WO1998039274A1 - Gas generant complex oxidizers with multimetal cations - Google Patents
Gas generant complex oxidizers with multimetal cations Download PDFInfo
- Publication number
- WO1998039274A1 WO1998039274A1 PCT/US1998/003868 US9803868W WO9839274A1 WO 1998039274 A1 WO1998039274 A1 WO 1998039274A1 US 9803868 W US9803868 W US 9803868W WO 9839274 A1 WO9839274 A1 WO 9839274A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composition
- nitrate
- group
- gas generant
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06D—MEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
- C06D5/00—Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets
- C06D5/06—Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets by reaction of two or more solids
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B31/00—Compositions containing an inorganic nitrogen-oxygen salt
Definitions
- the present invention relates to substantially nontoxic gas generating compositions which upon combustion, rapidly generate gases that are useful for inflating occupant safety restraints in motor vehicles and specifically, the invention relates to high nitrogen gas generants that produce combustion products having not only acceptable toxicity levels, but that also exhibit a relatively high gas volume to solid particulate ratio at acceptable flame temperatures.
- Pyrotechnic gas generants incorporating an oxidizer such as potassium nitrate, potassium perchlorate, molybdenum disulfide, chromic chloride, copper oxide, or iron oxide with alkali metal and alkaline earth metal azides have been commercially successful.
- Sodium azide has been the most extensively used azide in solid gas generants for airbag systems as described in U.S. Patent Nos. 2,981,616, 3,741,585, 3,865,660, 4,203,787, 4,547,235, and 4,758,287, the teachings of which are herein incorporated by reference.
- azides are very toxic and sodium azide is a very poisonous material, both orally and dermatologically.
- sodium azide is shipped as a class B poison similar to other extremely toxic materials, such as sodium cyanide and strychnine.
- Sodium azide hydrolyzes, forming hydrazoic acid which is very poisonous and reacts with heavy metals such as copper and lead to form very sensitive covalent azides which are readily detonated by shock or impact.
- propellants prepared from sodium azide are not very efficient gas producers and result in gas outputs of only about 1.3 to 1.6 moles of gas per 100 grams of propellant.
- the evolution from azide-based gas generants to nonazide gas generants is well-documented in the prior art.
- the advantages of nonazide gas generant compositions in comparison with azide gas generants have been extensively described in the patent literature, for example, U.S. Patents No. 4,370,181; 4,909,549; 4,948,439; 5,084,118; 5,139,588 and 5,035,757, the discussions of which are herein incorporated by reference.
- pyrotechnic gas generants contain ingredients such as oxidizers to provide the required oxygen for rapid combustion and reduce the quantity of toxic gases generated, a catalyst to promote the conversion of toxic oxides of carbon and nitrogen to innocuous gases, and a slag forming constituent to cause the solid and liquid products formed during and immediately after combustion to agglomerate into filterable clinker-like particulates .
- Other optional additives such as burning rate enhancers or ballistic modifiers and ignition aids, are used to control the ignitability and combustion properties of the gas generant.
- nonazide gas generant compositions One of the disadvantages of known nonazide gas generant compositions is the amount and physical nature of the solid residues formed during combustion.
- the solid products must be filtered and otherwise kept away from contact with the occupants of the vehicle. It is therefore highly desirable to develop compositions that agglomerate any combustion solids formed and yet still providing adequate quantities of a nontoxic gas to inflate the safety device at a high rate .
- the ability to form clinker-like particulates that are readily filtered is essential in preventing vehicle occupant exposure to any solids formed during combustion.
- nonazide gas generants provide operable amounts of gas with a minimum of solid combustion products, in many cases, the mass of gas generant required compared to the mass of gas produced is still cause for concern.
- the volume of the inflator necessarily reflects the volume of gas generant required to produce the gas needed to deploy the inflator. A reduction in the volume of gas generant needed, or an increase in the moles of gas produced per gram of gas generant, would result in a desirable reduction in inflator volume thereby enhancing design flexibility.
- U.S. Patent No. 5,160,386, to Lund et al describes a gas generant having an oxidizer comprised of a polynitrito transition metal complex anion, and, a single metal cationic component selected from the group including alkali metal and alkaline earth metal ions.
- U.S. Patent No. 5,542,704 to Hamilton et al, describes the use of transition metal complexes of hydrazine such as zinc nitrate hydrazine for use in gas generant applications, wherein the oxidizer component is selected from inorganic alkali metal and inorganic alkaline earth metal nitrates and nitrites, and transition metal oxides.
- the coordination complexes comprise single metal cations.
- Copending PCT application WO 95/19944, to Hinshaw et al, describes the use of carbon free gas generant compositions comprising metal cation coordination complexes and a neutral ligand containing hydrogen and nitrogen.
- coordination complexes such as metal nitrite ammines, metal nitrate ammines, metal perchlorate ammines, and hydrazine coordination complexes are combusted, water vapor and nitrogen gas are the primary inflating products.
- a gas generant for a vehicle passenger restraint system employing at least one metal nitro/nitrito coordination complex (hereinafter also referred to as a complex, coordination complex, nitro/nitrito complex, etc.) comprising a multimetal cation, and at least one nonazide fuel.
- the compositions of the present invention generate substantially nontoxic gases in amounts significantly greater and less toxic than known azide based gas generant compositions .
- Coordination complex oxidizer compounds of the present invention are represented by the formula:
- M'M" (N0 2 ) z
- M' represents a multimetallic cationic component containing not less than two different metals and not more than four different metals selected from the group consisting of alkali, alkaline earth, and transitional metals from groups eleven and twelve of the periodic table (new IUPAC)
- M" is at least one metal selected from the transition metals of Groups 4-12 of the Periodic Table
- z 4 or 6 anionic nitrito/nitro ligands as determined by the required stoichiometry established by the metallic components of the coordination complex.
- Coordination complexes of the present invention include, but are not limited to, disodium potassium hexanitrocobaltate
- a gas generant composition comprises one or more coordination complex oxidizers which comprise a transition metal template, an anionic nitro or nitrito ligand coordinated to the template, and a multimetallic cation having two or more different metals. At least one nonazide fuel is combined with the complex. Multimetal cations, comprised of metals such as barium, calcium, and strontium, aid in the formation of readily filterable residual clinkers upon combustion.
- Coordination complex oxidizer compounds of the present invention are represented by the formula:
- M' represents a multimetallic cationic component containing not less than two different metals and not more than four different metals selected from the group consisting of alkali, alkaline earth, and transitional metals from groups eleven and twelve of the periodic table (new IUPAC) ;
- M" is at least one metal selected from the transition metals of Groups 4-12 of the Periodic Table;
- z 4 or 6 anionic nitrito/nitro ligands as determined by the required stoichiometry established by the metallic components of the coordination complex.
- Coordination complexes of the present invention include, but are not limited to, disodium potassium hexanitrocobaltate (III) , dipotassium barium hexanitronickelate (II) , dipotassium sodium hexanitrocobaltate (III) , dipotassium strontium hexanitrocuprate (II), and dipotassium strontium hexanitronickelate (II) .
- a coordination complex is generally defined by what is formed when a central atom or ion, M, usually a metal, unites with one or more ligands, L, L' , L", etc., to form a species of the type MLL'L" .
- M, the ligands, and the resulting coordination complex may all bear charges.
- the coordination complex may be non-ionic, cationic, or anionic depending on the charges carried by the central atom and the coordinated groups . These groups are called ligands, and the total number of attachments to the central atom is called the coordination number.
- cobalt (III) has a normal valence of three but in addition, an affinity for six groups, that is, a residual valence or coordination number of six.
- Other common names include complex ions (if electrically charged) , Werner complexes, and coordination complexes.
- a metal ammine complex is generally defined as a coordination complex in which the nitrogen atoms of ammonia are linked directly to the metal by coordinate covalent bonds. Coordinate covalent bonds are based on a shared pair of electrons, both of which come from a single atom or ion. Thus, in this case the coordination complex contains NH 3 , ammonia, which is called a neutral ligand. In contrast to a neutral ligand, the coordination complexes of the present invention contain anionic ligands of a nitro or nitrito character. Nitro is used when the metal, M, is coordinated with the nitrogen atom of the nitrite group. Nitrito is used when M is coordinated with an oxygen atom of the nitrite group.
- the multimetallic coordination complex (es) is employed in concentrations of 10 to 90%, and preferably 35 to 85%, by weight of the total gas generant composition.
- a nonazide, high-nitrogen, low impact and low friction sensitivity fuel is combined with the coordination complex oxidizer.
- Nonazide fuels are selected from a group comprising azoles, tetrazoles, triazoles, and triazines; nonmetal and metal derivatives of tetrazoles, triazoles, and triazines; linear and cyclic nitramines of normal or fine particle size; and derivatives of guanidine, cyanoguanidine, hydrazine, hydroxylamine, and ammonia.
- guanidine derivative fuels include, but are not limited to, guanidine compounds, either separately or in combination, selected from the group comprised of cyanoguanidine, metal and nonmetal derivatives of cyanoguanidine, guanidine nitrate, aminoguanidine nitrate, diaminoguanidine nitrate, triaminoguanidine nitrate (wetted or unwetted) , guanidine perchlorate (wetted or unwetted) , triaminoguanidine perchlorate (wetted or unwetted) , amino- nitroguanidine (wetted or unwetted) , guanidine picrate, guanidine carbonate, triaminoguanidine picrate (wetted or unwetted) , nitroguanidine (wetted or unwetted) , nitroaminoguanidine (wetted or unwetted) , metal salts of nitroaminoguan
- high nitrogen nonazides employed as fuels in the gas generant compositions of this invention include oxamide, oxalyldihydrazide, triazines such as 2,4,6- trihydrazino-s-triazine (cyanuric hydrazide) , 2, 4 , 6-triamino-s- triazine (melamine) , and melamine nitrate; azoles such as urazole and aminourazole; tetrazoles such as tetrazole, azotetrazole, lH-tetrazole, 5-aminotetrazole, 5-nitrotetrazole, 5-nitroaminotetrazole, 5, 5' -bitetrazole, azobitetrazole, diguanidinium-5, 5' -azotetrazolate, and diammonium 5,5'- bitetrazole ; triazoles such as nitrotriazole
- An optional oxidizer compound is selected from a group comprising alkali metal, alkaline earth metal, transitional metal, and nonmetallic nitramides, cyclic nitramines, linear nitramines, caged nitramines, nitrates, nitrites, perchlorates, chlorates, chlorites, chromates, oxalates, halides, sulfates, sulfides, persulfates, peroxides, oxides, and combinations thereof.
- the oxidizer generally comprises 0-50% by weight of the total gas generant composition.
- compositions of the present invention may include some of the additives heretofore used with gas generant compositions such as slag formers, compounding aids, ignition aids, ballistic modifiers, coolants, and NOX and CO scavenging agents.
- gas generant compositions such as slag formers, compounding aids, ignition aids, ballistic modifiers, coolants, and NOX and CO scavenging agents.
- Ballistic modifiers influence the temperature sensitivity and rate at which the gas generant or propellant burns.
- the ballistic modifier (s) is selected from a group comprising alkali metal, alkaline earth metal, transitional metal, organometallic, and/or ammonium, guanidine, and salts of cyanoguanidine; transition metal oxides and halides; sulfur; antimony trisulfide; chelates; metallocenes ; ferrocenes; chromates, dichromates, trichromates, and chromites; and/or alkali metal, alkaline earth metal, guanidine, and triaminoguanidine borohydride salts; and/or transition metal salts of acetylacetone; either separately or in combinations thereof .
- Ballistic modifiers are employed in concentrations from about 0 to 25% by weight of the total gas generant composition.
- a catalyst aids in reducing the formation of toxic carbon monoxide, nitrogen oxides, and other toxic species.
- a catalyst may be selected from a group comprising triazolates and/or tetrazolates; alkali, alkaline earth, and transition metal salts of tetrazoles, bitetrazoles, and triazoles; transition metal oxides; guanidine nitrate; nitroguanidine; aliphatic amines and aromatic amines; and mixtures thereof.
- a catalyst is employed in concentrations of 0 to 20% by weight of the total gas generant composition.
- the formation of solid klinkers or slags is desirable in order to prevent unwanted solid decomposition products from passing through or plugging up the filter screens of the inflator.
- the multimetal cations are selected to promote sufficient slag formation thereby inhibiting occupant exposure to any solids produced.
- suitable slag formers and coolants may also be incorporated. They include lime, borosilicates, vycor glasses, bentonite clay, silica, alumina, silicates, aluminates, transition metal oxides, and mixtures thereof.
- a slag former is employed in concentrations of 0 to 10% by weight of the total gas generant composition.
- An ignition aid controls the temperature of ignition, and is selected from the group comprising finely divided elemental sulfur, boron, carbon black, and/or magnesium, aluminum, titanium, zirconium, or hafnium metal powders, and/or transition metal hydrides, and/or transition metal sulfides, and the hydrazine salt of 3-nitro-l, 2, 4-triazole-5-one, in combination or separately.
- An ignition aid is employed in concentrations of 0 to 20% by weight of the total gas generant composition. Processing aids are utilized to facilitate the compounding of homogeneous mixtures.
- Suitable processing aids include alkali, alkaline earth, and transition metal stearates; aqueous and/or nonaqueous solvents; molybdenum disulfide; graphite; boron nitride; polyethylene glycols; polypropylene carbonates; polyacetals; polyvinyl acetate; fluoropolymer waxes commercially available under the trade name "Teflon” or "Viton", and silicone waxes.
- the processing aid is employed in concentrations of 0 to 15% by weight of the total gas generant composition.
- the manner and order in which the components of the gas generant compositions of the present invention are combined and compounded is not critical, so long as the proper particle size of ingredients are selected to ensure that desired mixture processing and ballistic properties are obtained. As known in the art, modification of particle size varies the burn rate.
- the compounding is performed by one skilled in the art, under proper safety procedures for the preparation of energetic materials, and under conditions which will not cause undue hazards in processing nor decomposition of the components employed.
- the materials may be wet blended, or dry blended and attrited in a ball mill or Red Devil type paint shaker and then pelletized by compression molding.
- the materials may also be ground separately or together in a fluid energy mill, sweco vibroenergy mill or bantam micropulverizer and then blended or further blended in a v-blender prior to compaction.
- Compositions having components more sensitive to friction, impact, and electrostatic discharge should be wet ground separately followed by drying.
- the resulting fine powder of each of the components may then be wet blended by tumbling with ceramic cylinders in a ball mill jar, for example, and then dried. Less sensitive components may be dry ground and dry blended at the same time.
- the ratio of oxidizer to fuel, wherein the metal coordination complex functions as the oxidizer is adjusted such that the oxygen balance is between - 10.0% and +10.0% 0 2 by weight of composition as described above.
- the ratio of oxidizer to fuel is adjusted such that the composition oxygen balance is between - 4.0% and 1.0% 0 2 by weight of composition. Most preferably, the ratio is between -2.0% and 0.0% by weight of composition.
- the oxygen balance is the weight percent of 0 2 in the composition which is needed or liberated to form the stoichiometrically balanced products. Therefore, a negative oxygen balance represents an oxygen deficient composition whereas a positive oxygen balance represents an oxygen rich composition. It can be appreciated that the relative amounts of oxidizer and fuel will depend on the nature of the selected coordination complex.
- the present invention is illustrated by the following examples wherein the components are quantified in weight percent of the total composition unless otherwise stated. Theoretical values of the products are obtained based on the given compositions.
- a mixture of 46.26% KNa 2 Co(N0 2 ) 6 and 53.74% CH 6 N 4 0 3 is prepared.
- the components are separately ground to a fine powder by tumbling with ceramic cylinders in a ball mill jar.
- the powder is then separated from the grinding cylinders and granulated to improve the flow characteristics of the material.
- the ground components are cautiously blended in a v- blender prior to compaction.
- the homogeneously blended granules are then compression molded into pellets on a high speed rotary press. Pellets formed by this method are of acceptable quality and strength.
- the combustion products include 33.92% N 2 (g) , 2.64% 0 2 (g) , 19.38% C0 2 , 23.79% H 2 0 (v) , 5.18% K 2 0, 6.83% Na 2 0, and 8.26% CoO (s) .
- the moles/100 gms of gas generant for each of these end products, respectively, is 1.211M, .083M, 0.440M, 1.322M, 0.055M, 0.110M and 0.110M.
- the total weight percent of gaseous and vapor products is 79.73%.
- the total gaseous and vapor moles/lOOg of gas generant is 3.056.
- the moles/100 gms of gas generant for each of these end products, respectively, is 0.096M, 0.096M, 0.096M, 1.156M, 0.385M, 1.060M and 0.048M .
- the total weight percent of gaseous and vapor products is 68.98%.
- the total gaseous and vapor moles/lOOg of gas generant is 2.649.
- the total weight percent of gaseous and vapor products is 67.00%.
- Example 4 Dipotassium Strontium Hexanitrocuprate (11)/ Ammonium 5 , 5' -Bitetrazole K 2 SrCu(N0 2 ) 6 + (NH 4 ) 2 C 2 N 8 ⁇ K 2 0 + SrO + CuO + 4 H 2 0 + 2 C0 2
- the moles/100 gms of gas generant for each of these end products, respectively, is 0.147M, 0.147M, 0.147M, 0.590M, 0.295M, 1.180M and 0.074M.
- the total weight percent of gaseous and vapor products is 59.00%.
- the total gaseous and vapor moles/lOOg of gas generant is 2.139.
- the moles/100 gms of gas generant for each of these end products, respectively, is 0.149M, 0.149M, 0.149M, 0.448M, 0.298M, 0.149M and 1.192M.
- the total weight percent of gaseous and vapor products is 59.32%.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Air Bags (AREA)
- Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP98908768A EP0964842B1 (en) | 1997-03-05 | 1998-02-26 | Gas generant complex oxidizers with multimetal cations |
| JP53860598A JP2001514611A (ja) | 1997-03-05 | 1998-02-26 | 多金属カチオンを有するガス発生錯体酸化剤 |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US08/811,694 | 1997-03-05 | ||
| US08/811,694 US5962808A (en) | 1997-03-05 | 1997-03-05 | Gas generant complex oxidizers |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO1998039274A1 true WO1998039274A1 (en) | 1998-09-11 |
Family
ID=25207290
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US1998/003868 Ceased WO1998039274A1 (en) | 1997-03-05 | 1998-02-26 | Gas generant complex oxidizers with multimetal cations |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US5962808A (enExample) |
| EP (1) | EP0964842B1 (enExample) |
| JP (1) | JP2001514611A (enExample) |
| WO (1) | WO1998039274A1 (enExample) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2000050363A1 (en) * | 1999-02-26 | 2000-08-31 | Svenska Rymdaktiebolaget | Dinitramide based liquid mono-propellants |
| JP2001010888A (ja) * | 1999-06-23 | 2001-01-16 | Nippon Kayaku Co Ltd | ガス発生剤組成物 |
Families Citing this family (47)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5872329A (en) * | 1996-11-08 | 1999-02-16 | Automotive Systems Laboratory, Inc. | Nonazide gas generant compositions |
| US6074502A (en) * | 1996-11-08 | 2000-06-13 | Automotive Systems Laboratory, Inc. | Smokeless gas generant compositions |
| JP4409632B2 (ja) * | 1996-12-28 | 2010-02-03 | 日本化薬株式会社 | エアバッグ用ガス発生剤 |
| US6214138B1 (en) * | 1997-08-18 | 2001-04-10 | Breed Automotive Technology, Inc. | Ignition enhancer composition for an airbag inflator |
| EP1061057B1 (en) * | 1998-02-25 | 2010-10-27 | Nippon Kayaku Kabushiki Kaisha | Gas generator composition |
| JPH11292678A (ja) * | 1998-04-15 | 1999-10-26 | Daicel Chem Ind Ltd | エアバッグ用ガス発生剤組成物 |
| US6651565B1 (en) * | 1998-04-20 | 2003-11-25 | Daicel Chemical Industries, Ltd. | Method of reducing NOx |
| US6296724B1 (en) * | 1998-07-21 | 2001-10-02 | Trw Inc. | Gas generating composition for an inflatable vehicle occupant protection device |
| US6117255A (en) * | 1998-07-28 | 2000-09-12 | Trw Inc. | Gas generating composition comprising guanylurea dinitramide |
| JP2000103691A (ja) * | 1998-09-28 | 2000-04-11 | Daicel Chem Ind Ltd | ガス発生剤組成物 |
| DE29821541U1 (de) * | 1998-12-02 | 1999-02-18 | TRW Airbag Systems GmbH & Co. KG, 84544 Aschau | Azidfreie, gaserzeugende Zusammensetzung |
| US6017404A (en) * | 1998-12-23 | 2000-01-25 | Atlantic Research Corporation | Nonazide ammonium nitrate based gas generant compositions that burn at ambient pressure |
| US6103030A (en) * | 1998-12-28 | 2000-08-15 | Autoliv Asp, Inc. | Burn rate-enhanced high gas yield non-azide gas generants |
| US20040231770A1 (en) * | 1999-02-19 | 2004-11-25 | Ulrich Bley | Gas-generating substances |
| US6475312B1 (en) * | 1999-04-07 | 2002-11-05 | Automotive Systems Laboratory, Inc. | Method of formulating a gas generant composition |
| US6214139B1 (en) | 1999-04-20 | 2001-04-10 | The Regents Of The University Of California | Low-smoke pyrotechnic compositions |
| US6143102A (en) * | 1999-05-06 | 2000-11-07 | Autoliv Asp, Inc. | Burn rate-enhanced basic copper nitrate-containing gas generant compositions and methods |
| US6113713A (en) * | 1999-07-22 | 2000-09-05 | Trw Inc. | Reduced smoke gas generant with improved mechanical stability |
| US6455620B1 (en) * | 1999-08-10 | 2002-09-24 | Eastman Chemical Company | Polyether containing polymers for oxygen scavenging |
| US20040216824A1 (en) * | 1999-09-13 | 2004-11-04 | Ulrich Bley | Gas generating mixtures |
| US7094296B1 (en) * | 1999-09-16 | 2006-08-22 | Automotive Systems Laboratory, Inc. | Gas generants containing silicone fuels |
| JP4500399B2 (ja) * | 2000-02-04 | 2010-07-14 | ダイセル化学工業株式会社 | トリアジン誘導体を含むガス発生剤組成物 |
| US20030066584A1 (en) * | 2000-03-01 | 2003-04-10 | Burns Sean P. | Gas generant composition |
| JP4811975B2 (ja) * | 2001-06-06 | 2011-11-09 | 日本化薬株式会社 | 着火薬組成物、及びその着火薬組成物を用いた点火具 |
| US6712918B2 (en) | 2001-11-30 | 2004-03-30 | Autoliv Asp, Inc. | Burn rate enhancement via a transition metal complex of diammonium bitetrazole |
| US6858566B1 (en) | 2002-05-31 | 2005-02-22 | Halliburton Energy Services, Inc. | Methods of generating gas in and foaming well cement compositions |
| US6715553B2 (en) | 2002-05-31 | 2004-04-06 | Halliburton Energy Services, Inc. | Methods of generating gas in well fluids |
| US6722434B2 (en) | 2002-05-31 | 2004-04-20 | Halliburton Energy Services, Inc. | Methods of generating gas in well treating fluids |
| US20040094250A1 (en) * | 2002-11-14 | 2004-05-20 | Estes-Cox Corporation | Composite propellant compositions |
| US7199083B2 (en) * | 2002-12-06 | 2007-04-03 | Self Generating Foam Incoporated | Self-generating foamed drilling fluids |
| US6872265B2 (en) * | 2003-01-30 | 2005-03-29 | Autoliv Asp, Inc. | Phase-stabilized ammonium nitrate |
| FR2857359B1 (fr) * | 2003-07-10 | 2006-12-01 | Snpe Materiaux Energetiques | Composition pyrotechnique generatrice de gaz destinee a la securite automobile et brulant a des temperatures de combustion inferieures a 2200 k |
| US20060289096A1 (en) * | 2003-07-25 | 2006-12-28 | Mendenhall Ivan V | Extrudable gas generant |
| JP2007531684A (ja) * | 2004-03-29 | 2007-11-08 | オートモーティブ システムズ ラボラトリィ、 インク. | ガス生成物質およびその製造法 |
| US7998292B2 (en) * | 2004-10-22 | 2011-08-16 | Autoliv Asp, Inc. | Burn rate enhancement of basic copper nitrate-containing gas generant compositions |
| US10968147B2 (en) * | 2005-06-02 | 2021-04-06 | Ruag Ammotec Gmbh | Pyrotechnic agent |
| US8002914B1 (en) * | 2005-06-06 | 2011-08-23 | United States Of America As Represented By The Secretary Of The Navy | Smokeless flash powder |
| JP2009512613A (ja) * | 2005-09-29 | 2009-03-26 | オートモーティブ システムズ ラボラトリィ、 インク. | ガス生成物質 |
| US20070169863A1 (en) * | 2006-01-19 | 2007-07-26 | Hordos Deborah L | Autoignition main gas generant |
| US20100326575A1 (en) * | 2006-01-27 | 2010-12-30 | Miller Cory G | Synthesis of 2-nitroimino-5-nitrohexahydro-1,3,5-triazine |
| US7959749B2 (en) | 2006-01-31 | 2011-06-14 | Tk Holdings, Inc. | Gas generating composition |
| US20080271825A1 (en) * | 2006-09-29 | 2008-11-06 | Halpin Jeffrey W | Gas generant |
| US9045380B1 (en) | 2007-10-31 | 2015-06-02 | Tk Holdings Inc. | Gas generating compositions |
| US9556078B1 (en) | 2008-04-07 | 2017-01-31 | Tk Holdings Inc. | Gas generator |
| US8097103B2 (en) * | 2009-06-18 | 2012-01-17 | Autoliv Asp, Inc. | Copper complexes with oxalyldihydrazide moieties |
| KR101212790B1 (ko) * | 2011-05-12 | 2012-12-14 | 주식회사 한화 | 가스발생제용 조성물, 이를 이용한 가스발생제 및 이를 포함하는 인플레이터 |
| CN120500469A (zh) * | 2022-12-15 | 2025-08-15 | 乔伊森安全系统收购有限责任公司 | 形成气体发生剂燃料混合物的方法 |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5160386A (en) * | 1991-11-04 | 1992-11-03 | Morton International, Inc. | Gas generant formulations containing poly(nitrito) metal complexes as oxidants and method |
| US5472535A (en) * | 1995-04-06 | 1995-12-05 | Morton International, Inc. | Gas generant compositions containing stabilizer |
| US5518054A (en) * | 1993-12-10 | 1996-05-21 | Morton International, Inc. | Processing aids for gas generants |
| US5592812A (en) * | 1994-01-19 | 1997-01-14 | Thiokol Corporation | Metal complexes for use as gas generants |
Family Cites Families (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2222175A (en) * | 1939-03-04 | 1940-11-19 | Du Pont | Nonsetting ammonium nitrate explosive composition and process |
| US2220892A (en) * | 1939-08-09 | 1940-11-12 | Du Pont | Method of preparing ammonium nitrate explosives |
| US2220891A (en) * | 1939-08-09 | 1940-11-12 | Du Pont | Ammonium nitrate explosive composition |
| GB544582A (en) * | 1940-08-16 | 1942-04-20 | Du Pont | Improvements in or relating to ammonium nitrate explosives |
| US3463684A (en) * | 1966-12-19 | 1969-08-26 | Heinz Dehn | Crystalline explosive composed of an alkyl sulfoxide solvating a hydrate-forming salt and method of making |
| US3673015A (en) * | 1969-05-23 | 1972-06-27 | Us Army | Explosive pyrotechnic complexes of ferrocene and inorganic nitrates |
| US4336085A (en) * | 1975-09-04 | 1982-06-22 | Walker Franklin E | Explosive composition with group VIII metal nitroso halide getter |
| US5266132A (en) * | 1991-10-08 | 1993-11-30 | The United States Of America As Represented By The United States Department Of Energy | Energetic composites |
| US5460669A (en) * | 1993-06-28 | 1995-10-24 | Thiokol Corporation | 3-nitramino-4-nitrofurazan and salts thereof |
| US5472647A (en) * | 1993-08-02 | 1995-12-05 | Thiokol Corporation | Method for preparing anhydrous tetrazole gas generant compositions |
| US5542704A (en) * | 1994-09-20 | 1996-08-06 | Oea, Inc. | Automotive inflatable safety system propellant with complexing agent |
| JP2001508751A (ja) * | 1996-07-25 | 2001-07-03 | コーダント・テクノロジーズ・インコーポレーテッド | ガス発生剤として用いる金属錯体 |
-
1997
- 1997-03-05 US US08/811,694 patent/US5962808A/en not_active Expired - Fee Related
-
1998
- 1998-02-26 JP JP53860598A patent/JP2001514611A/ja not_active Ceased
- 1998-02-26 WO PCT/US1998/003868 patent/WO1998039274A1/en not_active Ceased
- 1998-02-26 EP EP98908768A patent/EP0964842B1/en not_active Expired - Lifetime
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5160386A (en) * | 1991-11-04 | 1992-11-03 | Morton International, Inc. | Gas generant formulations containing poly(nitrito) metal complexes as oxidants and method |
| US5518054A (en) * | 1993-12-10 | 1996-05-21 | Morton International, Inc. | Processing aids for gas generants |
| US5592812A (en) * | 1994-01-19 | 1997-01-14 | Thiokol Corporation | Metal complexes for use as gas generants |
| US5472535A (en) * | 1995-04-06 | 1995-12-05 | Morton International, Inc. | Gas generant compositions containing stabilizer |
Non-Patent Citations (1)
| Title |
|---|
| See also references of EP0964842A4 * |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2000050363A1 (en) * | 1999-02-26 | 2000-08-31 | Svenska Rymdaktiebolaget | Dinitramide based liquid mono-propellants |
| US6254705B1 (en) | 1999-02-26 | 2001-07-03 | Svenska Rymdaktiebolaget | Liquid propellant |
| CN1321950C (zh) * | 1999-02-26 | 2007-06-20 | 瑞典空间股份公司 | 二硝酰胺基液体单组份推进剂 |
| JP2001010888A (ja) * | 1999-06-23 | 2001-01-16 | Nippon Kayaku Co Ltd | ガス発生剤組成物 |
Also Published As
| Publication number | Publication date |
|---|---|
| EP0964842B1 (en) | 2004-06-30 |
| US5962808A (en) | 1999-10-05 |
| JP2001514611A (ja) | 2001-09-11 |
| EP0964842A4 (en) | 2000-10-04 |
| EP0964842A1 (en) | 1999-12-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0964842B1 (en) | Gas generant complex oxidizers with multimetal cations | |
| EP0964843B1 (en) | Gas generants comprising transition metal nitrite complexes | |
| EP0880485B1 (en) | Nonazide gas generating compositions | |
| US5670740A (en) | Heterogeneous gas generant charges | |
| US6074502A (en) | Smokeless gas generant compositions | |
| EP0438851B2 (en) | Composition and process for inflating a safety crash bag | |
| US6306232B1 (en) | Thermally stable nonazide automotive airbag propellants | |
| US4909549A (en) | Composition and process for inflating a safety crash bag | |
| EP0767155B1 (en) | Heterogeneous gas generant charges | |
| US20030145923A1 (en) | Propellant for gas generators | |
| KR19990036055A (ko) | 기체 발생제용 금속 착물 | |
| EP0948734A2 (en) | Nonazide gas generant compositions | |
| EP1165463A2 (en) | Nonazide ammonium nitrate based gas generant compositions that burn at ambient pressure | |
| EP3000799A1 (en) | Gas generating agent composition having reduced solid discharge amount of inflator | |
| WO2000006524A1 (en) | High gas yield generant compositions | |
| WO1998037040A1 (en) | Gas generator propellant compositions | |
| KR20000076253A (ko) | 저잔사 에어백용 가스발생제 조성물 | |
| US6277221B1 (en) | Propellant compositions with salts and complexes of lanthanide and rare earth elements | |
| WO1998039275A1 (en) | Gas generants comprising carbonato metal ammine complexes | |
| CA2260144C (en) | Thermally stable nonazide automotive airbag propellants | |
| EP1062189A2 (en) | High gas yield non-azide gas generants |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA JP KR |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 1998908768 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref country code: JP Ref document number: 1998 538605 Kind code of ref document: A Format of ref document f/p: F |
|
| WWP | Wipo information: published in national office |
Ref document number: 1998908768 Country of ref document: EP |
|
| NENP | Non-entry into the national phase |
Ref country code: CA |
|
| WWG | Wipo information: grant in national office |
Ref document number: 1998908768 Country of ref document: EP |