WO1998053940A1 - Metall-keramik-gradientenwerkstoff, erzeugnis daraus und verfahren zur herstellung eines metall-keramik-gradientenwerkstoffes - Google Patents
Metall-keramik-gradientenwerkstoff, erzeugnis daraus und verfahren zur herstellung eines metall-keramik-gradientenwerkstoffes Download PDFInfo
- Publication number
- WO1998053940A1 WO1998053940A1 PCT/DE1998/001465 DE9801465W WO9853940A1 WO 1998053940 A1 WO1998053940 A1 WO 1998053940A1 DE 9801465 W DE9801465 W DE 9801465W WO 9853940 A1 WO9853940 A1 WO 9853940A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ceramic
- additive
- metal
- concentration
- gradient
- Prior art date
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 96
- 239000000463 material Substances 0.000 title claims abstract description 64
- 238000004519 manufacturing process Methods 0.000 title description 8
- 229910052751 metal Inorganic materials 0.000 claims abstract description 57
- 239000002184 metal Substances 0.000 claims abstract description 57
- 239000000654 additive Substances 0.000 claims abstract description 48
- 230000000996 additive effect Effects 0.000 claims abstract description 45
- 230000003647 oxidation Effects 0.000 claims abstract description 40
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 40
- 230000007423 decrease Effects 0.000 claims abstract description 7
- 239000000203 mixture Substances 0.000 claims description 13
- 239000000843 powder Substances 0.000 claims description 11
- 239000011148 porous material Substances 0.000 claims description 4
- 238000009826 distribution Methods 0.000 claims description 3
- 238000000034 method Methods 0.000 claims description 3
- 230000002902 bimodal effect Effects 0.000 claims description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 2
- 230000008569 process Effects 0.000 claims description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 2
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 claims description 2
- 230000003247 decreasing effect Effects 0.000 claims 2
- 229910000623 nickel–chromium alloy Inorganic materials 0.000 claims 1
- 239000010410 layer Substances 0.000 description 27
- 238000009413 insulation Methods 0.000 description 14
- 238000005245 sintering Methods 0.000 description 14
- 239000007789 gas Substances 0.000 description 13
- 239000001301 oxygen Substances 0.000 description 11
- 229910052760 oxygen Inorganic materials 0.000 description 11
- 239000000047 product Substances 0.000 description 10
- 239000002131 composite material Substances 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 6
- 239000000835 fiber Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 229910019142 PO4 Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 235000021317 phosphate Nutrition 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 229910010293 ceramic material Inorganic materials 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- -1 oxygen ion Chemical class 0.000 description 3
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 150000004760 silicates Chemical class 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000000930 thermomechanical effect Effects 0.000 description 3
- 229910052845 zircon Inorganic materials 0.000 description 3
- 229910006501 ZrSiO Inorganic materials 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910000943 NiAl Inorganic materials 0.000 description 1
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000002925 chemical effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000002241 glass-ceramic Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000010416 ion conductor Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910000953 kanthal Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000005285 non-oxidic glass Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000005284 oxidic glass Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 229940071182 stannate Drugs 0.000 description 1
- 125000005402 stannate group Chemical group 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/02—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/11—Making porous workpieces or articles
- B22F3/1103—Making porous workpieces or articles with particular physical characteristics
- B22F3/1109—Inhomogenous pore distribution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12535—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
- Y10T428/12611—Oxide-containing component
- Y10T428/12618—Plural oxides
Definitions
- Metal-ceramic gradient material product thereof and method for producing a metal-ceramic gradient material
- the invention relates to a metal-ceramic gradient material, a product thereof, in particular a heat shield or a gas turbine blade, and to a method for producing a metal-ceramic gradient material.
- the high porosity of the layers between 40% and 79% is used to introduce molten metal into the cavities of the fiber ceramic body by means of pressure casting in order to produce a defect-free composite.
- a piston crown can be produced which has a strongly abruptly changing gradient in metal and ceramic. Due to the low thermal conductivity of the ceramic components, a thermal barrier is formed and the piston is thus insulated. In addition, the ceramic fiber reinforces the coblen and thus improves the thermal shock resistance of the piston.
- FGM Functional Gradient Material
- the object of the invention is to provide a metal-ceramic material for use at high temperatures over a long period of time. Further objects of the invention are the details of a method for producing a metal-ceramic material and a product for a high operating temperature.
- This first-mentioned object is achieved according to the invention by a metal-ceramic gradient material, in particular for a heat shield or a gas turbine blade, comprising a metallic base material, a ceramic and an additive for high-temperature oxidation protection, the concentration of the metallic base material being from a metal-rich zone decreases in a ceramic-rich zone, the concentration of the additive having a concentration gradient.
- the object directed to a product is achieved by a product comprising a metal-ceramic gradient material with an additive for high-temperature oxidation protection.
- the object directed to a process is achieved by a powder metallurgical production process in which a metal-ceramic gradient material is produced from a powder spill with a concentration gradient for an additive for high-temperature oxidation protection by pressing and sintering.
- the invention is based on the knowledge of forming a functional gradient material (FGM) with regard to the function of the resistance to oxidation.
- FGM functional gradient material
- the gradient of the composition over the functional cross-section of a component can range from 100% ceramic to 100% metal, but gradients of other limit concentrations or "partial gradients" can also be used for certain purposes in addition to a continuous gradient for certain components symmetrical gradients possible, for example ceramic-metal-ceramic or combinations of the composition gradients mentioned.
- An FGM can also be seen as a link between classic layer systems and typical ceramic matrix systems with 2D or 3D reinforcement elements, whereby in the structure between the pure ceramic and metal components there is a transition from the dispersion material with a ceramic matrix to interpenetrating networks of ceramic and metal towards a dispersion material with a metal matrix.
- further material classes eg organic polymers or amorphous materials such as oxidic and non-oxidic glasses, is possible to achieve special combinations of properties.
- the property profile can be modified by introducing several ceramic or metallic materials.
- Ceramic-metal FGM which consist of 8Y-ZrO 2 -NiCr8020, for example, can be interesting as thermal insulation systems, since the composition gradient is suitable for minimizing thermomechanical stresses and thus increasing the thickness of the thermal insulation layer.
- a decisive criterion for the use of such FGM for thermal insulation is, however, the resistance to oxidation, which cannot be guaranteed with the help of metallic intermediate layers due to the special microstructure.
- a gradient of the composition results in a spatially "smeared” and enlarged ceramic / metal interface compared to a layer composite.
- the oxidation-inhibiting intermediate layer previously used in layer composites eg NiCrAlY
- WDS thermal insulation layer system
- the ceramic-rich zones of an FGM should have a higher density compared to plasma-sprayed WDS, which results in a high oxygen ion conductivity of the 8Y-Zr0 2 , an increased heat conduction and a low temperature change resistance .
- the invention therefore provides for the use of an additive for high-temperature oxidation protection with a concentration gradient.
- a special microstructure can be set in the ceramic area, depending on the requirements, so that good thermal insulation and resistance to temperature changes as well as stability against shrinkage due to re-sintering are achieved with the lowest possible porosity.
- the metal-ceramic gradient material does not consist of a layer system, but rather of a penetration structure in which the ceramic phase passes over the metal base material via an additive (here preferred: ZrS ⁇ 0 4 ).
- This additive not only brings about a dramatic reduction in oxygen diffusion, but preferably also ensures that the metallic surface is covered with thermodynamically stable oxides and silicates.
- the additive preferably has low thermal expansion and good adhesion to both the ceramic and the metal. It is preferably thermally stable and preferably does not form any low-melting eutectics with the ceramic, in particular a ZrO 2 layer, or with the metal or its
- Corrosion products This results in an improvement in the long-term oxidation resistance compared to classic layer systems comprising a metallic base material, a metal-based adhesive layer and a ceramic, and the prevention of flaking.
- the additive preferably forms a stable network of strongly branching microcracks and closed porosity. This results in a low modulus of elasticity module in the ceramic-rich areas and a reduction in the thermal conductivity. Both are desired effects for use at high temperatures, since they have a direct influence on the thermal shock resistance and the thermal insulation properties of the system. This results in an improvement in both the oxidation stability and the system stability, even with improved thermal insulation properties. This has an effect when used in a product charged with a hot gas, for. B. a gas turbine, directly on the availability (reliability) and the possible turbine inlet temperatures, ie on cooling air consumption or increase in efficiency.
- the metallic base material is preferably a chromium-nickel alloy, for example NiCr8020, and the ceramic comprises zirconium oxide, which can be partially stabilized, for example, with yttrium (8Y-Zr0 2 ).
- This FGM e.g. 8Y-Zr0 2 -
- NiCr8020-FGM shows a slight tendency to oxidize by adding an additive in the volume of the FGM, even at high temperatures of up to over 1000 ° C.
- this additive enables the FGM to be highly stable to oxidation.
- the chemical effect means a reduction in the oxygen ion conductivity of the ceramic, in particular 8Y-Zr0 2 , and a high dissolving power for Cr oxide and other bunoxides, which result from the oxidation of the metals.
- the additive preferably has good wetting and adhesion both to metals and to the ceramic, in particular ZrO 2 .
- the additive therefore causes the grain boundaries of the ceramic, in particular the 8Y-Zr0 2 , to be covered with precipitates, e.g. B. of Si0 2nd cause.
- precipitates e.g. B. of Si0 2nd cause.
- a reduction in the oxygen conductivity of the ceramic is preferably achieved even at high temperatures of over 800 ° C.
- a slowdown in metal oxidation can also be achieved if the evaporation of the oxides formed and oxygen understoichiometry, which could lead to the formation of volatile suboxides, are prevented by the additive.
- a silicate or phosphate, stannate, titanate
- an additive is preferably provided, which enables the targeted introduction of strongly branching microcracks and / or the formation of metastable, closed pores, which on the one hand reduce the elasticity module of the ceramic-rich zones of the FGM and on the other hand in the metal-containing zones of the FGM absorb the local tensile stresses around the metal grains.
- the porosity and the crack network also cause a deterioration in the heat conduction.
- the use of unstabilized Zr0 2 as a microcrack trigger is due to the t ⁇ m conversion z. B. effective with densely sintered ceramic materials.
- the additive is preferably ceramic itself and has a very low linear thermal expansion and / or a strong anisotropy of thermal expansion. Good adhesion to both the actual ceramic, e.g. B. to 8Y-Zr0 2 , as well as to the metal, the additive is able to absorb tensile stresses between these two components of an FGM or to reduce them by microcracking.
- the density and extent of the crack network can be influenced by the grain size and the volume fraction of the additive.
- the additive is also thermally stable and preferably does not form extremely low melting eutectics with the oxidation products or the components of the FGM.
- ZrSi0 4 is preferably suitable as an additive.
- Other possible additives are mullite, zirconyl or Al phosphates, glass ceramics. With such an additive, the advantages of the FGM in terms of increasing the thickness of the WDS can be exploited by providing oxidation protection at the metal-ceramic interface in the dimensions of the structural components, ie the metal-ceramic agglomerates and grains , which also has the required microstructural features.
- the metal-ceramic gradient material is preferably used to produce a product which is exposed to a hot, possibly aggressive gas, such as a component of a gas turbine, an oven or the like.
- a hot, possibly aggressive gas such as a component of a gas turbine, an oven or the like.
- gradient systems containing ZrSi0 4 can be used as materials for thermal protection systems in the hot gas path of gas turbines. Heat shields can do this more easily
- the metal-ceramic gradient material and a method for its production are explained in more detail with the aid of the drawing.
- the production of the green bodies, the sintering and physical examinations are given here. Show it:
- FIG. 6 Comparison of the oxidation resistance of linear 8Y-ZrO2-NiCr8020-FGM and linear 8Y-Zr02-ZrSiO4-NiCr8020-FGM.
- Fig. 7a b Ceramic layer of an oxidation-resistant gradient material after thermal etching at 1450 ° C in air, 0.5 h . Overview (a), grain structure (b)
- the metallic-ceramic functional gradient materials are manufactured by powder metallurgy. 8Y-ZrO 2 -NiCr8020-FGM, 8Y-ZrO 2 -ZrSiO 4 -NiCr8020-FGM, (as well as 8Y-ZrO 2 -ZrPO 4 -NiCr8020-FGM and with the same ceramic composition-steel-, -TiAl- or NiAl intermetallic see compounds, -Mo as well as all combinations of substances
- the FGM green bodies consist of 8Y-Zr0 2 powder (d50 0.3 ⁇ m, commercially available from Tosoh available) and ⁇ 25 ⁇ m N ⁇ Cr8020 powder (Ampersmt, commercially available from HC Starck GmbH, Germany) and ZrS 04 powder (commercial, 99%).
- silicone molds dry fill of up to 12 individual mixtures, the volume fraction of which is ceramic (including 20%
- ZrS ⁇ 0 4 increases from layer to layer, cylindrical samples with dimensions ⁇ 35 mm x 15 mm are formed.
- the ZrS ⁇ 0 4 is first ground with the metal powder in a planetary mill and then mixed with the corresponding amount of 8Y-Zr0 2 .
- the addition of the additives is possible not only in the form of powders, but also by coating with precursors or by infiltration of green bodies with precursor compounds.
- Fig. La shows a linear gradient between the metal and Zr0 2 .
- the gradient between the metallic component and the assembled ceramic is also linear, but the proportion of the individual ceramic components (Zr0 2 and ZrS ⁇ 0 4 ) changes nonlinearly.
- the portion of ZrS ⁇ 0 4 has a high portion with a maximum in the area of a small portion of metal and hm drops to larger portions of the metal to zero before the portion of Zr0 2 decreases to zero.
- Other gradients for example linear, exponential or periodic, are also possible.
- the concentration gradient of the additive can be essentially continuous. It is also possible that the concentration gradient of the additive extends from the ceramic-rich zone to the metal-rich zone, the concentration of the additive has a maximum, in particular between the metal-rich zone and the ceramic-rich zone, the concentration of the additive is approx. 5 vol.% In the metal-rich zone increases to approx. 30 vol.% And decreases in the ceramic-rich zone to approx.
- the concentration of the additive can also change monotonically from the ceramic-rich zone to the metal-rich zone.
- the grain size distribution of the additive can be bimodal, in particular one Fine grain fraction with a grain diameter smaller than 10 ⁇ m and a coarse grain fraction with grain diameter larger than 100 ⁇ m.
- the additive can form pores, in particular with a diameter between 0.1 ⁇ m and 5 ⁇ m, preferably between 1.0 ⁇ m and 2.0 ⁇ m, reduced by the thermal conductivity and hinders re-sintering and the thermal shock resistance is increased.
- the silicone matrices loaded with powder are evacuated and pressed isostatically at 300 MPa.
- the sintering is carried out without pressure by means of microwaves, by means of a combined conventional microwave heating or by conventional heating in a resistance-heated furnace.
- Ar, Ar-H 2 , H 2 , N 2 , He or combinations of these gases are used as sintering gases. Sintering takes place depending on the material composition and smut activity of the powders and mixtures used, with or without a temperature gradient (for example T (Zr0 2 )> T (NiCr)).
- the hard, linear thermal expansion, the elastic modulus and the mechanical losses were determined with the help of Vickers impressions, with a TMA and a DMA.
- the slow crack propagation was examined on notched 3 PB samples (SENB).
- the structure is characterized using REM-EDX.
- 8Y-ZrO 2 -ZrS ⁇ O 4 -NiCr8020-FGM was estimated using limit value curves from tabulated data of the pure substances and the structural features.
- the FGM undergoes a slight sintering.
- Fig. 7a, b thermalally etched
- Fig. 8a, b after 300h / 1200 ° C
- the crack opening of the isotropic crack network which starts from the large ZrSi0 4 grains, increases.
- the 8Y-Zr0 2 agglomerates show compaction and grain growth, from ⁇ 2 ⁇ m to approx. 5 ⁇ m.
- the ceramic zones of the FGM are extremely fine-grained compared to sprayed thermal bond coats (TBC).
- TBC sprayed thermal bond coats
- the mechanical resistance of the FGM is supported by small ZrSi0 bridge grains, as shown in Fig. 9.
- ZrSi0 4 acts as an oxidation inhibitor, with segregation of Si0 2 at the grain boundaries of densely sintered 8Y-ZrSi0 4 significantly reducing the oxygen ion conductivity of Zr0 2 .
- Crystalline ZrSi0 4 should have a similar effect.
- the thermal expansion of ZrSi0 4 is considerably lower than that of 8Y-Zr0 2 (4.5 »10 ⁇ 6 Wm ⁇ K " 1 compared to 8-10 »10 ⁇ 6 Wm ⁇ K " 1 ) and of NiCr8020, which means that when Sintering temperature creates a network of fine cracks.
- ZrSi0 4 has a good one Solubility for other oxides and is thermodynamically stable up to 1650 ° C. Any oxidation products could thus have an improved adhesion to the metal and protect the metal against further oxidative attack.
- decomposed ZrSi0 is likely to reassociate to crystalline ZrSi0 4 already at 1200 ° C., so that the formation of pores can be prevented by evaporation of SiO or other volatile oxides.
- the crack network should significantly reduce the thermal conductivity and the modulus of elasticity of the ceramic-rich zones of the FGM, which leads to improved resistance to temperature changes (TWB).
- TWB temperature changes
- the type of introduction of the ZrSi0 4 is therefore important for the delicacy of the ZrSi0 4 distribution and the resulting crack network.
- ZrSi0 4 may not be stable under the conditions of plasma spraying and may dissociate in t-Zr0 2 and Si0 2 glass depending on the cooling conditions. SiO frequently escapes. The decomposition takes place above 1650 ° C. A reassociation takes place within a few hours at temperatures between 1200-1400 ° C. The regression of ZrSi0 4 is accelerated by Zr0 2 and by grinding the PDZ (Plasma Dissociated Zircon). Severe cracking may occur during reassociation. By sintering at 1700 ° C in air, ZrSi0 4 can also be obtained as a single-phase ceramic.
- a powder metallurgical production route is therefore advantageous for 8Y-Zr0 2 -ZrSi0- NiCr8020- FGM.
- the entire FGM there is then a uniform distribution of SiO 2 , which takes place, among other things, through dissociation-reassociation of the silicate.
- the time and the oxygen-containing atmosphere are jointly responsible for the re-sintering.
- 7a, 8a show an FGM sample of the same composition and microstructure as the samples used for oxidation, but which are thermally etched to make the grain boundaries visible in the ceramic area was in air at 1459 ° C / 0.5 h. Compared to the unetched sample, the porosity and agglomerate structure and grain size (approx. 2 ⁇ m) are comparable. Due to the sintering of the FGM under an Ar / H 2 atmosphere, the Zr0 2 obtained is not optimally compressed since the oxygen is missing in the sintering atmosphere.
- ZrSi0 4 or comparable additives such as phosphates etc. is not limited to a gradient material of the type 8Y-ZrO 2 -NiCr8020.
- ZrSi0 4 can also be used as oxidation protection against the active oxidation of porous SiC.
- the SiC-Zr0 2 composite material is preferably sintered without pressure when a sufficiently thick ZrSi0 4 layer is formed around the SiC grains. Sintering is also carried out using microwaves. Because of the porosity of the body, the weight changes (increase and decrease) are related to the specific surface. In this case, no increase in the specific surface area was found which should occur in a competitive reaction between passive and active oxidation.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE59803436T DE59803436D1 (de) | 1997-05-28 | 1998-05-28 | Metall-keramik-gradientenwerkstoff, erzeugnis daraus und verfahren zur herstellung eines metall-keramik-gradientenwerkstoffes |
EP98934822A EP0984839B1 (de) | 1997-05-28 | 1998-05-28 | Metall-keramik-gradientenwerkstoff, erzeugnis daraus und verfahren zur herstellung eines metall-keramik-gradientenwerkstoffes |
JP50010099A JP2002502462A (ja) | 1997-05-28 | 1998-05-28 | 金属とセラミックスの勾配材料、その製品及び金属とセラミックスの勾配材料の製造方法 |
US09/450,400 US6322897B1 (en) | 1997-05-28 | 1999-11-29 | Metal-ceramic gradient material, product made from a metal-ceramic gradient material and process for producing a metal-ceramic gradient material |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19722390 | 1997-05-28 | ||
DE19722390.7 | 1997-05-28 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/450,400 Continuation US6322897B1 (en) | 1997-05-28 | 1999-11-29 | Metal-ceramic gradient material, product made from a metal-ceramic gradient material and process for producing a metal-ceramic gradient material |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1998053940A1 true WO1998053940A1 (de) | 1998-12-03 |
Family
ID=7830783
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE1998/001465 WO1998053940A1 (de) | 1997-05-28 | 1998-05-28 | Metall-keramik-gradientenwerkstoff, erzeugnis daraus und verfahren zur herstellung eines metall-keramik-gradientenwerkstoffes |
Country Status (5)
Country | Link |
---|---|
US (1) | US6322897B1 (de) |
EP (1) | EP0984839B1 (de) |
JP (1) | JP2002502462A (de) |
DE (1) | DE59803436D1 (de) |
WO (1) | WO1998053940A1 (de) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999051791A1 (en) * | 1998-04-08 | 1999-10-14 | Caterpillar Inc. | Component having a functionally graded material coating for improved performance |
EP1199520A1 (de) * | 2000-10-16 | 2002-04-24 | Siemens Aktiengesellschaft | Hitzeschildstein zur Auskleidung einer Brennkammerwand, Brennkammer sowie Gasturbine |
WO2003033192A2 (en) * | 2001-10-11 | 2003-04-24 | Inco Limited | Process for the production of sintered porous bodies |
WO2011108974A1 (en) * | 2010-03-01 | 2011-09-09 | Westinghouse Electric Sweden Ab | A reactor component |
WO2011108973A1 (en) * | 2010-03-01 | 2011-09-09 | Westinghouse Electric Sweden Ab | A neutron absorbing component and a method for producing of a neutron absorbing component |
WO2011108975A1 (en) * | 2010-03-01 | 2011-09-09 | Westinghouse Electric Sweden Ab | A neutron absorbing component and a method for producing a neutron absorbing component |
EP2781617A1 (de) | 2013-03-19 | 2014-09-24 | Alstom Technology Ltd | Verfahren zum Beschichten einer Komponente einer Turbomaschine und beschichtete Komponente für eine Turbomaschine |
US8927719B2 (en) | 2010-10-20 | 2015-01-06 | Li-Cor, Inc. | Cyanine dyes and their conjugates |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL1016112C2 (nl) * | 2000-09-06 | 2002-03-07 | Tno | Lichaam van gradueel hardmetaal zoals stansgereedschap en werkwijze voor het produceren daarvan. |
GB0027357D0 (en) | 2000-11-09 | 2000-12-27 | Bradford Particle Design Plc | Particle formation methods and their products |
GB0216562D0 (en) | 2002-04-25 | 2002-08-28 | Bradford Particle Design Ltd | Particulate materials |
US9339459B2 (en) | 2003-04-24 | 2016-05-17 | Nektar Therapeutics | Particulate materials |
ITMI20022676A1 (it) * | 2002-12-18 | 2004-06-19 | Nuovo Pignone Spa | Metodo di fabbricazione per ottenere componenti ad alte |
US6916529B2 (en) * | 2003-01-09 | 2005-07-12 | General Electric Company | High temperature, oxidation-resistant abradable coatings containing microballoons and method for applying same |
US7118114B2 (en) * | 2003-05-15 | 2006-10-10 | Woodward Governor Company | Dynamic sealing arrangement for movable shaft |
US7090894B2 (en) * | 2004-02-10 | 2006-08-15 | General Electric Company | Bondcoat for the application of TBC's and wear coatings to oxide ceramic matrix |
US7279230B1 (en) * | 2004-02-23 | 2007-10-09 | United States Of America As Represented By The Secretary Of The Air Force | Hybrid composite materials |
CA2653270C (en) * | 2006-05-26 | 2013-10-01 | Praxair Technology, Inc. | Blade tip coatings using high purity powders |
DE102010028535A1 (de) * | 2010-05-04 | 2011-11-10 | Robert Bosch Gmbh | Thermoelektrische Module |
US8347636B2 (en) | 2010-09-24 | 2013-01-08 | General Electric Company | Turbomachine including a ceramic matrix composite (CMC) bridge |
US9808030B2 (en) | 2011-02-11 | 2017-11-07 | Grain Processing Corporation | Salt composition |
US9388086B2 (en) | 2011-03-04 | 2016-07-12 | Raytheon Company | Method of fabricating optical ceramics containing compositionally tailored regions in three dimension |
WO2012133800A1 (ja) * | 2011-03-31 | 2012-10-04 | 京セラ株式会社 | セラミックヒータ |
US20150030871A1 (en) | 2013-07-26 | 2015-01-29 | Gerald J. Bruck | Functionally graded thermal barrier coating system |
EP2839905A1 (de) * | 2013-08-22 | 2015-02-25 | Astrium GmbH | Herstellung von Teilen aus verschiedenen Materialien, insbesondere für Raumtransportkomponenten wie Brennkammern für Triebwerke |
DE102014113083A1 (de) | 2014-09-11 | 2016-03-17 | Endress + Hauser Gmbh + Co. Kg | Drucksensor |
US10197323B1 (en) * | 2015-01-14 | 2019-02-05 | Lockheed Martin Corporation | Emissive composite materials and methods for use thereof |
US10208955B2 (en) * | 2015-04-07 | 2019-02-19 | United Technologies Corporation | Ceramic and metal engine components with gradient transition from metal to ceramic |
US9683901B2 (en) | 2015-07-16 | 2017-06-20 | Siemens Energy, Inc. | Acoustic measurement system incorporating a temperature controlled waveguide |
US10031032B2 (en) | 2015-07-16 | 2018-07-24 | Siemens Energy, Inc. | Acoustic measurement system incorporating a hybrid waveguide providing thermal isolation |
US20190072365A1 (en) * | 2017-09-05 | 2019-03-07 | The Boeing Company | Compositionally-graded metal-ceramic structure and method for manufacturing the same |
US11167375B2 (en) | 2018-08-10 | 2021-11-09 | The Research Foundation For The State University Of New York | Additive manufacturing processes and additively manufactured products |
US11969796B2 (en) * | 2020-01-03 | 2024-04-30 | The Boeing Company | Tuned multilayered material systems and methods for manufacturing |
DE102023203166A1 (de) | 2022-09-20 | 2024-03-21 | Siemens Healthcare Gmbh | Vakuumgehäuse mit einem urgeformten Werkstoffverbund |
CN116872573B (zh) * | 2023-06-02 | 2024-03-19 | 华中科技大学 | 一种隔热承载一体化材料及其制备方法与应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1985005352A1 (en) * | 1984-05-24 | 1985-12-05 | Höganäs Ab | Inhomogenous sintered body |
EP0229522A2 (de) * | 1985-12-28 | 1987-07-22 | National Aerospace Laboratories of Science & Technology Agency | Verfahren zur Herstellung eines Werkstoffes mit einem abhängigen Gradienten |
EP0635580A1 (de) * | 1993-02-05 | 1995-01-25 | Sumitomo Electric Industries, Ltd. | Stickstoffenthaltende hartgesinterte legierung |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4321311A (en) | 1980-01-07 | 1982-03-23 | United Technologies Corporation | Columnar grain ceramic thermal barrier coatings |
WO1993024672A1 (en) * | 1992-05-29 | 1993-12-09 | United Technologies Corporation | Ceramic thermal barrier coating for rapid thermal cycling applications |
CN1074689C (zh) * | 1996-04-04 | 2001-11-14 | E·O·帕通电子焊接研究院电子束工艺国际中心 | 基体上制备有跨厚度化学组成和结构梯度并陶瓷外层方法 |
US5912087A (en) * | 1997-08-04 | 1999-06-15 | General Electric Company | Graded bond coat for a thermal barrier coating system |
-
1998
- 1998-05-28 WO PCT/DE1998/001465 patent/WO1998053940A1/de active IP Right Grant
- 1998-05-28 DE DE59803436T patent/DE59803436D1/de not_active Expired - Fee Related
- 1998-05-28 JP JP50010099A patent/JP2002502462A/ja active Pending
- 1998-05-28 EP EP98934822A patent/EP0984839B1/de not_active Expired - Lifetime
-
1999
- 1999-11-29 US US09/450,400 patent/US6322897B1/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1985005352A1 (en) * | 1984-05-24 | 1985-12-05 | Höganäs Ab | Inhomogenous sintered body |
EP0229522A2 (de) * | 1985-12-28 | 1987-07-22 | National Aerospace Laboratories of Science & Technology Agency | Verfahren zur Herstellung eines Werkstoffes mit einem abhängigen Gradienten |
EP0635580A1 (de) * | 1993-02-05 | 1995-01-25 | Sumitomo Electric Industries, Ltd. | Stickstoffenthaltende hartgesinterte legierung |
Non-Patent Citations (1)
Title |
---|
CHERRADI N ET AL: "MATERIAUX A GRADIENT: EXPLOITATION DU CONCEPT ET TECHNIQUES DE PRODUCTION PAR METALLURGIE DES POUDRES", CAHIERS D'INFORMATIONS TECHNIQUES DE LA REVUE DE METALLURGIE, vol. 93, no. 2, 1 February 1996 (1996-02-01), pages 185 - 196, XP000594743 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6087022A (en) * | 1996-06-05 | 2000-07-11 | Caterpillar Inc. | Component having a functionally graded material coating for improved performance |
WO1999051791A1 (en) * | 1998-04-08 | 1999-10-14 | Caterpillar Inc. | Component having a functionally graded material coating for improved performance |
EP1199520A1 (de) * | 2000-10-16 | 2002-04-24 | Siemens Aktiengesellschaft | Hitzeschildstein zur Auskleidung einer Brennkammerwand, Brennkammer sowie Gasturbine |
WO2002033322A1 (de) | 2000-10-16 | 2002-04-25 | Siemens Aktiengesellschaft | Hitzeschildstein zur auskleidung einer brennkammerwand, brennkammer sowie gasturbine |
US7540155B2 (en) | 2000-10-16 | 2009-06-02 | Siemens Aktiengesellschaft | Thermal shield stone for covering the wall of a combustion chamber, combustion chamber and a gas turbine |
WO2003033192A2 (en) * | 2001-10-11 | 2003-04-24 | Inco Limited | Process for the production of sintered porous bodies |
WO2003033192A3 (en) * | 2001-10-11 | 2003-09-04 | Inco Ltd | Process for the production of sintered porous bodies |
WO2011108973A1 (en) * | 2010-03-01 | 2011-09-09 | Westinghouse Electric Sweden Ab | A neutron absorbing component and a method for producing of a neutron absorbing component |
WO2011108974A1 (en) * | 2010-03-01 | 2011-09-09 | Westinghouse Electric Sweden Ab | A reactor component |
WO2011108975A1 (en) * | 2010-03-01 | 2011-09-09 | Westinghouse Electric Sweden Ab | A neutron absorbing component and a method for producing a neutron absorbing component |
US8927719B2 (en) | 2010-10-20 | 2015-01-06 | Li-Cor, Inc. | Cyanine dyes and their conjugates |
US9089603B2 (en) | 2010-10-20 | 2015-07-28 | Li-Cor, Inc. | Fluorescent imaging with substituted cyanine dyes |
US9248203B2 (en) | 2010-10-20 | 2016-02-02 | Li-Cor, Inc. | Fluorescent imaging with substituted cyanine dyes |
US9408924B2 (en) | 2010-10-20 | 2016-08-09 | Li-Cor, Inc. | Bioconjugates of cyanine dyes |
EP2781617A1 (de) | 2013-03-19 | 2014-09-24 | Alstom Technology Ltd | Verfahren zum Beschichten einer Komponente einer Turbomaschine und beschichtete Komponente für eine Turbomaschine |
EP2781616A1 (de) | 2013-03-19 | 2014-09-24 | ALSTOM Technology Ltd | Verfahren zum Beschichten einer Komponente einer Turbomaschine und beschichtete Komponente für eine Turbomaschine |
US9850566B2 (en) | 2013-03-19 | 2017-12-26 | Ansaldo Energia Ip Uk Limited | Method for coating a component of a turbomachine and coated component for a turbomachine |
Also Published As
Publication number | Publication date |
---|---|
EP0984839A1 (de) | 2000-03-15 |
US6322897B1 (en) | 2001-11-27 |
EP0984839B1 (de) | 2002-03-20 |
JP2002502462A (ja) | 2002-01-22 |
DE59803436D1 (de) | 2002-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0984839B1 (de) | Metall-keramik-gradientenwerkstoff, erzeugnis daraus und verfahren zur herstellung eines metall-keramik-gradientenwerkstoffes | |
EP0944746B1 (de) | Erzeugnis, welches einem heissen gas aussetzbar ist, mit einer wärmedämmschicht sowie verfahren zur herstellung | |
EP1029115B1 (de) | Erzeugnis, insbesondere bauteil einer gasturbine, mit keramischer wärmedämmschicht | |
EP1386017B1 (de) | WÄRMEDÄMMSCHICHT AUF BASIS VON La2 Zr2 O7 FÜR HOHE TEMPERATUREN | |
DE112007000923B4 (de) | Verbundwerkstoff aus Metall und Keramik, Verfahren zu dessen Herstellung, seine Verwendung sowie Energieabsorptionsbauteil | |
EP0800495A1 (de) | Herstellung eines aluminidhaltigen keramischen formkörpers | |
EP0902771B1 (de) | Metall-keramik-formkörper und verfahren zu ihrer herstellung | |
EP0531378A1 (de) | Reaktionsgebundener mullit-haltiger keramikformkörper, seine herstellung und seine verwendung. | |
DE69903858T2 (de) | Metallkeramischer schichtverbundwerkstoff | |
EP1247941A1 (de) | Gasturbinenschaufel | |
DE4433514C2 (de) | Produkt mit einer selbstregenerierenden Schutzschicht zur Verwendung in einer reaktiven Umgebung | |
WO2002040745A1 (de) | Werkstoff für temperaturbelastete substrate | |
DE19752776C1 (de) | Verfahren zur Herstellung eines Bauteils aus Al¶2¶0¶3¶/Titanaluminid-Verbundwerkstoff und dessen Verwendung | |
DE102004053959B4 (de) | Keramikmaterial und seine Verwendung sowie Verfahren zur Herstellung von Beschichtungen mit dem Keramikmaterial | |
EP1463845B1 (de) | Herstellung eines keramischen werkstoffes für eine wärmedämmschicht sowie eine den werkstoff enthaltende wärmedämmschicht | |
WO2008000247A1 (de) | Verfahren zum korrosionsschutz von keramischen oberflächen, körper mit entsprechenden keramischen oberflächen und deren verwendung | |
EP1256636B1 (de) | Wärmedämmmaterial mit im wesentlichen magnetoplumbitischer Kristallstruktur | |
EP1900708B1 (de) | Wärmedämmstoff mit hoher zyklischer Temperaturbelastbarkeit | |
DE19516790A1 (de) | Keramisches Bauteil | |
EP0532555B1 (de) | Keramikverbundkörper, verfahren zur herstellung eines keramikverbundkörpers und dessen verwendung | |
EP1464716B1 (de) | Quasikristalline Ti-Cr-Al-Si-O Legierung und deren Verwendung als Beschichtungen | |
DE10342580A1 (de) | Flüssigphasenverdichtete Siliciumcarbidkeramiken mit hoher Oxidationsbeständigkeit an feuchter Atmosphäre | |
WO2004035309A1 (de) | Metall/keramik-verbundprodukt mit oberflächendruckspannungen | |
WO1999028276A1 (de) | Verfahren zur herstellung eines opferkörpers zur herstellung von alumina/titan-aluminid-verbundkörpern | |
EP0776872A1 (de) | Metall-Keramik-Kompositwerkstoff und Verfahren zu dessen Herstellung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP RU US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1998934822 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 1999 500100 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 09450400 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 1998934822 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1998934822 Country of ref document: EP |