WO1998045494A1 - Tole d'acier a froid mince revetue de type trempe presentant une excellente resistance au vieillissement, et procede de production - Google Patents

Tole d'acier a froid mince revetue de type trempe presentant une excellente resistance au vieillissement, et procede de production Download PDF

Info

Publication number
WO1998045494A1
WO1998045494A1 PCT/JP1998/001623 JP9801623W WO9845494A1 WO 1998045494 A1 WO1998045494 A1 WO 1998045494A1 JP 9801623 W JP9801623 W JP 9801623W WO 9845494 A1 WO9845494 A1 WO 9845494A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
cold
steel sheet
rolled
rolled steel
Prior art date
Application number
PCT/JP1998/001623
Other languages
English (en)
French (fr)
Inventor
Saiji Matsuoka
Masahiko Morita
Osamu Furukimi
Takashi Obara
Tetsuya Kiyasu
Yoshio Yamazaki
Original Assignee
Kawasaki Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP09073197A external-priority patent/JP3978807B2/ja
Priority claimed from JP9683097A external-priority patent/JPH10287954A/ja
Priority claimed from JP22607397A external-priority patent/JPH1161332A/ja
Application filed by Kawasaki Steel Corporation filed Critical Kawasaki Steel Corporation
Priority to EP98912726A priority Critical patent/EP0918098B1/en
Priority to US09/194,533 priority patent/US6171412B1/en
Priority to AU67472/98A priority patent/AU721077B2/en
Priority to DE69839757T priority patent/DE69839757D1/de
Priority to CA002257835A priority patent/CA2257835C/en
Publication of WO1998045494A1 publication Critical patent/WO1998045494A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0431Warm rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing

Definitions

  • the present invention relates to a cold-rolled thin steel sheet, and is particularly preferably used for a body of an automobile, which is subjected to a coating baking process after a process such as a bending process, a press forming process and a drawing process.
  • a coating baking process after a process such as a bending process, a press forming process and a drawing process.
  • the heating causes the solid solution c to adhere to the dislocations introduced during the press working and hinder the movement of the dislocations, thereby increasing the yield stress. It should be noted that such a paint bake hardening type automotive steel sheet requires a paint bake hardening amount (BH amount) of 30 MPa or more.
  • Japanese Patent Publication No. 61-12008 discloses that the C content is 2 to 10 times After rolling at a low temperature of 550 to 200 at the low temperature of 550 to 200, and annealing in the ⁇ - ⁇ 2 phase region, in an ultra-low carbon steel with a combined addition of Nb and ⁇ more than 0.3 times the N content
  • a method for producing a high-strength two-phase microstructure steel sheet for deep drawing, in which a quenching treatment is performed in combination to obtain a high r value and bake hardenability, is disclosed.
  • This manufacturing method is characterized in that it is heated to the ⁇ - ⁇ two-phase region and rapidly cooled to form a two-phase structure of ferrite and ferrite.
  • this structure contains solid solution C and has high bake hardenability (ferritic properties), most of the solid solution C is trapped in the high dislocation density ferrite, so that even after annealing, almost no Does not show yield point elongation.
  • the uniform elongation is the elongation when the tensile strength shows a maximum value in a tensile test.
  • the uniform elongation increases as the yield strength decreases or as the work hardening index ⁇ increases.
  • paint bake-hardened steel sheets are more advantageous as the yield strength after paint bake is higher, and it has been difficult to obtain high uniform elongation properties with paint bake-hardened steel sheets.
  • An object of the present invention is to solve the above-mentioned problems, and to provide a paint bake hardened cold-rolled steel sheet and a hot-dip galvanized steel sheet which can be industrially stably produced and have excellent aging resistance. .
  • Another object of the present invention is to provide a steel sheet having high uniform elongation and improved press formability. Disclosure of the invention
  • the present inventors have conducted intensive studies in order to obtain high heat resistance and excellent aging resistance in ultra-low carbon steel.As a result, the solid solution C that exhibits heat resistance and the solid solution C that contributes to aging at room temperature are: The existence of the C Newly found that the location is different. That is, in the case of the paint bake hardening treatment in which the heat treatment is performed at a high temperature of 170, all the solid solution C in the steel present in the grain boundaries and in the grains contributes to the BH property. On the other hand, in the case of room temperature aging, since the aging temperature is lower than that of the paint bake hardening treatment, the solute C existing in the grain boundaries cannot diffuse into the grains and remains fixed at the grain boundaries.
  • the present inventors have found that by setting the ratio between the grain boundary angle and the crystal grain size of the steel sheet to a certain value or more, excellent aging resistance can be obtained even in the case of a steel sheet having a high BH property. Was found.
  • the present inventors can control the amount of solute C present at the grain boundaries and in the grains by optimizing the relationship between the hot rolling heating temperature and the S content of the steel material, and have a high BH property. It was found that a steel sheet having excellent aging resistance was obtained.
  • the present invention is based on the above findings.
  • the gist configuration of the present invention is as follows.
  • a value is 0.4 or more for a cold rolled steel sheet that contains at least one of the following, has a chemical composition consisting of the balance of Fe and inevitable impurities, and has a paint bake hardening (BH) of 30 MPa or more.
  • BH paint bake hardening
  • AI QUENCH Aging index (MPa) after heating steel plate at 500 ° C for 40 seconds and water quenching
  • a I Aging index of steel sheet (MPa)
  • Aging index Increase in yield stress before and after heat treatment when heat treated at 100 ° C for 30 min after applying a 7.5% tensile prestrain to the steel sheet (MPa)
  • Some steels further contain at least one of Nb: 0.001 to 0.2% and B: 0.0001 to 0.0080%, and have a chemical composition consisting of Fe and unavoidable impurities.
  • MZG is 0.8 or more, in a cold-rolled steel sheet with a paint bake hardening amount (BH) of 30 MPa or more This is a paint-baked hardened cold-rolled steel sheet with excellent aging resistance characteristics.
  • C 0.005% or less
  • Si 1.0% or less
  • P 0.15% or less
  • S 0.05% or less
  • N 0.01% or less
  • Ti Some steels further contain at least one of b: 0.001 to 0.2% and B: 0.0001 to 0.0080%, and the balance of Fe and unavoidable impurities is reduced to 960 to 0.2%.
  • a method for producing a paint-baked hardened cold-rolled steel sheet having excellent aging resistance which comprises performing cold rolling and then recrystallization annealing at 700 to 920 ° C.
  • the hot rolled sheet is rolled into a hot rolled sheet, then the hot rolled sheet is subjected to cold rolling at a reduction ratio of 50 to 95%, and then subjected to recrystallization annealing at 700 to 920 ° C.
  • a method for producing bake-hardened cold-rolled steel sheets with excellent aging resistance is provided.
  • T SR Steel material heating temperature (° c)
  • Weight 0 /. C 0.005 to 0.02%, Si: 0.5% or less, Mn: 3.0% or less, P: 0.05% or less,
  • Ti Contains at least one of 0.001 to 0.05%, and has a composition consisting of a foxtail, Nb content satisfying the following formula, a balance of Fe and unavoidable impurities, and a paint bake hardening amount (BH amount).
  • BH amount paint bake hardening amount
  • C C content (. Wt / 0)
  • Nb Nb content (% by weight)
  • Nb contains 0.025 to 0.19%, or further contains B: 0.0001 to 0.005%, Ti: 0.001 to 0.05%, and at least one of the following.
  • a method for producing a paint-baked hardened cold-rolled steel sheet having excellent aging resistance characterized by performing recrystallization annealing at an annealing temperature of 750 to 920 ° C. after cold rolling.
  • C C content (wt 0/0)
  • Figure 1 is a graph showing the effect of the A value on the yield point elongation.
  • Figure 2 is a graph showing the effect of M_ / G on uniform elongation and yield point elongation.
  • FIG. 3 is a graph showing the influence of the steel material hot rolling heating temperature (T SR ) and the S content on the BH content and the AI value.
  • FIG. 4 is a graph showing the influence of NbZC on yield point elongation and BH content.
  • the inventors have found that C: 0.0002 wt%, Si: 0.02 wt%, Mn: 0.1 wt%, P: 0.01 wt% S: 0.005 to 0.015 wt%, Al: 0.004 wt%, After heating a sheet bar having a composition of N: 0.002 vrt%, Ti: 0 to 0.075 wt%, and Nb: 0 to 0.025 wt% to a temperature of 0 to 1250 ° C, the finishing temperature is 900.
  • the plate was rolled to 3 ° C at a temperature of 300 ° C to form a hot-rolled plate with a thickness of 3.5 mm, and a coil was wound at 600 ° C for 1 hour.
  • these hot-rolled sheets were subjected to cold rolling at a rolling reduction of 80%, followed by recrystallization annealing at 800 to 880 ° C for 40 sec.
  • the BH amount was determined as the difference in stress before and after heat treatment at 170 ° C for 20 min after a 2% tensile prestrain was applied to the cold-rolled annealed sheet.
  • the aging treatment at 100 ° C for 10 hours is performed at room temperature. It corresponds to aging treatment for 6 months, and it is known that if the yield point elongation is 0.2% or less after this treatment, there is no problem with the aging resistance.
  • the yield point elongation after aging treatment at 100 ° C for 10 hours was 0.2% or less when the A value was 0.4 or more. That is, a steel sheet having an A value of 0.4 or more exhibits excellent aging resistance.
  • AI QUENCH is the aging index (MPa) of the cold-rolled annealed sheet after heating at 500 ° C for 40 seconds and water quenching
  • AI is the aging index of the cold-rolled annealed sheet.
  • the aging index was determined from the increase in yield stress (MPa) before and after heat treatment when a 7.5% tensile prestrain was applied to the steel sheet and heat treatment was performed at 100 ° C for 30 minutes.
  • the solute C present in the grains and at the grain boundaries is proportional to AI WENCH and corresponds to the BH content.
  • the present inventors have found that by controlling the state of the solid solution C at the grain boundaries and in the grains, it is possible to manufacture a steel sheet having excellent aging resistance while securing high paint bake hardenability. I thought.
  • C 0.005% or less
  • Si 1.0% or less
  • Mn 3.0% or less
  • P 0.15% or less
  • S 0.05% or less
  • A1 0.01% to 0.20%
  • N 0.01% or less
  • Ti 0.01% to 0.2%
  • the chemical composition consisting of the balance of Fe and unavoidable impurities, and the A value is This is a paint-baked hardened cold-rolled steel sheet having excellent aging resistance characterized by having a value of 0.4 or more and an AI WENCH value of at least.
  • AI QUENCH is the aging index (MPa) after heating and water quenching the cold-rolled annealed sheet at 500 ° C for 40 seconds
  • AI is the aging index of the cold-rolled annealed sheet.
  • the aging index is the increase in yield stress (MPa) before and after heat treatment when a steel sheet is subjected to heat treatment at 100 ° C for 30 minutes with a tensile prestrain of 7.5%.
  • Nb: 0.001 to 0.2% or B: 0.0001 to 0.0080% may be contained by weight%, and Nb: 0.001 to 0.2% and B: 0.0001 to 0.0080% may be contained in combination.
  • C 0.005% or less, Si: 1.0% or less, Mn: 3.0% or less, P: 0.15% or less, S: 0.05% or less, A1: 0.01 to 0.20%, N: 0.01% by weight % Or less, Ti: 0.01 to 0.2%, and the material consisting of the balance of Fe and unavoidable impurities is formed into a cold-rolled sheet by a hot rolling step and a cold rolling step, and the AI QUENCH value is 30 or more;
  • This is a method for producing a paint-bake hardened cold-rolled steel sheet with excellent aging resistance, characterized by annealing to a value of 0.4 or more.
  • a weight of 0 /. may contain Nb: 0.001 to 0.2%, or B: 0.0001 to 0.0080%, or Nb: 0.001 to 0.2% and 8: 0.0001 to 0.0080%. .
  • C 0.0025 wt%
  • Si 0.02 wt%
  • Mn 0.1 Iwt%
  • P 0.01 wt%
  • S 0.003 wt%
  • Al 0.04 wt%
  • N 0.002 wt%
  • Ti A sheet bar with a composition of 0 to 0.075 wt% is heated and soaked at 1050 ° C, and then subjected to three-pass rolling so that the finishing temperature is 900 ° C to form a hot-rolled sheet with a thickness of 3.5 mm and 600 ° CX was wound for 1 hr.
  • these hot-rolled sheets were subjected to cold rolling at a rolling reduction of 80%, followed by recrystallization annealing at 750 to 880 ° C for 40 sec.
  • the uniform elongation and BH content of the obtained cold-rolled annealed sheet were measured.
  • the BH content was determined as the difference in stress before and after the heat treatment at 170 ° C for 20 minutes after a 2% tensile prestrain was applied to the cold-rolled annealed sheet.
  • the uniform elongation was determined by a tensile test using a JIS No. 5 tensile test piece.
  • the yield point elongation is the yield point elongation after aging at 100 ° C for 10 hours. This treatment is performed at 100 ° C for 10 hours.
  • the aging treatment is equivalent to the aging treatment at room temperature for about 6 months, and it has been found that there is no problem with the aging resistance if the yield point elongation is 0.2% or less after this treatment.
  • the average crystal grain size G was obtained by measuring the crystal grain size of the steel sheet thickness cross section with an optical microscope on a test piece taken from any three places of the steel sheet, and using the average value as the average crystal grain size.
  • the average intergranular angle M is obtained by measuring the crystal orientation of the steel sheet thickness cross section for each crystal grain using the Electron Back Scattering Diffraction Pattern (EBSD). The orientation difference (tilt angle) between grains was determined, and the average value was calculated.
  • the yield point elongation after aging treatment at 100 ° C for 10 hours is 0.2% or less when MZG is 0.8 or more, and the uniform elongation is 0% for M / G.
  • the result was 34% or more at 8 or more. That is, a new finding that steel sheets with M / G of 0.8 or more show excellent aging resistance and high uniform elongation, that is, high press formability, even when the BH content is as high as 30 MPa or more. I got it.
  • C 0.005% or less
  • Si 1.0% or less,: 3.0% or less
  • P 0.15% or less
  • S 0.05% or less
  • A1 0.01 to 0.20%
  • N 0.01% or less
  • Ti 0.01 to 0.2%
  • chemical composition consisting of balance Fe and unavoidable impurities, and between average grain boundaries Press molding characterized in that the ratio of angle M (degrees) to average crystal grain size G ( ⁇ m), M / G is 0.8 or more, and paint bake hardening (BH amount) is 30 MPa or more. It is a paint-baked hardened cold-rolled steel sheet having excellent heat resistance and aging resistance properties.
  • weight is also added.
  • 0.001 to 0.2%, or ⁇ : 0.0001 to 0.0080%
  • b 0.001 to 0.2% and B: 0.0001 to 0%. 0080% may be contained in combination.
  • the present invention provides, by weight%, C: 0.005% or less, Si: 1.0% or less, Mn: 3.0% or less, P: 0.15% or less, S: 0.05% or less, A1: 0.01 to 0.20%, N: 0.01% or less, Ti: 0.01 to 0.2% Or a material containing at least one of Nb: 0.001 to 0.2% and ⁇ : 0.0001 to 0.0080%, and the balance consisting of Fe and unavoidable impurities, preferably heated to 1300 to 900, preferably After rolling at an accumulated rolling reduction of 70% or more, a hot-rolled sheet having fine crystal grains is preferably formed by a hot rolling step in which accelerated cooling is performed and winding is performed, and the hot-rolled sheet is preferably rolled.
  • the ratio of the average grain boundary angle M (degree) to the average grain size G (M m), MZG is 0.8 or more, preferably
  • This is a method for producing a paint-baked hardened cold-rolled steel sheet with excellent press formability and aging resistance, characterized by annealing at 750 ° C or less below 880 ° C.
  • the AI value and the BH amount were determined.
  • a I value is the aging index.
  • the aging index was obtained from the increase in yield stress (MPa) before and after heat treatment when a steel sheet was subjected to a heat treatment at 100 ° C for 30 minutes with a tensile prestrain of 7.5%.
  • the BH content was determined as the increase in yield stress (MPa) before and after heat treatment when a steel plate was subjected to a heat treatment at 170 ° C for 20 minutes after a tensile prestrain of 2%.
  • C 0.0007 to 0.0050%, Si: 0.5% or less, Mn: 2.0% or less, P: 0.10% or less, S: 0.008% or less, A1: 0.01 to 0.20 ⁇ / ⁇ , N: 0.01% or less, Ti: 0.005 to 0.08%, and the content of katsuji, Ti, N, and S is as shown in the following formula (1).
  • T SR steel material heating temperature (° C)
  • S Sulfur content (ppm)
  • T SR steel material heating temperature (° C)
  • the hot rolled sheet is formed by hot rolling in a temperature range of 750 to 400 ° C, and then the hot rolled sheet is subjected to cold rolling at a draft of 50 to 95%.
  • This is a method for producing a paint bake hardening type cold rolled steel sheet having excellent aging resistance, which is characterized by performing recrystallization annealing at 700 to 920 ° C.
  • the S content of the steel material be in the range of more than 10 ppm.
  • TSR is more than 950 ° C and less than 1200 ° C.
  • the steel material further has a weight. /. And b: 0.0 (U to 0.015%, B: 0.0001 to 0.005%), or both.
  • the present inventors contain: C: 0.008%, Si: 0.02%, Mn: 0.1%, S: 0.006%, A1: 0.04%, N: 0.002%, and P: P: 0.01 to 0.08%, b
  • the sheet bar of the composition changed to Nb: 0.025 to 0.096% to 1150 ° C, it is subjected to three-pass rolling so that the finishing temperature is 900 ° C, and 600 ° C x 1 hr To give a hot-rolled sheet with a thickness of 3.5 mm.
  • hot-rolled sheets are further subjected to cold rolling at a rolling reduction of 80%, and then subjected to recrystallization annealing at an annealing temperature of 800 ° C for 40s, followed by skin pass rolling at 0.8% to obtain cold-rolled annealed sheets.
  • the BH properties and aging properties of these cold-rolled annealed sheets were measured.
  • Figure 4 shows the results.
  • the BH property was evaluated by increasing the yield stress before and after the heat treatment at 170 ° C for 20 min after applying a 2% tensile prestrain to the steel sheet.
  • the room temperature aging was evaluated by the yield point elongation after treatment at 100 ° C for 10 hours.
  • C 0.005 to 0.02%, Si: 0.5% or less, Mn: 3.0% or less, P: 0.05% or less, S: 0.02% or less, A1: 0.01 to 0.20%, N : 0.01% or less, Nb: Including 0.025 to 0.19%
  • C C content (% by weight)
  • Nb Nb content (% by weight)
  • a baking-hardened cold-rolled steel sheet with excellent aging resistance having a composition consisting of the balance of Fe and unavoidable impurities, and having a baking hardening amount (BH amount) of 30 MPa or more. It is.
  • one or both of B: 0.0001 to 0.005% and Ti: 0.001 to 0.05% by weight may be further contained.
  • the present invention also relates to weight. /. C: 0.005 to 0.02%, Si: 0.5% or less,: 3.0% or less, P: 0.05% or less, S: 0.02% or less, A1: 0.01 to 0.20%, N: 0.01% or less, Nb: 0.025 to 0.19 %, Katsuji, b
  • the steel material consisting of the balance of Fe and unavoidable impurities was heated, and the finish rolling was performed to 960-
  • a hot rolled sheet is formed by hot rolling finished in a temperature range of 650 ° C, and a hot rolled sheet is formed by hot rolling at a winding temperature of 750 to 400 ° C.
  • Annealing temperature a method for producing a paint-baked hardened cold-rolled steel sheet having excellent aging resistance, which is characterized by performing recrystallization annealing at 750 to 920 ° C.
  • the steel material further comprises: B: 0.0001 to 0.005%, and i: 0.001 to 0.05% by weight, and / or both may be contained.
  • A (AI 0UENC Repeat -AI ) / AI 0UENCH : 0.4 or more
  • AI WEra value 30MPa or more
  • the A value is the ratio of solid solution C at the grain boundaries, and AI is the aging index of the cold-rolled annealed sheet.
  • AI QUEra value is the ratio of solid solution C at the grain boundaries
  • AI QUEra value is the aging index of the cold-rolled annealed sheet.
  • Solid solution C present at the grain boundaries that is, solid solution C in steel
  • AI WENCH solid solution C that contributes to room temperature aging
  • solid solution C that contributes to room temperature aging is solid solution C existing in the grains.
  • AI QUENCH I found that AI makes estimation possible.
  • solid solution C present at the grain boundaries can diffuse into the grains while being trapped at the grain boundaries, while heat treatment at high temperatures such as paint baking is required.
  • solid solution C present at the grain boundaries can also diffuse into the grains, contributing to BH properties.
  • the method for producing a steel sheet according to the present invention comprises the steps of: forming a material having the above-described chemical composition into a cold-rolled sheet by a hot rolling step and a cold rolling step; and setting the A value to 0.4 or more and the AI WENCH value to 30 or more. Anneal to achieve.
  • the AI ENCH value there is a method of adjusting the chemical composition within the scope of the present invention, a method of dissolving fine carbide in the annealing process, and a method of leaving solid solution C in the hot rolled sheet.
  • the former is more advantageous from the viewpoint of drawability.
  • Dissolve fine carbide For this purpose, it is preferable to control the annealing temperature to 780 ° C. or higher.
  • the annealing temperature In order to set the A value to 0.4 or more, it is preferable to set the annealing temperature to a low value, preferably to control the temperature to less than 880 ° C and 780 ° C or more.
  • the annealing temperature When the annealing temperature is high, the energy difference between the grain boundaries and the grains is almost eliminated, so that the solid solution C existing at the grain boundaries diffuses into the grains and the A value decreases.
  • the annealing temperature In order to make a large amount of solid solution C present at the grain boundaries, the annealing temperature must be set low.
  • the ratio MZG between the average grain boundary angle M (degrees) and the average grain size G ( ⁇ m) is set to 0.8 or more.
  • MZG By setting MZG to 0.8 or more, the amount of solute C present at the grain boundaries increases. This is because, by increasing ⁇ / G, that is, by refining the crystal grains and increasing the angle between the crystal grain boundaries, the area of the crystal grain boundaries increases, and solute C can easily move to the grain boundaries and This is because a large amount of solid solution C can exist at the grain boundary. Also, when the angle between the crystal grain boundaries becomes large, even in the same crystal grain boundary, a large amount of solid solution C can be present at the grain boundaries.
  • the MZG is 0.8 or more, even if the solute C with a steel content of 30 MPa or more is present in the steel, the amount of solute C present at the grain boundaries increases, resulting in low yield elongation and low aging resistance It becomes a cold rolled steel sheet excellent in quality.
  • MZG When MZG is 0.8 or more, uniform elongation increases. In order to increase uniform elongation, it is important to transmit strain uniformly throughout the material during tensile deformation. For this purpose, the present inventors consider that the ratio between the crystal grain size and the angle between crystal grain boundaries is important, and that the ratio between the crystal grain size and the angle between crystal grain boundaries is increased. It was found that if the intergrain angle is increased, the strain propagation when the same strain is applied becomes uniform.As a result of the experiment, the critical value of the ratio M / G between the grain size and the intergranular angle was set to 0. 8 If the MZG is less than 0.8, a steel sheet having a high BH content of 30 MPa or more as described above and having both high uniform elongation and excellent aging resistance is not obtained.
  • a material having the above-described chemical composition is formed into a cold-rolled sheet by a hot rolling process and a cold rolling process, and then annealed so that MZG becomes 0.8 or more.
  • MZG Are the crystal grain size of the hot rolled sheet, the rolling reduction of the cold rolling, and the annealing temperature. In order to increase the MZG to 0.8 or more, it is important to reduce the crystal grain size of the hot-rolled sheet, increase the hot-rolling rolling reduction, and perform annealing at a low temperature.
  • the annealing temperature When the annealing temperature is high, the crystal grains grow quickly and the average crystal grain size G tends to be large, and the crystal grains are engaged with each other so that the grain boundary energy decreases during grain growth. M becomes smaller and MZG becomes smaller.
  • the annealing temperature if the annealing temperature is too low, it is not possible to obtain a solid solution C amount with a BH amount of 30 MPa or more. Therefore, in order for the M / G to be 0.8 or more when the BH amount is 30 MPa or more, it is preferable to form fine carbides that melt at low temperature during hot rolling and melt at low temperature during annealing.
  • C is an element that has an adverse effect on deep drawability, and it is desirable to reduce it as much as possible. In steels that require Ti-added kerato as essential, up to 0.0050% is allowable, so C is set to 0.0050% as the upper limit. On the other hand, in steels that require the addition of Nb, precipitation of an appropriate amount of NbC has the effect of making crystal grains finer and increasing the amount of solid solution C at grain boundaries to improve aging resistance. C content must be 0.005% or more. However, if the C content exceeds 0.02%, deep drawability deteriorates, so the content was set to 0.02% or less.
  • Si has the effect of increasing the strength of steel, and is added according to the desired strength. However, if the addition amount exceeds 1.0%, the deep drawability decreases. For this reason, Si was limited to 1.0% or less. In order to further secure the deep drawability, the content is preferably 0.5% or less.
  • Mn has the effect of increasing the strength of steel, and is added according to the desired strength. However, when the addition amount exceeds 3.0%, the deep drawability decreases. For this reason, Mn was limited to 3.0% or less. In order to secure further deep drawability, the content is preferably 2.0% or less.
  • P has the effect of strengthening steel, and is added according to the desired strength. However, if the addition amount exceeds 0.15%, the deep drawability deteriorates, so P was set to 0.15% or less. In order to secure further deep drawability, 0.10 ° / 0 or less is preferable. Further, in order to increase the amount of grain boundary C, the content is preferably 0.05% or less.
  • s is an element that has an adverse effect on deep drawability, and is preferably reduced as much as possible, but is acceptable up to 0.05% or less. In order to secure further deep drawability, 0.02% or less is preferable.
  • Ti in addition essential steel affects the BH property and aging resistance, and 0.008% or less of the S content, one in relation to the hot rolling heating temperature T SR of steel material 0.235 XT SR + 305 ( It is important to limit to less than (ppm). If the S content exceeds 0.235 XT SR +305 (ppm), a high BH amount of 30 MPa or more and a low AI value of 20 MPa or less cannot be secured. In order to secure a high BH amount of 40 MPa or more and a low AI value of 20 MPa or less, the S content is preferably 0.0010% or more.
  • A1 is added for deoxidation and for improving the yield of carbonitride forming elements.
  • the content is less than 0.01%, the effect of the addition is small.
  • the content exceeds 0.20%, the effect corresponding to the added amount cannot be obtained. Therefore, A1 is set in the range of 0.01 to 0.20%.
  • N is an element that has an adverse effect on deep drawability, and it is preferable to reduce it as much as possible. However, N is set to 0.01% or less because it is acceptable up to 0.01%.
  • T i Ti combines with C in steel and precipitates as carbides, and has the effect of preventing deep drawability deterioration due to solid solution C. If the Ti content is less than 0.001%, there is no effect of the addition, and if it exceeds 0.2%, an effect commensurate with the content is not obtained, and the deep drawability tends to deteriorate. For this reason, Ti was limited to the range of 0.001 to 0.2%. Furthermore, in steels that require Ti-added calories, the Ti content is 0.005 to 0.08%, and the C, N, and S amounts are
  • Is preferably set in a range that satisfies the following condition.
  • ⁇ Ti / 48-(N / 14 + S / 32) ⁇ is less than 0.5 X (C / 12)
  • a large amount of solid solution C remains in the hot-rolled sheet, and the deep drawability of the cold-rolled annealed sheet deteriorates. I do.
  • i / 48-(N / 14 + S / 32) ⁇ exceeds 4 X (C / 12)
  • carbides are difficult to dissolve during annealing, and the BH property is deteriorated.
  • Nb In steels that require Ti addition, Nb refines the microstructure of the hot-rolled sheet and cold-rolls It has the effect of improving the r-value of the blunt plate, and further has the effect of refining the crystal grains after cold rolling annealing to increase the proportion of solid solution C at the grain boundaries and the ratio of solid solution C at the grain boundaries. These effects can be observed with the addition of 0.001% or more. However, if the addition exceeds 0.2%, no further effect can be obtained and the deep drawability tends to deteriorate. For this reason, Nb was set in the range of 0.001 to 0.2%.
  • Nb fixes solid solution C in the steel and precipitates finely as NbC.
  • (111) recrystallized aggregated yarn develops to improve deep drawability.
  • finely precipitated NbC can suppress the growth of grains during annealing to obtain fine grains and increase the amount of grain boundaries C, thereby improving aging resistance.
  • the precipitated NbC re-dissolves during annealing, increasing the amount of solute C in the steel and improving the BH property.
  • the Nb content must satisfy the following equation with respect to the C content in steel.
  • C C content (weight 0 /.)
  • Nb Nb content (weight 0/0)
  • Nb / 93 is less than 0.7 X (C / 12), the amount of solute C becomes too large, the amount of solute C in the grains increases, and the aging resistance deteriorates.
  • NbZ93 exceeds 1, 2 X (C / 12), NbC does not decompose during annealing, so that the amount of solid solution C in the steel decreases, and the BH amount cannot secure 30 MPa or more.
  • the following elements can be added as needed.
  • B has the effect of improving the secondary work embrittlement resistance of steel. To improve the secondary work embrittlement resistance, 0.0001% or more must be added, but if it exceeds 0.0080%, deep drawability deteriorates. Therefore, B is set in the range of 0.0001 to 0.0080%.
  • the steel material of the present invention comprises the balance Fe and inevitable impurities.
  • unavoidable impurities for example, O: 0.010% or less is acceptable.
  • the hot rolling step and the cold rolling step in the production method of the present invention are not particularly limited, but preferable conditions will be described.
  • the material is heated to a temperature of 1300 ° C or less for hot rolling.
  • the heating temperature be as low as possible.
  • the heating temperature of the hot rolling is in the range of 900 ° C. to 1300 ° C., more preferably 950 ° C. to 1150 ° C.
  • slab heating is preferably performed under the following conditions in order to increase the amount of grain boundary C and improve aging resistance.
  • T SR steel material heating temperature
  • T SR is a condition that satisfies the above equation, precipitation form of sulfides and carbides are changed to fine carbide of a composite deposition Sumi ⁇ products, as a result, since the carbides during recrystallization annealing is more soluble at low temperatures It is considered that a large amount of solid solution C remained at the grain boundaries. As a result, a steel sheet having a low AI value and a high BH content can be obtained.
  • T SR is, when not satisfied the above formula, BH amount can not be obtained above 30 MPa.
  • T SR is more preferably set to 950 ° C than ⁇ 1200 ° less than C.
  • finish rolling is completed in the temperature range of 960 to 650 ° C, and the hot rolled sheet is formed by hot rolling in which the winding temperature is in the temperature range of 750 to 400 ° C.
  • the finish rolling end temperature of hot rolling exceeds 960 ° C, the crystal grains of the hot rolled sheet become coarse, and the deep drawability after cold rolling and annealing deteriorates.
  • the finish temperature of finish rolling is less than 650 ° C, deformation resistance increases, which leads to an increase in rolling load during rolling, making it difficult to perform rolling.
  • the finish rolling finish temperature is set in the range of 960 to 650 ° C. Limited.
  • the term “accelerated cooling” here means that the grain size of the hot-rolled sheet can be reduced by accelerated cooling by cooling within 1 second after finish rolling.
  • any of water, air, and mist can be applied.
  • the M / G it is preferable to set the crystal grain size of the hot-rolled sheet to 50 ra or less.
  • it exceeds 750 ° C the scale formed on the steel sheet surface becomes too thick and the load of scale removal work increases.
  • the winding temperature of the steel sheet after finish rolling is less than 400 ° C, there is a problem that winding is difficult, and therefore, the winding temperature of the steel sheet after finish rolling is in the range of 750 to 400 ° C.
  • the hot-rolled sheet is subjected to cold rolling at a draft of 50 to 95%.
  • the hot-rolled sheet is subjected to cold rolling to ensure excellent deep drawability.
  • the annealing temperature is lower than 700 ° C, the carbide is not sufficiently dissolved and the amount of solid solution C is small, so that a predetermined amount of BH cannot be secured.
  • the annealing temperature exceeds 920 ° C, the y-transformation occurs and the texture becomes random, so the r-value deteriorates and the deep drawability decreases.
  • the recrystallization annealing temperature was set in the range of 700 to 920 ° C.
  • the annealing temperature is preferably 750 ° or more.
  • the annealing method any of a box-type annealing method and a continuous-type annealing method may be used, but the continuous annealing method is preferable for uniformity of the material.
  • the steel sheet After the recrystallization annealing, the steel sheet may be subjected to a temper rolling of 10% or less for shape correction and surface roughness adjustment.
  • the cold-rolled steel sheet of the present invention may be used as a cold-rolled steel sheet for processing. Needless to say, it can be used as an original plate. Surface treatments include zinc plating, zinc plating containing zinc alloy, and enamel.
  • the copper sheet of the present invention may be subjected to a special treatment, for example, Ni plating, after annealing or sub-plating, to improve the chemical conversion treatment property, the weldability, the press formability, the corrosion resistance and the like.
  • a special treatment for example, Ni plating, after annealing or sub-plating, to improve the chemical conversion treatment property, the weldability, the press formability, the corrosion resistance and the like.
  • a steel material (slab) having the chemical composition shown in Table 1 was used as a hot-rolled sheet with a thickness of 3.5 mm under the hot-rolling conditions shown in Table 2. These hot-rolled sheets were cold-rolled into cold-rolled steel strips with a thickness of 0.8 mm. Next, these steel strips were subjected to recrystallization annealing at a temperature of 750 to 880 ° C in a continuous annealing line. The resulting steel strip was further temper-rolled by 0.8% to obtain a product sheet.
  • the AI, AI QUENCH and A values were determined for these product sheets, and the tensile properties, r values, BH properties, and room temperature aging were investigated.
  • the yield point, tensile strength, and elongation were measured using a JIS No. 5 tensile test piece.
  • the r value was measured by the three-point method after 15% tensile prestrain was applied, and the L direction (rolling direction), the D direction (45 ° direction in the rolling direction) and the C direction (90 ° in the rolling direction).
  • the average value of degrees) (r (r L + 2 r D + r c) was determined as a / a).
  • the BH content was determined as the increase in the upper yield stress before and after the heat treatment at 170 ° C for 20 min after applying a 2% tensile prestrain to the product sheet.
  • the product plates of the present invention (No. 1, No. 4, No. 6, No. 7) have a higher BH content and aging at 100 ° C. for 10 hours as compared with the comparative examples which are out of the range of the present invention. It shows a low yield point elongation of 0.2% or less after treatment, indicating high BH properties and excellent aging resistance.
  • Comparative Example No. 2 since the annealing temperature was high, the A value was low at less than 0.4 and the yield point elongation after aging treatment was high at 0.60.
  • Comparative Example No. 3 since the steel composition was out of the range of the present invention and the annealing temperature was high, the A value was as low as less than 0.4 and the yield point elongation after aging treatment was as high as 0.70.
  • a steel material (slab) having the chemical composition shown in Table 3 was used as a hot-rolled sheet with a thickness of 3.5 strokes under the hot-rolling conditions shown in Table 4.
  • the crystal size of the hot-rolled sheet was adjusted by controlling the cooling conditions after completion of the hot finish rolling (water cooling by variously changing the cooling start time).
  • These hot-rolled sheets were cold-rolled into cold-rolled steel strips having a thickness of 0.8 strokes.
  • these cold-rolled steel strips were subjected to recrystallization annealing at a temperature of 780 to 880 ° C in a continuous annealing line.
  • the obtained steel strip was further temper-rolled by 0.8% to obtain a product sheet.
  • the average grain size G, average intergranular angle M, tensile properties, r value, BH content, and room temperature aging of these product sheets were investigated.
  • the average crystal grain size G was determined by optical microscopic observation of the cross section of the thickness of the test piece taken from three places.
  • the average intergranular angle M is obtained by measuring the crystal orientation of each crystal grain in the sheet thickness cross section using EBSD, and calculating the misorientation (tilt angle) between adjacent crystal grains for 50 or more crystal grains. The average was calculated.
  • the product plate of the present invention (No. 1, No. 4, No. 6, No. 7) has a uniform elongation, r-value and BH amount as compared with the comparative examples outside the range of the present invention. It has a high yield point elongation after aging treatment at 100 ° C for 10 hours and a low yield point elongation of 0.2% or less, indicating that it has high BH property, excellent workability and excellent aging resistance.
  • Comparative Example No. 2 since the crystal grain size of the hot-rolled sheet was large and the annealing temperature was high, MZG was less than 0.8, uniform elongation, r-value was low, and the yield point elongation after aging treatment was as high as 0.60.
  • Comparative Example No. 3 since the Ti content was out of the range of the present invention, the crystal grain size of the hot-rolled sheet was large, and the annealing temperature was high, the M / G was less than 0.8, and after aging treatment, The yield point elongation is as high as 0.70.
  • Comparative Example No. 5 the C content was out of the range of the present invention, uniform elongation, low r-value, and high yield point elongation after aging treatment of 0.75.
  • a steel material (slab) having the chemical composition shown in Table 5 was used as a hot-rolled sheet with a thickness of 3.5 strokes under the hot-rolling conditions shown in Table 6. These hot-rolled sheets were cold-rolled under the conditions of reduction of 77% or 45% shown in Table 6 to obtain cold-rolled steel strips. Next, these steel strips were subjected to recrystallization annealing in the continuous annealing line under the conditions shown in Table 6. The resulting steel strip was further temper-rolled by 0.8% to obtain a product sheet.
  • a steel material (slab) having the chemical composition shown in Table 7 was turned into a 3.5 mm thick hot-rolled sheet under the hot-rolling conditions shown in Table 8.
  • the hot-rolled sheet was subjected to cold rolling at a rolling reduction of 80% to form a 0.7 mm-thick cold-rolled sheet (steel strip).
  • these steel strips were annealed at the annealing temperature shown in Table 8: 730 to 930 ° C, after recrystallization annealing in a continuous hot-dip galvanizing line, and then heated to 50 g / m2 in a 0.01% A1-Zn plating bath.
  • the molten zinc was applied at the basis weight, and heated to 550 ° C to perform the alloying treatment, whereby the alloyed molten zinc was applied.
  • the resulting steel strip was further temper rolled by 0.8%.
  • the material properties (tensile properties, r-value, BH properties, aging properties) of the obtained alloyed hot-dip galvanized steel strip (product sheet) were investigated, and the results are shown in Table 8.
  • the aging property was evaluated by the yield point elongation after aging treatment of the product sheet at 100 for 10 hours. X was obtained when the yield point elongation was more than 1%, and ⁇ was obtained when the yield point elongation was 1% or less.
  • X 0.7 to 1.2 is the range of the present invention as X-(Nb / 93) / (C / 12).
  • Table 8 shows that the product plates (No. 1, No. 3, No. 4, No. 5, No. 8, No. 9) within the scope of the present invention were 1.2 Super high ri straightness, high BH content of 30MPa or more, low yield point elongation of 1.0% or less, excellent deep drawability, excellent BH property and excellent aging resistance I understand.
  • Comparative Example No. 12 has a low BH content of less than 30 MPa because the steel composition is out of the range of the present invention.
  • the r value was as low as 1.3 and the yield point elongation after aging treatment was as high as 1.35 because the steel composition was out of the range of the present invention.
  • the coating baking hardening type cold rolled copper sheet which is excellent in aging resistance characteristics can be manufactured industrially stably, and an industrially outstanding effect is produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

明細書 耐時効性に優れた塗装焼付硬化型冷延鋼板及びその製造方法 技術分野
本発明は、 冷延薄鋼板に関するものであり、 とくに自動車の車体用として、 曲げ加工、 プレス成形加ェゃ絞り加工等の加工の後、 塗装焼付処理を施される用途に好適に用いら れる冷延鋼板に関する。 背景技術
自動車の車体軽量化のために、 使用する鋼板板厚の減少が要望され、 自動車用鋼板の 高強度化が検討されてきた。 しカゝし、 鋼板の高強度化は、 鋼板のプレス成形性を劣化さ せる傾向があり、 従来から、 プレス成形性に優れた高張力鋼板の開発が要望されていた。 プレス成形性と高強度化を両立させた鋼板として、 塗装焼付硬化型自動車用鋼板が開 発されている。 この鋼板は、通常 100〜200°Cの高温保持を含む塗装焼付処理をプレス加 ェ後に施すと降伏応力が上昇する鋼板であり、 鋼中に固溶 Cを存在させることにより、 塗装焼付処理時の加熱で、 固溶 cがプレス加工時に導入された転位に固着して転位の移 動を妨げ、 これによつて、 降伏応力が上昇する。 なお、 このような塗装焼付硬化型自動 車用鋼板では、 30MPa 以上の塗装焼付硬化量 (B H量) が必要とされている。
しかし、 この塗装焼付硬化型自動車用鋼板では、 加工前にすでに一部の転位が固溶 C により固着されている場合があり、 プレス加工時に降伏点伸びによるストレツチヤース トレインと呼ばれる波状の表面欠陥が生じ、 製品特性を著しく劣化させるという、 耐時 効性の劣化という問題があつた。
このような耐時効性の劣化という問題に対し、 耐時効性を改善した塗装焼付硬化型冷 延鋼板が提案されている。 例えば、 特公昭 61-12008号公報には、 C含有量の 2〜10倍 の Nbと N含有量の 0· 3倍以上の Βとを複合添加した極低炭素鋼に、 550〜200での低温で 卷取る熱間圧延と、 α— γ 2相域での焼鈍のあと急冷する処理とを結合して施し、 高い r値と焼付硬化性を得る、 深絞り用 2相組織高張力鋼板の製造方法が開示されている。 この製造方法では、 α— γ 2相域に加熱し急冷して、 ァシキユラ一フェライ トとフェラ イトの 2相組織とすることに特徴がある。 この組織は固溶 Cを含み高い焼付硬化性 (Β Η性) を有しているが、 転位密度の高いァシキユラ一フェライトに殆どの固溶 Cがトラ ップされているため、 焼鈍後も殆ど降伏点伸びを示さない。
しかしながら、 特公昭 61— 12008号公報に記載された方法は、 α— y 2相域という高 温での焼鈍を施さなければならないこと、 また極低炭素鋼の α— γ 2相域は非常に狭い ため工程生産として安定して材質を確保するのが困難であることなどの問題を残して いた。
また、 このような塗装焼付硬化型冷延鋼板は、 主として自動車の外板として使用され るため、 プレス成形性としてとくに張出し成形性に関係する一様伸び特性が良好なこと が必要である。 ここで、 一様伸びとは、 引張試験を行った際に、 引張強度が極大値を示 す時の伸びである。 従来、 一様伸びは降伏強さが低いほど、 または加工硬化指数 η値が 高いほど大きいことが知られていた。 しかしながら、 塗装焼付硬化型鋼板は、 塗装焼付 け後の降伏強さが高いほど有利であるため、 これまで塗装焼付硬化型鋼板で高い一様伸 び特性を得ることは困難であった。
本発明は、 上記した問題を解決し、 工業的に安定して生産可能である、 耐時効性に優 れた塗装焼付硬化型冷延鋼板および溶融亜鉛めつき鋼板を提供することを目的とする。 さらに、 一様伸びが高くプレス成形性を高めた鋼板も提供することを目的とする。 発明の開示
本発明者らは、 極低炭素鋼において高い Β Η性と優れた耐時効特性を得るために鋭意 検討した結果、 Β Η性を発現する固溶 Cと室温時効に寄与する固溶 Cとは、 Cの存在す る場所が異なることを新規に見いだした。 すなわち、 170での高温で熱処理を施す塗装 焼付硬化処理の場合には、 粒界および粒内に存在する鋼中すベての固溶 Cが B H性に寄 与する。 一方、 室温時効の場合には、 塗装焼付硬化処理に比べ時効温度が低いため、 粒 界に存在する固溶 Cは粒内に拡散できず粒界に固定されたままとなる。 このため、 室温 時効性には、 粒内に存在する固溶 Cのみが寄与し、 粒界に存在する固溶 Cは何の影響も 及ぼさない。 すなわち、 粒界に存在する固溶 Cは、 B H性には寄与するが、 時効性には 寄与しない。 一方、 粒内に存在する固溶 Cは、 B H性および時効性の両方に作用する。 さらに、 本発明者らは、 鋼板の結晶粒界間角度と結晶粒径との比を一定以上とするこ とにより、 高い B H性を有する鋼板の場合でも、 優れた耐時効性が得られることを見い だした。 すなわち、 結晶粒径を小さくして、 粒界面積を増加させるとともに、 結晶粒界 間角度を大きくすることにより、 粒界に存在する C量を増加させ、 高 B H性と耐時効性 を両立できることを新たに見い出した。 さらに Cの粒界偏析を阻害する P量を低減する ことが重要であるということを見出した。
さらに、 本発明者らは、 鋼素材の熱延加熱温度と S含有量の関係を最適化することに より粒界や粒内に存在する固溶 C量を制御することができ、 高い B H性と優れた耐時効 性を有する鋼板が得られることを知見した。
この発明は、 上記の知見に立脚するものである。
すなわち、 本発明の要旨構成は次のとおりである。
1 . 重量%で C : 0. 005%以下, Si: 1. 0%以下, Mn : 3. 0%以下, P : 0. 15%以下, S : 0. 05%以下, A1 : 0· 01〜0. 20%, Ν : 0. 01%以下, Ti : 0. 01〜0· 2%を含み、 あるいは さらに、 : 0· 001〜0· 2%, Β : 0. 0001〜0. 0080%の少なくともいづれか一方を含有し、 残部 Fe および不可避的不純物からなる化学組成を有し、 かつ塗装焼付硬化量 (BH) が 30MPa以上を有する冷延鋼板において、 下記 A値が 0. 4 以上および下記 A I euENCH値が 30MPa以上を有することを特徴とする、 耐時効特性に優れた塗装焼付硬化型冷延鋼板。
記 A= (A I CH— A I ) A I QUE CH
ここで、 A I QUENCH:鋼板に 500°C X40sec加熱 ·水焼入れ処理したのちの時効指数(MPa)
A I :鋼板の時効指数 (MPa)
時効指数:鋼板に 7.5%引張予歪を付加したのち、 100°CX30minの熱処理を施 した場合の熱処理前後の降伏応力の増加量 (MPa)
2. 重量%で C : 0.005%以下, Si : 1.0%以下, Mn : 3.0%以下, P : 0.15%以下, S : 0.05%以下, A1 : 0.01〜0·20%, Ν : 0.01%以下, Ti : 0.01〜0· 2%, を含み、 あるレヽ はさらに、 Nb: 0.001〜0.2%, B : 0.0001〜0.0080%の少なくともいづれか一方を含有 し、 残部 Feおよび不可避的不純物からなる化学組成を有し、 かつ塗装焼付硬化量 (BH) が 30MPa以上を有する冷延鋼板において、平均粒界間角度 M (度) と平均結晶粒径 G {μ ra) との比、 MZGが 0.8以上であることを特徴とする、耐時効特性に優れた塗装焼付硬 化型冷延鋼板。
3. 重量%で、 C : 0.005%以下, Si : 1.0%以下, : 3.0%以下, P : 0.15%以下, S : 0.05%以下, A1 : 0.01〜0.20%, N: 0.01%以下, Ti : 0.01〜0.2%を含み、 ある レヽはさらに、 b : 0.001〜0.2%, B : 0.0001〜0.0080%の少なくともいづれか一方を含 有し、 残部 Feおよび不可避的不純物からなる素材を、 仕上圧延を 960〜650°Cの温度範 囲で終了し、巻取り温度が 750〜400°Cの温度範囲で巻取る熱間圧延により熱延板とし、 ついで、 該熱延板に圧下率: 50〜95%の冷間圧延を施したのち、 700〜920°Cの再結晶焼 鈍を施すことを特徴とする耐時効性に優れた塗装焼付硬化型冷延鋼板の製造方法。
4. 重量%で、 C : 0.0007 0.0050%, Si: 0.5%以下, Mn: 2.0%以下, P : 0.10%以 下, S : 0.008%以下, A1: 0.01 0.20%, N : 0.01%以下, Ti: 0.005 0.08% を含み、 あるレ、はさらに、 Nb: 0.001〜0.015%, B : 0.0001〜0.0050%の少なくともい づれか一方を含有し、 かつじ、 Ti、 N、 S含有量が下記 (1 ) 式を満足し、 残部 Feおよ び不可避的不純物からなる鋼素材を、 下記 (2) 式を満足する温度 (TSR) に加熱したの ち、仕上圧延を 960〜650°Cの温度範囲で終了し、卷取り温度が 750〜400°Cの温度範囲で 卷取る熱間圧延により熱延板とし、 ついで、 該熱延板に圧下率: 50~95%の冷間圧延を 施したのち、 700〜920°Cの再結晶焼鈍を施すことを特徴とする、 耐時効性に優れた塗装 焼付硬化型冷延鋼板の製造方法。
0.5 X (C/12) ≤Ti/48- (N/14+S/32) ≤4 X (C/12) ··· (1)
ここに、 C、 Ti、 N、 S :重量0 /0
S≤-0.235XTSR +305 (2) ここに、 S :硫黄含有量 (ppm)
TSR :鋼素材加熱温度 (°c)
5. 重量0/。で、 C : 0.005〜0.02%, Si: 0.5%以下, Mn: 3.0%以下, P : 0.05%以下,
5 : 0.02%以下, A1 : 0·01〜0·20%, Ν : 0.01%以下, Nb: 0· 025〜0.19%を含み、 あ るいはさらに、 B : 0·0001〜0·005%, Ti : 0.001〜0.05%の少なくともいづれか一方を 含有し、 かつじ、 Nb含有量が下記式を満足し、 残部 Feおよび不可避的不純物からなる 組成を有し、 かつ塗装焼付硬化量 (BH量) 力 S30MPa以上を有することを特徴とする、 耐時効性に優れた塗装焼付硬化型冷延鋼板。
0.7X (C/12) ≤Nb/93≤l.2X (C/12)
ここで、 C : C含有量 (重量。 /0)
Nb: Nb含有量 (重量%)
6. 重量0 /0で、 C : 0.005〜0.02%, Si: 0.5%以下, Mn: 3.0%以下, P : 0.05%以下, S : 0.02%以下, A1 : 0.01〜0.20%, N : 0.01%以下, Nb: 0.025〜0.19%, を含み、 あるいはさらに、 B : 0.0001〜0·005%, Ti : 0· 001〜0· 05%の少なくともいづれか一方 を含有し、 かつじ、 Nb含有量が下記式を満足し、 残部 Feおよび不可避的不純物からな る鋼素材を、加熱したのち、 仕上圧延を 960〜650°Cの温度範囲で終了する熱間圧延によ り熱延板とし、 750〜400°C卷取り温度で巻取り、 ついで、 該熱延板に圧下率: 50〜95% の冷間圧延を施したのち、 焼鈍温度: 750〜920°Cの再結晶焼鈍を施すことを特徴とする、 耐時効性に優れた塗装焼付硬化型冷延鋼板の製造方法。
0. 7 X (C/12) ≤Nb/93≤1. 2 X ( C /12)
ここで、 C : C含有量 (重量0 /0)
Nb: Nb含有量 (重量%) 図面の簡単な説明
第 1図は、 降伏点伸びにおよぼす A値の影響を示すグラフである。
第 2図は、 一様伸び、 降伏点伸びにおよぼす M_/Gの影響を示すグラフである。
第 3図は、 B H量、 A I値におよぼす鋼素材熱間圧延加熱温度 (T SR) 、 S含有量の影 響を示すグラフである。
第 4図は、 降伏点伸び、 B H量におよぼす N b Z Cの影響を示すグラフである。 発明を実施するための最良の形態
以下、 本発明の基礎になった実験結果について説明する。
発明者らは、 C: 0. 0020wt%、 Si: 0. 02wt%、 Mn: 0. lwt%、 P : 0. 01wt% S : 0. 005 〜0. 015wt%、 Al : 0. 04wt%、 N : 0. 002vrt%、 Ti : 0 〜0. 075wt%、 Nb : 0〜0. 025wt% からなる組成のシ一トバ一を%0〜 1250°Cに加熱均熱したのち、仕上温度が 900°Cとなる ように 3パス圧延を行って板厚 3. 5mmの熱延板とし、 600°C X 1 hrのコイル巻取り処理 を施した。 その後、 これら熱延板を圧下率 80%の冷間圧延を施し、ついで 800〜880°C X 40secの再結晶焼鈍を実施した。 これら冷延焼鈍板のうち、 B H = 35〜45MPaの特性を示 したものについて、 100°Cで 10hrの時効処理を施し、 降伏点伸びを調査した。 ここで、 B H量は、 冷延焼鈍板に 2 %の引張予歪を与えたのち、 170°C X 20min の熱処理を施し た時の熱処理前後の応力差として求めた。 また、 100°Cで 10hrの時効処理は、 室温で約 6力月の時効処理に相当し、 この処理後、 降伏点伸びが 0. 2%以下であれば、 耐時効特 性に問題がないことが判っている。
100°Cで 10hrの時効処理を施した後の降伏点伸びは、第 1図に示すように、 A値が 0. 4 以上のとき 0. 2 %以下となるという結果を得た。すなわち、 A値が 0. 4 以上を有する鋼 板は、 優れた耐時効特性を示すのである。
A値は、 次式
A― I QUENCH― A I ) A QUENCH
より計算された値である。 ここで、 A I QUENCHは、 冷延焼鈍板に 500°C X 40sec加熱 .水 焼入れ処理したのちの時効指数 (MPa) であり、 A Iは、 冷延焼鈍板の時効指数である。 時効指数は、 鋼板に 7. 5%引張予歪を付加し、 100°C X 30minの熱処理を施した場合の熱 処理前後の降伏応力の増加量 (MPa) より求めた。
粒内および粒界に存在する固溶 Cは、 A I WENCHに比例し、 B H量に相当する。 また、 粒界に存在する固溶 C量は、 A I QUENCH— A Iに比例する。 したがって、 固溶 Cの粒界存 在比は、 A値 (A = (A I QUENC„- A I ) /A I 0UENCH) で記述できるのである。
このことから、 本発明者らは、 固溶 Cの粒界、 粒内の存在状態を制御することにより、 高い塗装焼付硬化性を確保しつつ、 優れた耐時効性を有する鋼板を製造できることに思 い至った。
すなわち、 本発明は、 重量%で、 C : 0. 005%以下、 Si: 1. 0%以下、 Mn: 3. 0%以下、 P : 0. 15%以下、 S: 0. 05%以下、 A1: 0. 01〜0. 20%、 N: 0. 01%以下、 Ti: 0. 01〜0. 2% を含み、 残部 Feおよび不可避的不純物からなる化学組成を有し、 かつ A値が 0. 4 以上 および A I WENCH値が 以上を有することを特徴とする耐時効特性に優れた塗装焼付硬 化型冷延鋼板である。
^" ^" 、 A = I gUENCH― A I ) / A I QUENCH
A I QUENCHは冷延焼鈍板に 500°C X 40sec加熱 ·水焼入れ処理したのちの時効指数 (MPa) であり、 A Iは冷延焼鈍板の時効指数である。 時効指数は鋼板に 7.5%引張予歪を付加し、 100°C X30min の熱処理を施した場合 の熱処理前後の降伏応力の増加量 (MPa) である。
更に、 本発明では、 前記化学組成に加えて、 重量%で、 Nb: 0.001〜0.2%、 あるいは B : 0.0001〜0.0080%を含有してもよく、 また Nb : 0.001~0.2%およ び B : 0.0001〜0.0080%を複合して含有してもよい。
また、 本発明は、 重量%で、 C : 0.005 %以下、 Si : 1.0 %以下、 Mn: 3.0% 以下、 P : 0.15%以下、 S : 0.05%以下、 A1 : 0.01〜0.20%、 N : 0.01%以下、 Ti : 0.01〜0.2%を含み、 残部 Feおよび不可避的不純物からなる素材を、 熱間圧延工程 および冷間圧延工程により冷延板としたのち、 前記 A I QUENCH値が 30以上、 前記 A値を 0.4以上となるように焼鈍することを特徴とする耐時効特性に優れた塗装焼付硬化型冷 延鋼板の製造方法である。 また、 本発明の方法では、 前記素材の化学組成に加えて、 重 量0 /。で、 Nb :0.001〜0.2%、あるいは B :0.0001〜0.0080%を含有してもよく、また Nb : 0.001 〜0.2%ぉょび8 : 0·0001〜0.0080%を複合して含有してもよい。
更に発明者らは、 C : 0.0025wt%, Si : 0.02wt%、 Mn: 0. Iwt%、 P : 0.01wt%、 S : 0.003wt% Al: 0.04wt%、 N : 0.002wt%、 Ti: 0 〜0.075wt%からなる組成のシート バーを 1050°Cに加熱均熱したのち、 仕上温度が 900°Cとなるように 3パス圧延を行って 板厚 3.5mmの熱延板とし、 600°C X 1 hrのコイル巻取り処理を施した。 その後、 これら 熱延板を圧下率 80%の冷間圧延を施し、ついで 750〜880°CX40secの再結晶焼鈍を実施 した。 得られた冷延焼鈍板について、 一様伸びと BH量を測定した。 なお、 BH量は、 冷延焼鈍板に 2%の引張予歪を与えたのち、 170°CX20min の熱処理を施した時の熱処 理前後の応力差として求めた。
これら冷延焼鈍板のうち、 BH量≥30MPa の特性を示したものについて、 一様伸び、 降伏点伸び、 平均結晶粒径 G (μ m) および平均粒界間角度 M (度) を測定した。 なお、 一様伸びは、 JIS 5号引張試験片を用いた引張試験により求めた。 また、 降伏点伸びは 100°Cで 10hrの時効処理を施し後の降伏点伸びである。 この処理は、 100°Cで 10hrの時 効処理は、 室温で約 6力月の時効処理に相当し、 この処理後、 降伏点伸びが 0. 2%以下 であれば、 耐時効特性に問題がないことが判っている。 また、 平均結晶粒径 G ( μ m) は、 鋼板の任意の 3箇所から採取した試験片について光学顕微鏡により鋼板板厚断面の 結晶粒径を測定し、 平均値を平均結晶粒径とした。 また、 平均粒界間角度 M (度) は、 Electron Back Scattering Diffraction Pattern ( E B S D ) を用いて鋼板板厚断面 の結晶方位を各結晶粒ごとに測定し、 50個以上の結晶粒について、 隣接結晶粒間の方位 差 (傾角) を求め、 その平均値を算出した。
第 2図に示すように、 100°Cで 10hrの時効処理を施した後の降伏点伸びは、 MZGが 0. 8以上で 0. 2%以下となり、 また一様伸びも M/Gが 0. 8以上で 34%以上となるとい う結果を得た。 すなわち、 M/Gが 0. 8以上を有する鋼板は、 B H量が 30MPa以上と高 い場合でも、 優れた耐時効性と、 高い一様伸びすなわち高いプレス成形性を示す、 とい う新規な知見を得たのである。
このことから、 本発明者らは、 粒界間角度と結晶粒径の比を制御することにより、 高 レ、塗装焼付硬化性を確保しつつ、 高レ、一様伸びと優れた耐時効性を有する鋼板を製造で きることに思い至った。
すなわち、 本発明は、 重量%で、 C : 0. 005%以下、 Si: 1. 0%以下、 : 3. 0%以下、 P: 0. 15%以下、 S: 0. 05%以下、 A1: 0. 01〜0. 20%、 N: 0. 01%以下、 Ti: 0. 01〜0. 2 % を含み、残部 Feおよび不可避的不純物からなる化学組成を有し、かつ平均粒界間角度 M (度) と平均結晶粒径 G ( μ m) との比、 M/Gが 0. 8以上であり、 塗装焼付硬化量(B H量) が 30MPa 以上であることを特徴とするプレス成形性、耐時効特性に優れた塗装焼 付硬化型冷延鋼板であり、 また、 本発明では、 前記化学組成に加えて、 重量。/。で、 λ : 0. 001 〜0. 2%、あるいは Β : 0. 0001〜0. 0080%を含有してもよく、また b : 0. 001〜0. 2% および B : 0. 0001〜0. 0080%を複合して含有してもよい。
また、 本発明は、 重量%で、 C : 0. 005%以下、 Si: 1. 0%以下、 Mn: 3. 0%以下、 P : 0. 15%以下、 S : 0. 05%以下、 A1: 0. 01〜0. 20%、 N: 0. 01%以下、 Ti: 0. 01〜0. 2% を含み、 あるいはさらに Nb: 0.001〜0·2 %, Β : 0.0001~0.0080%の少なくとも一方 を含有し、残部 Feおよび不可避的不純物からなる素材を、好ましくは、 1300〜900 でに 加熱し、 好ましくは累積圧下率 70%以上の圧延加工を施したのち、好ましくは加速冷却 を施して卷取る熱間圧延工程により微細結晶粒を有する熱延板とし、 該熱延板を好まし くは圧下率 70%以上の冷間圧延工程により冷延板としたのち、 平均粒界間角度 M (度) と平均結晶粒径 G (M m) との比、 MZGが 0.8 以上となる様に、 好ましくは 880 °C未 満 750 °C以上の焼鈍を施すことを特徴とするプレス成形性、耐時効特性に優れた塗装焼 付硬化型冷延鋼板の製造方法である。
更に発明者らは、 C: 0.0020wt%, Si :0.02wt%、 Mn: 0.10wt%、 P :0.01wt%、 S : 0.0005〜0· 013wt%、 Al: 0.04wt%, N: 0.0020wt%、 Ti: 0.02—0.04wt%、 B: 0.0015wt% を含有し、 かつ {Ti/48— (N/14+ S/32) } =1.5X (C/12) となる組成のシートバー (鋼素材) を 950〜1250°Cに加熱均熱したのち、仕上温度が 890°Cとなるように 3パス圧 延を行って板厚 3· 5mmの熱延板とし、 600°CX 1 hrのコイル卷取り処理を施した。 その 後、 これら熱延板を圧下率 80%の冷間圧延を施し、 ついで 830°CX40secの再結晶焼鈍 を実施し冷延焼鈍板とした。
これら冷延焼鈍板について、 A I値と BH量を求めた。
A I値は時効指数である。時効指数は、鋼板に 7.5%引張予歪を付加し、 100°CX30min の熱処理を施した場合の熱処理前後の降伏応力の増加量 (MPa) より求めた。 また、 B H量は、鋼板に 2%の引張予歪を与えたのち、 170°CX20minの熱処理を施した場合の熱 処理前後の降伏応力の増加量 (MPa) として求めた。
A I値と BH量とにおよぼすシ一トバーの熱延加熱温度 (T SR) と S含有量の影響を 第 3図に示す。
第 3図から、 八 1値と8?1量は、 TSRと S含有量に依存し、 TSRと S含有量が、 S≤ -0.235 XT SR + 305 を満足する場合にはじめて、 B H量が 30MPa 以上、 A I値が 20MPa 以下を満足することがわかる。 とくに、 T SRと S含有量が、 — 0.235 XT SR+305 を 満足し、 さらに、 TSRが 950°C超え 1200°C未満でかつ S含有量が lOppm超えの範囲では、 B H量が 40MPa以上、 A I値が 20MPa以下の高 B H性と優れた耐時効性を有することが ことがわかる。
すなわち、 本発明は、 重量%で、 C : 0.0007〜0.0050%、 Si : 0.5%以下、 Mn: 2.0% 以下、 P : 0.10%以下、 S : 0.008%以下、 A1: 0.01〜0.20ο/ο、 N: 0. 01%以下、 Ti: 0.005〜0.08%を含み、 かつじ、 Ti、 N、 S含有量が下記 (1) 式
0.5X (C/12) ≤Ti/48- (N/14+ S/32) ≤4 X (C/12) … (1)
(ここに、 C、 Ti、 N、 S :重量%) を満足し、 残部 Feおよび不可避的不純物からなる 鋼素材を、 次 (2) 式
S≤ -0.235 X T +305 (2)
(ここに、 S :硫黄含有量 (ppm) 、 TSR :鋼素材加熱温度 (°C) ) を満足する温度 (T SR) に加熱したのち、 仕上圧延を 960〜650°Cの温度範囲で終了し、 卷取り温度が 750〜 400°Cの温度範囲で卷取る熱間圧延により熱延板とし、 ついで、 該熱延板に圧下率: 50 〜95%の冷間圧延を施したのち、 700〜920°Cの再結晶焼鈍を施すことを特徴とする耐時 効性に優れた塗装焼付硬化型冷延鋼板の製造方法である。 ここで、 鋼素材の S含有量 力 S lOppm超えの範囲にあることが好ましい。 また、 T SRが 950°C超え 1200°C未満である ことが好ましい。
また、本発明では、前記鋼素材が、さらに重量。 /。で、 b:0.0(U 〜0.015 %, B :0.0001 〜0· 005%のいづれか一方または、 両方を含有してもよい。
更に発明者らは、 C: 0.008%、 Si: 0.02%、 Mn: 0.1%、 S : 0.006 %、 A1 : 0.04%, N :0.002%を含有し、 Pを、 P : 0.01〜0.08%、 b を、 Nb : 0.025 〜0.096 %に変化 させた組成のシートバ一を、 1150°Cに加熱一均熱したのち、 仕上げ温度が 900°Cとなる ように 3パス圧延を行い、 600°CX 1 hrの卷取り処理を施して板厚 3.5瞧の熱延板とし た。 これらの熱延板に、 さらに圧下率: 80%の冷間圧延を施し、 ついで焼鈍温度: 800°C X 40sの再結晶焼鈍を施したのち、 0.8%のスキンパス圧延を施して、冷延焼鈍板とした。 これら冷延焼鈍板について、 BH性および時効性を測定した。 それらの結果を第 4図に 示す。 なお、 BH性は、 鋼板に 2%の引張予歪を与えたのち、 170°CX20min の熱処理 を施した時の熱処理前後の降伏応力の増加量で評価した。 また、 室温時効性は、 100 °C で 10hr処理したのちの降伏点伸びで評価した。
第 4図から、 Pが 0.05%以下でかつ ( b/93) /(C/12) が 0.7 〜1.2であれば、 B H量が 30MPa以上でかつ時効処理後の降伏点伸びが 0.2%以下となり、 高 BH性と優れ た耐時効性を示すことがわかる。
すなわち、 本発明は、 重量%で、 C : 0.005〜0.02%、 Si : 0.5%以下、 Mn: 3.0%以 下、 P : 0.05%以下、 S : 0.02%以下、 A1: 0.01〜0.20%、 N : 0.01%以下、 Nb: 0.025 〜0.19%を含み、 かつじ、 Nb含有量が次式
0.7X (C/12) ≤Nb/93≤l.2X (C/12)
ここで、 C : C含有量 (重量%) 、 Nb: Nb含有量 (重量%)
を満足し、残部 Feおよび不可避的不純物からなる組成を有し、 かつ塗装焼付硬化量(B H量)が 30MPa以上を有することを特徴とする耐時効性に優れた塗装焼付硬化型冷延鋼 板である。
また、 本発明では、 前記組成に加えて、 さらに重量%で、 B : 0.0001〜0.005%, Ti : 0.001〜0.05%のいづれか一方または、 両方を含有してもよい。
また、 本発明は、 重量。 /。で、 C : 0.005〜0.02%、 Si: 0.5%以下、 : 3.0%以下、 P : 0.05%以下、 S : 0.02%以下、 A1 : 0.01〜0.20%、 N : 0.01%以下、 Nb: 0.025〜 0.19%を含み、 かつじ、 b含有量が次式
0.7X (C/12) ≤Nb/93≤l.2X (C/12)
(ここで、 C : C含有量 (重量%) 、 Nb : Nb含有量 (重量%) ) を満足し、 残部 Feお よび不可避的不純物からなる鋼素材を、 加熱したのち、 仕上圧延を 960 〜650°Cの温度 範囲で終了する熱間圧延により熱延板とし、 750〜400°Cの巻取り温度で巻取る熱間圧延 により熱延板とし、 ついで、 該熱延板に圧下率: 50〜95%の冷間圧延を施したのち、 焼 鈍温度: 750〜920°Cの再結晶焼鈍を施すことを特徴とする耐時効性に優れた塗装焼付硬 化型冷延鋼板の製造方法であり、また本発明では、前記鋼素材が、 さらに重量%で、 B : 0. 0001〜0. 005%, 丁 i: 0. 001〜0. 05%のいづれか一方または、 両方を含有してもよい。 次に本発明の構成の理由を示す。
まず、 A値について説明する。
A= (A I 0UENC„- A I ) /A I 0UENCH: 0. 4 以上
A I WEra値: 30MPa以上
A値は、 固溶 Cの粒界存在比であり、 A Iは冷延焼鈍板の時効指数である。 A I QUEra 値を 30以上でかつ A値を 0. 4 以上とすることにより 30MPa以上の高い塗装焼付硬化性 ( B H性) と優れた耐時効特性を両立する鋼板となる。 A I WENCH値が 30以上であれば、 30 Pa以上という高い B H量が得られるが、 A値が 0. 4未満では、 鋼成分を最適化して も高い B H量と優れた耐時効特性をともに有することが困難である。
前述したように、 本発明者らは B H性を発現する固溶 Cと室温時効に寄与する固溶 C とは、 その存在する場所を異にし、 B H性を発現する固溶 Cは粒内および粒界に存在す る固溶 C、 すなわち鋼中の固溶 Cであり、 A I WENCHにより推定が可能であり、 一方、 室 温時効に寄与する固溶 Cは粒内に存在する固溶 Cであり、 A I QUENCH— A Iで推定が可能 となることを見いだした。 室温時効のような低温における時効では、 粒界に存在する固 溶 Cは粒界にトラップされたまま粒内に拡散することが不可能であり、 一方、 塗装焼付 処理のような高温での熱処理では、 粒界に存在する固溶 Cも粒内に拡散することができ、 B H性に寄与することができる。
この発明鋼板の製造方法は、 上記した化学組成の素材を、 熱間圧延工程および冷間圧 延工程により冷延板としたのち、 前記 A値を 0. 4以上および A I WENCH値を 30以上とな るように焼鈍を施す。 A I ENCH値を 30以上とするためには、 本発明範囲に化学組成を 調整し、 微細炭化物を焼鈍過程において溶解する力、 熱延板中に固溶 Cを残留させる方 法があるが、 深絞り性の観点からは前者のほうが有利である。 微細炭化物を溶解させる ためには、 焼鈍温度を 780 °C以上に制御するのが好ましい。
A値を 0. 4以上とするためには、焼鈍温度を低く設定すること、好ましくは 880 °C未 満 780°C以上に制御するのがよい。 焼鈍温度が高いと、 粒界と粒内のエネルギー差がほ とんど無くなり、 粒界に存在する固溶 Cは粒内に拡散し、 A値が低くなる。 固溶 Cを粒 界に多く存在させるためには、 焼鈍温度を低く設定する必要がある。
次に、 平均粒界間角度 M (度) と平均結晶粒径 G ( μ m ) との比 M/Gについて説明 する。
平均粒界間角度 M (度) と平均結晶粒径 G ( μ m ) との比 MZGを 0. 8 以上とする。 MZGを 0. 8以上とすることにより、 粒界に存在する固溶 C量が増加する。 これは、 Μ /Gを大きくする、 すなわち結晶粒を微細化し、 結晶粒界間角度を大きくすることによ り、 結晶粒界面積が増加し、 固溶 Cが粒界に容易に移動できかつ多量の固溶 Cが粒界に 存在できるようになるからである。 また、 結晶粒界間角度が大きくなると同じ結晶粒界 であっても固溶 Cが粒界に多く存在できる。 MZGが 0. 8 以上であれば、 Β Η量が 30MPa 以上となる固溶 Cが鋼中に存在しても、 粒界に存在する固溶 C量が多くなり、 降伏伸び が低く耐時効性に優れた冷延鋼板となる。
また、 MZGが 0. 8 以上では、 一様伸びが増加する。 一様伸びを高めるためには、 引 張変形時に材料全体に均一に歪を伝播させることが重要である。 このためには、 本発明 者らは、 結晶粒径と結晶粒界間角度の比が重要で、 結晶粒径と結晶粒界間角度の比を大 きくする、 例えば結晶粒径を小さく結晶粒界間角度を大きくすれば、 同一の歪を与えた 場合の歪伝播が均一となることを見いだし、 実験の結果、 結晶粒径と結晶粒界間角度の 比 M/Gの臨界値が 0. 8 であることを突き止めた。 MZGが 0. 8未満では、上記したよ うに 30MPa以上という高い B H量を有し、かつ高い一様伸びと優れた耐時効性をともに 有する鋼板とはならない。
この発明鋼板の製造方法では、 上記した化学組成の素材を、 熱問圧延工程および冷問 圧延工程により冷延板としたのち、 MZGが 0.8 以上となるように焼鈍を施す。 MZG に影響する因子として、熱延板の結晶粒径、冷延圧下率、焼鈍温度がある。 MZGを 0. 8 以上とするためには、 熱延板の結晶粒径を小さく、 力 冷延圧下率を高く、 低温での焼 鈍を行うのが肝要である。 焼鈍温度が高い場合には、 結晶粒の成長が速く平均結晶粒径 Gが大きくなりやすく、 また粒成長時に粒界エネルギーが低くなるように結晶粒同士の 食い合いが生じるため平均粒界間角度 Mが小さくなり、 MZGが小さくなる。 一方、 焼 鈍温度が低すぎると、 B H量を 30MPa以上とする固溶 C量が得られない。 したがって、 B H量が 30MPa以上で M/Gが 0. 8以上となるためには、熱延時に低温で溶解する微細 炭化物を形成させ、 焼鈍時に低温で溶解させるのがよい。
次に、 本発明において、 鋼の化学組成を上記の構成にした理由について説明する。
C : Cは、 深絞り性に悪影響をおよぼす元素であり、 できるだけ低減するのが好まし レ、。 Ti添カ卩を必須とする鋼においては、 0. 0050%までは許容できるので、 Cは 0. 0050% を上限とした。 一方、 Nb添加を必須とする鋼においては、 NbCを適量析出させることに より、 結晶粒を微細にし、 粒界の固溶 C量を増加させて耐時効性を向上させる効果があ るため、 C量は 0. 005%以上必要である。 しカゝしながら、 C量が 0. 02%を超えると、 深絞 り性が劣化するので、 0. 02%以下とした。
S i : Siは鋼の強度を增加する作用を有し、 所望の強度に応じて添加する。 しかし、 添加量が 1. 0%を超えると、 深絞り性が低下する。 このため、 Siは 1. 0%以下に限定し た。 なお、 より一層の深絞り性を確保するためには、 0. 5%以下が好ましい。
M n : Mnは鋼の強度を増加する作用を有し、 所望の強度に応じて添加する。 しかし、 添加量が 3. 0%を超えると、 深絞り性が低下する。 このため、 Mnは 3. 0%以下に限定し た。 なお、 より一層の深絞り性を確保するためには、 2. 0%以下が好ましい。
P : Pは鋼を強化する作用があり、 所望の強度に応じて添加する。 しカゝし、 添加量が 0. 15%を超えると深絞り性が劣化するため、 Pは 0. 15%以下とした。 なお、 より一層の 深絞り性を確保するためには、 0. 10°/0以下が好ましい。 さらに、 粒界 C量を多くさせる ためには、 0. 05%以下が好ましい。 s: sは深絞り性に悪影響をおよぼす元素であり、 できるだけ低減するのが好ましい が、 0.05%以下までは許容できる。 なお、 より一層の深絞り性を確保するためには、 0.02%以下が好ましい。 さらに、 Ti添加が必須の鋼では、 BH性と耐時効性に影響し、 S含有量を 0.008 %以下でかつ、鋼素材の熱延加熱温度 T SRとの関係で 一 0.235 X T SR+305 (ppm)以下に制限することが重要である。 S含有量が一0.235 XTSR+305 (ppm) を超えると 30MPa 以上の高 BH量と 20MPa以下の低 A I値を確保できない。なお、 40MPa 以上の高 BH量と 20MPa以下の低 A I値を確保するためには、 S含有量は 0.0010%以上 とするのが好ましい。
A 1 : A1は、 脱酸および炭窒化物形成元素の歩留り向上のために添加する。 0.01%未 満ではその添加効果が少なく、一方 0.20%を超えて添加しても添加量に見合う効果が得 られないため、 A1は 0.01~0.20%の範囲とした。
N: Nは、 深絞り性に悪影響をおよぼす元素であり、 できるだけ低減するのが好まし いが、 0.01%までは許容できるので、 Nは 0.01%以下とした。
T i : Tiは、 鋼中の Cと結合して炭化物として析出させ、 固溶 Cによる深絞り性劣化 を防止する効果を有している。 Ti添加量が 0.001%未満では、 その添加効果がなく、 ま た、 0.2%を超えて添加しても添加量に見合う効果が得られないうえに、 深絞り性が劣 化する傾向となる。 このため、 Tiは 0.001〜0.2%の範囲に限定した。 さらに、 Ti添カロ が必須の鋼では、 Ti含有量は、 0.005〜0.08%でかつ、 C、 N、 S量に対し、 次式
0.5 X (C/12 ) ≤Ti/48 一 (N/14 +S/32 ) ≤4 X (C/12 )
を満足する範囲とすることが好ましい。 {Ti/48 ― (N/14 +S/32 ) } が 0.5 X (C /12 ) 未満では、 熱延板中に多量の固溶 Cが残留するため冷延焼鈍板の深絞り性が劣化 する。 また、 i/48 - (N/14 + S/32 ) } が 4 X (C/12 ) を超えると、 焼鈍時に 炭化物が溶解しにくくなり、 BH性が劣化する。 このため、 {Ti/48 — (N/14 + S /32 ) } を 0.5 X (C/12 ) 〜4 X (C/12 ) の範囲内にすることが好ましい。
Nb : Ti添加を必須とする鋼においては、 Nbは、 熱延板の組織を微細化して冷延焼 鈍板の r値を向上させる作用があり、 さらに冷延焼鈍後の結晶粒を微細化して、 固溶 C が粒界に存在する割合、 固溶 Cの粒界存在比を高める効果がある。 これら効果は 0. 001 %以上の添加でみとめられるが、 0. 2 %を超えて添加してもそれ以上の効果は得 られないうえに、深絞り性が劣化する傾向となる。 このため、 Nbは 0. 001 〜0. 2 %の範 囲とした。
Nb添カ卩を必須とする鋼においては、 Nbは鋼中の固溶 Cを固定し NbC として微細析出 し、 再結晶焼鈍時に (111 } 再結晶集合糸且織を発達させ深絞り性を向上させる効果を有 している。 また、 微細析出した NbC は、 焼鈍時の粒成長を抑制して微細粒を得ることが でき、 粒界 C量を増加できるため、 耐時効性が向上する。 さらに、 析出した NbC が焼鈍 時に再溶解し、 鋼中の固溶 C量を増加させ B H性を向上させる。
このような効果を発現させるために、 Nb含有量は、 鋼中 C含有量に対し、 次 式を満足する必要がある。
0. 7 X ( C /12) ≤Nb/93≤l. 2 X ( C /12)
ここで、 C : C含有量 (重量0 /。) 、
Nb: Nb含有量 (重量0 /0)
Nb/93が、 0. 7 X ( C /12) 未満では固溶 C量が多くなりすぎ、 粒内の固溶 C量が増 加し、 耐時効性が劣化する。 一方、 NbZ93が、 1, 2 X ( C /12) を超えると、 焼鈍時に NbC が分解せず鋼中固溶 C量が少なくなり、 B H量が 30MPa以上を確保できなくなる。 以上の主成分に加えて、 下記元素を必要に応じ添加することができる。
B : Bは、 鋼の耐 2次加工脆化性を改善する作用を有している。 耐 2次加工脆化性を 改善するためには、 0. 0001%以上の添加を必要とするが、 0. 0080%を超えると深絞り性 が劣化する。 このため、 Bは 0. 0001〜0. 0080%の範囲とした。
本発明の鋼素材は、 残部 F eおよび不可避的不純物からなる。 不可避不純物としては、 例えば、 O: 0. 010%以下が許容できる。
次に、 製造条件について説明する。 本発明の製造方法における熱間圧延工程、 冷間圧延工程は、 とくに限定されるもので はないが、 好適な条件について説明する。
熱間圧延を施すために素材を、 1300°C以下の温度に加熱する。 固溶 C、 Nを析出物と して固定し深絞り性を向上させるためには、 加熱温度はできるだけ低いことが望ましい。 し力 し、 900 °C未満では加工性の改善とはならず、 かえって熱間圧延時の圧延負荷の増 大に伴うトラブルが発生しやすくなる。 このこと力ゝら、 熱間圧延の加熱温度は 900 °C〜 1300°C、 より好ましくは 950 〜1150°Cの範囲である。
なお、 Ti添加を必須とする鋼においては、粒界 C量を増加させて耐時効性を向上させ るために、 次式の条件でスラブ加熱することが好ましい。
S≤— 0. 235 X T SR + 305
(ここに、 S :硫黄含有量 (ppm ) 、 丁 SR :鋼素材加熱温度 (°C) ) を満足する温度 ( T SR) に加熱する。
T SRが上式を満足する条件とすることにより、 硫化物および炭化物の析出形態が炭硫 化物の複合析出から微細炭化物に変化し、 その結果、 再結晶焼鈍時に炭化物がより低温 で溶解するため、 粒界に多量の固溶 Cが残留したと考えられる。 これにより、 低 A I値 で高 B H量の鋼板を得ることができる。
T SRが、 上式を満足しない場合には、 B H量が 30MPa 以上が得られない。 なお、 より 高い B H量 (40MPa以上) を確保するためには、 T SRが 950 °C超え〜 1200°C未満とするの がより好ましい。
ついで、仕上圧延を 960 〜650 °Cの温度範囲で終了し、卷取り温度が 750 〜400 °Cの 温度範囲で卷取る熱間圧延により熱延板とする。
熱間圧延の仕上圧延終了温度が 960 °Cを超えると、 熱延板の結晶粒が粗大化し、 冷 延 ·焼鈍後の深絞り性が劣化する。 また、 仕上圧延の終了温度が 650 °C未満となると、 変形抵抗が増加するため圧延時の圧延負荷の増大に繋がり圧延が困難となるため、 仕上 圧延終了温度を 960 〜650 °Cの範囲に限定した。 なお、 熱延板の結晶粒径微細化には、 熱延板を仕上圧延終了直後に加速冷却すること が好ましい。 ここで加速冷却とは、 仕上圧延後、 1 秒以内に冷却することで、 加速冷却 によって熱延板の結晶粒径を微細化することができる。 加速冷却に用いる冷媒は、 水、 空気、 ミスト等いずれも適用可能である。 一方、 M/Gを 0. 8以上とするためには、 熱延 板の結晶粒径を 50 ra以下としておくのが好ましい。
仕上圧延後の鋼板の卷取り温度は高温ほど炭窒化物の粗大化に有利であるが、 750 °C を超えると鋼板表面に形成されるスケールが厚くなりすぎスケール除去作業の負荷が 増大する。 また、仕上圧延後の鋼板の卷取り温度が 400 °C未満では、 巻き取りに困難を 伴うという問題があり、 このため、仕上圧延後の鋼板の卷取り温度を 750 〜400 °Cの範 囲とした。
ついで、 熱延板に圧下率: 50〜95%の冷間圧延を施す。
熱延板には、 優れた深絞り性を確保するために冷間圧延が施される。 高い r値を得る ためには、圧下率 50%以上の冷間圧延を施すのが好ましい。圧下率が 50%未満では、高 い r値は期待できない。 し力 し、 圧下率が 95%を超えると、 r値はかえつて低下するた め、 圧下率は 50〜95%とした。
冷間圧延のち、 700 〜920 °Cの再結晶焼鈍を施す。
焼鈍温度が 700 °C未満では、炭化物の溶解が不十分で固溶 C量が少なく所定の B H量 が確保できない。 一方、焼鈍温度が 920 °Cを超えるとひ一 y変態が生じ集合組織がラン ダム化するため、 r値が劣化し、深絞り性が低下する。 このため、再結晶焼鈍温度は 700 〜920 °Cの範囲とした。 深絞り性には、 焼鈍温度は 750° 以上が好ましい。 焼鈍方法は、 箱型焼鈍法あるいは連続型焼鈍法のいずれでもよいが、 材質の均一性のためには連続焼 鈍法が好ましい。
なお、 再結晶焼鈍後、 鋼板には、 形状矯正、 表面粗度調整のため、 10%以下の調質圧延 を施してもよレ、。
なお、 本発明の冷延鋼板は、 加工用冷延鋼板としての用途以外に、 加工用表面処理鋼 板の原板として利用できるのは言うまでもない。 表面処理としては、 亜鉛合金を含む亜 鉛めつき、 すずめつき、 ほうろう等がある。
また、 本発明銅板は、焼鈍あるいは亜 、めっき後、 特殊な処理、例えば Niめっき等を 施して化成処理性、 溶接性、 プレス成形性および耐食性等の改善を行ってもよい。 実施例
(実施例 1 )
表 1の示す化学組成の鋼素材 (スラブ) を、 表 2に示す熱延条件で板厚 3.5mmの熱延 板とした。 これら熱延板を冷間圧延により板厚 0.8瞧 の冷延鋼帯とした。 ついで、 これ ら鋼帯を連続焼鈍ラインで 750 〜880 °Cの温度で再結晶焼鈍を施した。得られた鋼帯に、 さらに 0.8 %の調質圧延を施し製品板とした。
これら製品板について、 A I、 A I QUENCH、 および A値を求め、 さらに引張特性、 r値、 BH性、 室温時効性を調査した。
引張特性は、 J I S 5号引張試験片を用い、 降伏点、 引張強さ、 伸びを測定した。 ま た、 r値は 15%引張予歪を与えたのち、 3点法にて測定し、 L方向 (圧延方向) 、 D方 向 (圧延方向に 45度方向) および C方向 (圧延方向に 90度) の平均値 (r = ( r L + 2 r D + r c ) /A) として求めた。
BH量は、 製品板に 2%の引張予歪を与えたのち、 170 °CX20min の熱処理を施した 時の熱処理前後の上降伏応力の増加量として求めた。
室温時効性は、製品板に 100 °CX10hrの時効処理を施したのちの降伏点伸びで評価し た。 降伏点伸びが 0.2 %以下であれば、 耐室温時効性に問題はない。
それらの結果を表 2に示す。
表 2から、 本発明の製品板 (No.1、 No.4、 No.6、 No.7 ) は、 本発明の範囲を外れる 比較例に比べ、高い BH量と、 100 °CX 10hrの時効処理後の降伏点伸びが 0.2 %以下の 低い降伏点伸びを示し、 高い BH性と優れた耐時効特性を有することがわかる。 比較例 No. 2は、 焼鈍温度が高いため、 A値が 0. 4未満と低く時効処理後の降伏点伸 びが 0. 60と高い。 また、 比較例 No. 3は、 鋼組成が本発明の範囲を外れ、 焼鈍温度が高 いため、 A値が 0. 4未満と低く時効処理後の降伏点伸びが 0. 70と高い。
比較例 No. 5は、焼鈍温度が低過ぎるため、 A I QUENCHが 30MPa未満で B H量が lOMPa と 低い。
比較例 No. 8は、 鋼組成が本発明の範囲を外れるため、 A I QUENCHが 30MPa 未満で B H 量が 7 Pa と低い。
(実施例 2 )
表 3に示す化学組成の鋼素材 (スラブ) を、 表 4に示す熱延条件で板厚 3. 5画 の熱延 板とした。 なお、 熱間仕上圧延終了後の冷却条件 (冷却開始時間を種々変化して水冷) を制御して熱延板の結晶粒径を調整した。 これら熱延板を冷間圧延により板厚 0. 8画 の 冷延鋼帯とした。ついで、 これら冷延鋼帯を連続焼鈍ラインで 780 〜880 °Cの温度で再 結晶焼鈍を施した。 得られた鋼帯に、 さらに 0. 8 %の調質圧延を施し製品板とした。 これら製品板について、 平均結晶粒径 G、 平均粒界間角度 M、 引張特性、 r値、 B H 量、 室温時効性を調査した。
平均結晶粒径 Gは、 3箇所から採取した試験片の板厚断面について光学顕微鏡観察に より求めた。
平均粒界間角度 Mは、 E B S Dを用いて、 板厚断面の各結晶粒について結晶方位を測 定し、 50個以上の結晶粒について、 隣接結晶粒問の方位差 (傾角) を求め、 その平均値 を算出した。
それらの結果を表 4に示す。
表 4から、 本発明の製品板 (No. 1、 No. 4、 No. 6、 No. 7 ) は、 本発明の範囲を外れる比 較例に比べ、一様伸び、 r値および B H量が高く、 かつ 100 °C X 10hrの時効処理後の降 伏点伸びが 0. 2 %以下の低い降伏点伸びを示し、高い B H性と優れた加工性および優れ た耐時効特性を有することがわかる。 比較例 No.2は、 熱延板の結晶粒径が大きく、 また焼鈍温度が高いため、 MZGが 0.8 未満となり、 一様伸び、 r値が低く、 時効処理後の降伏点伸びが 0.60と高い。 また、 比 較例 No.3は、 Ti含有量が本発明の範囲を外れ、 熱延板の結晶粒径が大きく、 また焼鈍 温度が高いため、 M/Gが 0.8 未満となり、 時効処理後の降伏点伸びが 0.70 と高い。 また、比較例 No.5は、 C含有量が本発明の範囲を外れ、 一様伸び、 r値が低く時効処理 後の降伏点伸びが 0.75と高い。
(実施例 3)
表 5に示す化学組成の鋼素材 (スラブ) を、 表 6に示す熱延条件で板厚 3.5画の熱延 板とした。これら熱延板を表 6に示す圧下率 77%または 45%の条件で冷間圧延して冷延鋼 帯とした。 ついで、 これら鋼帯を表 6に示す条件で連続焼鈍ラインで再結晶焼鈍を施し た。 得られた鋼帯に、 さらに 0.8 %の調質圧延を施し製品板とした。
これら製品板について、 引張特性、 r値、 BH性、 A I値を調査した。
それらの結果を表 6に示す。
なお、 表 5, 表 6で、 X= {Ti/48- (N/14+ S/32) } / (C/12) とし、 ま た、 Z= {-0.235 T SR + 305 } ZSとして、 0.5^X^4. が本発明範囲と なる。
表 6から、本発明範囲の製品板(No.1、 No.2、 No.4、 No.5、 No.7、 No.8、 No.9〜 No.11) は、 本発明の範囲を外れる比較例に比べ、 高い BH量と、 低い A I値を示し、 高い BH 性と優れた耐時効性を有することがわかる。
比較例 No.3、 No.6は、 スラブ加熱温度が本発明の範囲を外れるため ( Zく 1 ) 、 BH量が 30MPa未満と低い。 また、 比較例 No.8は、 鋼組成 (X) が本発明の範囲を 外れるため (X>4) 、 BH量が 30MPa未満と低い。
比較例 No.12 は、 圧延仕上温度が本発明の範囲を外れるため、 伸び、 r値が低下して いる。
比較例 No.13 は、 冷間圧延の圧下率が本発明の範囲を外れるため、 r値が低下してい る。
比較例 No. 14 は、 再結晶焼鈍温度が本発明の範囲を外れるため、 伸び、 r値が低下し ている。
(実施例 4 )
表 7に示す化学組成の鋼素材 (スラブ) を、 表 8に示す熱延条件で板厚 3. 5mmの熱延 板とした。 この熱延板に、 圧下率 80%の冷間圧延を施し板厚 0. 7瞧 の冷延板 (鋼帯) と した。 ついで、 これら鋼帯に表 8に示す焼鈍温度: 730〜930°Cの条件で連続溶融亜鉛め つきラインで再結晶焼鈍後、 0. 01%A1- Znのめつき浴にて 50g/m2の目付量で溶融めつき し、 550°Cに加熱して合金化処理を施すことにより、 合金化溶融亜鉛めつきを施した。 得られた鋼帯に、 さらに 0. 8 %の調質圧延を施した。得られた合金化溶融亜鉛めつき鋼 帯(製品板) の材料特性 (引張特性、 r値、 B H性、 時効性) を調査し、 その結果を表 8に示す。
時効性は、 製品板に 100でで 10hrの時効処理を行ったのちの降伏点伸びで評価し、 降 伏点伸びが 1 %超のものを X、 1 %以下のものを〇とした。
なお、 表中には、 X - (Nb/93 ) / ( C /12 ) として、 X : 0. 7 〜1. 2 が本発明範囲 となる。
表 8から、 本発明範囲の製品板 (No. 1、 No. 3、 No. 4、 No. 5、 No. 8、 No. 9) は、 本発明 範囲を外れる比較例に比べ、 1. 2超の高い r i直と、 30MPa 以上の高い B H量と、 1. 0 % 以下の低い降伏点伸びを示し、 優れた深絞り性、 優れた B H性および優れた耐時効性を 有していることがわかる。
比較例 No. 2は、 焼鈍温度が本発明の範囲を外れるため (750°C未満) 、 r値が 1. 2と 低く、 さらに B H量が 30MPa 未満と低レ、。
比較例 No. 6は、 焼鈍温度が本発明の範囲を外 るため (920°C超え) 、 r値が 1. 1と 低く、 さらに時効処理後の降^点伸びが 1. 2と高い。
比較例 No. 7は、熱延仕上温度が本発明の範囲を外れるため(960°C超え) 、 r値が 1. 2 と低い。
比較例 No. 10は、 熱延卷取温度が本発明の範囲を外れるため (400°C未満) 、 r値が 1. 2と低く、 さらに時効処理後の降伏点伸びが 1. 1と高い。
比較例 No. 11は、鋼成分が本発明の範囲を外れるため、 r値が 1. 2と低く、 さらに時 効処理後の降伏点伸びが 1. 45と高い。
比較例 No. 12は、 鋼成分が本発明の範囲を外れるため、 B H量が 30MPa未満と低い。 比較例 No. 13 は、 鋼成分が本発明の範囲を外れるため、 r値が 1. 3と低く、 さらに時 効処理後の降伏点伸びが 1. 35と高い。
表 1
Figure imgf000027_0001
表 2
Figure imgf000027_0002
* A I o Q:■ A I 1 QUENCH * * 降伏 伸 : 100"CX 1 0 h r 理
表 3
Figure imgf000028_0001
表 4
Figure imgf000028_0002
** 降伏点伸び: 10 OT:x 10 h r処理後
表 5
Figure imgf000029_0002
Figure imgf000029_0001
表 7
Figure imgf000030_0002
*: X= (Nb/9 3) / (C/ l 2) oo
Figure imgf000030_0001
産業上の利用可能性
本発明によれば、 従来に比べ、 耐時効特性に優れた塗装焼付硬化型冷延銅板を工業的 に安定して製造できるという産業上格別の効果を生じる。
従来の塗装焼付硬化型冷延鋼板では、 耐時効性が劣っていたため、 自動車メ一カーに おいて、 プレス成形する際にストレツチヤ一ストレインの問題が多発していた。 そのた め、 塗装焼付硬化型冷延鋼板を使用する時には、 鋼板を長期間保管しておけないという 問題があった。 さらに、. 塗装焼付硬化型冷延鋼板を輸出する際には、 船便での輸送中に 時効劣化するという問題があつたため、 これまで塗装焼付硬化型冷延鋼板は輸出されて いなかった。 したがって、 海外の自動車メーカ一において、 たとえ塗装焼付硬化型冷延 鋼板を使用したくても使用できなかったのが現状である。
本発明によれば、 上記したような問題は一掃されるため、 国内の自動車メーカーでは、 塗装焼付硬化型冷延鋼板の保管の規制がなくなり、 さらに海外の自動車メーカーに塗装 焼付硬化型冷延鋼板を輸出できるという、 産業上の格段の効果を生じさせることができ る。

Claims

請求の範囲
1 . 重量%で
C : 0. 005%以下、
Si : 1. 0%以下、
Mn: 3. 0%以下、
P : 0. 15%以下、
S : 0. 05%以下、
A1: 0.。卜 0. 20%、
N: 0. 01%以下、
Ti: 0. 0卜 0. 2%
を含み、 残部 Feおよび不可避的不純物からなる化学組成を有し、 かつ塗装焼付硬化量 (BH)が 30MPa以上を有する冷延鋼板において、下記 A値が 0. 4以上および下記 A I QUENCH 値が 30MPa以上を有することを特徴とする、 耐時効特性に優れた塗装焼付硬化型冷延鋼 板。 記
A一 I QUENCH— A I , 八 I 0UENCH
ここで、
A I QUENCH:鋼板に 500°C X 40sec加熱 ·水焼入れ処理したのちの時効
指数 (MPa) 。
A I :鋼板の時効指数 (MPa) 。
時効指数:鋼板に 7. 5%引張予歪を付加したのち、 100°C X 30minの熱処理
を施した場合の熟処理前後の降伏応力の増加量 (MPa) 。
2. 請求の範囲第 1項の冷延鋼板であって、 さらに、 Nb: 0.001〜0.2%, B : 0.0001〜 0.0080%のうち少なくとも一方を含有することを特徴とする、 耐時効特性に優れた塗装 焼付硬化型冷延鋼板。
3. 重量%で
C: 0.005%以下、
Si: 1.0%以下、
Mn: 3.0%以下、
P : 0.15%以下、
S : 0.05%以下、
A1: 0.01〜0.20%、
N: 0.01%以下、
Ti: 0.01〜0.2%
を含み、 残部 Fe および不可避的不純物からなる化学組成を有し、 かつ塗装焼付硬化量
(BH) 力 OMPa以上を有する冷延鋼板において、
平均粒界間角度 M (度) と平均結晶粒径 G (μ m) との比、 M/Gが 0.8以上であるこ とを特徴とする、 耐時効特性に優れた塗装焼付硬化型冷延鋼板。
4. 請求の範囲第 3項の冷延鋼板であって、 さらに、 Nb: 0.001〜0.2%, B : 0.0001〜 0.0080%のうち少なくとも一方を含有することを特徴とする、 耐時効特性に優れた塗装 焼付硬化型冷延鋼板。
5. 重量%で、
C : 0.005%以下、
Si: 1.0%以下、 Mn: 3. 0%以下、
P : 0. 15%以下、
S : 0. 05%以下、
A1: 0. 0卜 0. 20%、
N : 0. 01%以下、
Ti: 0. 01〜0. 2%
を含み、 残部 Feおよび不可避的不純物からなる素材を、 仕上圧延を 960〜650°Cの温度 範囲で終了し、卷取り温度が 750〜400°Cの温度範囲で卷取る熱間圧延により熱延板とし、 ついで、 該熱延板に圧下率: 50〜95%の冷間圧延を施したのち、 700〜920°Cの再結晶焼 鈍を施すことを特徴とする、 請求の範囲第 1項から第 4項に記載の耐時効性に優れた塗 装焼付硬化型冷延鋼板の製造方法。
6 .請求の範囲第 5項の冷延鋼板の製造方法であって、 さらに、 Nb: 0. 001〜0. 2%, B : 0. 0001〜0. 0080%のうち少なくとも一方を含有することを特徴とする、 耐時効特性に優 れた塗装焼付硬化型冷延鋼板の製造方法。
7 . 重量%で、
C : 0. 0007〜0. 0050%、
Si: 0. 5%以下、
Mn: 2. 0%以下、
P : 0. 10%以下、
S : 0. 008%以下、
A1: 0. 01~0. 20%,
N: 0. 01%以下、
Ti: 0. 005〜0. 08% を含み、 かつ Ti N S含有量が下記 (1) 式を満足し、 残部 Feおよび不可避的不 純物からなる鋼素材を、 下記 (2) 式を満足する温度 (TSR) に加熱したのち、 仕上圧延 を 960 650°Cの温度範囲で終了し、巻取り温度が 750 400°Cの温度範囲で卷取る熱間圧 延により熱延板とし、 ついで、 該熱延板に圧下率: 50 95%の冷間圧延を施したのち、 700 920°Cの再結晶焼鈍を施すことを特徴とする、 耐時効性に優れた塗装焼付硬化型冷 延鋼板の製造方法。
0.5 X (C/12) ≤Ti/48- (N/14+ S/32) ≤4 X (C/12) ··· (1)
ここに、 C Ti N S :重量0 /。
S≤-0.235XTSR +305 ( 2) こに、 S :硫黄— 3有 ¾ (ppm)
TSR :鋼素材加熱温度 (°C)
8.請求の範囲第 7項の冷延鋼板の製造方法であって、さらに Nb: 0.001 0.0 %, B : 0.0001 0.0050%のうち少なくとも一方を含有することを特徴とする、 耐時効特性に優 れた塗装焼付硬化型冷延鋼板の製造方法。
9. 重量%で、
C : 0.005〜0.02%、
Si: 0.5%以下、
Mn: 3.0%以下、
P : 0.05%以下、
S : 0.02%以下、
A1 : 0.0卜 0.20%. N : 0.01%以下、
Nb: 0.025〜0.19%
を含み、 かつ 、 Nb含有量が下記式を満足し、 残部 Feおよび不可避的不純物からなる 組成を有し、 かつ塗装焼付硬化量 (BH量) が 30MPa以上を有することを特徴とする、 耐時効性に優れた塗装焼付硬化型冷延鋼板。 記
0.7X (C/12) ≤Nb/93≤l.2X (C/12)
ここで、 C : C含有量 (重量0 /。)
Nb Nb含有量 (重量0 /0)
1 0. 請求の範囲第 9項の冷延鋼板であって、 さらに B : 0.0001〜0.005%, Ti: 0.001 〜0.05%のうち少なくとも一方を含有することを特徴とする、 耐時効特性に優れた塗装 焼付硬化型冷延鋼板。
1 1. 重量%で、
C : 0.005〜0.02%、
Si: 0.5%以下、
Mn: 3.0%以下、
P : 0.05%以下、
S : 0.02%以下、
A1: 0·01〜0.20%、
Ν: 0.01%以下、
Nb: 0.025〜0.19%
を含み、 かつ C、 Nb含有量が下記式を満足し、 残部 Feおよび不可避的不純物からなる 鋼素材を、加熱したのち、仕上圧延を 960〜650°Cの温度範囲で終了する熱間圧延により 熱延板とし、 750~400°Cの温度で卷取り、 ついで、 該熱延板に圧下率: 50〜95%の冷間 圧延を施したのち、 焼鈍温度: 750〜920°Cの再結晶焼鈍を施すことを特徴とする、 耐時 効性に優れた塗装焼付硬化型冷延鋼板の製造方法。 記
0.7X (C/12) ≤Nb/93≤1.2X (C/12)
ここで、 C : C含有量 (重量0 /0)
Nb: Nb含有量 (重量%)
1 2. 請求の範囲第 1 1項の冷延鋼板の製造方法であって、 さらに B :0.0001〜0.005%, Ti : 0.001〜0.05%を含有し、 のうち少なくとも一方を含有することを特徴とする、 耐 時効特性に優れた塗装焼付硬化型冷延鋼板の製造方法。
PCT/JP1998/001623 1997-04-09 1998-04-08 Tole d'acier a froid mince revetue de type trempe presentant une excellente resistance au vieillissement, et procede de production WO1998045494A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP98912726A EP0918098B1 (en) 1997-04-09 1998-04-08 Method for producing a bake-hardenable cold-rolled steel sheet having excellent aging resistance
US09/194,533 US6171412B1 (en) 1997-04-09 1998-04-08 Coated seizure-hardening type cold-rolled steel sheet having excellent aging resistance and method of production thereof
AU67472/98A AU721077B2 (en) 1997-04-09 1998-04-08 Bake-hardenable sheet steel with excellent anti-aging property, and method for producing it
DE69839757T DE69839757D1 (de) 1997-04-09 1998-04-08 Verfahren zur herstellung eines oberflächengehärteten kaltgewalzten stahlbleches mit hervorragenden alterungseigenschaften
CA002257835A CA2257835C (en) 1997-04-09 1998-04-08 Coated seizure-hardening type cold-rolled steel sheet having excellent aging resistance and method of production thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP9/90731 1997-04-09
JP09073197A JP3978807B2 (ja) 1997-04-09 1997-04-09 耐歪時効性に優れた塗装焼付硬化型冷延鋼板の製造方法
JP9683097A JPH10287954A (ja) 1997-04-15 1997-04-15 耐歪時効特性に優れた塗装焼付硬化型冷延鋼板およびその製造方法
JP9/96830 1997-04-15
JP22607397A JPH1161332A (ja) 1997-08-22 1997-08-22 プレス成形性、耐歪時効性に優れた塗装焼付硬化型冷延鋼板
JP9/226073 1997-08-22

Publications (1)

Publication Number Publication Date
WO1998045494A1 true WO1998045494A1 (fr) 1998-10-15

Family

ID=27306525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/001623 WO1998045494A1 (fr) 1997-04-09 1998-04-08 Tole d'acier a froid mince revetue de type trempe presentant une excellente resistance au vieillissement, et procede de production

Country Status (7)

Country Link
US (1) US6171412B1 (ja)
EP (1) EP0918098B1 (ja)
CN (2) CN1074055C (ja)
AU (1) AU721077B2 (ja)
DE (1) DE69839757D1 (ja)
TW (1) TW515847B (ja)
WO (1) WO1998045494A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100473497B1 (ko) * 2000-06-20 2005-03-09 제이에프이 스틸 가부시키가이샤 박강판 및 그 제조방법
CA2496212C (en) * 2004-02-25 2010-01-12 Jfe Steel Corporation High strength cold rolled steel sheet and method for manufacturing the same
CN100518977C (zh) * 2007-11-07 2009-07-29 攀钢集团攀枝花钢铁研究院 一种连退工艺生产冷轧硬质钢板的制造方法
CN101994056B (zh) * 2009-08-26 2012-07-18 鞍钢股份有限公司 具有优良冲压性能的超低碳烘烤硬化钢板及其制造工艺
KR101315568B1 (ko) * 2010-03-24 2013-10-08 제이에프이 스틸 가부시키가이샤 고강도 전봉 강관 및 그 제조 방법
CN101956133B (zh) * 2010-10-29 2012-09-05 攀钢集团钢铁钒钛股份有限公司 一种低屈服强度耐时效连退冷轧钢板及其生产方法
MX345579B (es) * 2010-11-29 2017-02-07 Nippon Steel & Sumitomo Metal Corp Lamina de acero laminada en frio, de alta resistencia, endurecible por horneado, y metodo de fabricacion de la misma.
CN102534370A (zh) * 2010-12-11 2012-07-04 鞍钢股份有限公司 高强超低碳烘烤硬化钢板及其制造工艺
CN102653839B (zh) * 2011-03-04 2014-10-29 上海梅山钢铁股份有限公司 低温连续退火无间隙原子冷轧钢板及其生产方法
JP5310919B2 (ja) * 2011-12-08 2013-10-09 Jfeスチール株式会社 耐時効性と焼付き硬化性に優れた高強度冷延鋼板の製造方法
CN104946974B (zh) * 2015-05-13 2017-08-08 首钢京唐钢铁联合有限责任公司 超低碳烘烤硬化钢板坯固溶碳含量的控制方法
CN106244914A (zh) * 2015-06-13 2016-12-21 郭策 室外监控装置的制备方法
CN105018840A (zh) * 2015-07-10 2015-11-04 唐山钢铁集团有限责任公司 超低碳烘烤硬化钢板及其生产方法
CN108998723A (zh) * 2018-06-14 2018-12-14 河钢股份有限公司 一种耐高温加速时效性钢板及其生产方法
CN108929946B (zh) * 2018-07-09 2020-03-17 攀钢集团攀枝花钢铁研究院有限公司 超低碳烘烤硬化钢耐时效性评价方法
CN109517951B (zh) * 2018-11-29 2020-06-09 攀钢集团攀枝花钢铁研究院有限公司 超低碳烘烤硬化钢耐时效性评价方法
CN110117758B (zh) * 2019-05-31 2021-05-04 张家港扬子江冷轧板有限公司 耐低温冲击的仪表外壳零件及其制备方法
KR20210079460A (ko) * 2019-12-19 2021-06-30 주식회사 포스코 경도와 가공성이 우수한 구조부용 냉연강판 및 그 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61276931A (ja) * 1985-05-31 1986-12-06 Kawasaki Steel Corp 焼付硬化性を有する超深絞り用冷延鋼板の製造方法
JPH05195060A (ja) * 1992-01-13 1993-08-03 Kobe Steel Ltd 耐時効性、プレス成形性の優れた焼付硬化型冷延鋼板の製造方法
JPH08143953A (ja) * 1994-11-15 1996-06-04 Nisshin Steel Co Ltd 耐時効性焼付硬化型熱延鋼板の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045689B2 (ja) * 1982-02-19 1985-10-11 川崎製鉄株式会社 プレス成形性にすぐれた冷延鋼板の製造方法
US4504326A (en) * 1982-10-08 1985-03-12 Nippon Steel Corporation Method for the production of cold rolled steel sheet having super deep drawability
DE69225395T2 (de) * 1991-02-20 1998-09-10 Nippon Steel Corp Kaltgewalztes stahlblech und galvanisiertes kaltgewalztes stahlblech mit hervorragender formbarkeit und einbrennhärtbarkeit und verfahren zu deren herstellung
DE69329236T2 (de) * 1992-06-22 2001-04-05 Nippon Steel Corp Kaltgewalztes stahlblech mit guter einbrennhärtbarkeit, ohne kaltalterungserscheinungen und exzellenter giessbarkeit, tauchzink-beschichtetes kaltgewalztes stahlblech und deren herstellungsverfahren
EP0620288B1 (en) * 1992-08-31 2000-11-22 Nippon Steel Corporation Cold-rolled sheet and hot-galvanized cold-rolled sheet, both excellent in bake hardening, cold nonaging and forming properties, and process for producing the same
JP3420370B2 (ja) * 1995-03-16 2003-06-23 Jfeスチール株式会社 プレス成形性に優れた薄鋼板およびその製造方法
DE19547181C1 (de) * 1995-12-16 1996-10-10 Krupp Ag Hoesch Krupp Verfahren zur Herstellung eines kaltgewalzten, höherfesten Bandstahles mit guter Umformbarkeit bei isotropen Eigenschaften

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61276931A (ja) * 1985-05-31 1986-12-06 Kawasaki Steel Corp 焼付硬化性を有する超深絞り用冷延鋼板の製造方法
JPH05195060A (ja) * 1992-01-13 1993-08-03 Kobe Steel Ltd 耐時効性、プレス成形性の優れた焼付硬化型冷延鋼板の製造方法
JPH08143953A (ja) * 1994-11-15 1996-06-04 Nisshin Steel Co Ltd 耐時効性焼付硬化型熱延鋼板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0918098A4 *

Also Published As

Publication number Publication date
CN1228128A (zh) 1999-09-08
EP0918098A4 (en) 2005-09-14
AU6747298A (en) 1998-10-30
AU721077B2 (en) 2000-06-22
TW515847B (en) 2003-01-01
CN1074055C (zh) 2001-10-31
US6171412B1 (en) 2001-01-09
EP0918098A1 (en) 1999-05-26
DE69839757D1 (de) 2008-09-04
CN1247809C (zh) 2006-03-29
EP0918098B1 (en) 2008-07-23
CN1497057A (zh) 2004-05-19

Similar Documents

Publication Publication Date Title
EP2415893B1 (en) Steel sheet excellent in workability and method for producing the same
WO1998045494A1 (fr) Tole d'acier a froid mince revetue de type trempe presentant une excellente resistance au vieillissement, et procede de production
WO2001098552A1 (en) Thin steel sheet and method for production thereof
WO2010011790A2 (en) Cold rolled dual phase steel sheet having high formability and method of making the same
JP6723377B2 (ja) 降伏比に優れた超高強度高延性鋼板及びその製造方法
JP2003221623A (ja) 高強度冷延鋼板および高強度溶融亜鉛めっき鋼板の製造方法
WO1999055927A1 (fr) Plaque d'acier laminee a froid possedant d'excellentes caracteristiques d'aptitude au moulage et de formabilite en panneaux, une bonne resistance a la constriction, plaque d'acier a placage en zinc moule et procede de fabrication de ces plaques
JPH03277741A (ja) 加工性、常温非時効性及び焼付け硬化性に優れる複合組織冷延鋼板とその製造方法
JP5381154B2 (ja) プレス加工と塗装焼付け後の強度−延性バランスに優れた冷延鋼板およびその製造方法
JP4434198B2 (ja) 低温焼付硬化性および耐時効性に優れる加工用薄鋼板の製造方法
KR102485003B1 (ko) 성형성 및 표면품질이 우수한 고강도 도금강판 및 그 제조방법
CN112400033B (zh) 具有高强度、高成型性、优异的烘烤硬化性的热轧镀覆钢板及其制造方法
JP3719025B2 (ja) 耐疲労特性に優れた深絞り用冷延薄鋼板
CN111315909B (zh) 冷成型性优异的超高强度高延展性钢板及其制造方法
JP4176403B2 (ja) 低温焼付硬化性および耐時効性に優れる加工用薄鋼板
JPH0578784A (ja) 成形性の良好な高強度冷延鋼板
JP3870840B2 (ja) 深絞り性と伸びフランジ性に優れた複合組織型高張力冷延鋼板およびその製造方法
JP3978807B2 (ja) 耐歪時効性に優れた塗装焼付硬化型冷延鋼板の製造方法
KR102484992B1 (ko) 강도, 성형성 및 표면 품질이 우수한 도금강판 및 이의 제조방법
JP3109388B2 (ja) 面内異方性の小さい高加工性冷延鋼板の製造方法
JP2003268490A (ja) 焼付硬化性および耐時効性に優れる加工用薄鋼板とその製造方法
JP3390084B2 (ja) 成形性に優れた焼付硬化型薄鋼板およびその製造方法
JP3718987B2 (ja) 耐時効性に優れた塗装焼付硬化型冷延鋼板およびその製造方法
JPH055156A (ja) 成形加工用高強度鋼板とその製造方法
JPH1161332A (ja) プレス成形性、耐歪時効性に優れた塗装焼付硬化型冷延鋼板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98800780.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN KR MX US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09194533

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 67472/98

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1998912726

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2257835

Country of ref document: CA

Ref document number: 2257835

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019980710044

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: PA/a/1998/010524

Country of ref document: MX

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998912726

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980710044

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 67472/98

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1019980710044

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998912726

Country of ref document: EP