • the gas pipe (GL-B) is introduced into the master unit (2) and connected to the second header (9) via the collecting pipe (GL-5).
  • a closed circuit is formed between the refrigerator unit (4A), the primary compressor (lb) of the outdoor unit (1), and the outdoor heat exchanger (lc).
  • this refrigerator (4A) does not constitute a two-way refrigeration cycle, and the refrigerant discharged from the primary compressor (lb) and condensed in the outdoor heat exchanger (lc) is separated by the first shunt ( 6) is supplied directly.
  • the liquid pipe (LL-B) is connected to the first branch ( 6 ) via the upstream branch pipe (LL-3), and the gas pipe (GL-B) is connected to the liquid pipe (LL-B).
  • Each is connected to the second header (9) via the collecting pipe (GL-6).
  • a closed circuit is formed between the refrigerator (4B), the primary compressor (lb) of the outdoor unit (1), and the outdoor heat exchanger (lc).
  • the first usage-side refrigerant circuit (11) and the second usage-side refrigerant circuit (12, 12) constitute a binary refrigeration cycle with the primary-side refrigerant circuit (10).
  • the refrigerators (4A, 4B) constitute a unit refrigeration cycle between the primary compressor (lb) and the outdoor heat exchanger (lc).
  • the electric expansion valves (EV-A to EV-C) of the downstream branch pipes (LL-4 to LL-6) of the refrigerant heat exchanger (5) are connected to the primary passages (5a, 5b, 5c).
  • the evaporating temperature of the refrigerant is adjusted, and the amount of cold heat applied to each use-side refrigerant circuit (11, 12) is adjusted.
  • each electric expansion valve (EV-1 to EV-3) on the upstream side of each usage-side heat exchanger (llb, 3c, 4b) is opened so that the temperature in the showcase becomes a predetermined set temperature. Adjusted.
  • the refrigerant discharged from the primary compressor (ib) condenses by exchanging heat with the outside air in the outdoor heat exchanger (lc).
  • the condensed liquid refrigerant is diverted by the first diverter (6), and a part of the liquefied refrigerant is supplied to the upstream diverter pipes (LL-2, LL-3) extending toward the refrigerator units (4A, 4B) and the liquid. It flows into the refrigerator (4A, 4B) via the pipe (LL-B).
  • This liquid refrigerant is decompressed by the electric expansion valve (EV-3) and then evaporates in the use-side heat exchanger (4b) by exchanging heat with air in the refrigerated showcase.
  • the refrigerator (4A, 4B) is cooled to a predetermined temperature.
  • the temperature of the refrigerator (4A, 4B) is -15 ° C.
  • the evaporated gas refrigerant passes through the gas pipe (GL-B) and the collecting pipe (GL-5, GL-6) and joins the second merging header (9), and then the primary compressor (lb) Return to).
  • the other liquid refrigerant split by the first splitter (6) is connected to the upstream branch pipe (LL-1) extending toward the refrigerant heat exchanger (5), the second splitter (7), and the downstream. Flows through the side branch pipes (LL-4, LL-5, LL6).
  • the liquid refrigerant is decompressed by each of the electric expansion valves (EV-A to EV-C, EV-1 to EV-3), and then the primary side passages (5a, 5b) of the refrigerant heat exchanger (5). , 5c).
  • the liquid refrigerant evaporates by exchanging heat with the refrigerant in each of the use-side refrigerant circuits (11, 12, 12).
  • the evaporated gas refrigerant flows through the outlet pipes (GL-1, GL-2, GL-3), the first merge header ( 8 ), and the second merge header ( 9 ) via the merge pipe (GL-4). Then, it merges with the gas refrigerant returned from the refrigerator units (4A, 4B) and returns to the primary compressor (lb).
  • the above refrigerant circulation operation is performed in the primary refrigerant circuit (10).
  • the refrigerant discharged from the secondary-side compressor (11a) flows into the first secondary-side passage (5A) of the refrigerant heat exchanger ( 5 ).
  • the refrigerant heat exchanger ( 5 ) the refrigerant in the first utilization side refrigerant circuit (11) exchanges heat with the refrigerant flowing in the first primary side passage (5a) and condenses.
  • the condensed liquid refrigerant is decompressed by the electric expansion valve (EV-1) and evaporates by exchanging heat with the air in the showcase in the use-side heat exchanger (lib).
  • EV-1 electric expansion valve
  • the inside of the master unit (2) is cooled to a predetermined temperature. For example, the temperature inside the master unit (2) is-40 ° C. Then, the evaporated gas refrigerant returns to the secondary compressor (11a).
  • the refrigerant discharged from the secondary-side compressor (3b) flows to the parent machine (2) via the gas pipe (GL-A). Then, the refrigerant flows through the second secondary passage (5B) and the third secondary passage (5C) of the refrigerant heat exchanger (5).
  • the refrigerant in the second usage-side refrigerant circuit (12) is mixed with the refrigerant flowing in the second primary side passage (5b) and the third primary side passage (5c). Exchanges heat and condenses. Thereafter, the condensed liquid refrigerant returns to the refrigerators (3A, 3B) again via the liquid pipe (LL-A).
  • the liquid refrigerant evaporates by exchanging heat with the air in the freezer showcase in the use-side heat exchanger (3c).
  • the inside of the cold freezers (3A, 3B) is cooled to a predetermined temperature.
  • the temperature inside the refrigerator (3A, 3B) is 140 ° C.
  • the evaporated gas refrigerant returns to the secondary compressor (3b).
  • the refrigeration apparatus of the present embodiment applies the two-way refrigeration cycle to the master unit (2) of the refrigeration showcase and the refrigeration units (3A, 3B), and provides the refrigeration units (4A, 4B) of the refrigeration showcase.
  • the master unit (2), the refrigerator units (3A, 3B) and the refrigerator units (4A, 4B) use one outdoor unit (1) as a heat source.
  • a refrigerant heat exchanger (5) for constituting the two-way refrigeration cycle is provided only in one master unit (2), and the other refrigeration units (3A, 3B) are provided with the refrigerant heat exchanger (5). 5 ) 1 f
  • the configuration of the refrigerating units (3A, 3B) can be simplified as compared with a conventional configuration in which each cooling unit houses a refrigerant heat exchanger. That is, it is not necessary to provide the closed-circuit secondary refrigerant circuit that connects the compressor, the condenser, the expansion valve, and the evaporator to the refrigerators (3A, 3B). As a result, the configuration of the entire refrigerant circuit can be simplified.
  • the refrigeration system includes a refrigerator (3A, 3B) including a compressor (3b), a use-side heat exchanger (3c), and an electric expansion valve (EV-2). Equipped with a refrigerator (4A, 4B) equipped only with a heat exchanger (4b) and an electric expansion valve (EV-3). Therefore, the present refrigeration apparatus can be applied to a plurality of types of showcases having different cooling temperatures. As a result, the refrigeration system of the present invention can be applied in a wider range than the conventional case where only the refrigeration showcase can be applied.
  • This embodiment is different from the first embodiment in the configurations of the master unit (2) and the refrigerator units (3A, 3B). Therefore, only the differences from the first embodiment will be described here.
  • the parent device (2) of the present embodiment does not include the second flow divider (7) and the first merging header (8).
  • the refrigerant heat exchanger (5) has only one primary passage (5a) and one secondary passage (5A).
  • the branch pipe (LL-1) extending from the flow divider (6) to the refrigerant heat exchanger (5) passes through the electric expansion valve (EV-A) to the primary passage of the refrigerant heat exchanger (5).
  • E-A electric expansion valve
  • the outlet end of the primary side passage (5a) is connected to the merge header (9) via the collecting pipe (GL-4).
  • a flow divider (lid) is provided between the refrigerant heat exchanger (5) of the use-side refrigerant circuit (11) and the electric expansion valve (EV-1), and a use side of the use-side refrigerant circuit (11) is provided.
  • Heat exchanger (lib) and secondary side A merge header (lie) is provided between the compressor (11a).
  • the splitter (lid) has a first liquid-side branch pipe connected to the use-side heat exchanger (lib).
  • the second liquid-side branch pipe (LL-A2) and the third liquid-side branch pipe (LL-A3) extend from the master unit (2) toward each of the refrigeration units (3A, 3B). .
  • the branch pipe (lie) includes the first and second gas side branch pipes (GL-A2) connected to the use side heat exchanger (lib), the second gas side branch pipe (GL-A2), and the third gas side
  • the branch pipe (GL-A3) is branched.
  • the second gas-side branch pipe (GL-A2) and the third gas-side branch pipe (GL-A3) extend from the master unit (2) to each of the refrigerator units (3A, 3B).
  • Each of the refrigerators (3A, 3B) is configured similarly to the refrigerator (4A, 4B) of the first embodiment.
  • the casing (3a) of each freezer (3A, 3B) contains a use-side heat exchanger (3c) and an electric expansion valve (EV-2).
  • the gas side of the use side heat exchanger ( 3 ) is connected to the shunt (lid) of the parent machine (2) by the gas side branch pipe (GL-A2), and the liquid of the use side heat exchanger (3c).
  • the side is connected to the flow divider (lid) of the master unit (2) via the liquid side branch pipe (LL-A2).
  • the use side heat exchanger (3c) of each of the above-mentioned refrigerating units (3A, 3B) is connected in parallel with the use side heat exchanger (lib) of the parent unit (2).
  • the use side heat exchanger (3c) of each of the refrigeration units (3A, 3B) and the use side heat exchanger (lib) of the master unit (2) are connected to the primary refrigerant circuit (10). A binary refrigeration cycle is configured between them.
  • each refrigerator (4A, 4B) is the same as that of the first embodiment (see FIG. 5), and the description is omitted.
  • the refrigerant circulation operation of the primary refrigerant circuit (10) is the same as that of the first embodiment. Therefore, the description is omitted.
  • the refrigerant discharged from the secondary-side compressor (11a) flows into the secondary-side passage (5A) of the refrigerant heat exchanger (5).
  • the refrigerant in the use-side refrigerant circuit (11) exchanges heat with the refrigerant flowing through the primary-side passage (5a) to condense.
  • Part of the diverted liquid refrigerant is depressurized by the electric expansion valve (EV-1) in the master unit (2), and then exchanges heat with the air in the showcase in the use-side heat exchanger (lib). And evaporate. With this refrigerant evaporation, the master unit
  • the other liquid refrigerant diverted by the diverter (lid) passes through the liquid-side branch pipe (LL-A2, LL-A3) and flows from the master unit (2) to each of the refrigeration units (3A, 3B). Flows.
  • the liquid refrigerant is decompressed by the electric expansion valve (EV-2) and then evaporates by exchanging heat with air in the refrigeration showcase in the use-side heat exchanger (3c). .
  • the inside of each of the refrigerators (3A, 3B) is cooled to a predetermined temperature.
  • the evaporated gas refrigerant returns to the parent machine (2) via the gas side branch pipes (GL-A2, GL-A3), merges with the other refrigerants at the merge header (lie), and Return to the compressor (11a).
  • the use-side refrigerant circuit (11) is formed by one closed circuit, and the use-side heat exchangers (llb, 3c, 3c) are connected in parallel and arranged in each showcase. ing.
  • the refrigerant heat exchanger (5) need only include a pair of passages capable of exchanging heat with each other. Therefore, the refrigerant heat exchanger (5) does not need to include a plurality of types of refrigerant passages as in the first embodiment. As a result, the configuration of the refrigerant heat exchanger (5) can be simplified.
  • FIG. 8 shows a refrigerant piping system of the outdoor unit (1) and the master unit (2) according to the present embodiment, and the same components as those in the above-described first and second embodiments are denoted by the same reference numerals. ing.
  • the present embodiment includes two types of refrigerating units (3A, 3B).
  • the first type of refrigerator (3A, 3B) forms a closed circuit with the secondary side passage (5A) of the refrigerant heat exchanger (5), and the first embodiment shown in FIG. Refrigerator units (3A, 3B).
  • the second type of refrigerating units (3A, 3B) is a user-side heat exchanger connected in parallel with the user-side heat exchanger (lib) of the first user-side refrigerant circuit (11) in the master unit (2). (3c), and corresponds to the refrigerator (3A, 3B) of the second embodiment shown in FIG.
  • This embodiment is different from the first embodiment in the configuration of the master unit (2). Therefore, here, only the differences between the master unit (2) and the first embodiment will be described.
  • the same members as those in the first embodiment are denoted by the same reference numerals.
  • the parent machine (2) in the present embodiment is provided in a refrigerated showcase.
  • the use side heat exchanger (lib) housed in the master unit (2) does not form a binary refrigeration cycle with the outdoor unit (1).
  • one downstream branch pipe (LL-2) branched from the first branch (6) is connected to the liquid side of the use side heat exchanger (lib) via the electric expansion valve (EV-1). I have.
  • one collecting pipe (GL-5) that assembles in the second junction header ( 9 ) is connected to the gas side of the use side heat exchanger (lib). Therefore, the utilization side heat exchanger (lib) constitutes a unit refrigeration cycle with the outdoor unit (1).
  • the refrigerant heat exchanger (5) of the present embodiment is connected to three liquid pipes (LL-A) and three gas pipes (GL-A). Each liquid pipe (LL-A) and gas pipe (GL-A) are extended from the master unit (2) and connected to three refrigeration units (3A, 3B,). The refrigerant circulates between the three refrigeration units (3A, 3B, ...) and the refrigerant heat exchanger (5).
  • the circulation operation of the refrigerant flowing through the use side heat exchanger (lib) of the master unit (2) is the same as the circulation operation of the refrigerant flowing through the use side heat exchanger (4b) of the refrigerator (not shown).
  • the refrigerant discharged from the primary compressor (lb) is condensed in the outdoor heat exchanger (lc), decompressed by the electric expansion valve (EV-1), and exchanges heat with the air in the refrigerated showcase. And evaporate.
  • the refrigerant flowing through the refrigerator (not shown) is the same as that in the first embodiment, and the refrigerant circulates between the refrigerant heat exchanger (5) and cools the refrigerator to a predetermined temperature. I do.
  • the parent machine (2) can be provided in the refrigerated showcase.
  • the refrigerant heat exchanger (5) is installed only in the master unit (2) of the refrigerated showcase, the configuration can be simplified.
  • This embodiment is different from the second embodiment in the configuration of the master unit (2). Therefore, here, only the differences between the master unit (2) and the second embodiment will be described.
  • the master unit (2) of the present embodiment is provided in a refrigerated showcase as in the case of the fourth embodiment.
  • one branch pipe (LL-2) branched from the first flow divider (6) is connected to the liquid side of the use side heat exchanger (lib) via the electric expansion valve (EV-1) .
  • one collecting pipe (GL-5) that collects at the joining header (9) is connected to the gas side of the use side heat exchanger (lib). Therefore, the use side heat exchanger (lib) is connected to the outdoor unit (1). Constitute a unit refrigeration cycle.
  • the configuration of the refrigerator (3A, 3B) and the connection state of the refrigerator (3A, 3B) to the master (2) are the same as in the second embodiment. Therefore, the description is omitted here.
  • the operation of circulating the refrigerant flowing through the use side heat exchanger (lib) of the master unit (2) is the same as that of the fourth embodiment.
  • the operation of circulating the refrigerant flowing through the refrigerator (not shown) and the refrigerator (not shown) is the same as that of the second embodiment.
  • the parent machine (2) can be provided in the refrigerated showcase.
  • the refrigerant heat exchanger (5) is installed only in the master unit (2) of the refrigerated showcase, the configuration can be simplified.
  • FIG. 11 shows a refrigerant piping system of the outdoor unit (1) and the master unit (2) of the present embodiment, and the same components as those of the fourth and fifth embodiments are denoted by the same reference numerals. I have.
  • the present embodiment includes two types of refrigerating units (3A, 3B).
  • First type refrigerating slave unit (3 A, 3B) has established the secondary compressor (11a) to the base unit (2), the refrigerant heat exchanger (5) of the secondary-side passage (5A) A closed circuit is formed between them, and corresponds to the fifth embodiment shown in FIG.
  • the second type of refrigerator (3A, 3B) has a secondary compressor (3b) in each casing (3a), and is connected to the secondary passage (5B) of the refrigerant heat exchanger (5). It constitutes a closed circuit and corresponds to the fourth embodiment shown in FIG. ⁇ Other embodiments>
  • Each of the above-described embodiments includes a plurality of refrigerator units (3A, 3B) and a plurality of refrigerator units (4A, 4B). As another embodiment of the present invention, only a plurality of refrigerators (3A, 3B) may be provided.
  • FIG. 3 only the master unit (2) and one or more freezer units (3A,...) May be provided. Further, in FIG. 6, the refrigerator units (4A, 4B) may be omitted.
  • FIG. 9 only the master unit (2) and one or more freezer units (3A,...) May be provided. Further, in FIG. 10, the refrigerator units (4A, 4B) may be omitted.
  • the present invention provides at least one secondary refrigerant circuit of a vapor compression refrigeration cycle, and various refrigeration units (3A,%) And refrigeration units (4A,. ⁇ ) Is applied.
  • various refrigeration units (3A,...) And refrigeration units (4A,. ⁇ ) Is applied.
  • the refrigerant heat exchanger (5) is not limited to the plate type, but may be a double tube type.
  • the refrigeration apparatus according to the present invention is useful for cooling using the primary-side refrigerant circuit and the secondary-side refrigerant circuit, and is particularly suitable for cooling a food showcase.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Other Air-Conditioning Systems (AREA)

Description

曰月 糸田 β 冷 凍 装 置 [ 技術分野 ]
本発明は、 1次側冷媒回路と 2次側冷媒回路とを備え、 これらの冷媒回路の間で 熱の授受を行う冷凍装置に関し、 特に、 複数台の利用側熱交換器を備えた冷凍装置に 係るものである。
[従来の技術 ]
従来より、 冷凍装置には、 特開平 5— 5 5 6 7号公報に開示されているように、 1次側冷媒が循環する 1次側冷媒回路と 2次側冷媒が循環する 2次側冷媒回路とを備 えた 2元冷凍サイクルのものがある。 そして、 該 1次側冷媒回路の冷媒と 2次側冷媒 回路の冷媒が、 冷媒熱交換器において熱交換する。 尚、 上記冷媒熱交換器は、 カスケ ―ド型熱交換器とも呼ばれている。
また、 この種の冷凍装置は、 汎用性を高めるために、 1つの 1次側冷媒回路に対 して複数の 2次側冷媒回路を設けているものがある。 そして、 複数の利用側熱交換器 が 1次側冷媒回路を熱源としている。
上記従来の冷凍装置は、 室内側に複数の冷却ユニットを設け、 これらの各冷却ュ ニットに 2次側冷媒回路を設けた構成としている。 つまり、 1次側冷媒回路の液側配 管及び液側配管をそれぞれ分岐し、 その分岐管を各冷却ユニットに導いている。 そし て、 該各冷却ユニットの冷媒熱交換器において、 1次側冷媒と 2次側冷媒とを熱交換 させている。
また、 上記各冷却ユニットは、 1次側冷媒回路の液側配管に直列状態で配置され ている。 この結果、 1次側冷媒が各冷却ユニットを順に流れ、 各冷却ユニットにおい て 1次側冷媒と 2次側冷媒とが熱交換する。 —解決課題一
このように、 従来の冷凍装置は、 1つの 1次側冷媒回路の熱源を複数の利用側熱 交換器で利用する場合、 それぞれの冷却ユニットに冷媒熱交換器を収容していた。 し たがって、 2次側冷媒回路の個数に応じた冷媒熱交換器が必要であつた。
また、 上記各冷却ユニットには、 圧縮機、 凝縮器、 膨張弁及び蒸発器を接続した 閉回路の 2次側冷媒回路を設けておく必要があった。 このため、 回路構成が全体に複 雑になっていた。
また、 従来の冷凍装置は、 上述した閉回路を備えた冷却ユニットしか適用するこ とができなかった。 例えば、 上記冷凍装置を冷凍ショーケースに適用した場合、 複数 の冷凍ショーケースにそれぞれ冷却ュニットを配置し、 この複数の冷却ュニットを 1 台の室外機に接続することになる。 したがって、 それぞれの冷凍ショーケースには、 冷媒熱交換器及び閉回路の 2次側冷媒回路が必要になる。
一般に、 上記ショーケースには、 冷凍回路を収容した冷凍ショーケースの他に、 単元冷凍サイクルの利用側熱交換器 (蒸発器) のみを収容した冷蔵ショーケースがあ る。
しかし、 従来の冷凍装置では、 冷凍回路を備えた冷凍ショーケースしか適用する ことができず、 冷却温度が異なる複数種類のショ一ケースに適用することができない という問題があった。 本発明は、 これらの点に鑑みてなされたものであって、 1つの 1次側冷媒回路の 熱源を複数の利用側熱交換器で利用する冷凍装置において、 回路構成の簡素化を図る と共に、 利用側熱交換器を各種の形態で適用できるようにすることを目的とする。
[ 発明の開示 ]
上記目的を達成するために、 本発明は、 1台のユニットのみに冷媒熱交換器を設 け、 該冷媒熱交換器と利用側熱交換器との間で閉回路を構成するようにした。 具体的に、 第 1の解決手段は、 図 3又は図 6に示すように、 1次側冷媒回路 (10) と、 2次側冷媒回路 (20) と、 上記 1次側冷媒回路 (10) を循環する冷媒と 2 次側冷媒回路 (20) を循環する冷媒とを熱交換させる冷媒熱交換器 (5) とを備え、 上記 1次側冷媒回路 (10) と 2次側冷媒回路 (20) との間で熱の授受を行う冷凍装置 を前提としている。
そして、 上記 2次側冷媒回路 (20) は、 冷媒熱交換器 (5) との間で冷媒が循環 する複数の利用側熱交換器 (lib, 3c) を備えている。 更に、 上記 1つの利用側熱交 換器 (lib) が、 冷媒熱交換器 (5) と共に 1つのュニヅト (2a) に設けられている。 加えて、 上記他の利用側熱交換器 (3c) が、 ュニッ ト (2a) から延びる冷媒配管 (LL-A, GL-A) によって冷媒熱交換器 (5) に接続されている。
この特定事項により、 ユニット (2a) に設けられた冷媒熱交換器 (5) において、 1次側冷媒回路 (10) の冷媒と 2次側冷媒回路 (20) の冷媒とが熱交換器する。 具体 的に、 上記ユニット (2a) の利用側熱交換器 (lib) と冷媒熱交換器 (5) との間で冷 媒が循環する。 同時に、 他の利用側熱交換器 (3c) と冷媒熱交換器 (5) との間で冷 媒が冷媒配管 (LL-A, GL-A) を介して循環する。 そして、 上記各利用側熱交換器 (lib, 3c) が所定の冷却動作を行う。
つまり、 上記ユニット (2a) の外部に配置された利用側熱交換器 (3c) は、 冷媒 熱交換器 (5) を熱源とし、 この冷媒熱交換器 (5) がュニット (2a) に配置されてい る。 また、 第 2の解決手段は、 図 3に示すように、 1次側冷媒回路 (10) と、 2次側 冷媒回路 (11 , 12) と、 上記 1次側冷媒回路 (10) を循環する冷媒と 2次側冷媒回路 (11 , 12) を循環する冷媒とを熱交換させる冷媒熱交換器 (5) とを備え、 上記 1次 側冷媒回路 (10) と 2次側冷媒回路 (11, 12) との間で熱の授受を行う冷凍装置を前 提としている。
そして、 上記 2次側冷媒回路 (11 , 12) は、 複数設けられ、 該各 2次側冷媒回路 ( 11, 12) は、 冷媒熱交換器 (5) との間で冷媒が循環する利用側熱交換器 (lib, 3c) を備えている。 更に、 上記 1つの 2次側冷媒回路 (11 ) が、 冷媒熱交換器 (5) と共にメインユニット (2a) に設けられている。 加えて、 上記他の 2次側冷媒回路 (12) の利用側熱交換器 (3c) が、 サブユニット (3a) に設けられると共に、 メイン ュニッ 卜 (2a) から延びる冷媒配管 (LL-A, GL>A) によって冷媒熱交換器 (5) に 接続されている。
また、 第 3の解決手段は、 図 6に示すように、 1次側冷媒回路 (10) と、 2次側 冷媒回路 (11 ) と、 上記 1次側冷媒回路 (10) を循環する冷媒と 2次側冷媒回路 (11) を循環する冷媒とを熱交換させる冷媒熱交換器 (5) とを備え、 上記 1次側冷 媒回路 (10) と 2次側冷媒回路 (11) との間で熱の授受を行う冷凍装置を前提してい る。
そして、 上記 2次側冷媒回路 (11) は、 冷媒熱交換器 (5) との間で冷媒が循環 し且つ互いに並列に接続された複数の利用側熱交換器 (lib, 3c) を備えている。 更 に、 上記 1つの利用側熱交換器 (lib) が、 冷媒熱交換器 (5) と共にメインュニット (2a) に設けられている。 加えて、 上記他の利用側熱交換器 (3c) が、 サブュニット (3a) に設けられると共に、 メインユニッ ト (2a) から延びる冷媒配管 (LL-A, G A) によって冷媒熱交換器 (5) に接続されている。
これら特定事項によれば、 サブュニット (3a) に冷媒熱交換器 (5) を設ける必 要がない。 つまり、 メインユニット (2a) の冷媒熱交換器 (5) が、 各利用側熱交換 器 (lib, 3c) の熱源になり、 サブュニヅト (3a) の構成が簡素になる。 また、 第 4の解決手段は、 図 9又は図 1 0に示すように、 1次側冷媒回路 (10) と、 2次側冷媒回路 (12) と、 上記 1次側冷媒回路 (10) を循環する冷媒と 2次側冷 媒回路 (12) を循環する冷媒とを熱交換させる冷媒熱交換器 (5) とを備え、 上記 1 次側冷媒回路 (10) と 2次側冷媒回路 (12) との間で熱の授受を行う冷凍装置を前提 としている。
そして、 上記 1次側冷媒回路 (10) は、 冷媒熱交換器 (5) と並列に接続された 第 1利用側熱交換器 (lib) を備え、 上記 2次側冷媒回路 (12) は、 冷媒熱交換器 (5) との間で冷媒が循環する第 2利用側熱交換器 (3c) を備えている。 更に、 上記 第 1利用側熱交換器 (lib) が、 冷媒熱交換器 (5) と共に 1つのユニット (2a) に設 けられている。 加えて、 上記第 2利用側熱交換器 (3c) が、 ュニット (2a) から延び る冷媒配管 (LL-A, GL-A) によって冷媒熱交換器 (5) に接続されている。
この特定事項により、 第 1利用側熱交換器 (lib) が 1次側冷媒回路 (10) の一 部を構成する。 つまり、 該第 1利用側熱交換器 (lib) を単元冷凍サイクルの利用側 熱交換器としながら、 この第 1利用側熱交換器 (lib) を収容するユニット (2a) に 冷媒熱交換器 (5) を設けている。 そして、 該冷媒熱交換器 (5) が、 第 2利用側熱交 換器 (3c) の熱源になる。 また、 第 5の解決手段は、 図 9に示すように、 1次側冷媒回路 (10) と、 2次側 冷媒回路 (12) と、 上記 1次側冷媒回路 (10) を循環する冷媒と 2次側冷媒回路 (12) を循環する冷媒とを熱交換させる冷媒熱交換器 (5) とを備え、 上記 1次側冷 媒回路 (10) と 2次側冷媒回路 (12) との間で熱の授受を行う冷凍装置を前提として いる。
そして、 上記 1次側冷媒回路 (10) は、 冷媒熱交換器 (5) と並列に接続された 第 1利用側熱交換器 (lib) を備え、 上記 2次側冷媒回路 (12) は、 冷媒熱交換器
(5) との間で冷媒が循環する第 2利用側熱交換器 (3c) を備えている。 更に、 記第 1利用側熱交換器 (lib) が、 冷媒熱交換器 (5) と共にメインュニット (2a) に設け られている。 加えて、 上記第 2利用側熱交換器 (3c) が、 サブュニット (3a) に設け られると共に、 メインユニット (2a) から延びる冷媒配管 (LL-A, GL-A) によって 冷媒熱交換器 (5) に接続されている。
また、 第 6の解決手段は、 図 1 0に示すように、 1次側冷媒回路 (10) と、 2次 側冷媒回路 (11) と、 上記 1次側冷媒回路 (10) を循環する冷媒と 2次側冷媒回路
(11) を循環する冷媒とを熱交換させる冷媒熱交換器 (5) とを備え、 上記 1次側冷 媒回路 (10) と 2次側冷媒回路 (11) との間で熱の授受を行う冷凍装置を前提として いる。 そして、 上記 1次側冷媒回路 (10) は、 冷媒熱交換器 (5) と並列に接続された 第 1利用側熱交換器 (lib) を備え、 上記 2次側冷媒回路 (11) は、 冷媒熱交換器
(5) との間で冷媒が循環し且つ互いに並列に接続された複数の第 2利用側熱交換器
(3c) を備えている。 更に、 上記第 1利用側熱交換器 (lib) が、 冷媒熱交換器 (5) と共にメインユニット (2a) に設けられている。 加えて、 上記各第 2利用側熱交換器
(3c) が、 個別にサブユニット ( ) に設けられると共に、 メインユニット ( ) か ら延びる冷媒配管 (LL-A, GL-A) によって冷媒熱交換器 (5) に接続されている。
これら特定事項により、 第 1利用側熱交換器 (lib) を単元冷凍サイクルの利用 側熱交換器としながら、 サブュニッ ト (3a) に冷媒熱交換器 (5) を設ける必要がな い。 つまり、 メインュニッ ト (2a) の冷媒熱交換器 (5) が、 第 2利用側熱交換器
(3c) の熱源になる。 また、 第 7の解決手段は、 上記第 2の解決手段又は第 5の解決手段において、 サ ブユニット (3a) には、 2次側圧縮機 (3b) が設けられている。 そして、 該 2次側圧 縮機 (3b) の吐出側がガス配管 (GL-A) を介して冷媒熱交換器 (5) のガス側に接続 されている。 加えて、 サブユニット (3a) の利用側熱交換器 (3c) の液側が減圧機構 (EV-2) 及び液配管 (LL-A) を介して冷媒熱交換器 (5) の液側に接続されている。
この特定事項により、 2次側圧縮機 (3b) から吐出した冷媒は、 ガス配管 (GL-A) を介して冷媒熱交換器 (5) に流入し、 1次側冷媒回路 (10) の冷媒と熱交 換を行って凝縮する。 その後、 この凝縮冷媒は、 減圧機構 (EV-2) で減圧して利用 側熱交換器 (3c) で蒸発し、 所定の冷却動作が行われる。 また、 第 8の解決手段は、 上記第 3の解決手段又は第 6の解決手段において、 メ インュニッ ト (2a) の 2次側冷媒回路 (11) は、 2次側圧縮機 (3b) と減圧機構 (EV-1) と利用側熱交換器 (lib) と冷媒熱交換器 (5) とが順に接続されて構成さ れている。 更に、 サブュニット (3a) の利用側熱交換器 (3c) の液側が、 冷媒熱交換 器 (5) の液側に液配管 (LL-A) によって接続されると共に、 該利用側熱交換器 (3c) のガス側が、 ガス配管 (Gレ A) によって 2次側圧縮機 (3b) の吸入側に接続 されている。
この特定事項により、 2次側圧縮機 (3b) から吐出した冷媒は、 冷媒熱交換器 (5) で凝縮した後、 一部がメインユニット (2a) の利用側熱交換器 (lib) で蒸発す る。 他の凝縮冷媒は、 液配管 (Lし A) を経てサブュニット (3a) の利用側熱交換器 (3c) で蒸発する。 この結果、 それぞれの利用側熱交換器 (lib, 3c) において所定 の冷却動作が行われる。 また、 第 9の解決手段は、 上記第 2の解決手段、 第 3の解決手段、 第 5の解決手 段又は第 6の解決手段において、 1次側冷媒回路 (10) は、 冷媒熱交換器 (5) と並 列に接続され且つサブユニット (4a) に設けられた利用側熱交換器 (4b) を備えてい る。 更に、 該利用側熱交換器 (4b) の液側が、 冷媒熱交換器 (5) の液側に液配管 (LL-B) によって接続されると共に、 該利用側熱交換器 (4b) のガス側が、 冷媒熱 交換器 (5) のガス側にガス配管 (GL-B) によって接続されている。
この特定事項により、 1次側冷媒回路 (10) の一部が単元冷凍サイクルを構成し ている。 つまり、 熱源となる 1次側冷媒回路 (10) を 1つ設けるのみで、 2元冷凍サ ィクルの利用側熱交換器 (3c) と単元冷凍サイクルの利用側熱交換器 (4b) とが共存 している。 また、 第 1 0の解決手段は、 上記第 1の解決手段〜第 6の解決手段の何れかにお いて、 利用側熱交換器 (lib, 3c, 4b) が、 食品用ショーケースの内部空気との間で 熱交換を行って該空気を冷却するものである。
この特定事項により、 食品用ショーケースの構成が簡素化され、 ショーケースの 設置スペースが縮小する。
—発明の効果一
したがって、 第 1の解決手段によれば、 1つの冷媒熱交換器 (5) を複数の利用 側熱交換器 (lib, 3c) の熱源として機能させることができる。
更に、 上記冷媒熱交換器 (5) を 1つのユニット (2a) に設けるのみによって、 例えば、 各利用側熱交換器 (lib, 3c) において、 冷媒の蒸発を行わせることができ
'S o
つまり、 各利用側熱交換器 (llb, 3c) に対してそれぞれ冷媒熱交換器 (5) を設 ける必要がない。 このため、 冷媒熱交換器 (5) の設置スペースを各ュニットに確保 する必要がない。 この結果、 回路全体の構成の簡素化を図ることができる。
また、 2次側冷媒回路 (20) の構成によって冷却温度の異なる各種の温度環境を 実現することができる。 この結果、 装置自体の適用範囲の拡大を図ることができる。
また、 第 2の解決手段によれば、 サブユニット (3a) に冷媒熱交換器 (5) を設 ける必要がないので、 回路構成の簡略化を図ることができる。 更に、 第 1の解決手段 の効果の他、 複数の 2次側冷媒回路 (11 , 12) を設けているので、 冷却能力などを各 2次側冷媒回路 (11 , 12) ごとに設定することができる。
また、 第 3の解決手段によれば、 サブュニット (3a) に冷媒熱交換器 (5) を設 ける必要がないので、 回路構成の簡略化を図ることができる。 更に、 第 1の解決手段 の効果の他、 2次側冷媒回路 (11) に複数の利用側熱交換器 (lib, 3c) を設けてい るので、 配管接続などの容易化を図ることができる。
また、 第 2の解決手段及び第 3の解決手段によれば、 メインユニット (2a) には 圧縮機などを設ける一方、 サブユニット (3a) には利用側熱交換器 (3c) のみを設け る構成を採用することができる。 この結果、 冷却温度が異なる複数種類のユニット (2a, 3c) を併存させることができるので、 汎用性の向上を図ることができる。
また、 第 4の解決手段によれば、 冷媒熱交換器 (5) と並列な第 1利用側熱交換 器 (lib) を 1次側冷媒回路 (10) に設け、 該第 1利用側熱交換器 (lib) を冷媒熱交 換器 (5) と共に 1つのユニット (2a) に設けるようにしたために、 圧縮機等を有し ないユニット (2a) を構成することができる。 この結果、 該ユニット (2a) の適用範 囲を拡大することができる。 また、 上記第 1の解決手段と同様に回路構成の簡略化な どを図ることができる。 また、 第 5の解決手段によれば、 第 2利用側熱交換器 (3c) をサブユニッ ト (3a) に設けているので、 該サブユニット (3a) の圧縮機などを省略することができ る。 この結果、 回路構成の簡素を図ることができる。 また、 上記第 2の解決手段及び 第 3の解決手段と同様に、 複数種類のユニット (2a, 3c) を併存させることができる ので、 汎用性の向上を図ることができる。
また、 第 6の解決手段によれば、 複数の第 2利用側熱交換器 (3c) を各サブュニ ット (3a) に設けているので、 複数箇所の冷却対象などに容易に対応することができ る。 また、 上記第 1の解決手段と同様に回路構成の簡略化を図ることができる。 更に、 上記第 2の解決手段及び第 3の解決手段と同様に、 複数種類のユニット (2a, 3c) を 併存させることができるので、 汎用性の向上を図ることができる。
また、 第 7の解決手段によれば、 サブユニット (3a) に 2次側圧縮機 (3b) を設 けているので、 該サブユニット (3a) で低温等を生成することができ、 使用範囲の拡 大を図ることができる。
また、 第 8の解決手段によれば、 メインユニット (2a) に 2次側圧縮機 (3b) な どを設けているので、 利用側熱交換器 (3c) のみを有するサブユニット (3a) を構成 することができる。 この結果、 回路全体の構成を確実に簡素化することができる。
また、 第 1 0の解決手段によれば、 食品用ショーケースを冷却するようにしてい るので、 限られたスペースのショーケースを確実に有効利用することができる。 この 結果、 食品用ショーケース自体の構成を簡素化することができる。 同時に、 食品用シ ョ一ケースの設置スペースの縮小化を図ることができる。
[ 図面の簡単な説明 ]
図 1は、 各ショーケースの配置状態を示す図である。
図 2は、 各ショーケースの配管接続状態の概略図である。
図 3は、 第 1実施形態における室外ュニット及び親機の冷媒配管系統図である。 図 4は、 冷凍子機の配管構成を示す図である。
図 5は、 冷蔵子機の配管構成を示す図である。 図 6は、 第 2実施形態における図 3相当図である。
図 7は、 第 2実施形態における冷凍子機の配管構成を示す図である。
図 8は、 第 3実施形態における図 3相当図である。
図 9は、 第 4実施形態における図 3相当図である。
図 1 0は、 第 5実施形態における図 3相当図である。
図 1 1は、 第 6実施形態における図 3相当図である。
[ 発明を実施するための最良の形態 ]
以下、 本発明の実施形態を図面に基づいて詳細に説明する。
本実施形態は、 本発明の冷凍装置を、 スーパマーケットの食品売場等に設置され るショーケースに適用したものである。
〈第 1実施形態〉
図 1は、 食品売場におけるショーケースの配置状態を示し、 各ショーケースには 冷却ユニット (2, 3A, 3B, 4A, 4B) が設けられている。 図 2は、 各ショーケース の冷却ュニヅ ト (2, 3A, 3B, 4A, 4B) の配管接続の概略を示し、 図 3〜図 5は、 その配管接続の詳細を示している。
図 1及び図 2に示すように、 冷凍装置は、 1台の室外ユニット (1) と 5台の冷 却ュニッ ト (2, 3A, 3B, 4A, 4B) とを備えている。 該冷却ュニヅ ト (2, 3A, 3B, 4A, 4B) は、 各ショーケース内を冷却するもので、 1台の親機 (2) と 2台の冷凍子 機 (3A, 3B) と 2台の冷蔵子機 (4A, 4B) とによって構成されている。 該親機 (2) と冷凍子機 (3A, 3B) と冷蔵子機 (4A, 4B) が冷媒配管によって室外ュニッ ト (1) に接続されている。
上記室外ュニット (1) と親機 (2) との間を循環する冷媒と、 親機 (2) と各冷 凍子機 (3A, 3B) との間を循環する冷媒とは、 冷媒熱交換器 (5) において熱交換す る。 そして、 該各冷凍子機 (3A, 3B) は、 所定の低温度 (例えば、 — 4 0 °C) を生 成し、 冷凍ショーケース内を冷却する。 上記冷媒熱交換器 (5) は、 カスケ一ド型熱 交換器とも呼ばれ、 上記親機 (2) に設けられている。
また、 上記親機 (2) は、 冷凍子機 (3A, 3B) と同様に所定の低温度 (例えば、 - 4 0 °C) を生成し、 冷凍ショーケース内を冷却する。
一方、 上記冷蔵子機 (4A, 4B) は、 室外ュニット (1) との間で冷媒が循環し、 所定の低温度 (例えば、 — 1 5 °C) を生成し、 冷蔵ショーケース内を冷却する。
以下、 上述した冷却動作を行う各機器 (ュニット) の回路構成を説明する。 一室外ュニヅト一
上記室外ユニット (1) は、 建屋の外部に設置されている。 該室外ユニット (1) のケ一シング (la) 内には、 互いに冷媒配管によって接続された 1次側圧縮機 (lb) と室外熱交換器 (lc) とが収容されている。 該室外熱交換器 (lc) の液側には 1次側 液配管 (LL) が接続され、 上記 1次側圧縮機 (lb) の吸入側には 1次側ガス配管 ( GL) が接続されている。 そして、 該 1次側液配管 (LL) 及び 1次側ガス配管 (GL) が、 ケーシング (la) から延長され、 親機 (2) に接続されている。
_親機—
上記親機 (2) は、 メインュニットを構成し、 該親機 (2) のケ一シング ( ) に は上記冷媒熱交換器 (5) が収納されている。 該冷媒熱交換器 (5) には、 上記室外ュ ニット (1) から延びる 1次側液配管 (LL) 及び 1次側ガス配管 (GL) が接続され ている。
上記 1次側液配管 (LL) には、 第 1分流器 (6) と第 2分流器 (7) とが親機 (2) の内部に位置して設けられている。 該第 1分流器 (6) は、 3本の上流側分岐管 (LL-1 , LL-2, LL-3) が分岐され、 1本の上流側分岐管 (LL-1) が第 2分流器 (7) に接続されている。 上記第 2分流器 (7) は、 更に 3本の下流側分岐管 (LL-4, LL-5, LL-6) が分岐され、 該各下流側分岐管 (LL-4, LL-5, LL-6) が冷媒熱交換器 (5) に 接続されている。
上記冷媒熱交換器 (5) はプレート型熱交換器である。 該冷媒熱交換器 (5) は、 下流側分岐管 (LL-4, LL-5, LL-6) に対応して第 1の 1次側通路 (5a) と第 2の 1 次側通路 (5b) と第 3の 1次側通路 (5c) が形成されている。
また、 上記各下流側分岐管 (LL-4, LL-5, LL-6) には電動膨張弁 (EV-A, EV-B, EV-C) が設けられている。 該電動膨張弁 (EV-A, EV-B, EV-C) は、 その閧度を制 御して 1次側通路 (5a, 5b, 5c) における冷媒の蒸発温度を個別に制御している。
尚、 上記冷媒熱交換器 (5) の各 1次側通路 (5a, 5b, 5c) は、 必ずしも 1本の 通路である必要はなく、 多数枚のプレートを重ね合わせ、 各 1次側通路 (5a, 5b, 5c) を複数本の通路によって構成してもよい。
一方、 上記 1次側ガス配管 (GL) には、 第 1合流ヘッダ (8) と第 2合流ヘッダ (9) とが親機 ) の内部に位置して設けられている。 該第 1合流ヘッダ (8) には、 冷媒熱交換器 (5) の 1次側冷媒の導出管 (GL-1, GL-2, GL-3) が接続されると共に、 合流管 (GL-4) が接続されている。 該合流管 (GL-4) は第 2合流ヘッダ (9) に接続 され、 該第 2合流ヘッダ (9) が 1次側圧縮機 (lb) の吸入側に接続されている。
そして、 上記 1次側圧縮機 (lb) と冷媒熱交換器 (5) との間で 1次側冷媒回路 do) が構成されている。 該 1次側冷媒回路 do) において、 1次側圧縮機 (lb) か ら吐出した冷媒が室外熱交換器 (lc) で凝縮する。 この凝縮冷媒の一部が電動膨張弁 (EV-A, EV-B, EV-C) で減圧した後、 冷媒熱交換器 (5) で蒸発し、 この蒸発冷媒 が 1次側圧縮機 (lb) に戻る。 1次側冷媒は、 この循環動作を行う。
上記第 1分流器 (6) から分岐された 2本の上流側分岐管 (LL-2, LL-3) と、 上 記第 2ヘッダ (9) に接続する 2本の集合用配管 (GL-5, GL-6) とは、 冷蔵子機 (4A, 4B) に向かって延びている。
上記親機 (2) には、 冷媒熱交換器 (5) における 1次側冷媒との間で熱の授受を 行う第 1利用側冷媒回路 (11) が収容されている。 該第 1利用側冷媒回路 (11) は、 2次側圧縮機 (11a) と、 冷媒熱交換器 (5) の第 1の 2次側通路 (5A) と、 電動膨 張弁 (EV-1) と、 利用側熱交換器 (lib) とが冷媒配管 (11c) によって
接続されて構成されている。
該第 1利用側冷媒回路 (11) は、 冷媒循環が可能に構成された閉回路であり、 上 記第 1の 2次側通路 (5A) は、 第 1の 1次側通路 (5a) との間で熱交換する。 つま り、 上記 2次側圧縮機 (11a) から吐出した冷媒が、 冷媒熱交換器 (5) の第 1の 2次 側通路 (5A) において第 1の 1次側通路 (5a) の冷媒と熱交換を行って凝縮する。 そして、 上記第 1利用側冷媒回路 (11) は、 1次側冷媒回路 (10) との間で 2元冷凍 サイクルを構成している。
尚、 上記冷媒熱交換器 (5) の第 2の 2次側通路 (5B) 及び第 3の 2次側通路 (5C) は、 液配管 (LL-A) 及びガス配管 (GL-A) によって冷凍子機 (3A, 3B) に 接続されている。 一冷凍子機一
上記各冷凍子機 (3A, 3B) は、 サブュニットを構成し、 且つ互いに同一構成で ある。 したがって、 ここでは、 1つの冷凍子機 (3A) を図 4に基づき説明する。
該冷凍子機 (3A) は、 蒸気圧縮式冷凍サイクルで構成されている。 該冷凍子機 (3A) のケ一シング ( ) には、 2次側圧縮機 (3b) と利用側熱交換器 ( ) と電 動膨張弁 (EV-2) とが収納されている。 該 2次側圧縮機 (3b) の吐出側にはガス配 管 (GL-A) が接続され、 上記利用側熱交換器 (3c) の液側には液配 (LL-A) が接続 されている。 該ガス配管 (GL-A) 及び液配管 (LL-A) は、 上記冷媒熱交換器 (5) の第 2の 2次側通路 (5B) に接続されている。 そして、 上記冷凍子機 (3A) と第 2 の 2次側通路 (5B) との間で閉回路の第 2利用側冷媒回路 (12) が構成されている。
該第 2利用側冷媒回路 (12) は、 上述した第 1利用側冷媒回路 (11) と同様に、 上記 1次側冷媒回路 (10) との間で 2元冷凍サイクルを構成している。
尚、 他方の冷凍子機 (3B) は、 冷媒熱交換器 (5) の第 3の 2次側通路 (5C) と の間で閉回路の第 2利用側冷媒回路 (12) を構成している。
また、 上記第 1利用側冷媒回路 (11) 及び第 2利用側冷媒回路 (12) が、 本発明 の 2次側冷媒回路 (20) を構成している。 —冷蔵子機—
上記各冷蔵子機 (4A, 4B) も、 サブュニットを構成し、 且つ互いに同一構成で ある。 したがって、 ここでは、 1つの冷蔵子機 (4A) を図 5に基づき説明する。
該冷蔵子機 (4A) のケ一シング (4a) には、 利用側熱交換器 (4b) 及び電動膨 張弁 (EV-3) が収納されている。 該利用側熱交換器 (4b) のガス側にはガス配管 (GL-B) が接続され、 利用側熱交換器 (4b) の液側は液配管 (LL-B) が接続されて いる。 該液配管 (LL-B) は、 親機 (2) に導入され、 上記上流側分岐管 (LL-2) を介 して第 1分流器 (6) に接続されている。 また、 上記ガス配管 (GL-B) は、 親機 (2) に導入され、 上記集合用配管 (GL-5) を介して第 2ヘッダ (9) に接続されて いる。
上記冷蔵子機 (4A) と上記室外ュニット (1) の 1次側圧縮機 (lb) 及び室外熱 交換器 (lc) との間で閉回路を構成している。 つまり、 この冷蔵子機 (4A) は、 2 元冷凍サイクルを構成しておらず、 1次側圧縮機 (lb) から吐出し室外熱交換器 (lc) で凝縮した冷媒が第 1分流器 (6) を経て直接供給される。
尚、 他方の冷蔵子機 (4B) においても、 液配管 (LL-B) が上流側分岐管 (LL-3) を介して第 1分流器 (6) に、 ガス配管 (GL-B) が集合用配管 (GL-6) を 介して第 2ヘッダ (9) にそれぞれ接続されている。 そして、 該冷蔵子機 (4B) と室 外ュニット (1) の 1次側圧縮機 (lb) 及び室外熱交換器 (lc) との間で閉回路を構 成している。
以上のように、 第 1利用側冷媒回路 (11) 及び第 2利用側冷媒回路 (12, 12) は、 1次側冷媒回路 (10) との間で 2元冷凍サイクルを構成している。 これに対し、 冷蔵 子機 (4A, 4B) は、 1次側圧縮機 (lb) 及び室外熱交換器 (lc) の間で単元冷凍サ ィクルを構成している。 ー冷媒循環動作—
次に、 本実施形態の冷凍装置における冷媒循環動作について説明する。 各ショーケースにおける親機 (2) と冷凍子機 (3A, 3B) と冷蔵子機 (4A, 4B) とが冷却運転を行う場合、 各圧縮機 (lb, 11a, 3b) を駆動すると共に、 各電動 膨張弁 (EV-A〜EV-C, EV-l〜EV-3) が所定閧度に調整される。
つまり、 冷媒熱交換器 (5) の下流側分岐管 (LL-4〜 LL-6) の電動膨張弁 (EV-A〜 EV-C) が、 各 1次側通路 (5a, 5b, 5c) の冷媒の蒸発温度を調整し、 各 利用側冷媒回路 (11 , 12) に与える冷熱量を調整する。
また、 各利用側熱交換器 (llb, 3c, 4b) の上流側の各電動膨張弁 (EV-1〜 EV-3) は、 ショーケース内の温度が所定の設定温度になるように開度調整される。
先ず、 1次側冷媒回路 do) において、 1次側圧縮機 (ib) から吐出した冷媒が 室外熱交換器 (lc) で外気との間で熱交換を行って凝縮する。 この凝縮した液冷媒は、 第 1分流器 (6) で分流し、 その一部は、 冷蔵子機 (4A, 4B) に向かって延びる上流 側分流管 (LL-2, LL-3) 及び液配管 (LL-B) を経て冷蔵子機 (4A, 4B) 内に流れる。 この液冷媒は、 電動膨張弁 (EV-3) で減圧した後、 利用側熱交換器 (4b) において、 冷蔵ショーケース内の空気と熱交換して蒸発する。
この冷媒蒸発により、 冷蔵子機 (4A, 4B) が所定温度まで冷却される。 例えば、 冷蔵子機 (4A, 4B) が— 1 5 °Cになる。 その後、 この蒸発したガス冷媒は、 ガス配 管 (GL-B) 及び集合用配管 (GL-5, GL-6) を経て第 2合流ヘッダ (9) に合流し、 1次側圧縮機 (lb) に戻る。
一方、 上記第 1分流器 (6) で分流した他の液冷媒は、 冷媒熱交換器 (5) に向か つて延びる上流側分岐管 (LL-1) 、 第 2分流器 (7) 及び下流側分岐管 (LL-4, LL-5, LL6) を流れる。 そして、 上記液冷媒は、 各電動膨張弁 (EV-A〜 EV-C, EV-1〜 EV-3) で減圧した後、 冷媒熱交換器 (5) の各 1次側通路 (5a, 5b, 5c) に流れる。 この冷媒熱交換器 (5) において、 上記液冷媒は、 各利用側冷媒回路 (11, 12, 12) の冷媒と熱交換して蒸発する。 この蒸発したガス冷媒は、 導出管 (GL-1, GL-2, GL-3) 、 第 1合流ヘッダ (8) 及び合流管 (GL-4) を経て第 2合流ヘッダ (9) に流 れ、 上記冷蔵子機 (4A, 4B) から戻るガス冷媒と合流して 1次側圧縮機 (lb) に戻 る。 以上のような冷媒循環動作が 1次側冷媒回路 (10) において行われる。
次に、 上記各利用側冷媒回路 (11 , 12) の冷媒循環動作を説明する。
第 1利用側冷媒回路 (11) において、 2次側圧縮機 (11a) から吐出した冷媒が、 冷媒熱交換器 (5) の第 1の 2次側通路 (5A) に流入する。 この冷媒熱交換器 (5) において、 上記第 1利用側冷媒回路 (11) の冷媒が、 第 1の 1次側通路 (5a) を流れ る冷媒と熱交換して凝縮する。 その後、 この凝縮した液冷媒は、 電動膨張弁 (EV-1) で減圧した後、 利用側熱交換器 (lib) において、 ショーケース内の空気と 熱交換して蒸発する。 この冷媒蒸発により、 親機 (2) 内が所定温度まで冷却される。 例えば、 親機 (2) 内が— 4 0 °Cになる。 その後、 この蒸発したガス冷媒は 2次側圧 縮機 (11a) に戻る。
一方、 第 2利用側冷媒回路 (12) において、 2次側圧縮機 (3b) から吐出した冷 媒が、 ガス配管 (GL-A) を経て親機 (2) に流れる。 そして、 該冷媒は、 冷媒熱交換 器 (5) の第 2の 2次側通路 (5B) 及び第 3の 2次側通路 (5C) を流れる。 この冷媒 熱交換器 (5) において、 上記第 2利用側冷媒回路 (12) の冷媒が、 第 2の 1次側通 路 (5b) 及び第 3の 1次側通路 (5c) を流れる冷媒と熱交換して凝縮する。 その後、 この凝縮した液冷媒は、 液配管 (LL-A) を経て再び冷凍子機 (3A, 3B) に戻る。 そ して、 上記液冷媒は、 電動膨張弁 (EV-2) で減圧した後、 利用側熱交換器 (3c) に おいて、 冷凍ショーケース内の空気と熱交換して蒸発する。 この冷媒蒸発により、 冷 凍子機 (3A, 3B) 内が所定温度まで冷却される。 例えば、 冷凍子機 (3A, 3B) 内が 一 4 0 °Cになる。 その後、 この蒸発したガス冷媒は 2次側圧縮機 (3b) に戻る。
以上のような冷媒循環動作が各利用側冷媒回路 (11 , 12, 12) において行われる。 このように、 本実施形態の冷凍装置は、 冷凍ショーケースの親機 (2) と冷凍子 機 (3A, 3B) に 2元冷凍サイクルを適用し、 冷蔵ショーケースの冷蔵子機 (4A, 4B) に単元冷凍サイクルを適用している。 しかも、 これらの親機 (2) と冷凍子機 (3A, 3B) と冷蔵子機 (4A, 4B) が 1台の室外ュニット (1) を熱源としている。
また、 上記 2元冷凍サイクルを構成するための冷媒熱交換器 (5) を 1台の親機 (2) にのみ設け、 他の冷凍子機 (3A, 3B) にはこの冷媒熱交換器 (5) を設けてい 1フ
ない。
したがって、 従来のように、 各冷却ユニットにそれぞれ冷媒熱交換器を収容して いたものに比して、 冷凍子機 (3A, 3B) の構成を簡素化することができる。 つまり、 上記冷凍子機 (3A, 3B) には、 圧縮機、 凝縮器、 膨張弁及び蒸発器を接続して成る 閉回路の 2次側冷媒回路を設ける必要がない。 その結果、 冷媒回路全体の構成を簡素 にすることができる。
また、 本冷凍装置は、 上述したように、 圧縮機 (3b) と利用側熱交換器 (3c) と 電動膨張弁 (EV-2) を備えた冷凍子機 (3A, 3B) と、 利用側熱交換器 (4b) と電動 膨張弁 (EV-3) のみを備えた冷蔵子機 (4A, 4B) とを備えている。 よって、 本冷凍 装置は、 冷却温度が異なる複数種類のショーケースに適用することができる。 この結 果、 冷凍ショーケースのみしか適用することができない従来に比べ、 本冷凍装置は、 適用範囲の拡大を図ることができる。
〈第 2実施形態〉
次に、 第 2実施形態を図 6及び図 7を用いて説明する。
本実施形態は、 親機 (2) 及び冷凍子機 (3A, 3B) の構成が第 1実施形態と異な つている。 したがって、 ここでは、 上記第 1実施形態との相違点のみを説明する。
—親機—
本実施形態の親機 (2) は、 第 2分流器 (7) 及び第 1合流ヘッダ (8) を備えて いない。 また、 冷媒熱交換器 (5) は、 1つの 1次側通路 (5a) と 1つの 2次側通路 (5A) のみを備えている。
したがって、 分流器 (6) から冷媒熱交換器 (5) に向かって延びる分岐管 (LL-1) は、 電動膨張弁 (EV-A) を経て冷媒熱交換器 (5) の 1次側通路 (5a) に接 続されている。 上記 1次側通路 (5a) の導出端は、 集合用配管 (GL-4) を経て合流 ヘッダ (9) に接続されている。
利用側冷媒回路 (11) の冷媒熱交換器 (5) と電動膨張弁 (EV-1) との間には分 流器 (lid) が設けられ、 該利用側冷媒回路 (11) の利用側熱交換器 (lib) と 2次側 圧縮機 (11a) との間には合流ヘッダ (lie) が設けられている。
上記分流器 (lid) には、 利用側熱交換器 (lib) に接続される第 1の液側分岐管
(LL-A1) と、 第 2の液側分岐管 (LL-A2) 及び第 3の液側分岐管 (LL-A3) とが分 岐している。 該第 2の液側分岐管 (LL-A2) 及び第 3の液側分岐管 (LL-A3) とが、 親機 (2) から各冷凍子機 (3A, 3B) に向かって延びている。 上記合流ヘッダ
(lie) には、 利用側熱交換器 (lib) に接続される第 1とガス側分岐管 (Gレ A1) と、 第 2のガス側分岐管 (GL-A2) 及び第 3のガス側分岐管 (GL-A3) とが分岐している。 該第 2のガス側分岐管 (GL-A2) 及び第 3のガス側分岐管 (GL-A3) が、 親機 (2) から各冷凍子機 (3A, 3B) に向かって延びている。
—冷凍子機—
上記各冷凍子機 (3A, 3B) は、 第 1実施形態の冷蔵子機 (4A, 4B) と同様に構 成されている。 図 7に示すように、 各冷凍子機 (3A, 3B) のケ一シング (3a) 内に は、 利用側熱交換器 (3c) 及び電動膨張弁 (EV-2) が収納されている。 該利用側熱 交換器 (3 のガス側は、 上記ガス側分岐管 (GL-A2) によって親機 (2) の分流器 ( lid) に接続され、 上記利用側熱交換器 (3c) の液側は、 上記液側分岐管 (LL-A2) にって親機 (2) の分流器 (lid) に接続されている。
つまり、 上記各冷凍子機 (3A, 3B) の利用側熱交換器 (3c) は、 上記親機 (2) の利用側熱交換器 (lib) と並列に接続されている。 そして、 上記各冷凍子機 (3A, 3B) の利用側熱交換器 (3c) と、 親機 (2) の利用側熱交換器 (lib) とは、 1次側 冷媒回路 (10) との間で 2元冷凍サイクルを構成している。
尚、 各冷蔵子機 (4A, 4B) の構成は、 第 1実施形態のもの (図 5参照) と同様 であるので説明を省略する。
-冷媒循環動作一
次に、 本実施形態の冷媒循環動作を説明する。
1次側冷媒回路 (10) の冷媒循環動作は、 上記第 1実施形態の場合と同様である ので説明を省略する。
利用側冷媒回路 (11) において、 2次側圧縮機 (11a) から吐出した冷媒が、 冷 媒熱交換器 (5) の 2次側通路 (5A) に流れる。 該冷媒熱交換器 (5) において、 利 用側冷媒回路 (11) の冷媒は、 1次側通路 (5a) を流れる冷媒と熱交換して凝縮する c その後、 この凝縮した液冷媒が、 分流器 (lid) で分流する。 分流した液冷媒の一部 は、 親機 (2) 内の電動膨張弁 (EV-1) で減圧した後、 利用側熱交換器 (lib) にお いて、 ショーケース内の空気と熱交換して蒸発する。 この冷媒蒸発により、 親機
(2) 内が所定温度まで冷却される。 その後、 この蒸発したガス冷媒は合流ヘッダ
(He) を経て 2次側圧縮機 (11a) に戻る。
一方、 上記分流器 (lid) で分流された他の液冷媒は、 液側分岐管 (LL-A2, LL-A3) を通り、 親機 (2) から各冷凍子機 (3A, 3B) に流れる。 該各冷凍子機 (3A, 3B) において、 液冷媒が電動膨張弁 (EV-2) で減圧した後、 利用側熱交換器 (3c) で冷凍ショーケース内の空気と熱交換して蒸発する。 この冷媒蒸発により、 各冷凍子 機 (3A, 3B) 内が所定温度まで冷却される。 その後、 この蒸発したガス冷媒は、 ガ ス側分岐管 (GL-A2, GL-A3) を経て親機 (2) に戻り、 合流ヘッダ (lie) において 他の上記冷媒と合流し、 2次側圧縮機 (11a) に戻る。
以上のような冷媒循環動作が利用側冷媒回路 (11) において行われる。
このように、 本実施形態は、 利用側冷媒回路 (11) を 1つの閉回路で形成し、 各 利用側熱交換器 (llb, 3c, 3c) を並列に接続して各ショーケースに配置している。 このため、 冷媒熱交換器 (5) は、 互いに熱交換が可能な一対の通路を備えるのみで よい。 したがって、 上記冷媒熱交換器 (5) は、 第 1実施形態のように複数種類の冷 媒通路を備える必要がない。 その結果、 上記冷媒熱交換器 (5) の構成の簡素化を図 ることができる。
〈第 3実施形態〉
次に、 第 3実施形態を図 8に基づいて説明する。
本実施形態は、 上記第 1実施形態及び第 2実施形態の構成を兼ね備えたものであ る。 図 8は、 本実施形態に係る室外ユニット (1) 及び親機 (2) の冷媒配管系統を示 し、 上述した第 1実施形態及び第 2実施形態と同一の構成部分は同じ符号を付してい る。
本実施形態は、 図示しないが、 2種類の冷凍子機 (3A, 3B) を備えている。 1 種類目の冷凍子機 (3A, 3B) は、 冷媒熱交換器 (5) の 2次側通路 (5A) との間で 閉回路を構成するものであり、 図 4に示す第 1実施形態の冷凍子機 (3A, 3B) に対 応している。 2種類目の冷凍子機 (3A, 3B) は、 親機 (2) 内の第 1利用側冷媒回路 (11) の利用側熱交換器 (lib) と並列に接続された利用側熱交換器 (3c) を備えた ものであり、 図 7に示す第 2実施形態の冷凍子機 (3A, 3B) に対応している。
〈第 4実施形態〉
次に、 第 4実施形態を図 9に基づいて説明する。
本実施形態は、 親機 (2) の構成が第 1実施形態の場合と異なっている。 したが つて、 ここでは、 この親機 (2) について、 上記第 1実施形態との相違点のみを説明 する。 また、 第 1実施形態と同一の部材は同一の符号を付している。
—親機—
本実施形態における親機 (2) は、 冷蔵ショーケースに設けられている。 該親機 (2) に収容されている利用側熱交換器 (lib) は、 室外ユニット (1) との間で 2元 冷凍サイクルを構成していない。
つまり、 第 1分流器 (6) から分岐した 1つの下流側分岐管 (LL-2) は電動膨張 弁 (EV-1) を介して利用側熱交換器 (lib) の液側に接続されている。 一方、 第 2合 流ヘッダ (9) に集合する 1つの集合用配管 (GL-5) は利用側熱交換器 (lib) のガ ス側に接続している。 したがって、 上記利用側熱交換器 (lib) は、 室外ユニッ ト (1) との間で単元冷凍サイクルを構成している。
また、 図示しないが、 冷凍子機 (3A, 3B, ···) の構成及び該冷凍子機 (3A, 3B, ···) の親機 (2) に対する接続状態は第 1実施形態と同様である。 したがって、 ここ では説明を省略する。 尚、 本実施形態の冷媒熱交換器 (5) には、 3本の液配管 (LL-A) 及び 3本のガ ス配管 (GL-A) が接続されている。 該各液配管 (LL-A) 及びガス配管 (GL-A) が 親機 (2) から延長され、 3台の冷凍子機 (3A, 3B, ···) に接続されている。 この 3 台の冷凍子機 (3A, 3B, ···) と冷媒熱交換器 (5) との間で冷媒が循環する。
-冷媒循環動作一
次に、 本実施形態の冷媒循環動作について説明する。
親機 (2) の利用側熱交換器 (lib) を流れる冷媒循環動作は、 冷蔵子機 (図示省 略) の利用側熱交換器 (4b) を流れる冷媒循環動作と同様である。 つまり、 1次側圧 縮機 (lb) から吐出した冷媒は、 室外熱交換器 (lc) で凝縮した後、 電動膨張弁 (EV-1) で減圧し、 冷蔵ショーケース内の空気と熱交換して蒸発する。
一方、 冷凍子機 (図示省略) を流れる冷媒は、 第 1実施形態の動作と同様であり、 冷媒熱交換器 (5) との間での冷媒が循環し、 冷凍子機が所定温度まで冷却する。
このように、 本実施形態の構成によれば、 親機 (2) を冷蔵ショーケースに設け ることができる。 しかも、 この冷蔵ショーケースの親機 (2) のみに冷媒熱交換器 (5) を設置するので、 構成の簡略化を図ることができる。
〈第 5実施形態〉
次に、 第 5実施形態を図 1 0に基づいて説明する。
本実施形態は、 親機 (2) の構成が第 2実施形態の場合と異なっている。 したが つて、 ここでは、 この親機 (2) について、 第 2実施形態との相違点のみを説明する。
一 —
本実施形態の親機 (2) は、 上記第 4実施形態の場合と同様に、 冷蔵ショーケ一 スに設けられている。
つまり、 第 1分流器 (6) から分岐した 1つの分岐管 (LL-2) は、 電動膨張弁 (EV-1) を介して利用側熱交換器 (lib) の液側に接続されている。 一方、 合流へッ ダ (9) に集合する 1つの集合用配管 (GL-5) は、 利用側熱交換器 (lib) のガス側 に接続している。 したがって、 上記利用側熱交換器 (lib) は、 室外ユニット (1 ) と の間で単元冷凍サイクルを構成している。
また、 図示しないが、 冷凍子機 (3A, 3B) の構成及び該冷凍子機 (3A, 3B) の 親機 (2) に対する接続状態は第 2実施形態と同様である。 したがって、 ここでは説 明を省略する。
—冷媒循環動作—
次に、 本実施形態の冷媒循環動作について説明する。
親機 (2) の利用側熱交換器 (lib) を流れる冷媒の循環動作は、 上記第 4実施形 態の場合と動作と同様である。 また、 冷凍子機 (図示省略) 及び冷蔵子機 (図示省 略) を流れる冷媒の循環動作は、 上記第 2実施形態の場合と動作と同様である。 これ ら動作により、 各ショーケース内の温度が所定温度まで冷却される。
このように、 本実施形態の構成によれば、 親機 (2) を冷蔵ショーケースに設け ることができる。 しかも、 この冷蔵ショーケースの親機 (2) のみに冷媒熱交換器 (5) を設置するので、 構成の簡略化を図ることができる。
〈第 6実施形態〉
次に、 第 6実施形態を図 1 1に基づいて説明する。
本実施形態は、 第 4実施形態及び第 5実施形態の構成を兼ね備えたものである。 図 1 1は、 本実施形態の室外ュニット (1) 及び親機 (2) の冷媒配管系統を示し、 上 記第 4実施形態及び第 5実施形態と同一の構成部分は同じ符号を付している。
つまり、 本実施形態は、 図示しないが、 2種類の冷凍子機 (3A, 3B) を備えて いる。 1種類目の冷凍子機 (3A, 3B) は、 親機 (2) に 2次側圧縮機 (11a) を設置 し、 冷媒熱交換器 (5) の 2次側通路 (5A) との間で閉回路を構成するものであり、 図 1 0に示す第 5実施形態に対応している。 2種類目の冷凍子機 (3A, 3B) は、 各 ケーシング (3a) に 2次側圧縮機 (3b) を備え、 冷媒熱交換器 (5) の 2次側通路 (5B) との間で閉回路を構成するものであり、 図 9に示す第 4実施形態に対応して いる。 〈その他の実施形態〉
上述した各実施形態は、 複数の冷凍子機 (3A, 3B) と複数の冷蔵子機 (4A, 4B) とを備えたものである。 本発明の他の実施形態としては、 複数の冷凍子機 (3A, 3B) のみを備えるものであってもよい。
例えば、 図 3において、 親機 (2) と 1台以上の冷凍子機 (3A, ···) のみを備え るものであってよい。 また、 図 6において、 冷蔵子機 (4A, 4B) を省略してもよい。
また、 図 9において、 親機 (2) と 1台以上の冷凍子機 (3A, ···) のみを備える ものであってよい。 また、 図 1 0において、 冷蔵子機 (4A, 4B) を省略してもよい。
要するに、 本発明は、 蒸気圧縮式冷凍サイクルの 2次側冷媒回路を少なくとも 1 つの備え、 冷却温度に対応して各種の冷凍子機 (3A, ···) 及び冷蔵子機 (4A, ···) を適用するようにしたものである。 この結果、 本発明の冷凍装置の適用範囲の拡大を 図ることができる。
また、 冷媒熱交換器 (5) はプレート型に限るものではなく、 二重管式などを適 用してもよい。
また、 上述した各実施形態は、 ショーケースに適用した場合について説明したが、 本発明は、 これらに限られず、 その他の冷凍装置に適用してもよい。
[ 産業上の利用可能性 ]
以上のように、 本発明による冷凍装置によれば、 1次側冷媒回路と 2次側冷媒回 路を用いて冷却する場合に有用であり、 特に、 食品用ショーケースの冷却に適してい る。

Claims

言青 求 の 範 囲
1 . 1次側冷媒回路 (10) と、 2次側冷媒回路 (20) と、 上記 1次側冷媒回路 (10) を循環する冷媒と 2次側冷媒回路 (20) を循環する冷媒とを熱交換させる冷媒熱交換 器 (5) とを備え、 上記 1次側冷媒回路 (10) と 2次側冷媒回路 (20) との間で熱の 授受を行う冷凍装置において、
上記 2次側冷媒回路 (20) は、 冷媒熱交換器 (5) との間で冷媒が循環する複数 の利用側熱交換器 (lib, 3c) を備え、
上記 1つの利用側熱交換器 (lib) が、 冷媒熱交換器 (5) と共に 1つのユニット (2a) に設けられ、
上記他の利用側熱交換器 (3c) が、 ュニッ ト (2a) から延びる冷媒配管 (LL-A, GL-A) によって冷媒熱交換器 (5) に接続されている
ことを特徴とする冷凍装置。
2 . 1次側冷媒回路 (10) と、 2次側冷媒回路 (11 , 12) と、 上記 1次側冷媒回路 (10) を循環する冷媒と 2次側冷媒回路 (11 , 12) を循環する冷媒とを熱交換させる 冷媒熱交換器 (5) とを備え、 上記 1次側冷媒回路 (10) と 2次側冷媒回路 (11, 12) との間で熱の授受を行う冷凍装置において、
上記 2次側冷媒回路 (11, 12) は、 複数設けられ、 該各 2次側冷媒回路 (11, 12) は、 冷媒熱交換器 (5) との間で冷媒が循環する利用側熱交換器 (llb, 3c) を備 え、
上記 1つの 2次側冷媒回路 (Π) が、 冷媒熱交換器 (5) と共にメインユニット (2a) に設けられ、
上記他の 2次側冷媒回路 (12) の利用側熱交換器 (3c) が、 サブュニット (3a) に設けられると共に、 メインユニット (2a) から延びる冷媒配管 (LL-A, GL-A) に よって冷媒熱交換器 (5) に接続されている
ことを特徴とする冷凍装置。
3 . 1次側冷媒回路 (10) と、 2次側冷媒回路 (11) と、 上記 1次側冷媒回路 (10) を循環する冷媒と 2次側冷媒回路 (11) を循環する冷媒とを熱交換させる冷媒熱交換 器 (5) とを備え、 上記 1次側冷媒回路 (10) と 2次側冷媒回路 (11) との間で熱の 授受を行う冷凍装置において、
上記 2次側冷媒回路 (11) は、 冷媒熱交換器 (5) との間で冷媒が循環し且つ互 いに並列に接続された複数の利用側熱交換器 (lib, 3c) を備え、
上記 1つの利用側熱交換器 (lib) が、 冷媒熱交換器 (5) と共にメインュニット (2a) に設けられ、
上記他の利用側熱交換器 (3c) が、 サブユニット (3a) に設けられると共に、 メ インュニッ ト (2a) から延びる冷媒配管 (LL-A, GL-A) によって冷媒熱交換器
(5) に接続されている
ことを特徴とする冷凍装置。
4 . 1次側冷媒回路 (10) と、 2次側冷媒回路 (12) と、 上記 1次側冷媒回路 (10) を循環する冷媒と 2次側冷媒回路 (12) を循環する冷媒とを熱交換させる冷媒熱交換 器 (5) とを備え、 上記 1次側冷媒回路 (10) と 2次側冷媒回路 (12) との間で熱の 授受を行う冷凍装置において、
上記 1次側冷媒回路 (10) は、 冷媒熱交換器 (5) と並列に接続された第 1利用 側熱交換器 (lib) を備え、
上記 2次側冷媒回路 (12) は、 冷媒熱交換器 (5) との間で冷媒が循環する第 2 利用側熱交換器 (3c) を備える一方、
上記第 1利用側熱交換器 (lib) が、 冷媒熱交換器 (5) と共に 1つのュニット (2a) に設けられ、
上記第 2利用側熱交換器 (3c) が、 ュニッ ト (2a) から延びる冷媒配管 (LL-A, GL-A) によって冷媒熱交換器 (5) に接続されている
ことを特徴とする冷凍装置。
5 . 1次側冷媒回路 (10) と、 2次側冷媒回路 (12) と、 上記 1次側冷媒回路 (10) を循環する冷媒と 2次側冷媒回路 (12) を循環する冷媒とを熱交換させる冷媒熱交換 器 (5) とを備え、 上記 1次側冷媒回路 (10) と 2次側冷媒回路 (12) との間で熱の 授受を行う冷凍装置において、
上記 1次側冷媒回路 (10) は、 冷媒熱交換器 (5) と並列に接続された第 1利用 側熱交換器 (lib) を備え、
上記 2次側冷媒回路 (12) は、 冷媒熱交換器 (5) との間で冷媒が循環する第 2 利用側熱交換器 (3c) を備える一方、
上記第 1利用側熱交換器 (lib) が、 冷媒熱交換器 (5) と共にメインュニット (2a) に設けられ、
上記第 2利用側熱交換器 (3c) が、 サブユニット (3a) に設けられると共に、 メ インュニッ ト (2a) から延びる冷媒配管 (LL-A, GL-A) によって冷媒熱交換器 (5) に接続されている
ことを特徴とする冷凍装置。
6 . 1次側冷媒回路 (10) と、 2次側冷媒回路 (11 ) と、 上記 1次側冷媒回路 (10) を循環する冷媒と 2次側冷媒回路 (11 ) を循環する冷媒とを熱交換させる冷媒熱交換 器 (5) とを備え、 上記 1次側冷媒回路 (10) と 2次側冷媒回路 (11 ) との間で熱の 授受を行う冷凍装置において、
上記 1次側冷媒回路 (10) は、 冷媒熱交換器 (5) と並列に接続された第 1利用 側熱交換器 (lib) を備え、
上記 2次側冷媒回路 (11) は、 冷媒熱交換器 (5) との間で冷媒が循環し且つ互 いに並列に接続された複数の第 2利用側熱交換器 (3c) を備える一方、
上記第 1利用側熱交換器 (lib) が、 冷媒熱交換器 (5) と共にメインュニット (2a) に設けられ、
上記各第 2利用側熱交換器 (3c) が、 個別にサブユニット (3a) に設けられると 共に、 メインユニット (2a) から延びる冷媒配管 (LL-A, GL-A) によって冷媒熱交 換器 (5) に接続されている
ことを特徴とする冷凍装置。
7 . 請求項 2又は 5記載の冷凍装置において、
サブユニット (3a) には、 2次側圧縮機 (3b) が設けられ、
該 2次側圧縮機 (3b) の吐出側がガス配管 (GL-A) を介して冷媒熱交換器 (5) のガス側に接続され、
サブュニット (3a) の利用側熱交換器 (3c) の液側が減圧機構 (EV-2) 及び液 配管 (LL-A) を介して冷媒熱交換器 (5) の液側に接続されている
ことを特徴とする冷凍装置。
8 . 請求項 3又は 6記載の冷凍装置において、
メインユニット (2a) の 2次側冷媒回路 (11) は、 2次側圧縮機 (3b) と減圧機 構 (EV-1) と利用側熱交換器 (lib) と冷媒熱交換器 (5) とが順に接続されて構成 される一方、
サブュニット (3a) の利用側熱交換器 (3c) の液側が、 冷媒熱交換器 (5) の液 側に液配管 (LL-A) によって接続されると共に、 該利用側熱交換器 (3c) のガス側 が、 ガス配管 (GL-A) によって 2次側圧縮機 (3b) の吸入側に接続されている ことを特徴とする冷凍装置。
9 . 請求項 2、 3、 5又は 6記載の冷凍装置において、
1次側冷媒回路 (10) は、 冷媒熱交換器 (5) と並列に接続され且つサブュニッ ト (4a) に設けられた利用側熱交換器 (4b) を備え、
該利用側熱交換器 (4b) の液側が、 冷媒熱交換器 (5) の液側に液配管 (LL-B) によって接続されると共に、 該利用側熱交換器 (4b) のガス側が、 冷媒熱交換器 (5) のガス側にガス配管 (GL-B) によって接続されている ことを特徴とする冷凍装置。
1 0 . 請求項 1〜 6の何れか 1に記載の冷凍装置において、
利用側熱交換器 (llb, 3c, 4b) は、 食品用ショーケースの内部空気との間で熱 交換を行って該空気を冷却するものである
ことを特徴とする冷凍装置。
PCT/JP1998/002441 1997-06-03 1998-06-03 Installation de refrigeration WO1998055809A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US09/147,563 US6212898B1 (en) 1997-06-03 1998-06-03 Refrigeration system
AU75493/98A AU730288B2 (en) 1997-06-03 1998-06-03 Refrigeration system
JP50205699A JP3870423B2 (ja) 1997-06-03 1998-06-03 冷凍装置
EP98923092A EP0930474B1 (en) 1997-06-03 1998-06-03 Refrigerating plant
DE69831923T DE69831923T2 (de) 1997-06-03 1998-06-03 Kälteanlage
NO990397A NO990397D0 (no) 1997-06-03 1999-01-28 Kj°lesystem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP14502297 1997-06-03
JP9/145022 1997-06-03

Publications (1)

Publication Number Publication Date
WO1998055809A1 true WO1998055809A1 (fr) 1998-12-10

Family

ID=15375627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/002441 WO1998055809A1 (fr) 1997-06-03 1998-06-03 Installation de refrigeration

Country Status (8)

Country Link
US (1) US6212898B1 (ja)
EP (1) EP0930474B1 (ja)
JP (1) JP3870423B2 (ja)
CN (1) CN1167919C (ja)
AU (1) AU730288B2 (ja)
DE (1) DE69831923T2 (ja)
NO (1) NO990397D0 (ja)
WO (1) WO1998055809A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9694651B2 (en) * 2002-04-29 2017-07-04 Bergstrom, Inc. Vehicle air conditioning and heating system providing engine on and off operation
US7065979B2 (en) * 2002-10-30 2006-06-27 Delaware Capital Formation, Inc. Refrigeration system
US8234876B2 (en) 2003-10-15 2012-08-07 Ice Energy, Inc. Utility managed virtual power plant utilizing aggregated thermal energy storage
JP4120680B2 (ja) * 2006-01-16 2008-07-16 ダイキン工業株式会社 空気調和機
WO2009102975A2 (en) * 2008-02-15 2009-08-20 Ice Energy, Inc. Thermal energy storage and cooling system utilizing multiple refrigerant and cooling loops with a common evaporator coil
KR20110029139A (ko) * 2008-05-28 2011-03-22 아이스 에너지, 인크. 격리된 증발기 코일을 갖는 축열 및 냉각 시스템
US8631666B2 (en) * 2008-08-07 2014-01-21 Hill Phoenix, Inc. Modular CO2 refrigeration system
US9541311B2 (en) 2010-11-17 2017-01-10 Hill Phoenix, Inc. Cascade refrigeration system with modular ammonia chiller units
US9657977B2 (en) 2010-11-17 2017-05-23 Hill Phoenix, Inc. Cascade refrigeration system with modular ammonia chiller units
US9664424B2 (en) 2010-11-17 2017-05-30 Hill Phoenix, Inc. Cascade refrigeration system with modular ammonia chiller units
EP2715478A4 (en) 2011-05-26 2014-10-29 Ice Energy Inc SYSTEM AND METHOD FOR INCREASING A GRID EFFICIENCY BY A STATISTICAL DISTRIBUTION CONTROL
US9212834B2 (en) 2011-06-17 2015-12-15 Greener-Ice Spv, L.L.C. System and method for liquid-suction heat exchange thermal energy storage
US10060654B2 (en) * 2014-10-16 2018-08-28 Sanden Holdings Corporation Heat pump type heating apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58178159A (ja) * 1982-04-14 1983-10-19 三菱電機株式会社 多段カスケ−ド冷却システム
JPH01247966A (ja) * 1988-03-28 1989-10-03 Sanyo Electric Co Ltd 空気調和装置
JPH055567A (ja) 1991-06-26 1993-01-14 Daikin Ind Ltd 冷却装置
JPH07243727A (ja) * 1994-03-09 1995-09-19 Daikin Ind Ltd 冷凍装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4194368A (en) * 1976-10-04 1980-03-25 Borg-Warner Corporation Combination split system air conditioner and compression cycle domestic hot water heating apparatus
US4176525A (en) * 1977-12-21 1979-12-04 Wylain, Inc. Combined environmental and refrigeration system
US4149389A (en) * 1978-03-06 1979-04-17 The Trane Company Heat pump system selectively operable in a cascade mode and method of operation
US4325226A (en) * 1981-02-18 1982-04-20 Frick Company Refrigeration system condenser heat recovery at higher temperature than normal condensing temperature
US4484449A (en) * 1983-02-15 1984-11-27 Ernest Muench Low temperature fail-safe cascade cooling apparatus
SE463227B (sv) 1989-03-28 1990-10-22 Dart Engineering Ag Kopplingsanordning med otilltaetbar passage foer avluftnings- respektive tryckreduceringsfunktion
SE463735B (sv) 1989-05-24 1991-01-14 Vp Energisystem I Piteaa Ab Kyl- och frysanlaeggning
US5335508A (en) * 1991-08-19 1994-08-09 Tippmann Edward J Refrigeration system
JPH06201176A (ja) 1992-12-28 1994-07-19 Toshiba Corp 空気調和機
JPH08189713A (ja) 1995-01-13 1996-07-23 Daikin Ind Ltd 二元冷凍装置
JPH08189714A (ja) 1995-01-13 1996-07-23 Daikin Ind Ltd 二元冷凍装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58178159A (ja) * 1982-04-14 1983-10-19 三菱電機株式会社 多段カスケ−ド冷却システム
JPH01247966A (ja) * 1988-03-28 1989-10-03 Sanyo Electric Co Ltd 空気調和装置
JPH055567A (ja) 1991-06-26 1993-01-14 Daikin Ind Ltd 冷却装置
JPH07243727A (ja) * 1994-03-09 1995-09-19 Daikin Ind Ltd 冷凍装置

Also Published As

Publication number Publication date
EP0930474A1 (en) 1999-07-21
NO990397L (no) 1999-01-28
US6212898B1 (en) 2001-04-10
EP0930474B1 (en) 2005-10-19
AU730288B2 (en) 2001-03-01
DE69831923T2 (de) 2006-07-06
CN1167919C (zh) 2004-09-22
NO990397D0 (no) 1999-01-28
EP0930474A4 (en) 2000-03-22
AU7549398A (en) 1998-12-21
CN1228153A (zh) 1999-09-08
JP3870423B2 (ja) 2007-01-17
DE69831923D1 (de) 2006-03-02

Similar Documents

Publication Publication Date Title
AU754181B2 (en) Refrigerating device
US6393858B1 (en) Refrigeration system
JP3085296B2 (ja) 冷凍装置
JPH10103800A (ja) 複合型冷凍装置
WO1998055809A1 (fr) Installation de refrigeration
JP3087745B2 (ja) 冷凍装置
JPH0634169A (ja) 空気調和装置
JPH11201569A (ja) 冷凍装置
JP2006207989A (ja) 冷蔵、冷凍熱源ユニット、冷凍装置及び冷凍空調装置
JP4660334B2 (ja) 冷凍システム
JP4270803B2 (ja) 冷熱生成システム
JP2004360999A (ja) 冷凍システム
JP3112004B2 (ja) 冷凍装置
JPH06221698A (ja) 冷凍装置
JP3454644B2 (ja) 複合型冷凍装置
JP2005049064A (ja) 空調冷凍装置
JPH11173689A (ja) 蓄熱式冷却装置
JP2003329319A (ja) 複合型冷凍装置
JPH04263761A (ja) ショーケース冷却システム
JP2002235960A (ja) プロセス冷却及び空調用のパッケージ装置とその熱源供給方法
JPH10311613A (ja) 蓄熱式冷却装置
JP2003262416A (ja) 空気調和装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98800756.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CN JP NO SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09147563

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998923092

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 75493/98

Country of ref document: AU

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998923092

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 75493/98

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1998923092

Country of ref document: EP