WO1998031089A1 - Generateur pour moteur a combustion interne - Google Patents

Generateur pour moteur a combustion interne Download PDF

Info

Publication number
WO1998031089A1
WO1998031089A1 PCT/JP1998/000085 JP9800085W WO9831089A1 WO 1998031089 A1 WO1998031089 A1 WO 1998031089A1 JP 9800085 W JP9800085 W JP 9800085W WO 9831089 A1 WO9831089 A1 WO 9831089A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
magnetic field
rotating magnetic
internal combustion
rotor
Prior art date
Application number
PCT/JP1998/000085
Other languages
English (en)
French (fr)
Inventor
Hideaki Arai
Kazuyuki Kubo
Seiichi Kuroda
Tadashi Fujiwara
Shinsuke Nagano
Takuya Fujita
Original Assignee
Honda Giken Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP01586097A external-priority patent/JP3426456B2/ja
Priority claimed from JP1585997A external-priority patent/JP3598190B2/ja
Application filed by Honda Giken Kogyo Kabushiki Kaisha filed Critical Honda Giken Kogyo Kabushiki Kaisha
Priority to US09/142,222 priority Critical patent/US6049196A/en
Priority to DE0903832T priority patent/DE903832T1/de
Priority to DE69836663T priority patent/DE69836663T2/de
Priority to EP98900221A priority patent/EP0903832B1/en
Priority to CA002248619A priority patent/CA2248619C/en
Publication of WO1998031089A1 publication Critical patent/WO1998031089A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/16Synchronous generators
    • H02K19/26Synchronous generators characterised by the arrangement of exciting windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • H02P9/26Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices
    • H02P9/30Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/48Arrangements for obtaining a constant output value at varying speed of the generator, e.g. on vehicle

Definitions

  • the present invention relates to a power generator for an internal combustion engine that converts the rotational energy of the internal combustion engine into electric energy, and in particular, generates a rotating magnetic field in a multi-phase winding of the rotor to thereby increase the rotational speed of the internal combustion engine, that is, the rotation speed of the rotor.
  • the present invention relates to a power generator for an internal combustion engine, which is capable of optimizing a driving torque and a power generation amount of a generator.
  • a power generator for a vehicle or a marine vessel has an alternator in which a rotating shaft is connected to a crankshaft of an internal combustion engine (engine) via an alternator belt.
  • a CG a rectifier that converts AC power generated by the alternator according to the engine speed into DC power, and a regulator that controls the DC power voltage in accordance with the battery voltage.
  • FIG. 9 is a schematic diagram showing the configuration of a conventional alternator 50, in which a DC field coil 53 is wound around a rotor (rotor) 52 integrated with a rotating shaft.
  • a three-phase coil 55 is wound around the stator 54.
  • the stator 52 is rotated to form an alternating magnetic field arrangement in an excited state in which a DC current is supplied from a battery to the DC field coil 53
  • the three-phase coil 55 of the stator 54 includes a rotor. 52
  • AC power with a frequency corresponding to the rotation speed is generated. That is, the conventional alternator is a generator using a synchronous motor.
  • the rotor 52 may be provided with a permanent magnet instead of the DC field coil 53.
  • the power consumption of vehicles has increased due to the electrification and electronic control of various parts of the vehicle, including the engine, and the spread of audio systems and navigation systems. It is like that. Since the amount of power generated by the alternator decreases as the engine speed drops, sufficient power can be obtained even at low engine speeds (for example, 100 rpm or less). It is necessary to increase the rotational speed ratio of the alternator, and the pulley ratio is often set to more than twice.
  • the pulley ratio is set to a low value in accordance with the required power generation at high engine speeds, sufficient power generation cannot be obtained at low speeds, so the power consumption by the electric load exceeds the power generation and the battery There was a problem that the discharge of the battery progressed.
  • the pulley ratio is determined from the viewpoints of alternator durability, wiring and power brass capacity, and battery charge / discharge. There was a problem that it was difficult to set properly.
  • the alternator speed can be set arbitrarily regardless of the engine speed.
  • Japanese Patent Publication No. Sho 62-33464 proposes a mechanism for mechanically varying the bury diameter of an alternator drive pulley. When such a mechanical transmission mechanism is employed, there is a problem that the configuration is complicated and large.
  • a DC field coil is used to increase or decrease the power generation in response to this.
  • the excitation intensity is also controlled (the result is that the torque required for the engine to drive the alternator (hereinafter simply referred to as drive torque) fluctuates, and the engine speed changes. If the electric load changes from the off state to the on state and the drive torque increases rapidly, the engine speed will decrease accordingly. If this happens, a kind of braking condition will occur, causing the problem that dryness will deteriorate.
  • Japanese Patent Application Laid-Open No. 11-277650 it is determined whether or not an electric load is applied, and when it is determined that the electric load is applied, the throttle valve is opened.
  • a control device for increasing the set value of the engine speed Japanese Patent Application Laid-Open No. 5-180747 proposes a control device that controls the duty ratio of a field current supplied to a field coil of a stator in accordance with an increase or a decrease in an electric load.
  • the drive torque of the alternator fluctuates in accordance with the increase or decrease in the electric load, so that a large load is applied to the alternator belt, or stability is still lacking because quick control cannot be performed. there were. Disclosure of the invention
  • An object of the present invention is to adopt an induction machine as an alternator and to control the rotation of an internal combustion engine.
  • An object of the present invention is to provide a power generator for an internal combustion engine that can generate a predetermined power regardless of the number of rotations.
  • Another object of the present invention is to adopt an induction machine as an alternator and arbitrarily control the drive torque of the alternator even when a factor that fluctuates the drive torque, such as a variation in electric load or engine speed, occurs.
  • An object of the present invention is to provide a power generating device for an internal combustion engine that is made possible.
  • the present invention provides an induction machine in which a rotor having a multi-phase winding is rotated by transmitting the rotational motion of an internal combustion engine, a rotating magnetic field generating means for generating a rotating magnetic field in the multi-phase winding of the rotor, and a rotating magnetic field speed.
  • the power generation device including the control means for controlling has the following features.
  • the control means controls the speed of the rotating magnetic field generated by the rotor according to the rotation speed of the rotor so that the power generation amount of the induction machine falls within a predetermined range. According to such a feature, the amount of power generated by the induction machine can be kept within a predetermined range regardless of the rotation speed of the internal combustion engine.
  • the control means controls the speed of the rotating magnetic field generated by the rotor according to the rotation speed of the rotor so that the driving torque of the induction machine falls within a predetermined range. According to such a feature, the driving torque of the induction machine can be kept within the predetermined range regardless of the rotation speed of the internal combustion engine.
  • the control means controls the rotating magnetic field velocity as a function of temperature.
  • the temperature of the induction machine decreases, the electrical resistance of the multi-phase winding decreases and a large amount of exciting current flows.Therefore, the relationship between the induction torque of the induction machine divided by the power generation amount and the relative speed is not uniquely determined. According to the feature, temperature compensation becomes possible, so that it is possible to accurately control the driving torque of the induction machine divided by the power generation amount regardless of the temperature.
  • the control means generates a rotating magnetic field in a direction to increase the relative speed if the amount of charge of the battery charged by the induction machine is insufficient, and When the charge amount of the battery is sufficient, a rotating magnetic field in a direction to decrease the relative speed is generated. According to such a feature, if the battery charge is insufficient, the relative speed is increased and the power generation is increased, and if the battery charge is sufficient, the relative speed is reduced and the power generation is reduced. Since the battery charge decreases, the battery charge is maintained at an appropriate level.
  • the control means controls the rotating magnetic field speed so that the amount of power generated by the induction machine does not fall below the amount of power consumed by the electric load. According to such a feature, a decrease in the charged amount of the battery is prevented.
  • the control means controls the rotating magnetic field speed according to the state of the vehicle, for example, controls the rotating magnetic field speed so that the driving torque of the induction machine increases when the vehicle is in a braking state.
  • the rotating magnetic field speed is controlled so that the driving torque of the induction machine is reduced. According to such features, the engine braking state is improved during braking, and the acceleration performance is improved during acceleration.
  • the control means controls the rotating magnetic field speed so that the fluctuated electric load can be covered without driving torque fluctuation.
  • Rotary magnetic field control with drive torque fluctuation is performed gradually so that the relative speed of the rotating magnetic field with respect to the predetermined rotational speed can be satisfied. According to such a feature, even if the electric load increases or decreases, the ideal control of the amount of generated power can be performed without any fluctuation in the driving torque.
  • the predetermined rotation speed is set to a rotation speed in a region where the power generation efficiency of the induction machine is highest. According to such characteristics, efficient power generation becomes possible.
  • FIG. 1 is a block diagram of an embodiment of the vehicle power generation device of the present invention.
  • 2A and 2B are cross-sectional views showing the configuration of the alternator of the present invention.
  • FIG. 3 is a diagram showing the relationship between the relative speed N of the rotating magnetic field and the power generation amount P.
  • FIG. 4 is a diagram showing the relationship between the relative speed N of the rotating magnetic field and the driving torque T.
  • FIGS. 5, 6, and 7 are diagrams for explaining a method of controlling the amount of power generation according to the present invention.
  • FIG. 8 is a flowchart illustrating a control method according to the first embodiment.
  • C FIG. 9 is a diagram illustrating a configuration of a main part of a conventional alternator.
  • FIG. 10 is a flowchart illustrating a control method according to the fourth embodiment.
  • FIGS. 11, 12, and 13 are diagrams for explaining a drive torque control method according to the present invention.
  • FIG. 14 is a flowchart illustrating a control method according to the fifth embodiment.
  • FIG. 15 is a diagram for explaining a control method according to the eighth embodiment.
  • FIG. 16 is a diagram for explaining the control method according to the ninth embodiment.
  • FIG. 17 is a diagram showing the relationship between the relative speed N of the rotating magnetic field and the efficiency.
  • FIG. 18 is a diagram showing the relationship between the relative speed N of the rotating magnetic field and the power generation amount P using the temperature of the alternator as a parameter.
  • FIG. 19 is a diagram showing the relationship between the relative speed N of the rotating magnetic field and the driving torque T with the temperature of the alternator as a parameter.
  • the actual rotational speed of the induction machine is the relative speed of the rotating magnetic field generated by the rotor to the stator coil.
  • the relative speed N matches the mechanical rotation speed of the rotor.
  • the mechanical rotation speed of the rotor is N 1 and the speed of the rotating magnetic field generated in the multi-phase winding of the rotor is N 2.
  • the relative speed N is represented by the following equation.
  • the relative speed N of the rotating magnetic field generated by the rotor of the induction machine with respect to the stator coil is the mechanical rotating direction of the rotor and the rotating magnetic field generated by the multi-phase winding of the rotor. If the rotation direction matches, the rotation speed will be faster than the mechanical rotation speed N 1 of the rotor, and if the rotation direction is reversed, it will be lower than the rotation speed N 1 of the rotor. If an induction machine is adopted as an alternator for a vehicle, no matter how the mechanical rotation speed N 1 of the rotor changes due to fluctuations in the engine speed, it will be generated in the multi-phase winding of the rotor in response to the change. By appropriately controlling the rotating magnetic field speed N 2, the relative speed N can be substantially controlled arbitrarily.
  • the power generation amount P of the alternator can be expressed as a function of the relative speed N as shown in FIG. 3, so that if the relative speed N of the rotating magnetic field is arbitrarily controlled, the power generation amount of the alternator P can also be controlled arbitrarily regardless of the mechanical rotation speed N 1 of the mouth.
  • the drive torque T of the alternator is, as shown in FIG. Since it can be expressed as a function of the relative speed N, if the relative speed N of the rotating magnetic field is arbitrarily controlled, the drive torque T of the alternator can be arbitrarily controlled regardless of the mechanical rotation speed N 1 of the mouthpiece You can do it.
  • the power generation amount and the driving torque T of the induction machine are functions of the relative speed N of the rotating magnetic field to the stator, and the relative speed N is the rotating magnetic field speed N 2 generated in the multi-phase winding of the rotor. It is possible to arbitrarily control the amount of power generated by the induction machine and the driving torque T according to the state of the vehicle, focusing on the fact that control of the induction motor is possible irrespective of the mechanical rotation speed N 1 of the rotor. I made it.
  • FIG. 1 is a block diagram showing a configuration of a main part of a power generating device for a vehicle according to an embodiment of the present invention
  • FIGS. 2A and 2B show a configuration of an alternator 1 constituting the power generating device of the present invention.
  • 2A is a cross-sectional view in a plane perpendicular to the rotation axis
  • FIG. 2B is a cross-sectional view in a plane parallel to the rotation axis.
  • the alternator 1 of the present invention is an induction machine in which three-phase windings, that is, three-phase field coils 11 and 12 are formed on a rotor 1R and a stator 1S, respectively.
  • the rotating shaft 13 of the alternator 1 is connected to a crankshaft (both not shown) via a belt.
  • a rotor 1 R having a three-phase field coil 11 is coaxially fixed to a rotating shaft 13 of the alternator 1, and a stator having a three-phase field coil 12 is provided around the rotor 1 R. 1 S is located.
  • the rotating shaft 13 is rotatably supported on the housing 1 ⁇ ⁇ ⁇ ⁇ ⁇ via a front bearing 15a and a rear bearing 15b.
  • a pulley 14 is fixed to one end of the rotating shaft 13, and a brush 1 for supplying an exciting current to the respective field coils 11 (11 a to Lie) of the rotor 1 R is fixed to the other end.
  • Slip rings 18a to 18c that are in contact with 9a to 19c are formed.
  • a magnetic field control device 2 an ACG * ECU 3, a switching control device 5, and a short-circuit device 8, which will be described later, are provided inside the housing 17 on the same plane orthogonal to the rotating shaft 13. , Preferably on the inner surface of the housing, arranged circumferentially side by side. This makes it easy to route the wiring between the devices, and makes it possible to effectively use the dead space, thereby suppressing an increase in the size of the alternator.
  • the ACG ⁇ ECU 3 functions as control means for controlling the rotating magnetic field speed.
  • the ACG / ECU 3 communicates with the engine ECU 4 and detects the engine speed Ne and the electric load
  • the three-phase field coil of the rotor 1 R 11 Determine the speed N2 of the rotating magnetic field to be generated in 1, the applied voltage, the rotating magnetic field phase, and the like, and notify the electric rotating magnetic field generating unit 2a of the magnetic field control device 2.
  • the electric rotating magnetic field generating unit 2a generates the AC power supplied to each field coil 11a, lib, 11c of the rotor 1R based on the rotating magnetic field speed N2 notified from the ACG ECU3. It controls the phase, amplitude, and frequency, and functions as a rotating magnetic field generator that electrically generates a rotating magnetic field with a rotation speed of N2.
  • the switching control device 5 communicates with the ACG.ECU 3 to detect the operation state of the alternator 1, and at the timing when the alternator 1 functions as a generator, each output terminal of the alternator 1 is an output control device. In the timing which is connected to each contact ⁇ of 7 and functions as a motor, each contact of the switching circuit 6 is controlled so as to be connected to each contact ⁇ of the short circuit device 8. In the timing when the alternator 1 functions as a generator, the switching control device 5 self-excitates a part of the output power of the alternator 1 to the alternator 1 via the electric rotating magnetic field generating unit 2a. It may be supplied for use.
  • the output control device 7 includes a rectifier circuit 7a and a regulator 7b, and converts the AC power output from the alternator 1 into DC power according to the voltage of the battery 9 and the electric load 30.
  • the short-circuit device 8 is the alternator 1
  • the output terminals of the field coils 12a, 12b, and 12c are short-circuited with or without a variable resistor.
  • the DC magnetic field generator 2b is selectively energized with the electric rotating magnetic field generator 2a, and supplies a DC current to the field coil 11a, lib of the rotor 1R to generate a DC magnetic field.
  • the ACG / ECU 3 is notified of operating parameters such as the engine speed Ne and the electric load detected by the engine ECU 4, and based on the engine speed Ne and the pulley ratio, the rotor 1R of the alternator 1 is operated. Calculate the mechanical rotation speed N1.
  • the ACG ECU 3 controls the speed N2 of the rotating magnetic field electrically generated in the three-phase winding 11 of the rotor 1R in order to control the relative speed N of the rotating magnetic field generated by the rotor 1R with respect to the stator 1S. Calculate and notify this to the electric rotating magnetic field generator 2a.
  • the electric rotating magnetic field generator 2a controls the excitation timing of each phase of the three-phase winding 11 of the rotor 1R to electrically generate a rotating magnetic field of speed N2.
  • the AC power output from each of the field coils 12a, 12b, and 12c of the stator 1S is converted to DC power by the output control device 7, a part of which is supplied to the current electric load 30, and the rest is Battery 9 is charged. Since the control method of the induction machine itself is known, its description is omitted.
  • FIG. 5 is a diagram illustrating a method of controlling the amount of power generation according to the first embodiment of the present invention, in which the power generation amount of the alternator 1 is equal to or less than the upper limit value Pmax regardless of the mechanical rotation speed of the rotor 1R. I try to be restricted.
  • Such power generation control is performed by the ACG ECU 3 according to the mechanical rotation speed N1 of the rotor 1R so that the relative speed N is maintained at or below the upper limit speed Nmax determined by the power generation upper limit value Pmax.
  • FIG. 8 is a flowchart showing the operation of the first embodiment.
  • the mechanical rotation speed N1 of the rotor 1R is measured.
  • the rotation speed N1 can be calculated based on, for example, the engine speed Ne and the pulley ratio.
  • the current power generation amount P of the alternator is measured.
  • the rotating magnetic field speed N2 for reducing the relative speed N that is, the rotating magnetic field speed N2 for reducing the relative speed N to the upper limit value Nmax or less is calculated.
  • a rotating magnetic field of speed N2 is induced in the multiphase winding of the rotor.
  • FIG. 6 is a diagram showing a power generation amount control method according to the second embodiment of the present invention.
  • the power generation amount of the alternator 1 is kept at or above the lower limit value Pmin regardless of the rotation speed N1 of the rotor 1R.
  • the ACG / ECU 3 and the electric rotating magnetic field generating unit 2a are controlled by the rotating magnetic field speed N2 according to the rotating speed N1 of the rotor 1R so that the relative speed N does not fall below the lower limit value Nmin. This is achieved by controlling According to such power generation control, shortage of power generation at low rotation can be prevented, for example, even when the pulley ratio is set lower in accordance with the required power generation at high engine rotation.
  • FIG. 7 is a diagram illustrating a power generation amount control method according to a third embodiment of the present invention.
  • c of the power generation of the alternator 1 regardless mechanical rotation speed N1 of the rotor 1 R is to be maintained at a target power generation amount Pc
  • the ACG ⁇ ECU 3 and the electric rotating magnetic field generator 2a are controlled by the rotating magnetic field speed N2 according to the rotating speed N1 of the rotor 1R so that the relative speed N always matches the target speed Nc.
  • the power generation control is such that the power consumption and the power generation substantially match. Therefore, the fluctuation of the battery voltage is prevented and the life of the battery is prolonged.
  • the battery charge is judged based on the battery voltage. If the charge is insufficient, a relatively high value is set as the target power generation Pc so that the charge is promoted. If the charge is sufficient, It is also possible to set a relatively low value as the target power generation amount Pc so that overcharging is prevented.
  • step S11 the charge amount of the battery represented by the battery voltage is measured.
  • step S12 the measured battery voltage is compared with a reference value (for example, 12.5 V), and when it is determined that the battery voltage is lower than the reference value, in step S13, the difference between the two is calculated. Based on this, the target power generation Pel higher than the present is calculated.
  • step S14 a target relative speed NC is calculated based on the calculated target power generation amount Pel.
  • a rotating magnetic field speed N2 for increasing the power generation amount to the target power generation amount Pel is calculated.
  • step S16 a rotating magnetic field having a speed N2 is generated.
  • steps S23 to S26 are performed except that the rotating magnetic field speed N2 for reducing the power generation to the target power generation Pc2 is calculated in step S25. Then, the same processing as in steps S13 to S16 is executed.
  • the power generation amount P of the alternator can be kept within a predetermined value or a predetermined range regardless of the mechanical rotation speed N 1 of the rotor 1R. Even if the pulley ratio is set higher according to the required power generation at low engine speeds, excessive power generation at high rotations can be prevented, and the burley ratio reduced according to the required power generation at high engine speeds. Even when set to, shortage of power generation at low rotation can be prevented.
  • the target power generation amount P c By setting the target power generation amount P c to an appropriate value, it becomes possible to extend the life of the battery, promptly charge the battery when the charge amount is insufficient, and prevent overcharging.
  • FIG. 11 is a diagram illustrating a drive torque control method according to a fifth embodiment of the present invention.
  • the alternator 1 is controlled regardless of the mechanical rotation speed N 1 of the rotor 1R.
  • Drive torque is limited to the upper limit torque Tmax or less.
  • Such torque control is performed in accordance with the rotation speed N1 of the rotor 1R so that the relative speed N is maintained at or below the lower speed limit Na or the lower limit Nb determined by the upper limit torque Tmax. This is achieved by controlling the speed N 2 of the rotating magnetic field generated electrically in the three-phase winding of the rotor 1R.
  • FIG. 14 is a flowchart showing the operation of the above embodiment.
  • step S31 the rotation speed N1 of the rotor 1R is measured.
  • step S32 the current drive torque T of the alternator is measured.
  • the driving torque T may be measured by using a torque meter, but can also be measured by measuring the output current and the exciting current of the alternator 1.
  • step S33 it is determined whether or not the measured drive torque T exceeds the upper limit torque Tmax. If it is determined that the drive torque T has exceeded the upper limit torque, in step S34, the battery charge amount is determined based on the battery voltage. Is detected. Since the alternator's power generation M increases with the relative speed N, in the embodiment, if it is determined in step S34 that the battery charge is insufficient (for example, the battery voltage is less than 12.5 V), in step S35a, the rotation for increasing the relative speed N and reducing the driving torque T is performed. The rotating magnetic field speed + N2 for making the magnetic field speed, that is, the relative speed N equal to or higher than the high-speed lower limit value Nb is calculated.
  • step S35b the relative magnetic field speed for reducing the relative speed N and the driving torque T, that is, the relative speed N
  • the rotating magnetic field speed-N2 for lowering the lower speed limit Na or lower is calculated.
  • step S36 a rotating magnetic field of speed N2 is induced in the multiphase winding of the rotor.
  • FIG. 12 is a diagram illustrating a drive torque control method according to a sixth embodiment of the present invention.
  • the drive torque of the alternator 1 is equal to or higher than the lower limit torque Tmin regardless of the rotation speed N1 of the rotor. It is kept to be.
  • Such torque control is also achieved by controlling the rotating magnetic field speed N2 according to the rotating speed N1 of the rotor 1R so that the relative speed N does not fall below the lower limit value N3.
  • FIG. 13 is a diagram showing a drive torque control method according to a seventh embodiment of the present invention.
  • the drive torque of the alternator is constant torque Tc regardless of the rotation speed N1 of the rotor. So that it can be maintained.
  • Such torque control is also achieved by controlling the rotating magnetic field speed N2 according to the rotating speed N1 of the rotor 1R so that the relative speed N always matches the target speed N4.
  • the drive torque T of the alternator can be kept within a desired predetermined value or within a predetermined range irrespective of the rotation speed N1 of the rotor 1R, so that an excessive load or load on the alternator belt is increased. Reduction or large load fluctuation can be prevented, and the engine speed can be reduced. Fluctuations can also be prevented.
  • the drive torque of the alternator is controlled to an arbitrary absolute range or a value.However, when the drive torque is set higher or lower than the current drive torque, It may be relatively controlled in relation to the current driving torque, for example, by controlling the rotating magnetic field speed so that the driving torque of the induction machine is increased or decreased according to the vehicle state. Good.
  • the acceleration state of the vehicle is changed based on the accelerator opening, the engine speed, and the like.
  • the rotating magnetic field speed N 2 is increased by ⁇ 21 to increase the relative speed N, and the operating point is shifted to C to lower the driving torque.
  • the relative magnetic field N is reduced by reducing the rotating magnetic field speed N 2 by ⁇ ⁇ 22, and thereby the operating point is shifted to B to increase the driving torque.
  • the acceleration performance and engine braking performance are improved.
  • FIG. 16 shows the relationship between the relative speed N and the drive torque T of the alternator 1 using the electric load as a parameter. Even if the relative speed N is the same, the drive torque T It can be seen that also increases.
  • the driving torque increases from T1 to T2.
  • a shock corresponding to the torque fluctuation is generated in the vehicle, and the vehicle is driven.
  • An increase in dynamic torque can cause a temporary decrease in engine speed. Therefore, in this embodiment, when the drive torque is likely to fluctuate due to the increase or decrease in the electric load, the increase or decrease in the electric load is compensated for by the increase or decrease in the relative speed N, thereby preventing the torque fluctuation. That is, in the present embodiment, when the electric load is increased to 4 OA while the electric power of 30 A is generated at the relative speed N10 as described above, the rotating magnetic field speed N2 is increased to increase the relative speed to NOA. Increase from 10 to N 20. As a result, it is possible to increase the amount of power generation from 30 A to 40 A while keeping the driving torque constant.
  • the relationship between the relative speed N of the alternator and the power generation efficiency shows that the maximum efficiency 7? Niax is shown at one point N x with the relative speed N as shown in Fig. 17. Therefore, the power generation efficiency is reduced. Therefore, it is desirable to maintain the relative speed N at the rotation speed at which the maximum efficiency r? Max is obtained.
  • the relative speed N is controlled by changing the speed N 2 of the rotating magnetic field that is generated electrically in the windings.After that, the relative speed N becomes the highest due to fluctuations in the driving torque while the power generation is kept constant.
  • the rotating magnetic field speed N 2 is gradually changed so as to match the efficient rotating speed N x.
  • the control of the rotating magnetic field speed N 2 that is, the control of the relative speed N, is performed gradually at such a speed that the driving torque fluctuation is not perceived by the driver or that does not appear as a sudden shock on the alternator belt. It is desirable.
  • the event can be performed without suddenly changing the drive torque of the alternator.
  • the driving torque at the same relative speed is higher at low temperatures than at high temperatures. Therefore, for example, when it is desired to limit the drive torque of the alternator to the upper limit torque Tmax or less, the lower limit value of the relative speed N and the lower limit value of the high speed limit also change from NaH and NbH at high temperature to NaH and NbH at low temperature. Becomes NaL and NbL, respectively.
  • the relative speed N and the temperature of the alternator 1 are used as parameters. It is desirable to define the relationship between the power generation amount P and the relationship between the relative speed N and the driving torque T in advance.
  • an induction machine constituted by a rotor and a stator having a three-phase winding as a multi-phase winding has been described as an example.
  • the present invention is not limited to this, and the present invention is not limited to this. The same applies to the case where other multi-phase windings such as phases are adopted.
  • the amount of power generated by the alternator can be kept within the predetermined range regardless of the engine speed, so that it can be adjusted to the required power generation at low engine speeds. Even if the burley ratio is set high, overcharging at high revolutions and excessive equipment such as wiring can be prevented, and the burry ratio is set low according to the required power generation amount at high engine speed. Even in this case, shortage of power generation at low rotation can be prevented.
  • the alternator's power generation can be set to a predetermined target value regardless of the engine speed, quick charging when the battery charge is insufficient, prevention of overcharge, and extension of battery life Becomes possible. More specifically, keeping the power generation at or above the planned value will prevent shortage of power generation, keeping it below the planned value will limit charging current, and keeping it at the planned value will cause battery voltage fluctuations. Can be prevented, so that the service life can be extended.
  • the drive torque of the alternator can be set to a predetermined target value regardless of the engine speed, even if an event that fluctuates the drive torque of the induction machine occurs, the drive torque of the induction machine can be reduced. It can be within the planned range. More specifically, if the drive torque is maintained at or above the predetermined value, load fluctuations on the alternator belt are prevented, and vibration noise can be reduced. If the driving torque is kept below the predetermined value, an excessive load on the alternator belt is prevented. Furthermore, if the driving torque is maintained at a desired predetermined value, both the load fluctuation and the excessive load of the alternator belt will be prevented.
  • the rotating magnetic field speed is controlled according to the state of the vehicle.For example, when the vehicle is in a braking state, the rotating magnetic field speed is controlled so that the driving torque of the induction machine increases, and the vehicle is accelerated. If so, the rotating magnetic field speed is controlled so that the driving torque of the induction machine is reduced, so the state of the engine brake is improved during braking and the acceleration performance is improved during acceleration.
  • the rotating magnetic field speed is controlled so that the fluctuating electric load can be covered without driving torque fluctuation, and then the fluctuating electric load is applied to the rotating magnetic field for the stator.
  • the rotating magnetic field control accompanying the drive torque fluctuation is executed gradually so that the relative speed of the motor can be satisfied even at the planned rotation speed. Volume control becomes possible.

Description

明 細 書 内燃機関用の発電装置 技術分野
本発明は、 内燃機関の回転エネルギを電気工ネルギに変換する内燃機 関用の発電装置に係り、 特に、 ロータの多相巻線に回転磁界を発生させ ることにより、 内燃機関すなわちロータの回転数にかかわらず、 発電機 の駆動トルクおよび発電量を最適化できるようにした内燃機関用の発電 装置に関する。 背景技術
車両用あるいは船舶用の発電装置は、 回転軸が内燃機関 (エンジン) のクランク軸にオルタネータベルトを介して連結されたオルタネータ
(A C G ) と、 オルタネ一タがエンジン回転数に応じて発生する交流電 力を直流電力に変換する整流器と、 直流電力の電圧をバッテリ電圧に応 じて制御する レギュ レータとによって構成されている。
図 9は、 従来のオルタネ一タ 5 0の構成を示した模式図であり、 回転 軸と一体化されたロータ (回転子) 5 2には直流界磁コイル 5 3が巻回 され、 ステ一タ 5 4 (固定子) には 3相コイル 5 5が巻回されている。 直流界磁コイル 5 3へバッテリから直流電流を供給した励磁状態で口一 タ 5 2を回転させて交番磁界配置を形成すると、 ステ一タ 5 4の 3相コ ィル 5 5には、 ロータ 5 2の回転速度に応じた周波数の交流電力が発生 する。 すなわち、 従来のオルタネータは同期モータを利用した発電機で あった。 ロータ 5 2には直流界磁コイル 5 3の代わりに永久磁石を設け る場合もある。 近年の車両では、 エンジンを含む車両各部の電動化や電子制御化、 さ らにはオーディオシステムやナビゲーションシステム等の普及に伴って 車両の電力消費量が増大し、 オルタネータに大きな発電能力が要求され ようになつている。 オルタネータの発電量は回転数の降下と共に減少ず ることから、 エンジンの低回転時 (例えば、 1 0 0 0回転以下) でも十 分な電力が得られるようにするためには、 エンジン回転数に対するオル タネ一タの回転数の比を高くする必要があり、 そのプーリ一比は 2倍以 上に設定されることが多い。
一方、 エンジンの高出力化や高効率化に伴って高回転化と低アイ ドリ ング化が促進され、 エンジン回転数の最低値と最高値との比はますます 大きくなりつつある。 エンジンの低回転時の所要発電量に合わせてプ一 リー比を高めに設定してしまうと、 高回転時にはオルタネータの回転数 力 機械的制約から定められた最大定格を超えてしまうという問題があ つた。 さ らに、 プーリ一比を高めに設定してしまうと、 高回転時にはォ ルタネ一タの発電量が、 必要とする最大発電量よりも大きく なつてしま うため、 配線や力ブラ等の容量を必要以上に大きく しなければならない という問題があった。
エンジンの高回転時の所要発電量に合わせてプーリ一比を低めに設定 してしまうと、 低回転時に十分な発電量が得られないので電気負荷での 電力消費量が発電量を上回ってバッテリの放電が進んでしまうという問 題があつた。
このように、 車両用エンジンのような可変速運転される内燃機関用の 発電装置では、 オルタネータの耐久性、 配線や力ブラ等の容量、 および バッテリの充放電の観点から、 そのプーリ一比を適正に設定することが 難しいという問題点があった。
ェンジン回転数にかかわらずオルタネータの回転数を任意に設定でき るようにするために、 例えば特公昭 6 2— 3 3 4 6 5号公報では、 オル タネータ駆動プーリのブーリ径を機械的に可変する機構が提案されてい る。 このような機械的な変速機構を採用すると構成が複雑化かつ大型化 してしまうという問題があった。
車両等用の内燃機関では、 へッ ドライ トゃエアコンディ ショナといつ た電力消費量の大きな電気負荷がオン Zオフされると、 これに応答して 発電量を増減させるために直流界磁コイル 5 3の励磁強度も制御される ( この結果、 エンジンがオルタネータを駆動するのに要する トルク (以下. 単に駆動トルクと表現する) が変動し、 エンジン回転数が変化すること になる。 特に、 大きな電気負荷がオフ状態からオン状態になって駆動ト ルクが急激に増えると、 これに伴ってエンジン回転数が低下するので、 アイ ドリング時であればエンジンス トールを招いたり、 また走行中であ れば一種の制動状態となつてドライノ ピリティが悪化してしまうという 問題が発生する。
このような問題点を解決するために、 例えば特開平 1 一 2 7 7 6 5 0 号公報では、 電気負荷が印加されたか否かを判別し、 印加されたと判別 されるとスロッ トル弁を開いてエンジン回転数の設定値を高くする制御 装置が提案されている。 特開平 5— 1 8 0 0 4 7号公報では、 電気負荷 の増減に応じて、 ステータの界磁コィルへ供給する界磁電流のデューテ ィ一比を制御する制御装置が提案されている。 上記した従来技術ではい ずれも、 電気負荷の増減に応じてオルタネータの駆動トルクが変動する ので、 オルタネ一タベルトに大きな負荷がかかったり、 あるいは素早い 制御ができないために依然として安定性に欠けるという問題があった。 発明の開示
本発明の目的は、 オルタネータと して誘導機を採用し、 内燃機関の回 転数にかかわらず予定の電力を発生できるようにした内燃機関用の発電 装置を提供することにある。
本発明の他の目的は、 オルタネータとして誘導機を採用し、 電気負荷 やエンジン回転数の変動といった、 オルタネ一タの駆動トルクを変動さ せる要因が発生しても、 その駆動トルクを任意に制御できるようにした 内燃機関用の発電装置を提供することにある。
本発明は、 多相巻線を有するロータが内燃機関の回転運動を伝達され て回転する誘導機と、 ロータの多相巻線に回転磁界を発生させる回転磁 界発生手段と、 回転磁界速度を制御する制御手段とを備えた発電装置に おいて、 以下のような特徴を有する。
( 1 ) 前記制御手段は、 誘導機の発電量が予定範囲内に収まるように、 ロータの回転速度に応じて、 ロータに発生させる回転磁界の速度を制御 する。 このような特徴によれば、 誘導機の発電量を、 内燃機関の回転速 度にかかわらず予定範囲内に収めることができる。
( 2 ) 前記制御手段は、 誘導機の駆動トルクが予定範囲内に収まるよう に、 ロータの回転速度に応じて、 ロータに発生させる回転磁界の速度を 制御する。 このような特徴によれば、 誘導機の駆動トルクを、 内燃機関 の回転速度にかかわらず予定範囲内に収めることができる。
( 3 ) 前記制御手段は、 回転磁界速度を温度の関数として制御する。 誘 導機の温度が低下すると多相巻線の電気抵抗が低下して励磁電流が多く 流れるため、 誘導機の駆動トルクゃ発電量と相対速度との関係は一意に 定まらないが、 このような特徴によれば、 温度補償が可能となるので、 誘導機の駆動トルクゃ発電量を温度にかかわらず正確に制御できるよう になる。
( 4 ) 前記制御手段は、 誘導機によって充電されるバッテリの充電量が 不十分であると相対速度を速める方向の回転磁界を発生させ、 バッテリ の充電量が十分であると相対速度を遅らせる方向の回転磁界を発生させ る。 このような特徴によれば、 バッテリの充電量が不十分であると相対 速度が速められて発電量が増加し、 バッテリの充電量が十分であると相 対速度が減ぜられて発電量が減少するので、 バッテリの充電量が適量に 維持されるようになる。
( 5 ) 前記制御手段は、 誘導機の発電量が電気負荷での電力消費量を下 回らないように回転磁界速度を制御する。 このような特徴によれば、 バ ッテリの充電量低下が防止される。
( 6 ) 前記制御手段は、 車両の状態に応じて回転磁界速度を制御するよ うにし、 例えば車両が制動状態にあると誘導機の駆動トルクが増加する ように回転磁界速度を制御し、 車両が加速状態にあると誘導機の駆動ト ルクが減少するように回転磁界速度を制御する。 このような特徴によれ ば、 制動時にはエンジンブレーキ状態が向上し、 加速時には加速性能が 向上する。
( 7 ) 前記制御手段は、 電気負荷が変動すると、 変動後の電気負荷を駆 動トルク変動を伴うこと無く賄えるように回転磁界速度を制御した後、 今度は前記変動後の電気負荷を、 ステータに対する回転磁界の相対速度 が予定回転速度でも賄えるように、 駆動トルク変動を伴う回転磁界制御 を漸次実行する。 このような特徴によれば、 電気負荷が増減しても駆動 トルク変動が体感されることなく理想的な発電量制御が可能になる。
( 8 ) 前記予定回転速度を、 誘導機の発電効率が最も高い領域内の回転 速度にした。 このような特徴によれば、 効率の良い発電が可能になる。 図面の簡単な説明
図 1 は、 本発明の車両用発電装置の一実施形態のブ口ッ ク図であ る。 図 2 A . Bは、 本発明のオルタネ一タの構成を示した断面図であ る。
図 3は、 回転磁界の相対速度 Nと発電量 Pとの関係を示した図で ある。
図 4は、 回転磁界の相対速度 Nと駆動トルク Tとの関係を示した 図である。
図 5 , 6 , 7は、 本発明による発電量の制御方法を説明するため の図である。
図 8は、 第 1実施形態の制御方法を示したフローチャー トである c 図 9は、 従来技術のオルタネ一タの主要部の構成を示した図であ る。
図 1 0は、 第 4実施形態の制御方法を示したフローチヤ一トであ る。
図 1 1, 1 2 , 1 3は、 本発明による駆動トルクの制御方法を説 明するための図である。
図 1 4は、 第 5実施形態の制御方法を示したフローチヤ一トであ る。
図 1 5は、 第 8実施形態の制御方法を説明するための図である。 図 1 6は、 第 9実施形態の制御方法を説明するための図である。 図 1 7は、 回転磁界の相対速度 Nと効率 との関係を示した図で ある。
図 1 8は、 回転磁界の相対速度 Nと発電量 Pとの関係をオルタネ —タの温度をパラメータとして示した図である。
図 1 9は、 回転磁界の相対速度 Nと駆動トルク Tとの関係をオル タネータの温度をパラメ一タとして示した図である。 発明を実施するための最良の方法
本発明の基本的な考え方について説明する。 誘導機の実質的な回転速 度は、 ロータが発生する回転磁界の、 ステータコイルに対する相対速度
Nで表すことができ、 ロータの界磁巻線 (多相巻線) が回転磁界ではな く直流磁界を発生していれば、 前記相対速度 Nはロータの機械的な回転 速度と一致する。 一方、 ロータの多相巻線に回転磁界を発生させた場合 を考えると、 ロータの機械的な回転速度を N 1 、 ロータの多相巻線に発 生する回転磁界の速度を N 2 とすれば、 前記相対速度 Nは次式で表され る。
N = N 1 + N 2 - (1 ) 誘導機のロータが発生する回転磁界の、 ステータコイルに対する相対 速度 Nは、 ロータの機械的な回転方向とロータの多相巻線が発生する回 転磁界の回転方向とがー致していれば、 ロータの機械的な回転速度 N 1 よりも早く なり、 回転方向が逆であれば、 ロータの回転速度 N 1 よりも 遅く なる。 誘導機を車両用のオルタネータとして採用すれば、 エンジン 回転数の変動に伴ってロータの機械的回転速度 N 1 がどのように変化し ても、 それに応答してロータの多相巻線に発生させる回転磁界速度 N 2 を適宜に制御することにより、 実質上、 前記相対速度 Nを任意に制御す ることができる。
一方、 オルタネータの発電量 Pは、 図 3に示したように、 前記相対速 度 Nの関数と して表すことができるので、 回転磁界の相対速度 Nを任意 に制御すれば、 オルタネータの発電量 Pも口一タの機械的な回転速度 N 1 にかかわらず任意に制御できることになる。
同様に、 オルタネ一タの駆動トルク Tも、 図 4に示したように、 前記 相対速度 Nの関数として表すことができるので、 回転磁界の相対速度 N を任意に制御すれば、 オルタネ一タの駆動トルク Tも口一タの機械的な 回転速度 N 1 にかかわらず任意に制御できることになる。
本発明では、 誘導機の発電量および駆動トルク Tが回転磁界のステー タに対する相対速度 Nの関数であること、 および前記相対速度 Nはロー タの多相巻線に発生する回転磁界速度 N 2 を制御できればロータの機械 的な回転速度 N 1 にかかわらず任意に制御可能であることに着目 し、 誘 導機の発電量および駆動トルク Tを、 車両の状態等に応じて任意に制御 できるようにした。
図面を参照して本発明を詳細に説明する。 図 1 は本発明の一実施形態 である車両用の発電装置の主要部の構成を示したプロック図であり、 図 2 A , 2 Bは本発明の発電装置を構成するオルタネータ 1 の構成を示し た断面図であり、 図 2 Aは回転軸に垂直な平面での断面図、 図 2 Bは回 転軸に平行な平面での断面図である。 本発明のオルタネータ 1は、 ロー タ 1 Rおよびステータ 1 Sのそれぞれに 3相巻線すなわち 3相界磁コィ ル 1 1、 1 2が形成された誘導機である。
図 2 A、 2 Bにおいて、 オルタネータ 1 の回転軸 1 3は、 ベルトを介 してクランク軸 (共に、 図示せず) に連結されている。 オルタネータ 1 の回転軸 1 3には、 3相界磁コイル 1 1を具備したロータ 1 Rが同軸状 に固定され、 ロータ 1 Rの周囲には、 3相界磁コイル 1 2を具備したス テータ 1 Sが配置されている。 回転軸 1 3はフロントベアリング 1 5 a およびリァベアリング 1 5 bを介してハウジング 1 Ίに対して回転自在 に支持されている。 回転軸 1 3の一端にはプー リ一 1 4が固定され、 そ の他端には、 ロータ 1 Rの各界磁コイル 1 1 ( 1 1 a〜: L i e ) へ励磁 電流を供給するブラシ 1 9 a〜 1 9 cと接触するスリ ップリング 1 8 a 〜 1 8 cが形成されている。 回転軸 13の他端側のオルタネータ 1内には、 後述する磁界制御装置 2、 ACG * ECU3、 切換制御装置 5および短絡装置 8が、 回転軸 1 3と直交する同一平面上でハウジング 17の内側に沿って、 好ま しくは ハウジング内側表面上に、 円周方向に並べて配設されている。 これによ つて各装置間での配線の取り回しが容易になり、 かつデッ ドスペースの 有効利用が可能になってオルタネ一タの大型化が抑制される。
図 1において、 ACG · ECU3は回転磁界速度を制御する制御手段 と して機能し、 エンジン ECU 4と通信してエンジン回転数 Ne や電気 負荷等を検出すると、 ロータ 1 Rの 3相界磁コイル 1 1に発生させる回 転磁界の速度 N2 、 印加電圧あるいは回転磁界位相等を決定し、 磁界制 御装置 2の電気的回転磁界発生部 2 aへ通知する。 電気的回転磁界発生 部 2 aは、 ACG · ECU3から通知された回転磁界速度 N2 等に基づ いて、 ロータ 1 Rの各界磁コィル 1 1 a, l i b, 1 1 cに供給する交 流電力の位相、 振幅および周波数を制御し、 回転速度 N2 の回転磁界を 電気的に発生させる回転磁界発生手段として機能する。
切換制御装置 5は、 ACG . ECU3と通信してオルタネ一タ 1の動 作状態を検出し、 オルタネ一タ 1が発電機として機能するタイ ミ ングで はオルタネータ 1の各出力端子が出力制御装置 7の各接点①へ接続され、 電動機として機能するタイミ ングでは短絡装置 8の各接点②へ接続され るように切換回路 6の各接点を制御する。 切換制御装置 5は、 オルタネ ータ 1を発電機として機能させるタイ ミ ングでは、 オルタネ一タ 1の出 力電力の一部を電気的回転磁界発生部 2 aを介してオルタネータ 1に自 己励磁用と して供給する場合もある。
出力制御装置 7は整流回路 7 aおよびレギユ レ一タ 7 bを具備し、 ォ ルタネータ 1から出力される交流電力を、 ノ ッテリ 9および電気負荷 3 0の電圧に応じた直流電力に変換する。 短絡装置 8は、 オルタネータ 1 の各界磁コィル 12 a, 12 b, 12 cの出力端を可変抵扰を介して、 または介さずに短絡する。 直流磁界発生部 2 bは前記電気的回転磁界発 生部 2 aと選択的に付勢され、 ロータ 1 Rの界磁コイル 1 1 a, l i b に直流電流を供給して直流磁界を発生させる。
動作時に、 ACG · ECU3はエンジン ECU4で検出されたェンジ ン回転数 Ne や電気負荷等の動作パラメータを通知されると、 エンジン 回転数 Ne とプーリ一比等に基づいてオルタネータ 1のロータ 1 Rの機 械的な回転速度 N1 を演算する。 ACG · ECU3は、 ロータ 1 Rが発 生する回転磁界のステータ 1 Sに対する相対速度 Nを制御すべく、 ロー タ 1 Rの 3相巻線 1 1に電気的に発生させる回転磁界の速度 N2 を算出 し、 これを電気的回転磁界発生部 2 aへ通知する。
電気的回転磁界発生部 2 aは、 ロータ 1 Rの 3相巻線 1 1の各相の励 磁タイ ミ ングを制御して速度 N2 の回転磁界を電気的に発生させる。 ス テータ 1 Sの各界磁コィノレ 12 a, 12 b, 12 cから出力される交流 電力は出力制御装置 7で直流電力に変換され、 その一部は現在の電気負 荷 30へ供給され、 残りはバッテリ 9へ充電される。 誘導機自体の制御 方法は公知なのでその説明は省略する。
本発明による発電量制御の具体例を説明する。 図 5は、 本発明の第 1 実施形態である発電量の制御方法を示した図であり、 ロータ 1 Rの機械 的回転速度にかかわらずオルタネ一タ 1の発電量が上限値 P max 以下に 制限されるようにしている。 このような発電量制御は、 前記相対速度 N が発電上限値 P max によって定まる上限速度 Nmax 以下に保たれるよう に、 ACG · ECU 3が前記ロータ 1 Rの機械的回転速度 N1 に応じて、 ロータ 1 Rの 3相巻線 1 1に電気的に発生させる回転磁界の速度 N2 を 決定し、 電気的回転磁界発生部 2 aが当該速度 N2 の回転磁界を発生さ せることで達成される。 このような発電量制御によれば、 例えばエンジンの低回転時の所要発 電量に合わせてプーリ一比を高めに設定した場合でも、 高回転時の発電 電流を制限できるので、 電源ライン等の配線や力ブラの容量を必要以上 に大きくするなどの過剰な設計を防止できる。
図 8は、 第 1実施形態の動作を示したフローチャートである。 ステツ プ S 1では、 ロータ 1 Rの機械的な回転速度 N1 が計測される。 この回 転速度 N1 は、 例えばエンジン回転数 Ne とプー リー比とに基づいて演 算することができる。 ステップ S 2では、 オルタネータの現在の発電量 Pが計測される。 ステップ S 3では、 計測された発電量 Pが上限値 Pma X を超えているか否かが判断され、 超えていると判断されると、 ステツ プ S 4では、 相対速度 Nを遅らせて発電量 Pを減じるための回転磁界速 度 N2 、 すなわち相対速度 Nを前記上限値 Nmax 以下にするための回転 磁界速度 N2 が算出される。 ステップ S5では、 ロータの多相巻線に速 度 N2 の回転磁界が誘起される。
図 6は、 本発明の第 2実施形態である発電量の制御方法を示した図で ある。 本実施形態では、 ロータ 1 Rの回転速度 N1 にかかわらずオルタ ネ一タ 1の発電量が下限値 Pmin 以上に保たれるようにしている。 この ような発電量制御も、 相対速度 Nが下限値 Nmin を下回らないように、 ACG · ECU 3および電気的回転磁界発生部 2 aが前記ロータ 1 Rの 回転速度 N1 に応じて回転磁界速度 N2 を制御することで達成される。 このような発電量制御によれば、 例えばエンジンの高回転時の所要発電 量に合わせてプーリ一比を低めに設定した場合でも低回転時の発電量不 足を防止できる。
図 7は、 本発明の第 3実施形態である発電量の制御方法を示した図で ある。 本実施形態では、 ロータ 1 Rの機械的な回転速度 N1 にかかわら ずオルタネータ 1の発電量が目標発電量 Pc に保たれるようにしている c このような発電量制御も、 相対速度 Nが目標速度 Nc に常に一致するよ うに、 ACG · ECU 3および電気的回転磁界発生部 2 aがロータ 1 R の回転速度 N1 に応じて回転磁界速度 N2 を制御することで達成される ( このような発電量制御では、 電気負荷の現在の電力消費量を目標発電量 Pc とみなせば、 電力消費量と発電量とが略一致するような発電量制御 が行なわれることになるので、 バッテリの電圧変動が防止されてバッテ リの長寿命化が達成される。
バッテリの充電量をバッテリ電圧に基づいて判断し、 充電量が不十分 であるときには充電が促進されるように目標発電量 Pc として比較的高 めの値を設定し、 充電量が十分であるときには過充電が防止されるよう に目標発電量 Pc として比較的低めの値を設定することもできる。
以下、 バッテリ電圧に応じて発電量を制御する第 4実施形態の動作を、 図 1 0のフ ローチャートを参照して説明する。 ステップ S 1 1ではバッ テリ電圧で代表されるバッテリの充電量が計測される。 ステップ S 1 2 では、 計測されたバッテリ電圧が基準値 (例えば、 1 2. 5 V) と比較 され、 ノ ッテリ電圧が基準値未満と判断されると、 ステップ S 1 3では, 両者の差分に基づいて現在よりも高めの目標発電量 Pelが算出される。 ステップ S 1 4では、 算出された目標発電量 Pelに基づいて目標相対速 度 NC が算出される。 ステップ S 1 5では、 発電量を目標発電量 Pelま で上昇させるための回転磁界速度 N2 が算出され、 ステップ S 1 6では. 速度 N2 の回転磁界が発生される。
バッテリ電圧が基準値よりも大きいと判断された場合も、 ステップ S 25において発電量を目標発電量 Pc2まで減じるための回転磁界速度 N 2 が算出される点を除いて、 ステップ S 23〜S 26ではステップ S 1 3〜S 1 6と同様の処理が実行される。 バッテリ電圧が基準値と等しい 場合は回転磁界を発生させない。 本実施形態によれば、 ロータ 1 Rの機械的な回転速度 N 1 にかかわら ずオルタネータの発電量 Pを予定の値または予定範囲内に収めることが できるようになる。 エンジンの低回転時の所要発電量に合わせてプーリ 一比を高めに設定した場合でも高回転時の過剰発電を防止でき、 ェンジ ンの高回転時の所要発電量に合わせてブーリ一比を低めに設定した場合 でも低回転時の発電量不足を防止できる。 目標発電量 P c を適宜の値に 設定することにより、 バッテリの長寿命化、 バッテリの充電量不足時の 速やかな充電、 および過充電の防止等が可能になる。
次いで、 本発明による駆動トルク制御の具体例について説明する。 図 1 1は、 本発明の第 5実施形態である駆動トルクの制御方法を示した図 であり、 本実施形態では、 ロータ 1 Rの機械的な回転速度 N 1 にかかわ らずオルタネ一タ 1 の駆動トルクが上限トルク Tmax 以下に制限される ようにしている。 このようなトルク制御は、 上限トルク Tmax によって 定まる低速側上限値 N a 以下または高速側下限値 N b 以上に相対速度 N が保たれるように、 前記ロータ 1 Rの回転速度 N 1 に応じて、 ロータ 1 Rの 3相巻線に電気的に発生させる回転磁界の速度 N 2 を制御すること で達成される。
図 1 4は、 上記した実施形態の動作を示したフローチャートである。 ステッ プ S 3 1では、 ロータ 1 Rの回転速度 N 1 が計測される。 ステツ プ S 3 2では、 オルタネータの現在の駆動トルク Tが計測される。 この 駆動トルク Tは、 トルク計を用いて計測しても良いが、 オルタネータ 1 の出力電流や励磁電流を測定することによつても計測できる。
ステップ S 3 3では、 計測された駆動トルク Tが上限トルク T max を 超えているか否かが判断され、 超えていると判断されると、 ステップ S 3 4では、 バッテリ電圧に基づいてバッテリ充電量が検出される。 オル タネータの発電量 Mは相対速度 Nの上昇に伴って増加することから、 本 実施形態ではステツプ S 34においてバッテリ充電量が不十分 (例えば. バッテリ電圧が 12. 5V未満) と判断されると、 ステップ S 35 aで は相対速度 Nを増して駆動トルク Tを減じるための回転磁界速度、 すな わち相対速度 Nを前記高速側下限値 Nb 以上にするための回転磁界速度 + N2 が算出される。 バッテリ充電量が十分 (例えば、 バッテリ電圧が 12. 5V以上) と判断されると、 ステップ S 35 bでは相対速度 Nを 減じて駆動トルク Tを減じるための回転磁界速度、 すなわち相対速度 N を前記低速側上限値 Na 以下にするための回転磁界速度一 N2 が算出さ れる。 ステップ S 36では、 ロータの多相巻線に速度 N2 の回転磁界が 誘起される。
図 1 2は、 本発明の第 6実施形態である駆動トルクの制御方法を示し た図であり、 本実施形態では、 ロータの回転速度 N1 にかかわらずオル タネータ 1の駆動トルクが下限トルク Tmin 以上に保たれるようにして いる。 このようなトルク制御も、 相対速度 Nが下限値 N3 を下回らない ように前記ロータ 1 Rの回転速度 N1 に応じて回転磁界速度 N2 を制御 することで達成される。
図 1 3は、 本発明の第 7実施形態である駆動トルクの制御方法を示し た図であり、 本実施形態では、 ロータの回転速度 N1 にかかわらずオル タネ一タの駆動トルクが一定トルク Tc に保たれるようにしている。 こ のようなトルク制御も、 相対速度 Nが目標速度 N4 に常に一致するよう に、 ロータ 1 Rの回転速度 N1 に応じて回転磁界速度 N2 を制御するこ とで達成される。
本実施形態によれば、 ロータ 1 Rの回転速度 N1 にかかわらずオルタ ネータの駆動トルク Tを所望の予定値または予定範囲内に収めることが できるので、 オルタネ一タベルトへの過度の負担増または負担減、 ある いは大きな負担変動を防止できるようになると共に、 エンジンの回転数 変動も防止できる。
上記した駆動トルクに関する各制御方法では、 オルタネータの駆動ト ルクが任意の絶対的な範囲内または値に制御されるものとして説明した が、 現在の駆動トルクよりも高くする、 または低くするといつたように. 現在の駆動トルクとの関係において相対的に制御されるようにしても良 く、 例えば車両状態に応じて、 誘導機の駆動トルクが現在よりも増減さ れるように回転磁界速度を制御すれば良い。
すなわち、 図 1 5に示した本発明の第 8実施形態のように、 例えば電 気負荷が 4 O Aである動作点 Aの状態でアクセル開度やエンジン回転数 等に基づいて車両の加速状態が検出されたときには、 回転磁界速度 N 2 を Δ Ν 21だけ増して相対速度 Nを速め、 動作点を Cへ遷移させることで 駆動トルクを低くする。 車両のエンジンブレーキ状態が検出されたとき には、 回転磁界速度 N 2 を Δ Ν 22だけ減じて相対速度 Nを遅く し、 これ によつて動作点を Bへ遷移させて駆動トルクを高くすれば、 加速性能や エンジンブレーキ性能が向上する。
本発明の第 9実施形態について説明する。 上記した第 5ないし第 8実 施形態では、 オルタネータ 1 の電気負荷が考慮されていなかったが、 実 使用ではエアコンやへッ ドランプ等のオンノオフによって電気負荷が大 きく変動し、 電気負荷が異なればオルタネータ 1の相対速度 Nと駆動ト ルク Tとの関係も大きく変化する。 図 1 6は、 オルタネータ 1 の相対速 度 Nと駆動トルク Tとの関係を電気負荷をパラメータと して表した図で あり、 相対速度 Nが同一であっても電気負荷が増えれば駆動トルク Tも 増加することが分かる。
相対速度 N 10で 3 O Aの電力を発生しているときに電気負荷が 4 O A に増えると、 本来であれば駆動トルクも T 1 から T 2 へ増大する。 この ため、 車両には当該トルク変動に応じたショ ックが発生すると共に、 駆 動トルクの増大によるエンジン回転数の一時的な低下を引き起こ しかね ない。 そこで、 本実施形態では電気負荷の増減によって駆動トルクが変 動しそうになると、 この電気負荷の増減分を相対速度 Nの増減で補い、 これによつて トルク変動を防止するようにしている。 すなわち、 本実施 形態では上記のようにして相対速度 N 10で 3 0 Aの電力を発生している ときに電気負荷が 4 O Aに増えると、 回転磁界速度 N 2 を増して相対速 度を N 10から N 20へ増加させる。 この結果、 駆動トルクを一定に保った ままで発電量を 3 0 Aから 4 0 Aへ増やすことが可能になる。
また、 オルタネータの相対速度 Nと発電効率 との関係は、 図 1 7に 示したように相対速度 Nのある一点 N x で最高効率 7? niax を示し、 この 最高効率回転速度 N x から離れるにしたがって発電効率 7?は減少する。 したがって、 相対速度 Nは最高効率 r? max の得られる回転数に維持する ことが望ましい。
そこで、 本実施形態では電気負荷の増減といった、 オルタネータの駆 動トルクを変動させる事象が発生すると、 初めは前記のようにして駆動 トルクを変動させることなく当該変動を補うために、 ロータの多相巻線 に電気的に発生させる回転磁界の速度 N 2 を変化させて相対速度 Nを制 御するが、 その後は、 発電量を一定に保ったまま、 駆動トルク変動を伴 つて相対速度 Nが最高効率回転速度 N x に一致するように回転磁界速度 N 2 を徐々に変化させるようにしている。 このとき、 回転磁界速度 N 2 の制御すなわち相対速度 Nの制御は、 駆動トルク変動がドライバーに体 感されず、 あるいはオルタネータベルトに急激なショ ッ クと して表れな い程度の速度で漸次行うことが望ましい。
本実施形態によれば、 オルタネ一タの駆動トルクを変動させるような 事象、 すなわちエンジン回転数や電気負荷の増減が発生しても、 オルタ ネータの駆動トルクを急激に変化させることなく当該事象に対処できる ようになる。
ところで、 オルタネータでは温度が低下すると多相巻線の電気抵抗が 低下して励磁電流が多く流れるため、 図 1 8に示したように、 同一相対 速度での発電量は高温時よりも低温時の方が多く なる。 したがって、 例 えばオルタネ一タの発電量を上限値 P max 以下に制限したい場合の相対 速度 Nの上限値も、 高温時には N maxH, であったものが低温時には N ma xLとなる。
同一相対速度での駆動トルクも、 図 1 9に示したように、 高温時より も低温時の方が高く なる。 したがって、 例えばオルタネ一タの駆動トル クを上限トルク T max 以下に制限したい場合の相対速度 Nの低速側上限 値および高速側下限値も、 高温時には N aH, N bHであったものが低温時 にはそれぞれ N aL, N bLとなる。
したがって、 上記のようにして相対速度 Nに基づいてオルタネータの 発電量 Pや駆動トルク Tを目標値または目標範囲内に収めるよう制御す るのであれば、 オルタネータ 1の温度をパラメータとして相対速度 Nと 発電量 Pとの関係、 および相対速度 Nと駆動トルク Tとの関係を予め定 義しておく ことが望ま しい。
上記した各実施形態では多相巻線として 3相巻線を有するロータおよ びステータによって構成される誘導機を例にして説明したが、 本発明は これのみに限定されず、 4相、 5相…等の他の多相巻線を採用した場合 にも同様に適用することができる。 産業上の利用可能性
本発明によれば、 以下のような効果が達成される。
( 1 ) エンジン回転数にかかわらずオルタネータの発電量を予定の範囲 内に収めることができるので、 エンジンの低回転時の所要発電量に合わ せてブーリ一比を高めに設定した場合でも、 高回転時の過充電や配線等 の過剰装備を防止でき、 またエンジンの高回転時の所要発電量に合わせ てブーリ一比を低めに設定した場合でも低回転時の発電量不足が防止で ぎる。
( 2 ) エンジン回転数にかかわらずオルタネ一タの発電量を予定の目標 値に設定することができるので、 バッテリの充電量不足時の速やかな充 電、 過充電の防止およびバッテリの長寿命化が可能になる。 さ らに具体 的に言えば、 発電量を予定値以上に保つことで発電量不足が防止され、 予定値以下に保つことで充電電流を制限でき、 また予定値に保つことで バッテリの電圧変動を防止できるので長寿命化が可能になる。
( 3 ) ェンジン回転数にかかわらずオルタネータの駆動トルクを予定の 範囲内に収めることができるので、 オルタネータベルトへの過度の負担 増または負担減あるいは負担変動を防止できるようになる。
( 4 ) エンジン回転数にかかわらずオルタネ一タの駆動トルクを予定の 目標値に設定することができるので、 誘導機の駆動トルクを変動させる 事象が発生しても、 当該誘導機の駆動トルクを予定範囲内に収めること ができる。 さ らに具体的にいえば、 駆動トルクが予定値以上に保たれる ようにすれば、 オルタネータベルトへの負荷変動が防止されて振動ゃノ ィズを低減できる。 また、 駆動トルクが予定値以下に保たれるようにす れば、 オルタネータベルトの過度の負荷が防止される。 さ らに、 駆動ト ルクが所望の予定値に保たれるようにすれば、 オルタネータベルトの負 荷変動および過度の負荷のいずれもが防止されるようになる。
( 5 ) 回転磁界速度が温度の関数として制御されるようにしたので、 誘 導機の温度にかかわらず、 その発電量および駆動トルクを正確に制御で きるようになる。
( 6 ) 誘導機の発電量が電気負荷での電力消費量を下回らないように回 転磁界速度を制御するようにしたので、 電気負荷の増減にかかわらず発 電量不足が防止できる。
( 7 ) 車両の状態に応じて回転磁界速度を制御するようにし、 例えば車 両が制動状態にあると誘導機の駆動トルクが増加するように回転磁界速 度を制御し、 車両が加速状態にあると誘導機の駆動トルクが減少するよ うに回転磁界速度を制御するようにしたので、 制動時にはエンジンブレ ーキ状態が向上し、 加速時には加速性能が向上する。
( 8 ) 電気負荷が変動すると、 変動後の電気負荷を駆動トルク変動を伴 うこと無く賄えるように回転磁界速度を制御した後、 今度は前記変動後 の電気負荷を、 ステ一タに対する回転磁界の相対速度が予定回転速度で も賄えるように、 駆動トルク変動を伴う回転磁界制御を漸次実行するよ うにしたので、 電気負荷が増減しても駆動トルク変動が体感されること なく理想的な発電量制御が可能になる。
( 9 ) 前記予定回転速度を、 誘導機の発電効率が最も高い領域内の回転 速度にしたので、 効率の良い発電が可能になる。

Claims

求 の 範 囲
1 . 多相巻線を有するロータおよびステータによって構成され、 可変速 運転される内燃機関の回転運動を伝達されてロータが回転する誘導機と. 前記ロータの多相巻線に回転磁界を電気的に発生させる回転磁界発生 手段と、
前記回転磁界発生手段がロータに発生させる回転磁界の速度を制御す る制御手段とを具備し、
前記制御手段は、 前記回転磁界のステータに対する相対速度の目標値 を設定し、 当該目標値に基づいて、 前記回転磁界の速度を制御すること を特徴とする内燃機関用の発電装置。
2 . 前記制御手段は、 誘導機の発電量が予定範囲内に収まるように前記 目標値を設定し、 ロータの回転速度に応じて回転磁界速度を制御するこ とを特徴とする請求項 1の内燃機関用の発電装置。
3 . 前記制御手段は、 誘導機の駆動トルクが予定範囲内に収まるように 前記目標値を設定し、 ロータの回転速度に応じて回転磁界速度を制御す ることを特徴とする請求項 1 の内燃機関用の発電装置。
4 . 前記制御手段は、 誘導機の発電量が予定値以上、 予定値以下、 およ び予定値のいずれかに保たれるように前記目標値を設定し、 回転磁界速 度を制御することを特徴とする請求項 2の内燃機関用の発電装置。
5 . 前記制御手段は、 誘導機の駆動トルクが予定値以上、 予定値以下、 および予定値のいずれかに保たれるように前記目標値を設定し、 回転磁 界速度を制御することを特徴とする請求項 3の内燃機関用の発電装置。
6 . 前記制御手段は、 前記相対速度の目標値を温度の関数として制御す ることを特徴とする請求項 1の内燃機関用の発電装置。
7 . 前記制御手段は、 誘導機によって充電されるバッテ リの充電量が不 十分であると、 前記目標値としての現在の相対速度より速い速度を設定 し、 バッテリの充電量が十分であると、 現在の相対速度より遅い速度を 設定し、 回転磁界の速度を制御することを特徴とする請求項 1 の内燃機 関用の発電装置。
8 . 前記制御手段は、 誘導機の発電量が電気負荷での電力消費量を下回 らないように前記目標値を設定し、 回転磁界速度を制御することを特徴 とする請求項 2の内燃機関用の発電装置。
9 . 前記制御手段は、 当該発電装置が搭載された車両の状態に応じて前 記目標値を設定し、 回転磁界速度を制御することを特徴とする請求項 3 の内燃機関用の発電装置。
1 0 . 前記制御手段は、 車両が制動状態にあると、 前記誘導機の駆動ト ルクが増加するように前記目標値を設定し、 回転磁界速度を制御するこ とを特徴とする請求項 9の内燃機関用の発電装置。
1 1 . 前記制御手段は、 車両が加速状態にあると、 前記誘導機の駆動ト ルクが減少するように前記目標値を設定し、 回転磁界速度を制御するこ とを特徴とする請求項 9の内燃機関用の発電装置。
1 2 . 前記制御手段は、 電気負荷が変動すると、 変動後の電気負荷を駆 動トルク変動を伴うこと無く賄えるように前記目標値を設定して回転磁 界速度を制御した後、 今度は前記変動後の電気負荷を、 ステ一タに対す る回転磁界の相対速度が予定回転速度でも賄えるように前記目標値を設 定し、 駆動トルク変動を伴う回転磁界制御を漸次実行することを特徴と する請求項 3の内燃機関用の発電装置。
1 3 . 前記予定回転速度は、 誘導機の発電効率が最も高い領域内の回転 速度であることを特徴とする請求項 1 2の内燃機関用の発電装置。
PCT/JP1998/000085 1997-01-13 1998-01-13 Generateur pour moteur a combustion interne WO1998031089A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US09/142,222 US6049196A (en) 1997-01-13 1998-01-13 Generator for internal combustion engine
DE0903832T DE903832T1 (de) 1997-01-13 1998-01-13 Lichtmaschine für verbrennungsmotor
DE69836663T DE69836663T2 (de) 1997-01-13 1998-01-13 Lichtmaschine für verbrennungsmotor
EP98900221A EP0903832B1 (en) 1997-01-13 1998-01-13 Generator for internal combustion engine
CA002248619A CA2248619C (en) 1997-01-13 1998-01-13 Generator for internal combustion engine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP9/15860 1997-01-13
JP01586097A JP3426456B2 (ja) 1997-01-13 1997-01-13 内燃機関用の発電装置
JP9/15859 1997-01-13
JP1585997A JP3598190B2 (ja) 1997-01-13 1997-01-13 内燃機関用の発電装置

Publications (1)

Publication Number Publication Date
WO1998031089A1 true WO1998031089A1 (fr) 1998-07-16

Family

ID=26352080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/000085 WO1998031089A1 (fr) 1997-01-13 1998-01-13 Generateur pour moteur a combustion interne

Country Status (5)

Country Link
US (1) US6049196A (ja)
EP (1) EP0903832B1 (ja)
CA (1) CA2248619C (ja)
DE (2) DE903832T1 (ja)
WO (1) WO1998031089A1 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6111390A (en) * 1998-01-20 2000-08-29 Kokusan Kenki Co., Ltd. Magneto-equipped power device
US6242828B1 (en) 1999-11-18 2001-06-05 Briggs & Stratton Corporation Flywheel-rotor apparatus
US6369532B2 (en) 2000-02-24 2002-04-09 Briggs & Stratton Corporation Control system for an electric motor having an integral flywheel rotor
US6777846B2 (en) 2001-04-16 2004-08-17 Briggs & Stratton Corporation Vehicle including a three-phase generator
US6603227B2 (en) 2001-04-16 2003-08-05 Briggs & Stratton Corporation Small engine vehicle including a generator
DE10203974A1 (de) * 2002-01-31 2003-08-14 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung eines elektrisch betriebenen Laders
JP3826822B2 (ja) * 2002-03-20 2006-09-27 株式会社デンソー 車両用発電制御装置
DE10227821B4 (de) 2002-06-21 2019-10-24 Seg Automotive Germany Gmbh Bestimmen von Lastmoment und Ausgangsstrom eines Fahrzeuggenerators durch Messen des Erregerstromes
US7116081B2 (en) * 2003-05-01 2006-10-03 Visteon Global Technologies, Inc. Thermal protection scheme for high output vehicle alternator
JP4581735B2 (ja) * 2005-02-21 2010-11-17 株式会社デンソー 車両用発電制御装置
FR2893463A1 (fr) * 2005-11-15 2007-05-18 Peugeot Citroen Automobiles Sa Alternateur pour vehicule automobile
US7535116B2 (en) * 2007-04-16 2009-05-19 General Electric Company System and method for controlling an output of an auxiliary power source of a diesel powered system
US20090261599A1 (en) * 2008-04-21 2009-10-22 Glacier Bay, Inc. Power generation system
US7915867B1 (en) * 2008-04-25 2011-03-29 Potenco, Inc. Synchronous control for generator output
US20100019711A1 (en) * 2008-07-28 2010-01-28 Orchid Radio Co., Ltd. Motor with controllable rotor-pole magnetic intensity
JP4931987B2 (ja) * 2009-05-13 2012-05-16 三菱電機株式会社 電源装置
TWI391685B (zh) * 2009-10-16 2013-04-01 Ind Tech Res Inst 繞線製品檢測機台及其層間短路之檢測方法
US8314588B2 (en) * 2009-11-18 2012-11-20 Honeywell International Inc. Control system for battery charge maintenance in a power system with main AC generator control
JP5008749B2 (ja) * 2010-05-18 2012-08-22 三菱電機株式会社 電源装置
JP2012228017A (ja) * 2011-04-18 2012-11-15 Mitsubishi Electric Corp 発電電動機の制御装置
EP2670027B1 (en) * 2012-06-01 2017-09-13 Siemens Aktiengesellschaft Method and system for controlling a generator
US10988030B2 (en) * 2014-09-26 2021-04-27 Francis Xavier Gentile Electric motor, generator and battery combination

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0287999A (ja) * 1988-08-01 1990-03-28 General Motors Corp (Gm) スタータ/発電機の誘導装置を持つ車両用電気装置
JPH06113479A (ja) * 1992-09-30 1994-04-22 Mazda Motor Corp オルタネータ制御装置
JPH07255200A (ja) * 1994-01-31 1995-10-03 Nippondenso Co Ltd 車両用発電機

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4246531A (en) * 1978-09-20 1981-01-20 Jordan John E Constant frequency variable rpm generator
US4229689A (en) * 1979-11-05 1980-10-21 Nickoladze Leo G AC Synchronized generator
US4510433A (en) * 1983-03-23 1985-04-09 Gamze Maurice G Variable-speed constant-frequency alternator
JPH01277650A (ja) * 1988-04-28 1989-11-08 Mitsubishi Motors Corp 内燃機関の回転制御装置
JP3536305B2 (ja) * 1991-10-31 2004-06-07 株式会社デンソー オルタネータ出力電圧制御装置
US5418446A (en) * 1993-05-10 1995-05-23 Hallidy; William M. Variable speed constant frequency synchronous electric power generating system and method of using same
EP0665637B1 (en) * 1994-01-31 2000-08-30 Denso Corporation Electric power generating device for vehicles
JP3512950B2 (ja) * 1996-06-24 2004-03-31 本田技研工業株式会社 内燃機関用の発電装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0287999A (ja) * 1988-08-01 1990-03-28 General Motors Corp (Gm) スタータ/発電機の誘導装置を持つ車両用電気装置
JPH06113479A (ja) * 1992-09-30 1994-04-22 Mazda Motor Corp オルタネータ制御装置
JPH07255200A (ja) * 1994-01-31 1995-10-03 Nippondenso Co Ltd 車両用発電機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0903832A4 *

Also Published As

Publication number Publication date
DE903832T1 (de) 2001-04-05
EP0903832B1 (en) 2006-12-20
DE69836663D1 (de) 2007-02-01
EP0903832A1 (en) 1999-03-24
EP0903832A4 (en) 2000-10-04
CA2248619C (en) 2001-03-13
CA2248619A1 (en) 1998-07-16
US6049196A (en) 2000-04-11
DE69836663T2 (de) 2007-11-08

Similar Documents

Publication Publication Date Title
WO1998031089A1 (fr) Generateur pour moteur a combustion interne
CA2252842C (en) Generator motor for internal combustion engine
JP3512950B2 (ja) 内燃機関用の発電装置
US5550457A (en) Electric power generating device for vehicles
EP1764899B1 (en) Starter generator for vehicle
US8221284B2 (en) Automotive drive apparatus
US7589449B2 (en) Electric rotating machine
JP4308423B2 (ja) 内燃機関によって駆動可能な発電機の調整方法および調整装置
KR100523641B1 (ko) 차량용 발전 전동기 시스템
JP2001069609A (ja) ハイブリッド車及び回転電機
JP2006217752A (ja) 回転電機
KR20030093913A (ko) 차량용 회전전기의 제어장치 및 제어법
JPS61155625A (ja) エンジンのトルク変動抑制装置
Del Ferraro et al. Analysis and comparison of a speed-dependant and a torque-dependant mechanical device for wide constant power speed range in AFPM starter/alternators
JP4158615B2 (ja) 車両用電源装置
ZA200301242B (en) Output control device of synchronous generator.
JP6714458B2 (ja) トルクコンバータ、及び動力伝達装置
JP2010104123A (ja) 車両用電源装置
JP3426456B2 (ja) 内燃機関用の発電装置
JP3925760B2 (ja) 内燃機関用発電装置および車両
JPH10299533A (ja) 内燃機関用の発電電動装置
JP3598190B2 (ja) 内燃機関用の発電装置
JP5268553B2 (ja) 車両用回転電機
JP2001103610A (ja) ハイブリッド車
JPH11341893A (ja) 内燃機関用の発電装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09142222

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2248619

Country of ref document: CA

Ref country code: CA

Ref document number: 2248619

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1998900221

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998900221

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998900221

Country of ref document: EP