WO1998027454A1 - Transverse electric field system liquid crystal display device suitable for improving aperture ratio - Google Patents

Transverse electric field system liquid crystal display device suitable for improving aperture ratio Download PDF

Info

Publication number
WO1998027454A1
WO1998027454A1 PCT/JP1996/003691 JP9603691W WO9827454A1 WO 1998027454 A1 WO1998027454 A1 WO 1998027454A1 JP 9603691 W JP9603691 W JP 9603691W WO 9827454 A1 WO9827454 A1 WO 9827454A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
electrode
display device
crystal display
active matrix
Prior art date
Application number
PCT/JP1996/003691
Other languages
French (fr)
Japanese (ja)
Inventor
Masuyuki Ohta
Kazuhiro Ogawa
Keiichiro Ashizawa
Kazuhiko Yanagawa
Masahiro Yanai
Nobutake Konishi
Nobuyuki Suzuki
Masahiro Ishii
Makoto Yoneya
Sukekazu Aratani
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to PCT/JP1996/003691 priority Critical patent/WO1998027454A1/en
Priority to US09/331,266 priority patent/US6532053B2/en
Priority to JP52752598A priority patent/JP3691854B2/en
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to TW085115891A priority patent/TW494261B/en
Publication of WO1998027454A1 publication Critical patent/WO1998027454A1/en
Priority to US11/591,510 priority patent/US7612853B2/en
Priority to US12/395,805 priority patent/US20090167997A1/en
Priority to US12/760,902 priority patent/US8027005B2/en
Priority to US13/206,951 priority patent/US8233126B2/en
Priority to US13/206,988 priority patent/US20120057113A1/en
Priority to US13/560,430 priority patent/US8358394B2/en
Priority to US13/853,540 priority patent/US8730443B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]

Definitions

  • the present invention relates to an active-matrix type liquid crystal display device, and more particularly to a horizontal electric field type liquid crystal display device having a wide viewing angle characteristic suitable for improving an aperture ratio.
  • TFTs thin film transistors
  • the other is to operate the liquid crystal by an electric field that is almost parallel to the substrate surface between two electrodes formed on the same substrate, and to modulate the light incident on the liquid crystal from the gap between the two electrodes to display.
  • This method is characterized by a remarkably wide viewing angle, and is a promising technology for active matrix type liquid crystal display devices. It is called the horizontal electric field method or in-plane switching method.
  • Japanese Patent Application Publication No. 5-504,247 Japanese Patent Publication No. Sho 63-219,074, and Japanese Patent Application Laid-Open No. 6-160878. Has been described.
  • the opaque metal electrode is formed in a comb-like shape, the ratio of the aperture area through which light is transmitted (opening ratio) is extremely low, and the latter conventional active matrix liquid crystal display is used.
  • the device has a problem that the power consumption of the device increases because the display screen is dark or a bright backlight with large power consumption must be used to brighten the display screen.
  • Another problem is that, in the latter conventional method, since a metal electrode is used, the reflectance at the electrode is high, and a face or the like is reflected on the screen by the reflection at the electrode, making it difficult to see.
  • An object of the present invention is to solve the above-mentioned problems.
  • An object of the present invention is to provide an active matrix type liquid crystal display device using the latter display method capable of realizing a viewing angle similar to a cathode ray tube, with a high aperture ratio, a high brightness, a low
  • An object of the present invention is to provide an active matrix liquid crystal display device that consumes low power and is easy to see with low reflection.
  • At least one of the pixel electrode and the counter electrode is a transparent electrode, and is set to a normally black mode in which a display is performed when no electric field is applied.
  • the initial alignment state of the twistable liquid crystal layer at the time of application is a homogenous alignment state, and the liquid crystal molecules between the electrodes and on the electrodes when an electric field is applied rotate predominantly substantially in parallel to the substrate surface.
  • the maximum light transmittance is 4.0% or more, and the viewing angle range with a contrast ratio of 10: 1 or more is within the range of all directions inclined at least 40 degrees from the vertical direction to the display surface. It is characterized by the following.
  • At least one of the pixel electrode and the counter electrode is a transparent electrode, a normally black mode in which dark display is performed when no electric field is applied, and an initial state of the twistable liquid crystal layer when no electric field is applied.
  • orientation state is a homo Jiniasu alignment state, and wherein the twist elastic constant is not more than 1 OX 1 0- 1 2 N (New one ton).
  • At least one of the pixel electrode and the counter electrode is a transparent electrode, a normally black mode in which a display is performed when no electric field is applied, and an initial state of the twistable liquid crystal layer when no electric field is applied.
  • the alignment state is a homogeneous alignment state
  • the initial pretilt angle of the liquid crystal molecules at the upper and lower interfaces of the liquid crystal layer is 10 degrees or less
  • the initial tilt state of the liquid crystal molecules in the liquid crystal layer is a splay state.
  • At least one of the pixel electrode and the counter electrode is a transparent electrode, a normally black mode in which dark display is performed when no electric field is applied, and an initial state of the twistable liquid crystal layer when no electric field is applied.
  • the alignment state is a homogeneous alignment state, and the average tilt angle of the liquid crystal molecules in the liquid crystal layer on the transparent electrode is less than 45 degrees even when an electric field is applied.
  • At least a double structure of a transparent electrode and an opaque metal electrode is used for a pixel electrode or a counter electrode.
  • a structure in which an adjacent counter voltage signal line is connected via a through hole by a counter electrode in a pixel.
  • any one of the first to fourth configurations further comprising a protective film for covering the matrix element,
  • One of the elementary electrode and the counter electrode is formed on the protective film, and is electrically connected to the active matrix element or the counter voltage signal line via the through hole formed in the protective film. It is characterized by.
  • a structure is used in which the counter electrode is made of a transparent electrode and further has a light-shielding pattern between the counter electrode and the video signal line.
  • the opposing voltage signal line that electrically connects the opposing electrodes is made of metal.
  • three or more counter electrodes are formed, two of which are formed adjacent to the video signal line, and the counter electrode is formed on the video signal line. Opposing electrodes formed adjacently are opaque.
  • the transparent conductive film used for the transparent electrode is indium-tin-oxide (ITo).
  • the opposing voltage signal line has a clad structure in which Cr, Ta, Ti, Mo, W, Al, an alloy thereof, or a laminate thereof is stacked.
  • the opposing voltage signal line is formed of a transparent conductive material such as an aluminum oxide (ITO) on Cr, Ta, Ti, Mo, W, Al, or an alloy thereof.
  • ITO aluminum oxide
  • the initial liquid crystal layer has an initial switch angle of almost zero, and the initial alignment angle is the dielectric constant of the liquid crystal material. If the anisotropy ⁇ £ is positive, 45 degrees or more and less than 90 degrees, dielectric anisotropy ⁇ ⁇ If is negative, it is characterized by being greater than 0 degrees and less than 45 degrees.
  • At least one of the scanning signal line terminal portion, the video signal line terminal portion, or the uppermost conductive layer of the counter electrode terminal portion and at least one of the pixel electrode or the counter electrode is made of a transparent conductive material. It is characterized in that it is formed of layers and is formed in the same step.
  • At least one of the pixel electrode and the counter electrode is made transparent, and the maximum transmittance at the time of performing bright (white) display is improved by the transmitted light of that portion.
  • Brighter display can be performed than when the electrode is opaque, and the light transmittance of the liquid crystal display panel is 3.0 to 3.8% in the case of adopting the latter conventional opaque electrode.
  • Maximum transmittance values of 4.0% or more can be achieved. That is, when the luminance of the 3 0 0 0 cd Zm 2 of backlight incident light, the maximum luminance value of the bright display brightness, 1 2 0 cd / m 2 or more can be achieved.
  • the liquid crystal molecules maintain the initial homogenous alignment state, and if the polarizing plate is arranged so as to perform dark (black) display in that state (normal black mode), Even if the electrode is transparent, the light in that part is not transmitted, so that a high-quality dark display can be achieved and the contrast is improved.
  • the viewing angle range having a contrast ratio of 10: 1 or more is in an omnidirectional range inclined at least 40 degrees from the vertical direction with respect to the display surface.
  • the twistable liquid crystal layer has a twist elastic constant of 10 X 10 N (Newton) or less.
  • the twist elastic constant ⁇ 2 is preferably small.
  • the initial angle of the liquid crystal molecules at the upper and lower interfaces of the liquid crystal layer is 10 degrees or less, and the initial tilt state of the liquid crystal molecules in the liquid crystal layer is in the state. Since the tilt angle of the liquid crystal molecules is almost zero, and the average tilt angle of the liquid crystal layer contributing to display can be reduced, the tilt angle of the liquid crystal molecules between the electrodes and on the transparent electrode can be set low even when voltage is applied, and the aperture can be reduced. It can improve the rate and wide viewing angle.
  • the average tilt angle of the liquid crystal molecules in the liquid crystal layer on the transparent electrode is less than 45 degrees even when an electric field is applied, so that it is possible to realize an improved aperture ratio and a wide viewing angle.
  • each of the opposite voltage signal lines is electrically connected in a mesh pattern, so that the resistance of the opposite voltage signal lines can be reduced, and even if a disconnection failure occurs, a serious defect is caused. Does not.
  • the electric field acting on the liquid crystal molecules is suppressed from being reduced by the protective film, and the driving voltage can be reduced.
  • the aperture ratio is improved by using a structure in which the counter electrode is formed of a transparent electrode and has a light-shielding pattern between the counter electrode and the video signal line.
  • the ninth configuration by reducing the resistance of the common voltage signal line, the transfer of voltage between the common electrodes is smoothed, and the voltage distortion is reduced, thereby reducing horizontal crosstalk. Can be suppressed.
  • the opposing electrode adjacent to the video signal line is made opaque, thereby suppressing crosstalk accompanying the video signal.
  • the transparent counter electrode By forming the transparent counter electrode adjacent to the video signal line, the electric field (line of electric force) from the video signal line is absorbed by the counter electrode, and the electric field from the video signal line is applied between the pixel electrode and the counter electrode. Since it does not affect the electric field, the occurrence of crosstalk associated with the video signal, particularly crosstalk in the vertical direction of the substrate, is significantly suppressed. However, the behavior of the liquid crystal molecules on the opposing electrode adjacent to the video signal line is unstable due to the fluctuation of the video signal, and when the opposing electrode adjacent to the video signal line is made transparent, Crosstalk is observed by the transmitted light. Therefore, by making the counter electrode adjacent to the video signal line opaque, crosstalk associated with the video signal can be suppressed. Further, as a function of the first configuration, the transparent conductive film is indium-tin-tin. Oxide (ITO), suitable for improving transmittance.
  • ITO indium-tin-tin. Oxide
  • the initial liquid crystal layer initial liquid crystal angle is almost zero, and the initial alignment angle is 45 ° C or more and less than 90 ° C if the dielectric anisotropy ⁇ of the liquid crystal material is positive. If the dielectric anisotropy ⁇ is negative, it is more than 0 ° and not more than 45 °, so that the domain can be suppressed, the range of the maximum applied voltage can be optimized, and the contrast can be improved. Can also be optimized.
  • the uppermost transparent conductive layer of the scanning signal line terminal portion, the video signal line terminal portion, or the counter electrode terminal portion and the transparent conductive film of the pixel electrode or the counter electrode are simultaneously formed.
  • the pixel electrode and the counter electrode can be formed of a transparent conductive film without increasing the number of steps.
  • At least one of the pixel electrode and the counter electrode is formed of a transparent conductive film.
  • Richard A. Soref Rivard A. Soref
  • the comb electrodes corresponding to the pixel electrode and the counter electrode are formed of a transparent conductive film.
  • liquid crystal display device of the present invention in order to obtain a wide viewing angle characteristic and a good aperture ratio, even if a voltage is applied between the pixel electrode and the counter electrode, it contributes to a display image.
  • the part where liquid crystal molecules are realigned keeps a homogeneous alignment state parallel to the substrate surface as much as possible.
  • transmission on the electrode corresponds to the angle ⁇ that rotates from the initial alignment direction. The rate acts complementarily to the transmittance between the electrodes to substantially improve the aperture ratio.
  • a homogeneous alignment state refers to a state in which a liquid crystal molecule in a liquid crystal layer has a tilt (rise) angle parallel to a substrate surface or an interface of the liquid crystal layer as much as possible. Is an alignment state in which the tilt angle from the substrate surface or the liquid crystal layer interface is less than 45 degrees. Therefore, the homeotropic alignment state means that the tilt angle from the interface of the liquid crystal layer exceeds 45 degrees with the substrate surface.
  • FIG. 41A shows an example of a potential distribution in the liquid crystal layer in an electrode configuration that generates an electric field in a direction substantially parallel to the substrate surface.
  • the solid line in the figure is the equipotential line, and the electric field vector is given in a direction perpendicular to the equipotential line.
  • the electric field vector E is perpendicular to the substrate surface on the center of the electrode. Only the component Ey in the direction is generated, but the component Ex in the horizontal direction also occurs on the substrate surface except for the center.
  • the horizontal electric field component EX is generated, the liquid crystal molecules between the electrodes rotate from the initial alignment direction RDR in the horizontal electric field EX direction as shown in FIGS. 41B and 41C. Rotate only the corner.
  • the liquid crystal molecules on the electrodes are rotated by the rotation of the liquid crystal molecules between the electrodes due to the elastic field in the liquid crystal.
  • the liquid crystal molecule at the center on the electrode is not applied with the transverse electric field, but rotates in the same direction as the surrounding liquid crystal molecules due to the elastic field. That is, the rotation angle ⁇ is large between the electrodes, decreases on the electrodes, and becomes minimum on the center of the electrodes.
  • FIGS. 42A to 42C The results of simulating this situation are shown in FIGS. 42A to 42C.
  • the initial pretilt angle of the liquid crystal molecules in the vicinity of the upper and lower interfaces of the liquid crystal layer is set to zero degree, and one transmission axis of the polarizing plate is made to coincide with the initial alignment direction RDR, and the transmission axis of the other polarizing plate is orthogonal.
  • the configuration example was a Nicol arrangement and display in birefringence mode.
  • T / T. si ⁇ 2 (2 a eff) ⁇ si ⁇ 2 ( ⁇ d eff ⁇ ⁇ n / ⁇ ) (1)
  • eff is the difference between the effective optical axis of the liquid crystal layer and the polarization transmission axis.
  • it is the effective value of the rotation angle ⁇ of the liquid crystal molecules in the thickness direction of the liquid crystal layer, which is an apparent value that can be treated as an average value assuming uniform rotation.
  • D eff is the effective thickness of the birefringent liquid crystal layer
  • is the refractive index anisotropy
  • is the wavelength of light.
  • the retardation ⁇ n ⁇ d eff of the liquid crystal layer was selected to be ⁇ of the wavelength ⁇ of light to realize the zero-order mode of birefringence, and the dielectric anisotropy ⁇ was positive. You have set.
  • Fig. 42 A is a characteristic diagram showing the state of equipotential lines when a voltage at which a bright display near the maximum is obtained is applied to the transparent ITO electrode.
  • the vertical axis represents the thickness of the liquid crystal layer (thickness 4). O / im), and the horizontal axis shows the relative positional relationship of the electrodes.
  • the numerical values in the figure indicate the normalized potential intensities.
  • Fig. 42B and Fig. 42C are the rotation angle and tilt of the liquid crystal molecules in the liquid crystal layer when the horizontal electric field component EX formed from the equipotential lines is applied. (Get up) Show the corner.
  • the liquid crystal molecules on the electrodes hardly rise, and in this example, the tilt angle is 8 ° or less in all the thickness directions of the liquid crystal layer.
  • the liquid crystal molecules on the electrodes are also rotated by about 15 to 35 ° near the center of the liquid crystal layer.
  • the sign of the tilt angle shown in FIG. 42C is such that, for the sake of convenience, the rightward rise is positive and the leftward rise is negative in the drawings. Therefore, in the method of the present invention, the rotation angle ⁇ of the liquid crystal molecules changes even on the electrode, and the transmittance can be changed.
  • the twist elastic constant ⁇ 2 of the liquid crystal is most relevant to this operation.
  • the twist elastic constant ⁇ 2 is preferably smaller, and the liquid crystal molecules on the electrode become smaller as the liquid crystal between the electrodes becomes smaller. Of the liquid crystal molecules between the electrodes Rotate to approach the rotation angle ⁇ .
  • F ig in. 4 ID schematic manner shows an electrode and on the transmittance between the electrodes distribution when the'isuto elastic constant K 2 to about 1 0 X 1 0- 1 2 N ( two Yuton).
  • the above-described reorientation of the liquid crystal molecules on the electrode causes the average transmittance of the portion A between the electrodes to be 5 to 30% of the transmittance of the portion B on the electrode.
  • the average value of the transmittance is the transmittance.
  • the twisted elastic constant K 2 2 0 X 1 0 - If the 1 2 N (Newton) or less, more 50% of the average transmittance of the transmittance of the portion A between the electrodes It was found that the average value of the transmittance of the portion B on the electrode was the transmittance. Therefore, the average transmittance of the entire portion becomes the average transmittance of the transmittance of the A + B portions, and is increased.
  • the aperture ratio per pixel can be substantially improved as compared with a conventional structure formed of a metal layer that does not transmit light at all.
  • the calculation is performed with the initial pretilt angle set to zero degree, but in practice, the initial pretilt angle near the interface between the liquid crystal layer and the alignment film is about 10 degrees or less, preferably 6 degrees or less. It must be set by rubbing. In an embodiment described later, the angle is set to about 5 degrees.
  • the initial pretilt angle in such a range, the liquid crystal molecules at the interface of the liquid crystal layer can be regulated in the in-plane direction of the substrate. Even when an electric field is applied, the average tilt angle of the liquid crystal layer on the electrode is 45 degrees. Will be maintained. In other words, even when an electric field is applied, the liquid crystal on the electrode can be prevented from being in a so-called home-port pick alignment.
  • FIG. 44 shows the liquid in the liquid crystal layer in the horizontal electric field type liquid crystal display device.
  • FIG. 8 is an example of a characteristic diagram of a simulation result showing a tilt angle of crystal molecules and a viewing angle range in which a contrast ratio in all directions is 10 or more.
  • the tilt angle is about 30 degrees
  • the contrast ratio becomes 10 or more in all directions within the viewing angle range inclined about 40 degrees from the direction perpendicular to the display surface.
  • the same characteristics as those of the liquid crystal display device can be obtained.
  • the viewing angle range expands, and if it is about 10 degrees, it extends to within the viewing angle range inclined at about 80 degrees, and if it is 5 degrees or less, it spreads to almost the entire area, wide viewing angle characteristics Is obtained.
  • rubbing of the alignment films OR II and OR I 2 described later is performed.
  • the orientation is set so that the initial pretilt angle of the liquid crystal molecules at the interface between the liquid crystal layers on the two substrates SUB 1 and SUB 2 is in the splay state, and the liquid crystal molecules near the center of the liquid crystal layer are formed. As far as possible, it should be parallel to the interface.
  • FIG. 1 is a plan view of a principal part showing one pixel of a liquid crystal display portion of an active matrix type single liquid crystal display device of the first embodiment of the present invention and the periphery thereof.
  • FIG. 2 is a cross-sectional view of a pixel taken along section line 3-3 of FIG.
  • FIG. 3 is a cross-sectional view of the thin-film transistor element TFT at the 4-14 cutting line of FIG.
  • FIG. 4 is a cross-sectional view of the storage capacitor C stg along the section line 5-5 in FIG.
  • FIG. 5 is a plan view for explaining the configuration of the periphery of the matrix of the display panel.
  • FIG. 6 is a cross-sectional view showing a scanning signal terminal on the left side and a panel edge portion without an external connection terminal on the right side.
  • FIG. 7A is a plan view showing the vicinity of the connection between the gate terminal GTM and the gate wiring GL
  • FIG. 7B is a sectional view thereof.
  • FIG. 8A is a plan view showing the vicinity of the connection between the drain terminal DTM and the video signal line DL, and FIG. 8B is a sectional view thereof.
  • FIG. 9A is a plan view showing the vicinity of a connection portion of a common electrode terminal CTM, a common bus line CB, and a common voltage signal line CL
  • FIG. 9B is a cross-sectional view thereof.
  • FIG. 10 is a circuit diagram of the active matrix color liquid crystal display device of the present invention, including a matrix portion and its periphery.
  • FIG. 11 is a diagram showing a drive waveform of the active-matrix type color liquid crystal display device of the present invention.
  • FIG. 12 is a flowchart of a cross-sectional view of a pixel portion and a gate terminal portion showing a manufacturing process of processes A to C on the substrate SUB1 side.
  • FIG. 13 is a flowchart of a cross-sectional view of a pixel portion and a gate terminal portion showing a manufacturing process of processes D to F on the substrate SUB1 side.
  • FIG. 14 is a flowchart of a cross-sectional view of a pixel portion and a gate terminal portion showing a manufacturing process of processes G to H on the substrate SUB1 side.
  • FIG. 15 is a top view showing a state where peripheral driving circuits are mounted on the liquid crystal display panel.
  • FIG. 16 shows that the integrated circuit chip CH I that constitutes the drive circuit is flexible.
  • FIG. 6 is a diagram showing a cross-sectional structure of a tape carrier package TCP mounted on a wiring board.
  • FIG. 17 is a cross-sectional view of a principal part showing a state where the tape carrier package TCP is connected to the running signal circuit terminal GTM of the liquid crystal display panel PNL.
  • FIG. 18 is an exploded perspective view of the liquid crystal display module.
  • FIG. 19 is a diagram showing a relationship among a direction of an applied electric field, a rubbing direction, and a transmission axis of a polarizing plate.
  • FIG. 20 is a plan view of a principal part showing one pixel of a liquid crystal display portion of an active matrix color liquid crystal display device of Example 2 of the present invention and the periphery thereof.
  • FIG. 21 is a main part plan view C showing one pixel of a liquid crystal display portion of an active matrix type color liquid crystal display device of Example 3 of the present invention and its periphery.
  • FIG. 22 is a fragmentary plan view showing one pixel of a liquid crystal display portion of an active matrix color liquid crystal display device according to a fourth embodiment of the present invention and the periphery thereof.
  • FIG. 23 is a fragmentary plan view showing one pixel of a liquid crystal display portion of an active matrix liquid crystal display device of Example 5 of the present invention and the periphery thereof.
  • FIGS. 24A to 24C are a plan view and a cross-sectional view of a principal part showing one pixel of a liquid crystal display portion and its periphery of an active matrix type color liquid crystal display device according to a sixth embodiment of the present invention.
  • FIG. 25 is the active matrix force of Example 7 of the present invention.
  • FIG. 4 is a plan view of a principal part showing one pixel of a liquid crystal display section of a color liquid crystal display device and its periphery.
  • F i g. 26 may, F i g. C is a cross-sectional view taken along 25 of 6-6 cut line
  • FIG. 27 is a cross-sectional view of the thin-film transistor element TFT taken along section line 7-7 of FIG.
  • FIG. 28 is a cross-sectional view of the storage capacitance C stg at the 8-8 section line of FIG. 25.
  • FIG. 29A is a plan view showing the vicinity of the connection between the gate terminal GTM and the gate wiring GL
  • FIG. 29B is a sectional view thereof.
  • FIG. 30A is a plan view showing the vicinity of the connection between the drain terminal DTM and the video signal line DL, and FIG. 30B is a sectional view thereof.
  • FIG. 31A is a plan view showing the vicinity of the connection between the common electrode terminal CTM1, the common bus line CB1, and the common voltage signal line CL
  • FIG. 3IB is a cross-sectional view thereof.
  • FIG. 32A is a plan view showing the vicinity of a connection portion of the common electrode terminal CTM2, the common bus line CB2, and the common voltage signal line CL, and FIG. 32B is a sectional view thereof.
  • FIG. 33 is a circuit diagram of the active matrix color liquid crystal display device of the present invention, including the matrix portion and its periphery.
  • FIG. 34 is a diagram showing a drive waveform of the active'matrix type color liquid crystal display device of the present invention.
  • FIG. 35 is a flowchart of a cross-sectional view of a pixel portion and a gate terminal portion showing manufacturing processes of processes A to C on the substrate SUB1 side.
  • Fig. 36 is a pixel showing the manufacturing process of processes D to E on the substrate SUB 1 side. It is a flowchart of the sectional view of a part and a gate terminal part.
  • FIG. 37 is a flowchart of a cross-sectional view of a pixel portion and a gate terminal portion illustrating a manufacturing process in a process F on the substrate SUB1 side.
  • FIG. 38 is a plan view of relevant parts showing one pixel of a liquid crystal display portion of an active matrix liquid crystal display device of Example 8 of the present invention and the periphery thereof.
  • FIG. 39 is a plan view of relevant parts showing one pixel of a liquid crystal display portion of an active matrix color liquid crystal display device of Example 9 of the present invention and the periphery thereof.
  • FIG. 40 is a plan view of relevant parts showing one pixel of a liquid crystal display portion of an active matrix type color liquid crystal display device of Example 10 of the present invention and the periphery thereof.
  • FIGS. 41A to 41D are diagrams showing the principle of the present invention
  • FIG. 41A is a characteristic diagram showing a potential distribution in a liquid crystal layer when a voltage is applied to an electrode.
  • 4IB is a plan view showing the reorientation state of the liquid crystal molecules near the center of the liquid crystal layer
  • FIG. 41C is a characteristic diagram showing the rotation angle ⁇ of the liquid crystal molecules shown in FIG. 41B
  • FIG. 4 ID is an example of a characteristic diagram showing the transmittance distribution of light transmitted through the liquid crystal layer on the upper and lower polarizers, the upper and lower substrates, the electrodes, and between the electrodes.
  • FIG. 42 is a diagram showing the principle of the present invention
  • FIG. 42A is a characteristic diagram showing the state of equipotential lines when a voltage is applied to the transparent electrode
  • FIG. 42C is an example of a diagram showing rotation angles and tilt angles of liquid crystal molecules in a liquid crystal layer when an electric field is applied.
  • FIG. 43 is a diagram showing the principle of improving the aperture ratio of the active matrix type color liquid crystal display device of Example 11 of the present invention. Is a characteristic diagram showing the potential distribution in the liquid crystal layer when a voltage is applied to the electrode, FIG. 43B is a plan view showing the realignment state of liquid crystal molecules near the center of the liquid crystal layer, FIG. 43C is a characteristic diagram showing the rotation angle of the liquid crystal molecule shown in FIG. 43B, and FIG. 43D is a light transmitted through the liquid crystal layer on the upper and lower polarizers, the upper and lower substrates, the electrodes, and between the electrodes.
  • FIG. 3 is an example of a characteristic diagram showing a transmittance distribution of FIG.
  • FIG. 44 is a characteristic diagram of a simulation result showing a tilt angle of a liquid crystal molecule in a liquid crystal layer and a viewing angle range in which a contrast ratio is 10 or more in all directions in a horizontal electric field type liquid crystal display device. This is an example.
  • FIG. 1 is a plan view showing one pixel of the active matrix type color liquid crystal display device of the present invention and its periphery. (The shaded area in the figure indicates the transparent conductive film g2.)
  • each pixel has a scanning signal line (gate signal line or horizontal signal line) GL, a counter voltage signal line (counter electrode wiring) CL, and two adjacent video signal lines ( (Drain signal line or vertical signal line) It is arranged in the intersection area with DL (in the area surrounded by four signal lines).
  • Each pixel is Includes thin film transistor TFT, storage capacitance C stg, pixel electrode PX and counter electrode CT.
  • the scanning signal lines GL and the counter voltage signal lines CL extend left and right in the figure, and a plurality of scanning signal lines GL and counter voltage signal lines CL are arranged in the vertical direction.
  • the video signal lines DL extend in the vertical direction, and a plurality of video signal lines DL are arranged in the horizontal direction.
  • the pixel electrode PX is connected to the thin film transistor TFT via the source electrode SD1, and the counter electrode CT is integrated with the counter voltage signal line CL.
  • the two pixels vertically adjacent to each other along the video signal line DL have a configuration in which the plane configuration overlaps when bent at the A line in FIG. This is because the opposing voltage signal line CL is shared by two vertically adjacent pixels along the video signal line DL, and the electrode width of the opposing voltage signal line CL is increased, thereby reducing the resistance of the opposing voltage signal line CL. That's why. This makes it easy to sufficiently supply a counter voltage from the external circuit to the counter electrode CT of each pixel in the left-right direction.
  • the pixel electrode PX and the counter electrode CT are opposed to each other, and the electric state between each pixel electrode PX and the counter electrode CT controls the optical state of the liquid crystal LC to control display.
  • the pixel electrode PX and the counter electrode CT are formed in a comb-like shape, and each is an electrode that is elongated vertically in the figure.
  • the potential of the counter electrode CT is stable because the counter electrode CT is always supplied with a potential from the outside by a counter voltage signal line CL described later. Therefore, the potential hardly fluctuates even when adjacent to the video signal line DL.
  • the geometric position of the pixel electrode PX from the video signal line DL is farther away, the parasitic capacitance between the pixel electrode PX and the video signal line DL is greatly reduced, and the pixel electrode potential Vs Fluctuation due to the video signal voltage can also be suppressed.
  • crosstalk defective image quality called vertical smear
  • the electrode width of each of the pixel electrode PX and the counter electrode CT is 6 zm. This is because, in order to apply a sufficient electric field to the entire liquid crystal layer in the thickness direction of the liquid crystal layer, the thickness of the liquid crystal layer described later is set to be sufficiently larger than 3.9 ⁇ , and the aperture ratio is increased. To be as thin as possible.
  • the electrode width of the video signal line D is set to 8 m, which is slightly wider than the pixel electrode ⁇ X and the counter electrode C ⁇ in order to prevent disconnection.
  • the electrode width of the video signal line DL is set to be equal to or less than twice the electrode width of the adjacent counter electrode CT.
  • the electrode width of the counter electrode CT adjacent to the video signal line DL is set to 1Z2 or more of the electrode width of the video signal line DL. I do. This is because the lines of electric force generated from the video signal line DL are absorbed by the counter electrodes CT on both sides, respectively.In order to absorb the lines of electric force generated from a certain electrode width, the lines of the same width or more must be absorbed. An electrode with an electrode width is required.
  • the electrodes of the counter electrode CT adjacent to the video signal line DL are required.
  • the width should be 1 Z 2 or more. This causes crosstalk due to the effect of the video signal In particular, preventing vertical (cross-talk in the vertical direction).
  • the width of the scanning signal line GL is set so as to satisfy a resistance value sufficient to apply a scan voltage to the gate electrode GT of the terminal pixel (the opposite side of the scan electrode terminal GTM described later).
  • the electrode width of the counter voltage signal line CL is also set so as to satisfy a resistance value enough to apply a counter voltage to the counter electrode CT of the pixel on the terminal side (opposite to the common bus line CB described later).
  • the electrode interval between the pixel electrode PX and the counter electrode CT changes depending on the liquid crystal material used.
  • the electrode spacing is set according to the liquid crystal material, and the maximum signal voltage set by the withstand voltage of the video signal drive circuit (signal driver) used. This is so that the maximum transmittance can be obtained in the range of the amplitude.
  • the electrode interval becomes 16 // m.
  • FIG. 2 is a cross-sectional view of FIG. 1 taken along the line 3-3
  • FIG. 3 is a cross-sectional view of the thin film transistor TFT taken along the line 4-14 of FIG. 1
  • FIG. 4 is a diagram showing a cross section of the storage capacitor C stg at the section line 5-5 in FIG.
  • a thin film transistor TFT, a storage capacitor C stg and an electrode group are formed on the lower transparent glass substrate SUB 1 side with respect to the liquid crystal layer LC, On the transparent glass substrate SUB2 side, a color filter FIL and a black matrix pattern BM for shading are formed.
  • the transparent glass substrates SUB 1 and SUB 2 have alignment films OR I 1 and OR I 2 on the inner surface (liquid crystal C side) to control the initial alignment of the liquid crystal.
  • SUB 1 and SUB 2 On the outer surface, there is provided a polarizing plate whose polarization axes are arranged orthogonally (crossed Nicols arrangement).
  • the thin film transistor TFT operates such that when a positive bias is applied to the gate electrode GT, the channel resistance between the source and the drain decreases, and when the bias is set to zero, the channel resistance increases.
  • the thin film transistor TFT is composed of a gate electrode GT, a gate insulating film GI, i-type (intrinsic, not doped with intrinsic ⁇ conductivity type determining impurities) amorphous silicon (S i)
  • the semiconductor device has an i-type semiconductor layer AS, a pair of source electrodes SD1, and a drain electrode SD2. It should be understood that the source and the drain are originally determined by the bias polarity between them, and in the liquid crystal display circuit, the polarity is inverted during the operation, so that the source and the drain are switched during the operation. However, in the following description, for convenience, one is expressed as a source and the other is expressed as a drain.
  • the gate electrode GT is formed continuously with the scanning signal line GL, and a part of the scanning signal line GL is configured to be the gate electrode GT.
  • the gate electrode GT is a portion beyond the active region of the thin film transistor TFT, and is formed to be larger (as viewed from below) so as to completely cover the i-type semiconductor layer AS.
  • the gate electrode GT is formed of a single conductive film g1.
  • the scanning signal line GL is formed of the conductive film g1.
  • the conductive film g1 of the scanning signal line GL is formed in the same manufacturing process as the conductive film g1 of the gate electrode GT, and is integrally formed.
  • the gate voltage Vg is supplied from an external circuit to the gate electrode GT through the scanning signal line GL.
  • an anodic oxide film AOF of A1 is also provided on the scanning signal line GL.
  • the portion that intersects with the video signal line DL is made thinner to reduce the probability of short-circuit with the video signal line DL, and is made bifurcated so that even if it is short-circuited, it can be separated by laser trimming.
  • the counter electrode CT is composed of the same conductive film gl as the gate electrode GT and the scanning signal line GL.
  • An A1 anodic oxide film AOF is also provided on the counter electrode CT.
  • the counter electrode CT is configured to apply a counter voltage Vcom.
  • the counter voltage Vcom is used to turn off the thin film transistor element TFT from the intermediate DC potential between the minimum level drive voltage Vdm in and the maximum level drive voltage Vdm ax applied to the video signal line DL.
  • the potential is set to be lower by the generated feedthrough voltage ⁇ Vs, if it is desired to reduce the power supply voltage of the integrated circuit used in the video signal drive circuit to about half, an AC voltage may be applied.
  • the counter voltage signal line CL is formed of the conductive film g1.
  • the conductive film g1 of the counter voltage signal line CL is formed in the same manufacturing process as the gate electrode GT, the scanning signal line GL, and the conductive film g1 of the counter electrode CT, and is formed integrally with the counter electrode CT. .
  • the counter voltage signal line CL supplies a counter voltage Vcom from an external circuit to the counter electrode CT.
  • An anodic oxide film AOF of A1 is also provided on the counter voltage signal line CL.
  • the portion that intersects with the video signal line DL is thinned to reduce the probability of a short circuit with the video signal line DL, as is the case with the scanning signal line GL. Even if the short circuit occurs, it can be separated by laser trimming. I am bifurcated.
  • the insulating film GI is used as a gate insulating film for applying an electric field to the semiconductor layer AS together with the gate electrode GT in the thin film transistor TFT.
  • the insulating film GI is formed above the gate electrode GT and the scanning signal line GL.
  • a silicon nitride film formed by plasma CVD is selected, and has a thickness of 1,200 to 2,700 A (in this embodiment,
  • the gate insulating film GI is formed so as to surround the entire matrix portion AR, and the peripheral portion is removed so as to expose the external connection terminals DTM and GTM.
  • the insulating film GI also contributes to electrical insulation between the scanning signal line GL and the counter voltage signal line CL and the video signal line DL.
  • the i-type semiconductor layer AS is made of amorphous silicon and has a thickness of 200 to 220 OA (in this embodiment, a film thickness of about 2000 A).
  • the layer d O is an N (+) type amorphous silicon semiconductor layer doped with phosphorus (P) for a homogenous contact, an i-type semiconductor layer AS is present on the lower side, and a conductive layer d is present on the upper side. 1 (d 2) remains only where it exists.
  • the i-type semiconductor layer AS is also provided between the scanning signal line GL and the intersection (crossover portion) between the counter voltage signal line CL and the video signal line DL.
  • the i-type semiconductor layer AS at the intersection reduces a short circuit between the scanning signal line G and the counter voltage signal line CL and the video signal line DL at the intersection.
  • Each of the source electrode SD1 and the drain electrode SD2 is composed of a conductive film d1 in contact with the N (+) type semiconductor layer d0 and a conductive film d2 formed thereon.
  • the conductive film d1 is formed of a chromium (Cr) film formed by sputtering to a thickness of 500 to 100 OA (about 60 OA in this embodiment). Since the stress increases when the Cr film is formed with a large thickness, the Cr film is formed within a thickness not exceeding about 200 OA.
  • the Cr film improves the adhesion to the N (+) type semiconductor layer d0, and prevents A1 of the conductive film d2 from diffusing into the N (+) type semiconductor layer d0 (the so-called barrier layer). ) Used for purposes.
  • a refractory metal Shirisai de Mo S i 2, T i S i 2, Ta S i 2, WS i 2 .
  • the conductive film d2 is formed to a thickness of 3000 to 5000 A (about 4000 A in this embodiment) by sputtering of A1.
  • the A1 film has less stress than the Cr film and can be formed with a large film thickness, reducing the resistance of the source electrode SD1, the drain electrode SD2 and the video signal line DL, and the gate electrode.
  • GT and i-type semiconductor layer It has the function to ensure that the step caused by AS is overcome (to improve the step coverage).
  • the N (+) type semiconductor layer d0 is removed using the same mask or using the conductive film d1 and the conductive film d2 as a mask. Is done.
  • the video signal line DL is composed of a second conductive film d2 and a third conductive film d3 in the same layer as the source electrode SD1 and the drain electrode SD2. Further, the video signal line DL is formed integrally with the drain electrode SD2.
  • the pixel electrode PX is formed of the transparent conductive layer g2.
  • the transparent conductive film g2 is made of a transparent conductive film (Indium-Tin-Oxide ITO: Nesa film) formed by sputtering and has a thickness of 100 to 200 mm (in the present embodiment, 14 to 14 mm). (Thickness of about 0 OA) is formed.
  • ITO Indium-Tin-Oxide
  • the maximum transmittance when white display is performed is improved due to the transmitted light in that part, so that a brighter display is provided than when the pixel electrode is opaque. It can be carried out.
  • the liquid crystal molecules maintain the initial alignment state, and the polarizing plate is arranged so as to display black in that state (normal black mode).
  • the maximum transmittance can be improved and a sufficient contrast ratio can be achieved.
  • the pixel electrode PX is formed so as to overlap the counter voltage signal line CL at an end opposite to the end connected to the thin film transistor TFT.
  • this superposition is performed by using a storage capacitor (capacitance element) C stg in which the pixel electrode PX is used as one electrode PL 2 and the counter voltage signal CL is used as the other electrode PL 1.
  • the dielectric film of the storage capacitor C stg is composed of an insulating film GI used as a gate insulating film of the thin film transistor TFT and an anodic oxide film AOF.
  • the storage capacitance C stg is formed in a portion where the width of the conductive film g1 of the counter voltage signal line CL is increased in plan view.
  • a protective film PSV1 is provided on the thin film transistor TFT.
  • Coercive Mamorumaku PSV 1 is mainly formed in order to protect the thin film transistor TFT from moisture or the like, c protective film PSV 1 to use a good addition moisture resistance high transparency was formed by, for example, the plasma CVD apparatus C
  • Protective film PSV 1 is formed so as to surround the entire matrix part AR, and the peripheral part is an external connection terminal DTM. The GTM has been removed to expose.
  • the protective film PSV1 which has a high protective effect, is larger than the gate insulating film GI so as to protect the peripheral area as much as possible. Has been established.
  • the light shielding film BM (so-called black matrix) is formed.
  • the light shielding film BM also serves to prevent external light or backlight light from entering the i-type semiconductor layer AS. That is, the i-type semiconductor layer AS of the thin film transistor TFT is sandwiched by the upper and lower light-shielding films BM and the large gate electrode GT, so that external natural light and backlight do not hit.
  • the closed polygonal outline of the light-shielding film BM shown in FIG. 1 indicates an opening inside which the light-shielding film BM is not formed.
  • This contour pattern is an example, and when the opening portion is further enlarged, the light shielding film BM1 indicated by a dotted line in FIG. 1 can be used.
  • the display of that part corresponds to the video information in the pixels on a one-to-one basis, and when black, black and white Is white, so it can be used as part of the display.
  • the vertical boundaries in the figure are determined by the alignment accuracy of the upper and lower substrates, and if the alignment accuracy is better than the electrode width of the counter electrode CT adjacent to the video signal line DL, the gap between the widths of the counter electrodes is If set, the opening can be further enlarged.
  • the light shielding film BM has a light shielding property, and has a counter electrode with the pixel electrode PX. It is formed of a high-insulating film that does not affect the electric field between the pole CT.In this embodiment, a black pigment is mixed into the resist material, and the thickness is about 1.2 ⁇ . Has formed.
  • the light-shielding film ⁇ is formed in a grid around each pixel, and an effective display area of one pixel is partitioned by the grid. Therefore, the outline of each pixel is made clear by the light shielding film ⁇ . That is, the light shielding film ⁇ has two functions of a black matrix and light shielding for the i-type semiconductor layer AS.
  • the light-shielding film BM is also formed in a frame shape in the peripheral portion, and its pattern is formed continuously with the pattern of the matrix portion shown in FIG. 1 in which a plurality of openings are provided in a dot shape.
  • the light-shielding film BM in the peripheral portion extends outside the seal portion SL to prevent leaked light such as reflected light due to a mounting machine such as a personal computer from entering the matrix portion.
  • the light-shielding film BM is kept about 0.3-1. Omm inward from the edge of the substrate SUB2, and is formed avoiding the cut region of the substrate SUB2.
  • the color filter FIL is formed in a stripe shape by repeating red, green, and blue at a position facing the pixel.
  • the color filter FIL is formed so as to overlap the edge of the light shielding film BM.
  • the color filter FIL can be formed as follows. First, a dye base such as acryl resin is formed on the surface of the upper transparent glass substrate SUB2, and the dye base other than the red filter forming region is removed by photolithography. Thereafter, the dyed base material is dyed with a red dye and subjected to a fixing treatment to form a red filter R. Next, a green filter G and a blue filter B are sequentially formed by performing a similar process. ⁇ Overcoat film oc ⁇
  • the overcoat film OC is provided to prevent the dye of the color filter FIL from leaking into the liquid crystal stripes and to flatten the steps due to the color filter FIL and the light shielding film BM.
  • the overcoat film OC is formed of, for example, a transparent resin material such as an acrylic resin or an epoxy resin.
  • liquid crystal layer the alignment film, the polarizing plate, and the like will be described.
  • a liquid crystal material LC As a liquid crystal material LC, a nematic material having a positive dielectric anisotropy ⁇ of 13.2 and a refractive index anisotropy ⁇ of 0.081 (589 nm, 20 ° C) Use liquid crystal.
  • the thickness (gap) of the liquid crystal layer is 3.9 ⁇ , and the retardation An.d is 0.316. With the value of this retardation ⁇ nd, the maximum transmittance can be obtained when the liquid crystal molecules are rotated by 45 ° from the rubbing direction to the electric field direction in combination with the alignment film and the polarizing plate described later. It is possible to obtain transmitted light having almost no wavelength dependence.
  • the thickness (gap) of the liquid crystal layer is controlled by polymer beads.
  • the liquid crystal material LC is not particularly limited, and the dielectric anisotropy may be negative.
  • the larger the value of the dielectric anisotropy ⁇ the more the driving voltage can be reduced.
  • the refractive index anisotropy ⁇ can be small, the force S can be increased, and the thickness (gap) of the liquid crystal layer can be increased, the liquid crystal sealing time can be shortened, and gap variation can be reduced.
  • Polyimide is used as the alignment film ORI.
  • the rubbing directions are parallel to each other on the upper and lower substrates, and the initial alignment angle ⁇ LC between the initial alignment direction RDR and the applied electric field direction EDR (EX) is 75 °.
  • Fig. 19 shows the relationship.
  • the initial alignment angle ⁇ LC formed by the initial alignment direction RDR and the applied electric field direction EDR is 45 ° C or more and less than 90 ° C and the dielectric constant difference if the dielectric anisotropy ⁇ £ of the liquid crystal material is positive. If the anisotropy ⁇ is negative, it must be greater than 0 ° and less than 45 °.
  • the rubbing directions are parallel to each other by the alignment films OR II and OR I 2, so that the liquid crystal layer between the electrodes and the display on the electrodes can be formed.
  • the initial pretilt angle of the liquid crystal molecules at the lower interface is in a splay state, and the liquid crystal molecules have the effect of compensating optical characteristics with each other, and a wide viewing angle characteristic can be obtained.
  • the pretilt angles of the liquid crystal molecules at the upper and lower interfaces of the liquid crystal layer are in a parallel state, and the average tilt angle in the liquid crystal layer increases, but the pretilt angle is set to 10 degrees or less. By doing so, the same effect of the present invention can be obtained.
  • a transparent conductive film is formed on the entire surface of the polarizing plate POL2 for the purpose of reducing its specific resistance in order to prevent the influence of external static electricity.
  • This transparent conductive film may be formed between the upper substrate SUB2 and the upper polarizer POL2.
  • FIG. 5 is a diagram showing a main part plane around a matrix (AR) of the display panel PNL including the upper and lower glass substrates SUB 1 and SUB 2.
  • FIG. 6 is a diagram showing a cross section near the external connection terminal GTM to which the scanning circuit is to be connected on the left side, and a cross section near the seal portion where there is no external connection terminal on the right side.
  • any breed for shared manufacturing facilities if large size divided from simultaneously processing a plurality fraction of the device in order one glass substrate was improved throughput, any breed for shared manufacturing facilities if large size After processing a glass substrate of standardized size, it is reduced to a size suitable for each product type. In each case, the glass is cut after a single process.
  • Fig. 5 and Fig. 6 show examples of the latter.
  • Both figures of Fig. 5 and Fig. 6 show the upper and lower substrates SUB 1 and SUB 2 after cutting. LN indicates the edge of both substrates before cutting.
  • the external connection terminal groups Tg and Td and the terminal COT (subscript omitted) exist (the upper and left sides in the figure) are the size of the upper substrate SUB2 so that they are exposed. Is limited to the inside of the lower substrate SUB 1.
  • the terminal groups Tg and Td are connected to a scanning circuit connection terminal GTM and a video signal circuit connection terminal DTM, respectively, and a lead-out wiring portion thereof, described later, by a tape carrier package TCP (Fig) on which an integrated circuit chip CH I is mounted. . 16, Fig.
  • the lead wiring from the matrix section of each group to the external connection terminal section is inclined as approaching both ends. This is because the terminals DTM and GTM of the display panel PNL are matched with the arrangement pitch of the package TCP and the connection terminal pitch of each package TCP.
  • the counter electrode terminal CTM is a terminal for applying a counter voltage to the counter electrode CT from an external circuit.
  • the counter voltage signal line CL in the matrix section is drawn out to the opposite side (right side in the figure) of the scanning circuit terminal GTM, and the respective counter voltage signal lines are grouped together by a common bus line CB and connected to the counter electrode terminal CTM. I have.
  • the sealing material is made of, for example, an epoxy resin.
  • the layers of the alignment films OR I1 and OR I2 are formed inside the seal pattern SL.
  • the polarizers POL 1 and POL 2 are respectively formed on the outer surfaces of the lower transparent glass substrate SUB 2 and the upper transparent glass substrate SUB 2.
  • the liquid crystal LC is sealed in a region partitioned by a seal pattern SL between the lower alignment film ORI1 and the upper alignment film ORI2 for setting the direction of liquid crystal molecules.
  • the lower alignment film OR I1 is formed on the lower transparent glass substrate SUB1 side on the protective film PSV1.
  • liquid crystal display device various layers are separately stacked on the lower transparent glass substrate SUB 1 side and the upper transparent glass substrate SUB 2 side, and a seal pattern SL is formed on the substrate SUB 2 side. It is assembled by superimposing the upper transparent glass substrate SUB2, injecting liquid crystal LC from the opening INJ of the sealing material SL, sealing the inlet INJ with epoxy resin, and cutting the upper and lower substrates.
  • FIG. 7A is a plan view showing a connection structure from the scanning signal line GL of the display matrix to its external connection terminal GTM
  • FIG. 7B is a view of FIG. 3 shows a cross section taken along a cutting line. 5 corresponds to the vicinity of the right center of FIG. 5 and the diagonal wiring portion is represented by a straight line for convenience.
  • AO is the boundary line of photoresist direct writing, in other words, the photoresist pattern of selective anodic oxidation. Therefore, this photoresist is removed after anodic oxidation, and the pattern AO shown in the figure does not remain as a finished product, but the oxide film AOF is selectively formed on the gate wiring GL as shown in the sectional view. So the trajectory remains.
  • the left side is the area covered with resist and not anodized
  • the right side is the area exposed from the resist and anodized with reference to the photoresist boundary line AO.
  • a 1 layer g 1 which is anodized conductive portion of the lower oxide thereof
  • a 1 2 0 3 film AOF is formed on the surface volume decreases.
  • the anodic oxidation is performed by setting an appropriate time and voltage so that the conductive portion remains.
  • the A1 layer g1 is hatched for easy understanding, but the region that is not anodized is patterned in a comb shape. This is because if the width of the A1 layer is large, a hoisting force is generated on the surface, so the width of each layer is narrowed and a plurality of them are bundled in parallel to reduce the generation of the Hoisse force. The aim is to minimize the probability of disconnection and sacrificing conductivity while preventing it.
  • the gate terminal GTM is composed of an A1 layer g1 and a transparent conductive layer g2 for further protecting the surface and improving the reliability of connection with a TCP (Tape Carrier Package). ing.
  • the transparent conductive film g2 uses a transparent conductive film ITO formed in the same process as the pixel electrode PX.
  • the conductive layers d 1 and d 2 formed on the A 1 layer g 1 and on the side surfaces thereof are made up of the A 1 layer and the transparent conductive layer in order to compensate for poor connection between the A 1 layer and the transparent conductive layer g 2. This is to connect the C r layer d 1 with good connectivity to both g 2 and reduce the connection resistance, and the conductive layer d 2 remains because the same mask as the conductive layer d 1 is formed. Is what it is.
  • the gate insulating film GI is formed on the right side of the boundary line
  • the protective film PSV 1 is formed on the right side of the boundary line
  • the terminal portion GTM located on the left end is exposed therefrom and connected to an external circuit. Electrical contact has been made.
  • only one pair of gate line GL and gate terminal 7A and B, these pairs are arranged up and down to form a terminal group Tg (Fig. 5), and the left end of the gate terminal is During the manufacturing process, it is extended beyond the cutting area of the substrate and short-circuited by wiring SH g (not shown).
  • Such a short-circuit line SHg in the manufacturing process is useful for power supply during anodization and prevention of electrostatic breakdown during rubbing of the alignment film ORI1.
  • FIG. 8A is a plan view showing the connection from the video signal line DL to the external connection terminal DTM
  • FIG. 8B is a cross-sectional view taken along a line 8-8 in FIG. Show. 5 corresponds to the vicinity of the upper right of FIG. 5, and the direction of the drawing is changed for convenience, but the right end corresponds to the upper end of the substrate SUB1.
  • TSTd is a test terminal. No external circuit is connected here, but it is wider than the wiring part so that probe needles etc. can be contacted. Similarly, the width of the drain terminal DTM is wider than that of the wiring portion so that the drain terminal DTM can be connected to an external circuit.
  • the external connection drain terminals DTM are arranged in the vertical direction, and the drain terminals DTM constitute a terminal group Td (subscript omitted) as shown in FIG. 5 and further extend beyond the cutting line of the substrate SUB 1. During the manufacturing process, all of them are short-circuited to each other by wiring SHd (not shown) to prevent electrostatic breakdown.
  • the test terminal TSTd is formed on every other video signal line DL as shown in FIG. 8A.
  • the drain connection terminal DTM is formed of a single layer of the transparent conductive layer g2, and is connected to the video signal line DL at a portion where the gate insulating film GI is removed.
  • This transparent conductive film g2 is the same as the pixel electrode PX as in the case of the Gout terminal GTM.
  • the transparent conductive film ITO formed in one step is used.
  • the semiconductor layer AS formed on the edge of the gate insulating film GI is for etching the edge of the gate insulating film GI in a tapered shape.
  • the protective film PSV1 is removed as well as the connection for connection with the external circuit.
  • the layers d 1 and d 2 at the same level as the video signal line DL are formed up to the middle of the protective film P SV 1, and within the protective film P SV 1 Connected to transparent conductive film g2. This is intended to protect the A1 layer d2, which is easy to be touched, as much as possible with the protective film PSV1 and the seal pattern S.
  • FIG. 9A shows a plan view showing the connection from the counter voltage signal line CL to its external connection terminal CTM
  • FIG. 9B shows a cross section of FIG. 9A taken along the line BB.
  • the figure F i g. 5 corresponds to the vicinity of the upper left c each counter voltage signal line CL is drawn to the counter electrode terminals CTM and collectively in the common bus line CB.
  • the common bus line CB has a structure in which a conductive layer dl and a conductive layer d2 are stacked on a conductive layer g1. This is to reduce the resistance of the common bus line CB so that the opposing voltage is sufficiently supplied from an external circuit to each opposing voltage signal line CL.
  • the feature of this structure is that the resistance of the common bus line can be reduced without adding a new conductive layer.
  • the conductive layer g1 of the common bus line CB is not anodized so as to be electrically connected to the conductive layer d1 and the conductive layer d2. It is also exposed from the gate insulating film GI.
  • the counter electrode terminal CTM has a transparent conductive layer g2 laminated on the conductive layer g1. It has a structure.
  • This transparent conductive film g2 uses a transparent conductive film ITO formed in the same process as the pixel electrode PX, as in the case of the other terminals.
  • the transparent conductive layer g2 covers the conductive layer gl with a durable transparent conductive layer g2 to protect its surface and prevent electrolytic corrosion and the like.
  • Fig. 10 shows the connection diagram of the equivalent circuit of the display matrix section and its peripheral circuits. Although this figure is a circuit diagram, it is drawn corresponding to the actual geometric arrangement.
  • AR is a matrix matrix in which a plurality of pixels are arranged two-dimensionally.
  • X represents a video signal line DL
  • suffixes G, B, and R are added corresponding to green, blue, and red pixels, respectively.
  • Y means the scanning signal line GL
  • the suffixes 1, 2, 3, ⁇ ' ⁇ , and end are added according to the order of the scanning timing.
  • the scanning signal line Y (subscript omitted) is connected to the vertical scanning circuit V, and the video signal line X (subscript omitted) is connected to the video signal driving circuit H.
  • the SUP uses a power supply circuit to obtain a plurality of divided and stabilized voltage sources from one voltage source, and CRT (cathode ray tube) information from the host (upper processing unit) for TFT liquid crystal display devices.
  • This is a circuit that includes a circuit that exchanges information.
  • FIG. 11 shows a drive waveform of the liquid crystal display device of the present invention.
  • the counter voltage signal line is formed of the conductive film g1 of aluminum, which is a low-resistance metal, the load impedance is small and the waveform of the counter voltage is less deformed. For this reason, the opposite voltage can be converted to AC, There is an advantage that the signal line voltage can be reduced.
  • the counter voltage is changed to a binary alternating rectangular wave of Vch and Vc1, and the non-selection voltages of the scanning signals Vg (i-1) and Vg (i) are synchronized with the rectangular wave in each scanning period.
  • Vg 1 h and Vg 1 1 The amplitude value of the counter voltage and the amplitude value of the non-selection voltage are the same.
  • the video signal voltage is the voltage obtained by subtracting 1Z2 of the amplitude of the counter voltage from the voltage to be applied to the liquid crystal layer.
  • the opposite voltage may be DC, but by converting it to AC, the maximum amplitude of the video signal voltage can be reduced, and a video signal drive circuit (signal side driver) with a low withstand voltage can be used.
  • the opposing voltage signal line CL is formed of the transparent conductive film g2, the resistance is relatively high, and the opposing voltage is preferably a direct current method.
  • the storage capacitance C stg is provided to store the video information written to the pixel (after the thin film transistor TFT is turned off) for a long time.
  • the storage capacitance C stg unlike the method of applying the electric field perpendicular to the substrate surface, there is almost no capacitance (so-called liquid crystal capacitance) composed of the pixel electrode and the counter electrode. Therefore, the storage capacity C stg cannot store video information in the pixel. Therefore, in a system in which an electric field is applied in parallel with the substrate surface, the storage capacitance C stg is an essential component.
  • the storage capacitance C stg also serves to reduce the effect of the gate potential change ⁇ V on the pixel electrode potential Vs when the thin film transistor TFT switches. This situation is expressed as follows.
  • V s ⁇ C gs / (C gs + C st g + C pix) ⁇ X ⁇ V g
  • C gs is the gate electrode GT and source of the thin film transistor TFT
  • the parasitic capacitance formed between the electrode SD1 and Cpix is the capacitance formed between the pixel electrode PX and the counter electrode CT
  • AVs is the so-called feedthrough voltage, which is the change in the pixel electrode potential due to AVg. Express.
  • This change ⁇ V s can be reduced as the force holding capacity C stg causing the DC component applied to the liquid crystal LC is increased.
  • the reduction of the DC component applied to the liquid crystal LC improves the life of the liquid crystal LC, and reduces the so-called burn-in in which the previous image remains when the liquid crystal display screen is switched.
  • the good electrode GT is made large to completely cover the i-type semiconductor layer AS, the overlap area between the source electrode SD1 and the drain electrode SD2 increases, and therefore the parasitic capacitance Cgs increases.
  • the pixel electrode potential Vs is easily affected by the gate (scanning) signal Vg.
  • this disadvantage can be eliminated.
  • Steps A to I are classified according to each photoprocessing.All cross-sectional views of each step show the stage where the processing after photoprocessing is completed and the photoresist is removed. ing.
  • photographic processing refers to a series of operations from application of a photo resist, through selective exposure using a mask to development of the resist, and a description thereof will not be repeated. Description will be given below according to the divided steps.
  • Process A F i g. 12
  • the conductive film g1 is provided by sputtering. After the photoprocessing, the conductive film g1 is selectively etched with a mixed acid solution of phosphoric acid, nitric acid, and glacial acetic acid. Accordingly, the gate electrode GT, the scanning signal line GL, the counter electrode CT, the counter voltage signal line CL, the electrode PL1, the gate terminal GTM, the first conductive layer of the common bus line CB, and the first conductive layer of the counter electrode terminal CTM. Then, an anodized bus line SHg (not shown) for connecting the gate terminal GTM and an anodized pad (not shown) connected to the anodized bus line SHg are formed.
  • anodic oxidation mask AO After the formation of an anodic oxidation mask AO by direct writing, the substrate was placed in an anodic oxidation solution consisting of a solution of 3% tartaric acid adjusted to PH 6.25 ⁇ 0.05 with ammonia, diluted 1: 9 with ethylene dalicol solution. Immerse SUB 1 and adjust the formation current density to 0.5 mAZ cm 2 (constant current formation). Then anodic oxidation until the reach the anodizing voltage 1 25 V required 1 2 0 3 film thickness given A is obtained. After that, it is desirable to keep this state for several tens of minutes (constant voltage formation). This is important for achieving a uniform A 1 2 0 3 film.
  • the conductive film g1 is anodized, and an anodized film AOF having a thickness of 180 OA is formed on the gate electrode GT, the scanning signal line GL, the counter electrode CT, the counter voltage signal line CL, and the electrode PL1.
  • Ammonia gas, silane gas, and nitrogen gas introduced into plasma CVD equipment Then, a 220-OA thick nitrided Si film was provided, silane gas and hydrogen gas were introduced into the plasma CVD apparatus, and a 200-OA thick i-type amorphous Si film was formed. Hydrogen gas and phosphine gas are introduced into a plasma CVD apparatus to provide an N (+)-type amorphous Si film having a thickness of 300 A.
  • the Si nitride film is selectively etched using SF 6 as a dry etching gas.
  • a transparent conductive film g2 made of an ITO film having a thickness of 140 OA is provided by sputtering. After photographic processing, the transparent conductive film g2 is selectively etched with a mixed acid solution of hydrochloric acid and nitric acid as an etchant, thereby forming the second conductive layer of the top layer of the gate terminal GTM, the drain terminal DTM and the counter electrode terminal CTM. Form a layer.
  • a conductive film d1 made of Cr with a film thickness of 600 A is provided by sputtering, and a film thickness of A1—Pd, Al—Si, Al—Ta, and A1 ⁇ T i—T with a film thickness of 400 OA
  • a conductive film d2 made of a or the like is provided by sputtering. After the photographic processing, the conductive film d2 is etched with the same solution as in step B, and the conductive film d1 is etched with the same solution as in step A.
  • the video signal line DL, the source electrode SD1, the drain electrode SD2, and the pixel Electrode PX, electrode PL 2, common bus A bus line SHd (not shown) for short-circuiting the second conductive layer and the third conductive layer of the line CB and the drain terminal DTM is formed. Then, by introducing the CC 1 4, SF 6 dry etch ring system, N (+) type by etching bridging amorphous SU trillions, N between the source and the drain (+) type semiconductor layer d 0 Is selectively removed.
  • Ammonia gas, silane gas, and nitrogen gas are introduced into the plasma CVD device to provide a 1 xm-thick Si nitride film.
  • a protective film PSV 1 After photographic processing, by selectively etching the nitride S i film with photolithography technique using SF 6 as a dry etching Ngugasu, a protective film PSV 1.
  • FIG. 15 is a top view showing a state where the video signal driving circuit H and the vertical scanning circuit V are connected to the display panel PNL shown in FIG. 5 and the like.
  • the driving IC chip CHI is a tape carrier package with a tape 'automated * bonding method (TAB), as described later in Figs. Is a drive circuit board on which the above-mentioned TCP and capacitors are mounted, and is divided into two for a video signal drive circuit and a scan signal drive circuit.
  • TAB tape 'automated * bonding method
  • FGP is a frame daland pad, and panel-like fragments cut into the shield case S HD are soldered.
  • FC is a flat cable that electrically connects the lower drive circuit board PCB1 and the left drive circuit board PCB1. As shown in the figure, the flat cable FC Use multiple lead wires (phosphor bronze material plated with Sn) sandwiched between a striped polyethylene layer and a polybutyl alcohol layer.
  • FIG. 16 is a diagram showing a cross-sectional structure of a tape carrier package TCP constituting the scanning signal driving circuit V and the video signal driving circuit H and having the integrated circuit chip CH I mounted on a flexible wiring board.
  • g.17 is a cross-sectional view of a principal part showing a state where the liquid crystal display panel is connected to a scanning signal circuit terminal GTM in the present example.
  • TTB is an input terminal and a wiring portion of the integrated circuit CH I
  • TTM is an output terminal and a wiring portion of the integrated circuit CH I, which are made of, for example, Cu.
  • the bonding pad PAD of the integrated circuit CHI is connected by the so-called face-down bonding method.
  • Terminals TTB, TTM, outer tips correspond to the input and output of the semiconductor integrated circuit chip CH I, respectively.
  • Power supply circuit SUP anisotropic It is connected to the liquid crystal display panel PNL by the conductive film ACF.
  • the package TCP is connected to the panel so that the tip thereof covers the protective film PSV1 exposing the connection terminal GTM on the panel PNL side.
  • the external connection terminal GTM (DTM) is connected to the protective film PSVI.
  • at least one of the packages TCP is covered, so it is more resistant to touch.
  • BF1 is a base film made of polyimide or the like, and SRS is a solder resist film for masking so that solder does not adhere to unnecessary portions during soldering.
  • SRS is a solder resist film for masking so that solder does not adhere to unnecessary portions during soldering.
  • the gap between the upper and lower glass substrates outside the seal pattern SL The space between them is washed and then protected by epoxy resin EPX, etc.
  • the space between the package TCP and the upper substrate SUB2 is further filled with silicone resin SIL to multiplex protection.
  • the drive circuit board PCB 2 has electronic components such as ICs, capacitors, and resistors mounted thereon.
  • This drive circuit board PCB 2 contains a power supply circuit for obtaining a plurality of divided and stabilized voltage sources from one voltage source, and information for a CRT (cathode ray tube) from the host (upper processing unit).
  • a circuit SUP that includes a circuit that converts the information into information for a TFT liquid crystal display device is mounted.
  • C J is a connector connecting part to which a connector (not shown) connected to the outside is connected.
  • the drive circuit board PCB 1 and the drive circuit board PCB 2 are electrically connected by a flat cable FC.
  • FIG. 18 is an exploded perspective view showing each component of the liquid crystal display module MDL.
  • SHD is a frame-shaped shield case (metal frame) made of a metal plate, LCW display window, PNL is a liquid crystal display panel, SPB is a light diffusion plate, LCB is a light guide, RM is a reflection plate, and BL is backlight fluorescent light.
  • the tube and LCA are the backlight case, and the components are stacked in the vertical arrangement as shown in the figure to assemble the module MDL.
  • the entire module MD L is fixed by claws and hooks provided on the shield case S HD.
  • Backlight case LCA is backlight fluorescent tube BL, light diffusion plate SP B Light diffusing plate, light guide LCB, and reflector RM are housed.Light from the backlight fluorescent tube BL arranged on the side of the light guide LCB is reflected by the light guide LCB, reflector RM, The backlight is made uniform on the display surface by the light diffusion plate SPB, and emitted to the liquid crystal display panel PNL side.
  • the inverter circuit board PCB 3 is connected to the backlight fluorescent tube BL, and is used as a power supply for the knock light fluorescent tube BL.
  • the maximum transmittance for white display can be improved by about 30% (31.8% in the present embodiment). Specifically, in this example, the transmittance was improved from about 3.8% when an opaque pixel electrode was used to about 5.0% when a transparent pixel electrode was used.
  • an ITO film for improving the reliability of the terminal can be formed at the same time, so that both reliability and productivity can be achieved.
  • FIG. 20 shows a plan view of a pixel.
  • the hatched portion in the figure indicates the transparent conductive film g2.
  • the pixel electrode PX is composed of the second conductive film d2 and the third conductive film d3 in the same layer as the source electrode SD1 and the drain electrode SD2.
  • the pixel electrode PX is formed integrally with the source electrode SD1.
  • the counter electrode CT is formed of the transparent conductive film g2.
  • This transparent conductive film g2 is made of a transparent conductive film (Indium-Tin-Oxide ITO: Nesa film) formed by sputtering, as in Example 1, and has a thickness of 100 to 200 ⁇ . (In this embodiment, the thickness of B is about 140 OA).
  • the counter voltage signal line CL is formed of the transparent conductive film g2, and is formed integrally with the counter electrode CT.
  • a transparent conductive layer g2 for protecting the surface of the A1 layer g1 of the gate terminal GTM and improving the reliability of connection with a TCP (Tape Carrier Package) is provided as a counter electrode. Formed in the same process as CT. The configuration is not different from that of the first embodiment, and is as shown in FIGS. 7A and 7B.
  • a transparent conductive film ITO formed in the same step as the counter electrode CT is used for the transparent conductive layer g2 of the drain connection terminal DTM, as in the case of the gate terminal GTM.
  • the structure is slightly different from that of the first embodiment in the vertical relationship of the layers, but is not essential, so that the illustration is omitted.
  • the transparent conductive layer g2 on the conductive layer g1 of the counter electrode terminal CTM uses the transparent conductive film I T O formed in the same step as the counter electrode CT as in the case of the other terminals.
  • the configuration is no different from that of Example 1, and is as shown in FIGS. 9A and 9B.
  • the order is such that the step F is inserted between the step B and the step C of the first embodiment.
  • the order of the steps is as follows: A ⁇ B ⁇ F ⁇ C ⁇ D ⁇ E ⁇ G ⁇ H.
  • the mask pattern is scanned
  • the signal line GL, the scanning electrode GT and the counter voltage signal line CL are separated, and the pattern of the transparent conductive layer g2 of each terminal and the pattern of the counter voltage signal line CL are formed on the same mask.
  • the maximum transmittance can be improved by about 16% (15.9% in this embodiment), and the transmittance of the liquid crystal display panel PNL is about 4.4%. %become.
  • FIG. 21 shows a plan view of a pixel.
  • the hatched portion in the figure indicates the transparent conductive film g2.
  • the counter electrode CT is formed of the transparent conductive film g2.
  • This transparent conductive film g2 is made of a transparent conductive film (Indium-Tin-Oxide ITO: Nesa film) formed by sputtering in the same manner as in Example 1, and has a thickness of 100 to 2000 A (in this example, , About 1400 A).
  • the counter voltage signal line CL is formed of the transparent conductive film g2, and is formed integrally with the counter electrode CT.
  • the order in which the step F is added between the step B and the step C in the first embodiment is set.
  • the order of the steps the order of steps from FIG. 12 to FIG. 15 is A ⁇ B ⁇ F ⁇ C ⁇ D ⁇ E ⁇ F ⁇ G ⁇ H.
  • the patterns of the scanning signal line GL, the scanning electrode GT, and the counter voltage signal line CL are formed on independent masks.
  • the maximum transmittance when performing white display is about 50% compared to the first embodiment or the second embodiment (47. 7%), and the transmittance of the liquid crystal display panel PNL becomes about 5.6%.
  • Fig. 22 shows a plan view of the pixel.
  • the hatched portion in the figure indicates the transparent conductive film g2.
  • the counter voltage signal line CL is formed of the conductive film g1.
  • a conductive film 1 is used.
  • anodization is not performed to connect the counter voltage signal line CL and the counter electrode CT.
  • a through hole PH is formed in the gate insulating film GI.
  • the conductive film g1 may be formed of Ta, Ti, Mo, W, A1, an alloy thereof, or a clad structure in which they are laminated, in addition to Cr.
  • step B of the first embodiment is deleted.
  • a through hole PH is formed, and in the process F, the pixel electrode PX and the counter electrode CT are simultaneously formed using the same mask.
  • the pixel electrode PX and the counter electrode CT can be formed simultaneously with the same mask.
  • Step F which is performed twice in Example 4, is performed once, and productivity is also improved.
  • Embodiments 1 and 4 This embodiment is the same as Embodiments 1 and 4 except for the following requirements.
  • Fig. 23 shows a plan view of the pixel.
  • the hatched portion in the figure indicates the transparent conductive film g2.
  • only the central counter electrode CT is formed of the transparent conductive film g2.
  • the counter electrode adjacent to the video signal line is formed of a metal film integrally with the counter voltage signal line.
  • the counter electrode signal line CL is formed of the transparent conductive layer g2 together with the counter electrode C.
  • the resistance value of the common electrode signal line CL is significantly reduced by the configuration shown in FIGS. 24A to 24C.
  • FIG. 24A is a plan view showing a part of the counter electrode signal line CL of FIG. 20.
  • FIG. 24B is a cross-sectional view taken along the line bb of FIG. 24A. is there.
  • the counter electrode signal line CL has a two-layer structure, and an A1 layer 10 having a small resistance value is formed as a lower layer thereof.
  • An ITO film 11 is formed on the upper surface of the Al layer 10 by completely covering the Al layer 10. Further, the counter electrode CT is configured by an extended portion in which a part of the ITO film 11 is extended.
  • the resistance of the counter electrode signal line CL can be reduced, and another conductive material through the interlayer insulating film formed by a so-called whisker-like protrusion generated in the A1 layer 10 is formed. An electrical short between the layer and the video signal line DL, for example, can be prevented.
  • the layer 10 has a negative effect when the interlayer insulating film for the video signal line DL is formed thereon, causing the above-mentioned adverse effects. It has been confirmed that the formation of the ITO film so as to cover the surface does not generate the hoisting force.
  • FIG. 24C is a structure in which the counter electrode CT is configured by double wiring.
  • the wiring of the ITO film 11 is formed so as to cover the wiring of the A1 layer 10. . Since the transmittance near the center line of the wiring is low even when a voltage is applied between the electrodes, even if an opaque metal wiring is arranged as in this example, the aperture ratio hardly decreases.
  • Adopting double wiring for the counter electrode or pixel electrode can significantly reduce the problem of electrode disconnection, which is a problem on large screens.
  • FIG. 25 is a plan view showing one pixel of the active matrix type liquid crystal display device of the present invention and its periphery. (The shaded area in the figure indicates the transparent conductive film i1.)
  • each pixel is composed of a scanning signal line (gate signal line or horizontal signal line) GL, a counter voltage signal line (counter electrode wiring), and two adjacent video signals.
  • Line drain signal line or vertical signal line
  • Each pixel includes a thin film transistor TFT, a storage capacitor C stg, a pixel electrode PX, and a counter electrode CT.
  • the scanning signal lines GL and the counter voltage signal lines CL extend in the left and right directions in the figure, and are arranged in a plurality in the vertical direction.
  • the video signal lines DL extend vertically and a plurality of video signal lines DL are arranged horizontally.
  • the pixel electrode PX is formed of the transparent conductive film i 1 and is electrically connected to the thin-film transistor TFT via the source electrode SD 1, and the counter electrode CT is also formed of the transparent conductive film i 1 and the counter voltage signal line CL Is electrically connected to
  • the pixel electrode PX and the counter electrode CT face each other, and the electric state between each pixel electrode PX and the counter electrode CT controls the optical state of the liquid crystal LC to control display.
  • the pixel electrode PX and the counter electrode CT are formed in a comb-like shape, and each is an electrode that is elongated vertically in the figure.
  • the counter electrode CT and the pixel electrode PX are alternately arranged, and the counter electrode CT is always adjacent to the video signal line DL.
  • the electric field between the counter electrode CT and the pixel electrode PX becomes The lines of electric force from the video signal line DL can be shielded by the counter electrode CT so as not to be affected by the electric field generated from the video signal line DL.
  • the potential of the counter electrode CT is stable because the counter electrode CT is always supplied with a potential from the outside via a counter voltage signal line CL described later. Therefore, the potential hardly fluctuates even when adjacent to the video signal line DL.
  • the geometric position of the pixel electrode PX from the video signal line DL is farther away, the parasitic capacitance between the pixel electrode PX and the video signal line DL is greatly reduced, and the pixel electrode potential Vs Fluctuation due to the video signal voltage can also be suppressed.
  • crosstalk defective image quality called vertical smear
  • the electrode width of the pixel electrode PX and the counter electrode CT is 6 // m. This is because, in order to apply a sufficient electric field to the entire liquid crystal layer in the thickness direction of the liquid crystal layer, the liquid crystal layer thickness is set to be sufficiently larger than 3.9 ⁇ , which will be described later, and the aperture ratio is increased. Make it as thin as possible.
  • the electrode width of the video signal line D is set to 8 zzm, which is slightly wider than the pixel electrode X and the counter electrode C to prevent disconnection.
  • the electrode width of the video signal line DL is set to be equal to or less than twice the electrode width of the adjacent counter electrode CT.
  • the electrode width of the counter electrode CT adjacent to the video signal line DL is set to 1Z2 or more of the electrode width of the video signal line DL. I do. This is because the lines of electric force generated from the video signal line DL are absorbed by the counter electrodes CT on both sides, respectively.In order to absorb the lines of electric force generated from a certain electrode width, the lines of the same width or more must be absorbed. An electrode with an electrode width is required. Therefore, the counter electrodes CT on both sides absorb the electric lines of force generated from half of the electrodes of the video signal line DL (4 ⁇ m each). Therefore, the electrode width of the counter electrode CT adjacent to the video signal line DL is 1 or more. This prevents crosstalk from occurring due to the effect of the video signal, particularly in the vertical direction (vertical crosstalk).
  • the width of the scanning signal line GL is set so as to satisfy a resistance value enough to apply a scanning voltage to the gate electrode GT of the terminal pixel (the opposite side of the scanning electrode terminal GTM described later).
  • the counter voltage signal line CL is also sufficiently connected to the counter electrode CT of the pixel on the terminal side (the pixel farthest from the common bus lines CB 1 and CB 2 described later, that is, the pixel between CB 1 and CB 2) Set the electrode width so as to satisfy the resistance value that can be applied.
  • the electrode interval between the pixel electrode PX and the counter electrode CT changes depending on the liquid crystal material used. This is because the electric field strength that achieves the maximum transmittance varies depending on the liquid crystal material, so the electrode spacing is set according to the liquid crystal material, and the maximum signal voltage set by the withstand voltage of the video signal drive circuit (signal driver) used. This is so that the maximum transmittance can be obtained in the range of the amplitude.
  • the electrode spacing becomes:
  • FIG. 26 is a cross-sectional view of the thin film transistor TFT taken along the line 7—7 of FIG. 25
  • FIG. 27 is a cross-sectional view of the thin film transistor TFT taken along the line 7—7 of FIG. 25.
  • 25 is a cross-sectional view of the storage capacitor C stg at the section line 8-8 in FIG. 25.
  • the lower transparent glass substrate SUB 1 side is formed with a thin film transistor TFT, a storage capacitor C stg and an electrode group based on the liquid crystal layer LC, and the upper transparent glass substrate On the SUB 2 side, a color filter FIL and black matrix for light shielding BM are formed. Have been.
  • the transparent glass substrates SUB 1 and SUB 2 are provided with alignment films OR I and OR I 2 on the inner surface (liquid crystal C side) for controlling the initial alignment of the liquid crystal.
  • a polarizing plate having a polarization axis arranged orthogonally (crossed Nicols arrangement) is provided on the outer surface of each of 1 and SUB 2.
  • the thin film transistor TFT operates such that when a positive bias is applied to the gate electrode GT, the channel resistance between the source and the drain decreases, and when the bias is set to zero, the channel resistance increases.
  • the thin film transistor TFT is composed of a gate electrode GT, an insulating film GI, and an i-type (intrinsic, intrinsic, conductivity type doping impurity-doped) amorphous silicon (Si). It has an i-type semiconductor layer AS, a pair of source electrodes SD1, and a drain electrode SD2. It should be understood that the source and the drain are originally determined by the bias polarity between them, and in the circuit of this liquid crystal display device, the polarity is inverted during the operation, so the source and the drain are understood to be switched during the operation. However, in the following description, one is fixed and the other is fixed as a drain for convenience.
  • the gate electrode GT is formed continuously with the scanning signal line GL, and a part of the scanning signal line GL is configured to be the gate electrode GT.
  • the gate electrode GT is a portion beyond the active area of the thin film transistor T F ⁇ .
  • the gate electrode GT is formed of a single conductive film g3.
  • a chromium-molybdenum alloy (Cr— ⁇ ⁇ ) film formed by sputtering is used, but not limited thereto.
  • the scanning signal line GL is formed of the conductive film g3.
  • the conductive film g3 of the scanning signal line GL is formed in the same manufacturing process as the conductive film g3 of the gate electrode GT, and is integrally formed.
  • the gate voltage Vg is supplied to the gate electrode GT from an external circuit by the scanning signal line GL.
  • the conductive film g3 for example, a chromium-molybdenum alloy (Cr-Mo) film formed by sputtering is used.
  • the scanning signal line GL and the gate electrode GT are not limited to chromium-molybdenum alloy, but may have a two-layer structure in which aluminum or an aluminum alloy is wrapped with chromium-molybdenum to reduce resistance. .
  • the portion that intersects with the video signal line DL may be narrowed to reduce the probability of a short circuit with the video signal line DL, or may be bifurcated so that the short circuit can be separated by laser trimming.
  • the counter voltage signal line CL is formed of the conductive film g3.
  • the conductive film g3 of the counter voltage signal line CL is formed in the same manufacturing process as the gate electrode GT, the scanning signal line GL, and the conductive film g3 of the counter electrode CT, and can be electrically connected to the counter electrode CT. Is configured.
  • the counter voltage Vcom is supplied to the counter electrode CT from an external circuit by the counter voltage signal line CL.
  • the counter voltage signal line CL is limited to chromium-molybdenum alloy only.
  • a two-layer structure in which aluminum or an aluminum alloy is wrapped with chromium-molybdenum to reduce resistance may be used.
  • portion that intersects with the video signal line D L may be narrowed to reduce the probability of short-circuit with the video signal line D L, or may be bifurcated so that even if it is short-circuited, it can be separated by laser trimming.
  • the insulating film GI is used as a gate insulating film for applying an electric field to the semiconductor layer AS together with the gate electrode GT in the thin film transistor TFT.
  • the insulating film GI is formed above the gate electrode GT and the scanning signal line GL.
  • a silicon nitride film formed by plasma CVD is selected, and is formed to a thickness of 2500 to 450 OA (about 350 OA in this embodiment).
  • the insulating film GI also functions as an interlayer insulating film between the scanning signal line GL, the counter voltage signal line CL, and the video signal line DL, and also contributes to their electrical insulation.
  • the insulating film GI is patterned using the same photomask as a protective film PSV1 to be described later, and is processed collectively. ⁇ I-type semiconductor layer AS ⁇
  • the i-type semiconductor layer AS is made of amorphous silicon and has a thickness of 200 to 2500 A (in this embodiment, a film thickness of about 1200 A).
  • the layer d0 is an N (+)-type amorphous silicon semiconductor layer doped with phosphorus (P) for ohmic contact.
  • An i-type semiconductor layer AS exists on the lower side, and a conductive layer d3 on the upper side. Is left only where it exists.
  • the i-type semiconductor layer AS and the layer d0 are also provided between the intersections (crossover portions) of the scanning signal lines GL and the counter voltage signal lines CL and the video signal lines DL. Is provided.
  • the i-type semiconductor layer AS at the intersection reduces a short circuit between the scanning signal line GL and the counter voltage signal line CL and the video signal line DL at the intersection.
  • Each of the source electrode SD1 and the drain electrode SD2 is formed of a conductive film d3 which is in contact with the N (+) type semiconductor layer d0.
  • the conductive film d3 is formed using a chromium-molybdenum alloy (Cr-Mo) film formed by sputtering to a thickness of 500 to 3000A (about 2500A in this embodiment). Since the Cr-Mo film has low stress, it can be formed relatively thick, which contributes to lowering the resistance of the wiring. Further, the Cr—Mo film has good adhesion to the N (+) type semiconductor layer d 0.
  • Cr-Mo chromium-molybdenum alloy
  • the conductive film d 3 in addition to the Cr—Mo film, a high melting point metal (Mo, Ti, Ta, W) film, a high melting point metal silicide (MoSi 2, TiSi 2, TaS i 2, WS i 2) A film may be used, or a laminated structure with aluminum or the like may be used.
  • the N (+) type semiconductor layer d0 is removed using the conductive film d3 as a mask. That is, in the N (+)-type semiconductor layer d0 remaining on the i-type semiconductor layer AS, portions other than the conductive film d1 and the conductive film d2 are removed by self-alignment.
  • the N (+) type semiconductor layer d0 is etched so as to entirely remove the thickness thereof, the surface of the i-type semiconductor layer AS is also slightly etched. Can be controlled by
  • the video signal line DL is composed of a conductive film d3 in the same layer as the source electrode SD1 and the drain electrode SD2.
  • the video signal line DL is connected to the drain electrode SD It is formed integrally with 2.
  • the conductive film d3 is formed of a chromium-molybdenum alloy (Cr-Mo) film formed by sputtering to a thickness of 500 to 3000 A (about 2500 A in this embodiment). Since the Cr_Mo film has low stress, it can be formed relatively thick, which contributes to lowering the resistance of the wiring. Further, the Cr-Mo film has good adhesion to the N (+)-type semiconductor layer d0.
  • Cr-Mo chromium-molybdenum alloy
  • a refractory metal Shirisai de Mo S i 2, T i S i 2, Ta S i 2 , WS i 2
  • a film may be used, or a laminated structure with an anolem minimum or the like may be used.
  • the conductive film d3 is formed so as to overlap the counter voltage signal line CL in the source electrode SD2 portion of the thin film transistor TFT. As shown in FIG. 28, this superposition is based on the storage capacitance (capacitance element) in which the source electrode SD 2 (d 3) is used as one electrode and the counter voltage signal CL is used as the other electrode.
  • the dielectric film of the storage capacitor C stg is composed of an insulating film GI used as a gate insulating film of the thin film transistor TFT.
  • the storage capacitance C stg is formed in a part of the counter voltage signal line CL in plan view.
  • a protective film PSV1 is provided on the thin film transistor TFT.
  • Coercive Mamorumaku PSV 1 is mainly formed in order to protect the thin film transistor T FT from moisture or the like, c protective film PSV 1 to use a good addition moisture resistance high transparency, for example formed by a plasma CVD apparatus Oxidized silico
  • the film is formed of a silicon nitride film and has a thickness of about 0.3 to lm.
  • the protective film PSV1 has been removed to expose the external connection terminals DTM and GTM.
  • the former is made thicker in consideration of the protective effect, and the latter is made thinner for the transconductance gm of the transistor.
  • the protective film PSV1 is putt für assembly, and is processed collectively.
  • through holes TH2 and TH1 are provided for electrical connection between the counter voltage signal line CL and the counter electrode CT described later, and for electrical connection between the source electrode SD2 and the pixel electrode PX. Provided.
  • the protective film PSV1 and the insulating film GI are processed together to form a hole up to the g3 layer.
  • the hole up to the d3 layer is blocked by the d3. Evil.
  • the pixel electrode PX is formed of the transparent conductive layer i1.
  • This transparent conductive film i1 is made of a transparent conductive film (Indium-Tin-Oxide ITO: Nesa film) formed by sputtering, and has a thickness of 100 to 2000 A (in this embodiment, a film thickness of about 1400 A). It is formed.
  • the pixel electrode PX is connected to the source electrode SD2 via the through hole TH1.
  • the maximum transmittance when white display is performed is improved due to the transmitted light in that part, so that a brighter display is provided than when the pixel electrode is opaque. It can be carried out.
  • the liquid crystal molecules maintain the initial alignment state, and the polarizing plate is arranged so as to display black in that state (normal black mode). Even if the pixel electrode is transparent, High-quality black can be displayed without transmitting light. Thereby, the maximum transmittance can be improved and a sufficient contrast ratio can be achieved.
  • the counter electrode CT is formed of the transparent conductive layer i1.
  • the transparent conductive film i1 is made of a transparent conductive film (Indium-Tin-Oxide ITO: Nesa film) formed by sputtering, and has a thickness of 100 to 200 ⁇ A (in this embodiment, a film thickness of about 140 OA). ) It is formed.
  • the counter electrode CT is connected to the counter voltage signal line CL via the through-hole TH2.
  • the counter electrode CT is configured to apply a counter voltage Vcom.
  • the counter voltage Vcom is used when the thin film transistor element TFT is turned off from the intermediate DC potential between the minimum level drive voltage Vdmin and the maximum level drive voltage Vdmax applied to the video signal line DL. Is set to a voltage that is lower by the amount of feedthrough voltage ⁇ s generated in the video signal, but if you want to reduce the power supply voltage of the integrated circuit used in the video signal drive circuit to about half, you can apply an AC voltage .
  • the light shielding film BM (so-called black matrix) is formed.
  • Light shielding film BM is used for external light or backlight It also plays a role in preventing light from entering the i-type semiconductor layer AS. That is, the i-type semiconductor layer AS of the thin film transistor TFT is sandwiched by the upper and lower light-shielding films BM and the large gate electrode GT, so that external natural light and backlight do not hit.
  • the light-shielding film BM shown in FIG. 25 has a configuration extending linearly in the left-right direction above the thin-film transistor element TFT.
  • This pattern is an example, and the pattern may be a matrix with openings formed in holes.
  • the display of that area corresponds to the video information in the pixel on a one-to-one basis. It can be used as part of the display.
  • the gap between the counter electrode CT and the video signal line DL in the vertical direction in the figure is shielded from light by a light shielding layer SH formed in the same step as the gate electrode GT.
  • the aperture can be enlarged more than the light shielding by the light shielding film BM which depends on the alignment accuracy.
  • the light-shielding film BM has a light-shielding property and is formed of a highly insulating film so as not to affect the electric field between the pixel electrode PX and the counter electrode CT. Pigment is mixed into the resist material to form a film of moderate thickness.
  • the light-shielding film BM is formed in the pixels of each row in a linear shape in the left-right direction, and the lines partition the effective display area of each row. Therefore, the outline of the pixels in each row is made clear by the light shielding film BM. That is, the light shielding film BM has two functions of black matrix and light shielding for the i-type semiconductor layer AS.
  • the light-shielding film BM is also formed in a frame shape at the peripheral portion, and its pattern is formed continuously with the pattern of the matrix portion shown in FIG.
  • the light shielding film BM in the peripheral portion is extended outside the seal portion SL to prevent leakage light such as reflected light due to a mounting machine such as a personal computer from entering the matrix portion and to prevent light such as knock light from being emitted. Is prevented from leaking out of the display area.
  • the light-shielding film BM is retained about 0.3 to 1. Omm inside the edge of the substrate SUB2, and is formed so as to avoid the cut region of the substrate SUB2.
  • FIG. 29A is a plan view showing a connection structure from the scanning signal line GL of the display matrix to the external connection terminal GTM, and FIG. B is a section line B—B of FIG. 29A.
  • FIG. 5 corresponds to the vicinity of the right center of FIG. 5, and the oblique wiring portion is shown as a straight line for convenience.
  • the Cr_Mo layer g3 is hatched for easy understanding.
  • the gate terminal GTM protects the Cr-Mo layer g3 and its surface, and connects to TCP (Tape Carrier Package).
  • TCP Transmission Carrier Package
  • a transparent conductive layer i1 for improving the reliability of the device.
  • This transparent conductive layer i1 uses a transparent conductive film ITO formed in the same step as the pixel electrode PX.
  • the insulating film GI and the protective film PSV 1 are formed on the right side of the boundary line, and the terminal GTM located on the left end is exposed therefrom so that electrical contact with an external circuit can be made.
  • only one pair of the gate line GL and the gate terminal is shown, but in reality, such pairs are arranged in a plural number up and down as shown in FIG. 29A, and the terminal group Tg (F i g. 5) is configured, and the left end of the gate terminal is extended beyond the cutting area of the substrate in the manufacturing process and is short-circuited by the wiring SHg (not shown). It is useful for preventing electrostatic breakdown at the time of rubbing of the alignment film ORI1 in the manufacturing process.
  • FIG. 3 OA shows a plan view showing the connection from the video signal line DL to its external connection terminal DTM
  • FIG. 3 OB shows the FIG. 3 shows a cross section. 5 corresponds to the vicinity of the upper right of FIG. 5 and the direction of the drawing is changed for convenience, but the right end corresponds to the upper end of the substrate SUB1.
  • TSTd is a test terminal. No external circuit is connected here, but it is wider than the wiring part so that probe needles etc. can be contacted. Similarly, the drain terminal DTM is wider than the wiring part so that it can be connected to an external circuit.
  • the external connection drain terminals DTM are arranged vertically, and the drain terminals DTM constitute a terminal group Td (subscript omitted) as shown in FIG. 5 and further extend beyond the cutting line of the substrate SUB1. , Quiet during the manufacturing process All of them are short-circuited to each other by wiring SHd (not shown) to prevent electric breakdown.
  • the inspection terminal TSTd is formed on every other video signal line DL as shown in FIG.
  • the drain connection terminal DTM is formed of the transparent conductive layer i1, and is connected to the video signal line DL at a portion where the protective film PSV1 is removed.
  • This transparent conductive film i1 uses a transparent conductive film ITO formed in the same step as the pixel electrode PX, as in the case of the gate terminal GTM.
  • the lead wiring from the matrix section to the drain terminal section DTM has a layer d3 at the same level as the video signal line DL.
  • FIG. 31A is a plan view showing the connection from the counter voltage signal line CL to the external connection terminal CTM
  • FIG. 3 IB is a diagram of FIG. FIG. This figure corresponds to the vicinity of the upper left of FIG.
  • Each counter voltage signal line CL is brought together to the counter electrode terminal CTM by a common bus line CB1.
  • the common bus line CB has a structure in which a conductive layer 3 is laminated on a conductive layer g3 and they are electrically connected by a transparent conductive layer i1. This is to reduce the resistance of the common bus line CB so that the opposing voltage is sufficiently supplied from an external circuit to each opposing voltage signal line CL.
  • the feature of this structure is that the resistance of the common bus line can be reduced without adding a new conductive layer.
  • the counter electrode terminal CTM has a structure in which a transparent conductive layer i1 is laminated on a conductive layer g3.
  • This transparent conductive film i1 uses a transparent conductive film ITO formed in the same process as the pixel electrode PX, as in the case of the other terminals.
  • Transparent The conductive layer i1 covers the conductive layer g3 with a transparent conductive layer i1 having high durability in order to protect the surface and prevent electrolytic corrosion and the like.
  • the connection between the transparent conductive layer i 1 and the conductive layer g 3 and the conductive layer d 3 is formed by forming through-holes in the protective film PSV 1 and the insulating film GI to establish conduction.
  • FIG. 32A is a plan view showing the connection from the other end of the counter voltage signal line CL to its external connection terminal CTM2, and FIG. FIG. 4 shows a cross-sectional view taken along the line B_B. This figure corresponds to the vicinity of the upper right of FIG. 5.
  • the common bus line CB2 the other end (gate terminal GTM side) of each counter voltage signal line CL is brought together to be pulled out to the counter electrode terminal CTM2.
  • Common bus line CB Common bus line CB
  • the difference from 1 is that the conductive layer d3 and the transparent conductive layer i1 are formed so as to be insulated from the scanning signal line GL. Insulation from the scanning signal line G is performed by the insulating film GI.
  • Fig. 33 shows the connection diagram of the equivalent circuit of the display matrix section and its peripheral circuits. Although this figure is a circuit diagram, it is drawn corresponding to the actual geometric arrangement.
  • AR is a matrix array in which a plurality of pixels are arranged two-dimensionally.
  • X represents a video signal line DL
  • suffixes G, B, and R are added corresponding to green, blue, and red pixels, respectively.
  • Y means the scanning signal line GL
  • the suffixes 1, 2, 3,..., And end are added according to the order of the scanning timing.
  • the scanning signal line Y (subscript omitted) is connected to the vertical scanning circuit V, and the video signal line X (subscript omitted) is connected to the video signal driving circuit H.
  • the SUP uses a power supply circuit to obtain a plurality of divided and stabilized voltage sources from one voltage source and CRT (cathode ray tube) information from the host (upper processing unit) for TFT liquid crystal display devices.
  • FIG. 34 shows a drive waveform of the liquid crystal display device of this embodiment.
  • the counter voltage Vc is a constant voltage.
  • the scanning signal V g takes an on level every run period, and takes an off level in the others.
  • the video signal voltage is applied so that the positive and negative polarities are inverted every frame and transmitted to one pixel with twice the amplitude of the voltage to be applied to the liquid crystal layer.
  • the polarity of the video signal voltage Vd is inverted every column, and the polarity is also inverted every row.
  • the pixels whose polarities are inverted are arranged up and down and left and right, and it is possible to reduce the occurrence of flitting force and crosstalk (smear).
  • the counter voltage Vc is set to a voltage that is a fixed amount lower than the center voltage of the polarity inversion of the video signal voltage. This is to correct the feedthrough voltage generated when the thin film transistor element changes from on to off, and is performed to apply an alternating voltage with a small DC component to the liquid crystal. This is because, when a direct current is applied to the liquid crystal, afterimages, deterioration, and the like become severe.
  • the maximum amplitude of the video signal voltage can be reduced by converting the counter voltage into an alternating current, and a video signal drive circuit (signal-side driver) having a low withstand voltage can be used.
  • Step A to Step I are classified according to each photographic process.All cross-sectional views of each process show the stage where the processing after photo processing is completed and the photoresist is removed. I have.
  • photographic processing refers to a series of operations from application of a photoresist, through selective exposure using a mask to development thereof, and a repeated description thereof will be omitted. The explanation will be given in accordance with the following steps.
  • AN635 glass (trade name) A conductive film g3 made of Cr—Mo or the like having a thickness of 2000 A is provided on the lower transparent glass substrate SUB1 by sputtering. After the photographic processing, the conductive film g3 is selectively etched with ceric ammonium nitrate. Accordingly, the gate electrode GT, the scanning signal line GL, the counter voltage signal line CL, the gate terminal GTM, the first conductive layer of the common bus line CB1, the first conductive layer of the counter electrode terminal CTM1, the gate terminal GTM Are formed to form a bus line SHg (not shown).
  • Ammonia gas, silane gas, and nitrogen gas are introduced into the plasma CVD device to provide a 350 OA-thick Si nitride film, and silane gas and hydrogen gas are introduced into the plasma CVD device to produce a 120 OA-thick i film.
  • a hydrogen gas and a phosphine gas are introduced into the plasma CVD apparatus to form an N (+) amorphous Si film having a thickness of 300 A.
  • a conductive film d3 made of Cr and having a thickness of 300 A is provided by sputtering. After the photoprocessing, the conductive film d3 is etched with the same liquid as in step A, and the video signal line DL, the source electrode SD1, the drain electrode SD2, the first conductive layer of the common bus line CB2, and the drain terminal DTM are removed. Form a shorting bus line SHd (not shown). Then, by introducing the CC 1 4, SF 6 dry etching apparatus, N (+) type by the amorphous S i layer and child etching, N between the source and the drain (+) type semiconductor layer d 0 Is selectively removed.
  • Ammonia gas, silane gas, and nitrogen gas are introduced into the plasma CVD apparatus to provide a 0.4 ⁇ -nitride Si film.
  • SF 6 SF 6
  • a transparent conductive film i1 made of an ITO film having a thickness of 140 OA is provided by sputtering. After the photographic processing, the transparent conductive film i1 is selectively etched with a mixed acid solution of hydrochloric acid and nitric acid as an etchant, thereby forming the uppermost layer of the gate terminal GTM, the drain terminal DTM and the counter electrode terminal CTM1. You And a second conductive layer of CTM2.
  • the maximum transmittance when performing white display can be improved by about 50%, and the transmittance of the liquid crystal display panel PNL can be improved. Is about 5.7%.
  • an ITO film for improving the reliability of the terminal can be formed at the same time, so that both reliability and productivity can be achieved.
  • the process of forming the ITO on the upper layer of the protective film PSV is used, so that the counter electrode can be provided on the uppermost layer, and the video signal line can be used.
  • the shielding efficiency of the leaked electric field is good, and crosstalk can be reduced.
  • the protective film P SV does not intervene in the path of the electric force lines that drive the liquid crystal between the electrodes, there is no voltage reduction in the protective film PSV, and the maximum drive voltage value for driving the liquid crystal is set to 7 in Example 1. In this example, it was reduced from 5 Vo 1 t to 5.0 Vo 1 t.
  • the protective film enters the path of the lines of electric force between the electrodes twice. Process can be simplified and productivity can be improved.
  • Fig. 38 shows a plan view of the pixel.
  • the hatched portion in the figure indicates the transparent conductive film i1.
  • the pixel electrode PX is formed of the same conductive film d3 as the source electrode SD1 and the drain electrode SD2.
  • the pixel electrode PX is formed integrally with the source electrode SD1.
  • the transmittance is sacrificed, but a contact failure between the pixel electrode PX and the source electrode SD1 can be avoided.
  • one of the electrodes is covered with an insulating film (protective film PSV1), the possibility of direct current flowing through the liquid crystal in the event of an alignment film defect is reduced, the liquid crystal is not degraded, and reliability is reduced. improves.
  • Fig. 39 shows a plan view of the pixel.
  • the hatched portion in the figure indicates the transparent conductive film i1.
  • the counter electrode CT is formed integrally with the counter voltage signal line CL by the conductive film g3.
  • the transmittance is sacrificed, but a contact failure between the counter electrode CT and the counter voltage signal line CL can be avoided.
  • one of the electrodes is covered with an insulating film (protective film PSV1), the possibility of direct current flowing through the liquid crystal in the event of an alignment film defect is reduced, the liquid crystal is not degraded, and reliability is reduced. improves. (Example 10)
  • Fig. 40 shows a plan view of the pixel.
  • the hatched portion in the figure indicates the transparent conductive film i1.
  • the light shielding film BM (so-called black matrix) is formed.
  • the light shielding film BM also serves to prevent external light or backlight light from entering the i-type semiconductor layer AS. That is, the i-type semiconductor layer AS of the thin film transistor TFT is sandwiched by the upper and lower light-shielding films BM and the large gate electrode GT, so that external natural light and backlight do not hit.
  • the light-shielding film BM shown in FIG. 40 has a configuration extending in the vertical and horizontal directions above the thin-film transistor element TFT, and has a matrix-like shape with holes formed in the openings.
  • the display of that area corresponds to the video information in the pixel on a one-to-one basis, and is black for black and white for white. Therefore, it can be used as part of the display.
  • the light shielding film BM has a light shielding property, and the electric field from the video signal line DL affects the electric field between the pixel electrode PX and the counter electrode CT.
  • three layers of chromium oxide (CrOx), chromium nitride (CrNx), and chromium (Cr) are formed from the counter substrate SUB1 surface.
  • the structure is formed with a thickness of about 0.2 ⁇ .
  • chromium oxide (CrOx) It is used to suppress surface reflection.
  • Chromium (Cr) is provided on the uppermost layer of the light shielding layer BM so that a voltage can be externally applied to the light shielding layer BM.
  • the light-shielding film BM is formed in the pixels of each row in a linear shape in the left-right direction, and the lines partition the effective display area of each row. Therefore, the outline of the pixels in each row is made clear by the light shielding film BM.
  • the light shielding film BM has two functions of black matrix and light shielding for the i-type semiconductor layer AS.
  • the light-shielding film BM is also formed in a frame shape at the peripheral portion, and its pattern is formed continuously with the pattern of the matrix portion shown in FIG.
  • the peripheral light-shielding film BM is extended outside the seal part SL to prevent leaked light such as reflected light from a mounting machine such as a personal computer from entering the matrices part, and to prevent knock light etc. Light is prevented from leaking out of the display area.
  • the light-shielding film BM is retained about 0.3 to 1. Omm inside the edge of the substrate SUB2, and is formed so as to avoid the cut region of the substrate SUB2. ⁇ Overcoat film OC ⁇
  • through holes may be formed so that a potential can be applied to the light shielding film BM.
  • the potential is preferably connected to the counter voltage Vc.
  • the light shielding film BM shields the influence of the electric field from the video signal line DL, so that the electric field between the pixel electrode PX and the counter electrode CT is not affected. . Therefore, crosstalk with the video signal line DL is eliminated, and image quality defects (smears) that cause streaking on the screen can be eliminated.
  • the area in which the transparent counter electrode CT disposed on both sides of the video signal line DL is shielded by the light shielding layer SH can be reduced, and a higher transmittance can be achieved.
  • FIG. 43 is a diagram showing the principle of improving the aperture ratio of the display device according to the active matrix color liquid of the present embodiment.
  • FIG. 43A shows the liquid crystal when a voltage is applied to the electrodes.
  • FIG. 43B is a characteristic diagram showing the potential distribution in the layer
  • FIG. 43B is a plan view showing the reorientation state of liquid crystal molecules near the center of the liquid crystal layer
  • FIG. 43C is a liquid crystal shown in FIG. 43B.
  • FIG. 43D is a characteristic diagram showing the rotation angle ⁇ of the molecule
  • FIG. 43D is an example of a characteristic diagram showing the transmittance distribution of light transmitted through the liquid crystal layer on the upper and lower polarizers, the upper and lower substrates, the electrodes, and between the electrodes.
  • Example 7 it is the same as Example 7 except for the following requirements.
  • the liquid crystal molecules at the center of the electrode also rotate, and the average transmittance of the portion A between the electrodes is 50% or more of the average transmittance of the portion B on the electrode. It was found that the transmittance was obtained.
  • the average transmittance of the entire portion is the average transmittance of the A + B portions, which is greatly increased.
  • the present invention is applied to a liquid crystal or the like as described above, and has practical application in the liquid crystal manufacturing industry.

Landscapes

  • Physics & Mathematics (AREA)
  • Liquid Crystal (AREA)
  • Nonlinear Science (AREA)
  • Geometry (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

An active matrix type liquid crystal display device capable of accomplishing an angle of visual field equal to that of a CRT and controlling the display by an electric field substantially parallel to a substrate surface provides bright display and requires lower power consumption. Pixel electrodes and opposed electrode capable of applying an electric field substantially parallel to a substrate surface is constituted, the pixel electrodes or the opposed electrodes are constituted by transparent electrodes, and the orientation state of a liquid crystal and the axis of polarization of a polarizer are constituted so that dark display is effected at the time when no field is applied. In this way, there can be provided a transverse field system active matrix type liquid crystal display device having a wide visual field angle characteristics, excellent contrast ratio and aperture ratio and capable of improving maximum transmissivity.

Description

明 細 書  Specification
開口率向上に適する横電界方式液晶表示装置  In-plane liquid crystal display suitable for improving aperture ratio
〔技術分野〕 〔Technical field〕
本発明は、 アクティブ 'マトリクス方式の液晶表示装置に係り、 特に、 開口率向上に適する広視角特性を有する横電界方式液晶表示装置に関 する。  The present invention relates to an active-matrix type liquid crystal display device, and more particularly to a horizontal electric field type liquid crystal display device having a wide viewing angle characteristic suitable for improving an aperture ratio.
〔背景技術〕  (Background technology)
薄膜トランジスタ (T F T) に代表されるアクティブ素子を用いたァ クティブマトリクス型液晶表示装置は薄い、 軽量という特徴とブラウン 管に匹敵する高画質という点から、 O A機器等の表示端末として広く普 及し始めている。 この液晶表示装置の表示方式には、 大別して、 次の 2 通りがある。  Active matrix liquid crystal display devices using active elements typified by thin film transistors (TFTs) have begun to spread widely as display terminals for OA equipment, etc. due to their thin and lightweight characteristics and high image quality comparable to cathode ray tubes. I have. The display methods of this liquid crystal display device are roughly classified into the following two types.
1つは、 透明電極が構成された 2つの基板により液晶を挾み込み、 透 明電極に印加された電圧で動作させ、 透明電極を透過し液晶に入射した 光を変調して表示する方式であり、 現在、 普及している製品が全てこの 方式を採用している。  One is a method in which the liquid crystal is sandwiched between two substrates with transparent electrodes, operated by the voltage applied to the transparent electrode, and the light transmitted through the transparent electrode and incident on the liquid crystal is modulated and displayed. Yes, all products that are currently in widespread use this method.
また、 もう 1つは、 同一基板上に構成した 2つの電極の間の基板面に ほぼ平行な電界により液晶を動作させ、 2つの電極の隙間から液晶に入 射した光を変調して表示する方式であり、 視野角が著しく広いという特 徴を持ち、 アクティブマトリクス型液晶表示装置に関して有望な技術で 横電界方式、 あるいは、 イン一プレーン一スイッチング方式と称する。 後者の方式の特徴に関しては、 特許出願公表平 5— 5 0 5 2 4 7号公 報、 特公昭 6 3— 2 1 9 0 7号公報、 特開平 6— 1 6 0 8 7 8号公報に 記載されている。 The other is to operate the liquid crystal by an electric field that is almost parallel to the substrate surface between two electrodes formed on the same substrate, and to modulate the light incident on the liquid crystal from the gap between the two electrodes to display. This method is characterized by a remarkably wide viewing angle, and is a promising technology for active matrix type liquid crystal display devices. It is called the horizontal electric field method or in-plane switching method. Regarding the features of the latter method, see Japanese Patent Application Publication No. 5-504,247, Japanese Patent Publication No. Sho 63-219,074, and Japanese Patent Application Laid-Open No. 6-160878. Has been described.
しかし、 前記後者の従来方式では、 不透明な金属電極を櫛歯状に構成 しているため、 光を透過する開口領域の割合 (開口率) が著しく低く、 後者の従来方式のアクティブマトリクス型液晶表示装置は、 表示画面が 暗い、 または、 表示画面を明るくするために消費電力の大きい明るいバ ックライ トを用いなければならないため、 装置の消費電力が増大すると いう問題があった。  However, in the latter conventional method, since the opaque metal electrode is formed in a comb-like shape, the ratio of the aperture area through which light is transmitted (opening ratio) is extremely low, and the latter conventional active matrix liquid crystal display is used. The device has a problem that the power consumption of the device increases because the display screen is dark or a bright backlight with large power consumption must be used to brighten the display screen.
また、 別の課題として、 後者の従来方式では、 金属電極を用いている ため、 電極での反射率が高く、 電極での反射で画面に顔等が写り込み、 見づらいという問題もある。  Another problem is that, in the latter conventional method, since a metal electrode is used, the reflectance at the electrode is high, and a face or the like is reflected on the screen by the reflection at the electrode, making it difficult to see.
本発明は上記の課題を解決するもので、 本発明の目的は、 ブラウン管 並の視野角を実現できる前記後者の表示方式を用いたアクティブマト リクス型液晶表示装置において、 高開口率で明るく、 低消費電力で、 か つ、 低反射で見易いアクティブマトリクス型液晶表示装置を提供するこ とにある。  An object of the present invention is to solve the above-mentioned problems. An object of the present invention is to provide an active matrix type liquid crystal display device using the latter display method capable of realizing a viewing angle similar to a cathode ray tube, with a high aperture ratio, a high brightness, a low An object of the present invention is to provide an active matrix liquid crystal display device that consumes low power and is easy to see with low reflection.
〔発明の開示〕  [Disclosure of the Invention]
前記目的を達成するために、 本発明では、 第 1の構成として、 少なく とも画素電極あるいは対向電極の一方が透明電極であり、 電界無印加時 に喑表示をするノーマリブラックモードにし、 電界無印加時の前記ツイ スト可能な液晶層の初期配向状態がホモジニァス配向状態であり、 電界 印加時の前記電極間及び電極上の液晶分子が基板面に略平行に支配的 に回転し、 液晶表示パネルの光透過率の最大値が 4 . 0 %以上であり、 コントラスト比 1 0対 1以上の視野角範囲が、 表示面に対して垂直方向 から 4 0度以上傾斜した全方位の範囲内であることを特徴とする。 第 2の構成として、 少なくとも画素電極あるいは対向電極の一方が透 明電極であり、 電界無印加時に暗表示をするノーマリブラックモードに し、 かつ、 電界無印加時のツイスト可能な液晶層の初期配向状態がホモ ジニァス配向状態であり、 ツイスト弾性定数が 1 O X 1 0— 1 2 N (ニュ 一トン) 以下であることを特徴とする。 In order to achieve the above object, according to the present invention, as a first configuration, at least one of the pixel electrode and the counter electrode is a transparent electrode, and is set to a normally black mode in which a display is performed when no electric field is applied. The initial alignment state of the twistable liquid crystal layer at the time of application is a homogenous alignment state, and the liquid crystal molecules between the electrodes and on the electrodes when an electric field is applied rotate predominantly substantially in parallel to the substrate surface. The maximum light transmittance is 4.0% or more, and the viewing angle range with a contrast ratio of 10: 1 or more is within the range of all directions inclined at least 40 degrees from the vertical direction to the display surface. It is characterized by the following. As a second configuration, at least one of the pixel electrode and the counter electrode is a transparent electrode, a normally black mode in which dark display is performed when no electric field is applied, and an initial state of the twistable liquid crystal layer when no electric field is applied. orientation state is a homo Jiniasu alignment state, and wherein the twist elastic constant is not more than 1 OX 1 0- 1 2 N (New one ton).
第 3の構成として、 少なくとも画素電極あるいは対向電極の一方が透 明電極であり、 電界無印加時に喑表示をするノーマリブラックモードに し、 つ、 電界無印加時のツイスト可能な液晶層の初期配向状態がホモ ジニァス配向状態であり、 液晶層の上下界面の液晶分子の初期プレチル ト角が 1 0度以下で、 液晶層内の液晶分子の初期チルト状態がスプレイ 状態であることを特徴とする。  As a third configuration, at least one of the pixel electrode and the counter electrode is a transparent electrode, a normally black mode in which a display is performed when no electric field is applied, and an initial state of the twistable liquid crystal layer when no electric field is applied. The alignment state is a homogeneous alignment state, the initial pretilt angle of the liquid crystal molecules at the upper and lower interfaces of the liquid crystal layer is 10 degrees or less, and the initial tilt state of the liquid crystal molecules in the liquid crystal layer is a splay state. .
第 4の構成として、 少なくとも画素電極あるいは対向電極の一方が透 明電極であり、 電界無印加時に暗表示をするノーマリブラックモードに し、 かつ、 電界無印加時のツイスト可能な液晶層の初期配向状態がホモ ジニァス配向状態であり、 透明電極上の液晶層の液晶分子の平均のチル ト角が、 電界印加時でも 4 5度未満であることを特徴とする。  As a fourth configuration, at least one of the pixel electrode and the counter electrode is a transparent electrode, a normally black mode in which dark display is performed when no electric field is applied, and an initial state of the twistable liquid crystal layer when no electric field is applied. The alignment state is a homogeneous alignment state, and the average tilt angle of the liquid crystal molecules in the liquid crystal layer on the transparent electrode is less than 45 degrees even when an electric field is applied.
第 5の構成として、 第 1ないし第 4のいずれかの構成において、 少な くとも、 画素電極あるいは対向電極に透明電極と不透明金属電極の 2重 構造を用いる。  As a fifth configuration, in any of the first to fourth configurations, at least a double structure of a transparent electrode and an opaque metal electrode is used for a pixel electrode or a counter electrode.
第 6の構成として、 第 1ないし第 4のいずれかの構成において、 隣接 する対向電圧信号線が画素内の対向電極によってスルーホールを介し て接続される構造を用いる。  As a sixth configuration, in any one of the first to fourth configurations, a structure is used in which an adjacent counter voltage signal line is connected via a through hole by a counter electrode in a pixel.
第 7の構成として、 第 1ないし第 4のいずれかの構成において、 更に ブマトリクス素子を被覆する保護膜を有し、 少なくとも前記画 素電極あるいは前記対向電極の一方は、 前記保護膜の上に形成され、 前 記保護膜に形成されたスルーホールを介して、 アクティブマトリクス素 子あるいは対向電圧信号線と電気的に接続されることを特徴とする。 第 8の構成として、 第 1ないし第 4のいずれかの構成において、 対向 電極が透明電極からなり、 更に、 遮光パターンを対向電極と映像信号線 間に有する構造を用いる。 As a seventh configuration, in any one of the first to fourth configurations, further comprising a protective film for covering the matrix element, One of the elementary electrode and the counter electrode is formed on the protective film, and is electrically connected to the active matrix element or the counter voltage signal line via the through hole formed in the protective film. It is characterized by. As an eighth configuration, in any one of the first to fourth configurations, a structure is used in which the counter electrode is made of a transparent electrode and further has a light-shielding pattern between the counter electrode and the video signal line.
第 9の構成として、 第 1、 2、 3、 4、 ないし 5のいずれかの構成に おいて、 対向電極間を電気的に接続する対向電圧信号線は金属である。 第 10の構成として、 第 1ないし第 4のいずれかの構成において、 3 本以上の対向電極が形成され、 その内 2本の対向電極が映像信号線に隣 接して形成され、 映像信号線に隣接して形成された対向電極は不透明で める。  As a ninth configuration, in any one of the first, second, third, fourth, and fifth configurations, the opposing voltage signal line that electrically connects the opposing electrodes is made of metal. As a tenth configuration, in any one of the first to fourth configurations, three or more counter electrodes are formed, two of which are formed adjacent to the video signal line, and the counter electrode is formed on the video signal line. Opposing electrodes formed adjacently are opaque.
第 11の構成として、 第 1ないし第 4のいずれかの構成において、 透 明電極に用いる透明導電膜は、 インジウム一チン一オキサイ ド ( I T o) である。  As an eleventh configuration, in any one of the first to fourth configurations, the transparent conductive film used for the transparent electrode is indium-tin-oxide (ITo).
第 12の構成として、 第 9の構成において、 対向電圧信号線は、 C r、 Ta、 T i、 Mo、 W、 Alまたはそれらの合金、 もしくは、 それらを 積層したクラッド構造である。  As a twelfth configuration, in the ninth configuration, the opposing voltage signal line has a clad structure in which Cr, Ta, Ti, Mo, W, Al, an alloy thereof, or a laminate thereof is stacked.
第 13の構成として、 第 9の構成において、 対向電圧信号線は、 C r、 Ta、 T i、 Mo、 W、 A lまたはそれらの合金の上にィンジゥム一チ ンーォキサイド (I TO) 等透明導電膜を積層したクラッド構造である c 第 14の構成として、 第 1ないし第 4のいずれかの構成において、 前 記液晶層の初期ッイット角がほぼ零で、 初期配向角は、 液晶材料の誘電 率異方性 Δ £が正であれば、 45度以上 90度未満、 誘電率異方性 Δ ε が負であれば、 0度を超え 4 5度以下であることを特徴とする。 As a thirteenth configuration, in the ninth configuration, the opposing voltage signal line is formed of a transparent conductive material such as an aluminum oxide (ITO) on Cr, Ta, Ti, Mo, W, Al, or an alloy thereof. C As a fourteenth configuration, which is a clad structure in which a film is laminated, in any one of the first to fourth configurations, the initial liquid crystal layer has an initial switch angle of almost zero, and the initial alignment angle is the dielectric constant of the liquid crystal material. If the anisotropy Δ £ is positive, 45 degrees or more and less than 90 degrees, dielectric anisotropy Δ ε If is negative, it is characterized by being greater than 0 degrees and less than 45 degrees.
第 1の製造方法として、 少なくとも走査信号線端子部、 映像信号線端 子部、 あるいは対向電極端子部の最上層の導電層のいずれかと、 少なく とも画素電極あるいは対向電極の一方とを透明な導電層で形成し、 更に、 同一工程で形成することを特徴とする。  As a first manufacturing method, at least one of the scanning signal line terminal portion, the video signal line terminal portion, or the uppermost conductive layer of the counter electrode terminal portion and at least one of the pixel electrode or the counter electrode is made of a transparent conductive material. It is characterized in that it is formed of layers and is formed in the same step.
本発明の作用を以下に示す。  The operation of the present invention will be described below.
まず、 第 1の構成の作用として、 少なくとも画素電極あるいは対向電 極の一方を透明にすることにより、 その部分の透過光により、 明 (白) 表示を行う時の最大透過率が向上するため、 電極が不透明な場合よりも、 より明るい表示を行うことができ、 液晶表示パネルの光透過率が、 後者 の従来方式の不透明電極採用の場合の 3 . 0〜 3 . 8 %から本発明では、 最大透過率値が 4 . 0 %以上を達成できる。 つまり、 バックライ ト入射 光の輝度を 3 0 0 0 c d Zm 2とすると、 明表示輝度の最大輝度値は、 1 2 0 c d /m 2以上を達成できる。 First, as a function of the first configuration, at least one of the pixel electrode and the counter electrode is made transparent, and the maximum transmittance at the time of performing bright (white) display is improved by the transmitted light of that portion. Brighter display can be performed than when the electrode is opaque, and the light transmittance of the liquid crystal display panel is 3.0 to 3.8% in the case of adopting the latter conventional opaque electrode. Maximum transmittance values of 4.0% or more can be achieved. That is, when the luminance of the 3 0 0 0 cd Zm 2 of backlight incident light, the maximum luminance value of the bright display brightness, 1 2 0 cd / m 2 or more can be achieved.
更に、 電圧無印加時には、 液晶分子は初期のホモジニァス配向状態を 保っているので、 その状態で暗 (黒) 表示をするように偏光板の配置を 構成する (ノーマリブラックモードにする) と、 電極を透明にしても、 その部分の光を透過することがないので、 良質な暗表示をすることがで き、 コントラストが向上する。  Furthermore, when no voltage is applied, the liquid crystal molecules maintain the initial homogenous alignment state, and if the polarizing plate is arranged so as to perform dark (black) display in that state (normal black mode), Even if the electrode is transparent, the light in that part is not transmitted, so that a high-quality dark display can be achieved and the contrast is improved.
一方、 ノーマリホワイ トモードにすると、 電圧印加時に暗表示しなけ ればならず、 電圧印加時には、 電極上部分は光を完全に遮断できないの で、 その部分の透過光が、 暗表示の透過率を押し上げ、 良質な暗表示が できない。 そのため、 十分なコントラスト比を達成することができない 更に、 電界印加時の前記電極間及び電極上の液晶分子が基板面に平行 に支配的に回転するため、 広レヽ視野角特性が得られる。 On the other hand, in the normally white mode, dark display must be performed when voltage is applied, and when voltage is applied, the light on the electrode cannot be completely blocked, so that the transmitted light in that part increases the transmittance of dark display. High quality dark display is not possible. Therefore, a sufficient contrast ratio cannot be achieved. Furthermore, since the liquid crystal molecules between the electrodes and on the electrodes when the electric field is applied rotate predominantly in parallel with the substrate surface, a wide viewing angle characteristic is obtained.
したがって、 コントラス ト比 1 0対 1以上の視野角範囲が、 表示面に 対して垂直方向から 4 0度以上傾斜した全方位の範囲内と広視野角特 性が得られる。  Therefore, a wide viewing angle characteristic is obtained in which the viewing angle range having a contrast ratio of 10: 1 or more is in an omnidirectional range inclined at least 40 degrees from the vertical direction with respect to the display surface.
また、 第 2の構成の作用として、 画素電極と対向電極間に電圧を印加 する時は、 ッイスト可能な液晶層のツイスト弾性定数が 1 0 X 1 0 N (ニュートン) 以下であるため、 透明導電膜の電極上では、 初期配向 方向から回転する角度 αが増加し、 電極上の透過率が、 電極間の透過率 と相補的に作用して、 実質的に開口率を向上させる。 このツイス ト弾性 定数 Κ 2は、 小さい方が好ましい。  In addition, as a function of the second configuration, when a voltage is applied between the pixel electrode and the counter electrode, the twistable liquid crystal layer has a twist elastic constant of 10 X 10 N (Newton) or less. On the electrode of the film, the rotation angle α from the initial orientation direction increases, and the transmittance on the electrode acts complementarily to the transmittance between the electrodes, thereby substantially improving the aperture ratio. The twist elastic constant Κ2 is preferably small.
また、 第 3の構成の作用として、 液晶層の上下界面の液晶分子の初期 角が 1 0度以下で、 液晶層内の液晶分子の初期チルト状態が 状態であるため、 液晶層の中央部の液晶分子のチルト角はほぼ 零度となり、 表示に寄与する液晶層の平均チルト角を低くできるため、 電圧印加時でも、 電極間および透明電極上での液晶分子のチルト角を低 く設定でき、 開口率向上と広い視野角を実現できる。  In addition, as an effect of the third configuration, the initial angle of the liquid crystal molecules at the upper and lower interfaces of the liquid crystal layer is 10 degrees or less, and the initial tilt state of the liquid crystal molecules in the liquid crystal layer is in the state. Since the tilt angle of the liquid crystal molecules is almost zero, and the average tilt angle of the liquid crystal layer contributing to display can be reduced, the tilt angle of the liquid crystal molecules between the electrodes and on the transparent electrode can be set low even when voltage is applied, and the aperture can be reduced. It can improve the rate and wide viewing angle.
また、 第 4の構成の作用として、 透明電極上の液晶層の液晶分子の平 均のチルト角が、 電界印加時でも 4 5度未満であるため、 開口率向上と 広い視野角を実現できる。  In addition, as an effect of the fourth configuration, the average tilt angle of the liquid crystal molecules in the liquid crystal layer on the transparent electrode is less than 45 degrees even when an electric field is applied, so that it is possible to realize an improved aperture ratio and a wide viewing angle.
更に、 第 5の構成の作用として、 画素電極あるいは対向電極に透明電 極と不透明金属電極の 2重構造を用いることで、 この電極の断線不良を 大幅に防止でき、 大画面化に有利である。  Furthermore, as a function of the fifth configuration, by using a double structure of a transparent electrode and an opaque metal electrode for the pixel electrode or the counter electrode, disconnection failure of this electrode can be largely prevented, which is advantageous for a large screen. .
更に、 第 6の構成の作用として、 隣接する対向電圧信号線が画素内の 対向電極によってスルーホールを介して接続される構造を用いること で、 各対向電圧信号線が網目状に電気接続されるため、 対向電圧信号線 の抵抗を低減でき、 断線不良が生じても重大欠陥とならない。 Further, as an operation of the sixth configuration, the adjacent counter voltage signal line By using a structure in which the opposite electrodes are connected via through holes, each of the opposite voltage signal lines is electrically connected in a mesh pattern, so that the resistance of the opposite voltage signal lines can be reduced, and even if a disconnection failure occurs, a serious defect is caused. Does not.
更に、 第 7の構成の作用として、 液晶分子に作用する電界が保護膜に より低減されることが抑制され、 駆動電圧を低減することができる。 更に、 第 8の構成の作用として、 対向電極が透明電極からなり、 遮光 パターンを対向電極と映像信号線間に有する構造を用レ、ることで、 開口 率が向上する。  Further, as an effect of the seventh configuration, the electric field acting on the liquid crystal molecules is suppressed from being reduced by the protective film, and the driving voltage can be reduced. Further, as an operation of the eighth configuration, the aperture ratio is improved by using a structure in which the counter electrode is formed of a transparent electrode and has a light-shielding pattern between the counter electrode and the video signal line.
更に、 第 9の構成の作用として、 対向電圧信号線の抵抗を低減するこ とにより、 対向電極間の電圧の伝わりを円滑にし、 電圧の歪みを低減す ることにより、 水平方向のクロストークを抑制できる。  In addition, as a function of the ninth configuration, by reducing the resistance of the common voltage signal line, the transfer of voltage between the common electrodes is smoothed, and the voltage distortion is reduced, thereby reducing horizontal crosstalk. Can be suppressed.
更に、 第 1 0の構成の作用として、 映像信号線に隣接した対向電極を 不透明にすることにより、 映像信号に伴うクロストークを抑制する。 以 下にその理由を示す。  Further, as an operation of the tenth configuration, the opposing electrode adjacent to the video signal line is made opaque, thereby suppressing crosstalk accompanying the video signal. The reasons are given below.
透明対向電極を映像信号線に隣接して形成することにより、 映像信号 線からの電界 (電気力線) は、 対向電極に吸収され、 映像信号線からの 電界が画素電極と対向電極の間の電界に影響を及ぼすことがないので、 映像信号に伴うクロストーク、 特に基板の上下方向のクロストークの発 生が著しく抑制される。 しカゝし、 映像信号線に隣接した対向電極上の液 晶分子の挙動は、 映像信号の変動により、 不安定であり、 映像信号線に 隣接した対向電極を透明にすると、 その電極部分の透過光により、 クロ ストークが観測される。 したがって、 映像信号線に隣接した対向電極を 不透明にすることにより、 映像信号に伴うクロストークを抑制できる。 更に、 第 1 1の構成の作用として、 透明導電膜はインジウム一チン一 オキサイド (I TO) であり、 透過率の向上に適する。 By forming the transparent counter electrode adjacent to the video signal line, the electric field (line of electric force) from the video signal line is absorbed by the counter electrode, and the electric field from the video signal line is applied between the pixel electrode and the counter electrode. Since it does not affect the electric field, the occurrence of crosstalk associated with the video signal, particularly crosstalk in the vertical direction of the substrate, is significantly suppressed. However, the behavior of the liquid crystal molecules on the opposing electrode adjacent to the video signal line is unstable due to the fluctuation of the video signal, and when the opposing electrode adjacent to the video signal line is made transparent, Crosstalk is observed by the transmitted light. Therefore, by making the counter electrode adjacent to the video signal line opaque, crosstalk associated with the video signal can be suppressed. Further, as a function of the first configuration, the transparent conductive film is indium-tin-tin. Oxide (ITO), suitable for improving transmittance.
更に、 第 12、 13の構成の作用として、 対向電圧信号線は、 積層し たクラッド構造であるため、 抵抗値が減少し、 断線不良の低減ができる。 更に、 第 14の構成の作用として、 液晶層の初期ッイット角がほぼ零 で、 初期配向角は、 液晶材料の誘電率異方性 Δ εが正であれば、 45°C 以上 90°C未満、 誘電率異方性 Δ εが負であれば、 0° を超え 45° 以 下でなあるため、 ドメインの抑制や最大印加電圧の範囲を最適化しコン トラス トを向上でき、 また、 応答速度の最適化も行える。  Further, as an effect of the twelfth and thirteenth configurations, since the opposed voltage signal line has a laminated clad structure, the resistance value is reduced, and disconnection failure can be reduced. Furthermore, as a function of the fourteenth configuration, the initial liquid crystal layer initial liquid crystal angle is almost zero, and the initial alignment angle is 45 ° C or more and less than 90 ° C if the dielectric anisotropy Δε of the liquid crystal material is positive. If the dielectric anisotropy Δε is negative, it is more than 0 ° and not more than 45 °, so that the domain can be suppressed, the range of the maximum applied voltage can be optimized, and the contrast can be improved. Can also be optimized.
また、 第 1の製造方法の作用として、 走査信号線端子部、 映像信号線 端子部、 あるいは対向電極端子部の最上層の透明導電層と画素電極ある いは対向電極の透明導電膜を同時形成することにより、 工程を増加させ ることなく、 画素電極と対向電極を透明導電膜で形成することができる。  In addition, as an operation of the first manufacturing method, the uppermost transparent conductive layer of the scanning signal line terminal portion, the video signal line terminal portion, or the counter electrode terminal portion and the transparent conductive film of the pixel electrode or the counter electrode are simultaneously formed. By doing so, the pixel electrode and the counter electrode can be formed of a transparent conductive film without increasing the number of steps.
なお、 本発明の液晶表示装置は、 画素電極と対向電極のうち少なく ともいずれかが透明導電膜で構成されているが、 例えば、 R i c h a r d A. S o r e f (リチャード エー ソーレフ) 、 P r o c e e d i n g s o f t h e I EEE (プロシーデイング ォブ ジ アイ トリプ ルイ一) 、 12月号 1974年、 頁 1710— 171 1 (以下、 文献 1と称する。 ) に記載がある液晶表示素子の構成とは以下の点で異なる。 文献 1では、 画素電極と対向電極とに対応する櫛歯電極が透明導電膜 で構成されている。  In addition, in the liquid crystal display device of the present invention, at least one of the pixel electrode and the counter electrode is formed of a transparent conductive film. For example, Richard A. Soref (Richard A. Soref), Proceedingsofthe IEEE The structure of the liquid crystal display element described in (Procedure of the Eye Triplui), December, 1974, pp. 1710-1711 (hereinafter referred to as reference 1) is different in the following points. In Literature 1, the comb electrodes corresponding to the pixel electrode and the counter electrode are formed of a transparent conductive film.
しかし、 液晶分子の初期配向状態を形成する際、 S i O (シリコンモ ノオキサイド) を約 85度で斜方蒸着し、 各電極と液晶層との界面では、 液晶分子にかなり高いプレチルト角を故意に形成させている。 このため、 文献 1の F i g. 1 (b) に示すように、 初期配向状態で 90度ッイス トしたホモジユアス配向から、 櫛歯電極間に電圧を印加することで、 再 配向状態として、 電極間は基板面に略平行なホモジニァス配向状態と、 電極上は基板面に垂直なホメオト口ピック配向状態とを形成させる。 However, when forming the initial alignment state of the liquid crystal molecules, Sio (silicon monooxide) is obliquely deposited at about 85 degrees, and the liquid crystal molecules have a considerably high pretilt angle at the interface between each electrode and the liquid crystal layer. Is formed. Therefore, as shown in Fig. 1 (b) of Reference 1, By applying a voltage between the comb-tooth electrodes from the homogenous orientation, the electrodes become realigned, with a homogenous orientation between the electrodes substantially parallel to the substrate surface and a homeotropic aperture orientation on the electrodes perpendicular to the substrate surface. And are formed.
しかし、 この構成では、 電界を増加するにつれ 2種類の液晶分子の再 配向状態が相補的に作用し、 より明るい表示が可能となるが、 液晶分子 のチルト角を平均的に高くする必要があるため、 視野角特性が狭くなる とレ、う欠点;^あった。  However, in this configuration, as the electric field is increased, the reorientation state of the two types of liquid crystal molecules acts complementarily to enable brighter display, but the tilt angle of the liquid crystal molecules must be increased on average Therefore, when the viewing angle characteristics are narrowed, there is a disadvantage.
一方、 本発明の横電界方式の液晶表示装置では、 広視野角特性と良好 な開口率とを得るため、 画素電極と対向電極との間に電圧を印加した場 合でも、 表示像に寄与する液晶分子の再配向する部分は、 できる限り基 板面に平行なホモジニァス配向状態を保持させ、 透明導電膜の電極上で は、 初期配向方向から回転する角度 αに対応して、 電極上の透過率が、 電極間の透過率と相補的に作用して、 実質的に開口率を向上させる構成 とする。  On the other hand, in the in-plane switching mode liquid crystal display device of the present invention, in order to obtain a wide viewing angle characteristic and a good aperture ratio, even if a voltage is applied between the pixel electrode and the counter electrode, it contributes to a display image. The part where liquid crystal molecules are realigned keeps a homogeneous alignment state parallel to the substrate surface as much as possible.On the transparent conductive film electrode, transmission on the electrode corresponds to the angle α that rotates from the initial alignment direction. The rate acts complementarily to the transmittance between the electrodes to substantially improve the aperture ratio.
なお、 本明細書では、 ホモジニァス配向状態とは、 液晶層内の液晶分 子が、 できる限り基板面あるいは液晶層の界面に平行なチルト (起き上 がり) 角を有する状態で、 より具体的には、 基板面あるいは液晶層の界 面からのチルト角が 4 5度未満の配向状態とする。 したがって、 ホメォ トロピック配向状態とは、 基板面あるレ、は液晶層の界面からのチルト角 が 4 5度を越える場合とする。  In this specification, a homogeneous alignment state refers to a state in which a liquid crystal molecule in a liquid crystal layer has a tilt (rise) angle parallel to a substrate surface or an interface of the liquid crystal layer as much as possible. Is an alignment state in which the tilt angle from the substrate surface or the liquid crystal layer interface is less than 45 degrees. Therefore, the homeotropic alignment state means that the tilt angle from the interface of the liquid crystal layer exceeds 45 degrees with the substrate surface.
F i g . 4 1 Aに、 基板面に略平行方向の電界を発生させる電極構成 における液晶層内の電位分布の例を示す。  FIG. 41A shows an example of a potential distribution in the liquid crystal layer in an electrode configuration that generates an electric field in a direction substantially parallel to the substrate surface.
図中の実線は、 等電位線であり、 電界べクトルは等電位線に垂直な方 向に与えられる。 電界べク トノレ Eは、 電極の中心上では基板面に垂直方 向の成分 Eyしか発生しないが、 中心部以外は基板面に水平方向の成分 Exも発生する。 この水平成分、 すなわち横電界成分 E Xが発生してい る領域では、 F i g. 41 B及び 41 Cに示すように、 電極間の液晶分 子は、 初期配向方向 RDRから横電界 E X方向に回転角ひだけ回転する。 一方、 電極上の液晶分子は、 液晶中の弾性場により、 電極間の液晶分 子の回転につられて回転する。 したがって、 電極上の中心の液晶分子は 横電界は印加されていないが、 弾性場により、 まわりの液晶分子と同方 向に回転する。 つまり、 回転角 αは、 電極間では大きく、 電極上では減 少し、 電極中央部上で最小となる。 The solid line in the figure is the equipotential line, and the electric field vector is given in a direction perpendicular to the equipotential line. The electric field vector E is perpendicular to the substrate surface on the center of the electrode. Only the component Ey in the direction is generated, but the component Ex in the horizontal direction also occurs on the substrate surface except for the center. In the region where the horizontal component, ie, the horizontal electric field component EX is generated, the liquid crystal molecules between the electrodes rotate from the initial alignment direction RDR in the horizontal electric field EX direction as shown in FIGS. 41B and 41C. Rotate only the corner. On the other hand, the liquid crystal molecules on the electrodes are rotated by the rotation of the liquid crystal molecules between the electrodes due to the elastic field in the liquid crystal. Therefore, the liquid crystal molecule at the center on the electrode is not applied with the transverse electric field, but rotates in the same direction as the surrounding liquid crystal molecules due to the elastic field. That is, the rotation angle α is large between the electrodes, decreases on the electrodes, and becomes minimum on the center of the electrodes.
この様子をシミュレーションした結果を F i g. 42 A〜Cに示す。 なお、 本例のシミュレーションは、 液晶分子の初期ホモジニァス配向 状態として、 液晶層の初期ツイスト角がほぼ零で、 初期配向方向 RDR と印加電界 E Xとのなす初期配向角 (/> LC=75度とし、 液晶層の上下 界面付近の液晶分子の初期プレチルト角を零度に設定し、 更に、 偏光板 の一方の透過軸を前記初期配向方向 RDRと一致させ、 他方の偏光板の 透過軸を直交させるクロスニコル配置し、 複屈折モードで表示をする構 成例で行った。  The results of simulating this situation are shown in FIGS. 42A to 42C. Note that the simulation in this example assumes that the initial twist angle of the liquid crystal layer is almost zero, and that the initial alignment direction RDR and the applied electric field EX make the initial alignment angle (/> LC = 75 degrees) the initial homogenous alignment state of the liquid crystal molecules. The initial pretilt angle of the liquid crystal molecules in the vicinity of the upper and lower interfaces of the liquid crystal layer is set to zero degree, and one transmission axis of the polarizing plate is made to coincide with the initial alignment direction RDR, and the transmission axis of the other polarizing plate is orthogonal. The configuration example was a Nicol arrangement and display in birefringence mode.
この時の光透過率 TZT。は、 次式で表される。  Light transmittance at this time TZT. Is represented by the following equation.
T/T。= s i η2 (2 a eff) · s i η2 (π d eff · Δ n / λ ) ··· (1) ここで、 ひ eff は、 液晶層の実効的な光軸と偏光透過軸とのなす角で、 本例では、 液晶分子の回転角 αの液晶層厚み方向の実効値であり、 一様 な回転を想定した場合の平均値として扱える見かけの値である。 T / T. = si η 2 (2 a eff) · si η 2 (π d eff · Δ n / λ) (1) where eff is the difference between the effective optical axis of the liquid crystal layer and the polarization transmission axis. In this example, it is the effective value of the rotation angle α of the liquid crystal molecules in the thickness direction of the liquid crystal layer, which is an apparent value that can be treated as an average value assuming uniform rotation.
また、 d eff は、 複屈折性を有する実効的な液晶層の厚み、 Δηは、 屈折率異方性、 λは、 光の波長を示す。 (1) 式において、 印加電界 E x時には、 その強度に応じてひ eff の 値が増大し、 4 5度の時最大になる。 D eff is the effective thickness of the birefringent liquid crystal layer, Δη is the refractive index anisotropy, and λ is the wavelength of light. In equation (1), at the applied electric field Ex, the value of eff increases according to the intensity, and reaches a maximum at 45 degrees.
更に、 本例のシミュレーションでは、 液晶層のリタデーシヨン Δ n · d eff を光の波長 λの 2分の 1に選定し複屈折零次モードを実現し、 誘 電率異方性 Δ εは正に設定している。  Furthermore, in the simulation of this example, the retardation Δn · d eff of the liquid crystal layer was selected to be の of the wavelength λ of light to realize the zero-order mode of birefringence, and the dielectric anisotropy Δε was positive. You have set.
F i g. 4 2 Aは、 最大付近の明表示がえられる電圧を透明な I TO 電極に印加した場合の等電位線の状態を示す特性図で、 縦軸に液晶層の 厚み (厚み 4. O /im) を、 横軸に電極の相対的位置関係を示す。 なお、 図中の数値は、 規格化された電位強度を示す。  Fig. 42 A is a characteristic diagram showing the state of equipotential lines when a voltage at which a bright display near the maximum is obtained is applied to the transparent ITO electrode. The vertical axis represents the thickness of the liquid crystal layer (thickness 4). O / im), and the horizontal axis shows the relative positional relationship of the electrodes. The numerical values in the figure indicate the normalized potential intensities.
また、 F i g. 4 2 Bおよび F i g. 4 2 Cは、 この等電位線の状態 から形成される横電界成分 E Xを印加した時の液晶層内の液晶分子の 回転角ひおよびチルト (起き上がり) 角を示す。  Fig. 42B and Fig. 42C are the rotation angle and tilt of the liquid crystal molecules in the liquid crystal layer when the horizontal electric field component EX formed from the equipotential lines is applied. (Get up) Show the corner.
F i g. 4 2 Cに示すように、 電圧印加時でも、 電極上液晶分子は ほとんど起き上がることなく、 本例では、 液晶層の厚み方向全てにおい て、 チルト角は 8° 以下であり、 更に、 F i g. 4 2 Bに示すように、 電極上の液晶分子も、 液晶層の中央付近では、 約 1 5〜3 5° 回転して いる。  As shown in FIG. 42 C, even when a voltage is applied, the liquid crystal molecules on the electrodes hardly rise, and in this example, the tilt angle is 8 ° or less in all the thickness directions of the liquid crystal layer. As shown in FIG. 42B, the liquid crystal molecules on the electrodes are also rotated by about 15 to 35 ° near the center of the liquid crystal layer.
なお、 F i g. 4 2 Cに示すチルト角の符号は、 便宜上、 図面におい て、 右上がりの起き上がりを正に、 左上がりの起き上がりを負としてい る。 したがって、 本発明の方式では, 電極上でも液晶分子の回転角 αが 変化し透過率を変化させることができるのである。 The sign of the tilt angle shown in FIG. 42C is such that, for the sake of convenience, the rightward rise is positive and the leftward rise is negative in the drawings. Therefore, in the method of the present invention, the rotation angle α of the liquid crystal molecules changes even on the electrode, and the transmittance can be changed.
この動作と最も関係があるのが、 液晶のッイスト弾性定数 Κ 2であり、 このツイス ト弾性定数 Κ 2は、 小さレ、ほうが好ましく、 小さレ、ほど電極 上の液晶分子は、 電極間の液晶分子の影響を受け、 電極間の液晶分子の 回転角 αに近づくように回転する。 The twist elastic constant Κ 2 of the liquid crystal is most relevant to this operation. The twist elastic constant Κ 2 is preferably smaller, and the liquid crystal molecules on the electrode become smaller as the liquid crystal between the electrodes becomes smaller. Of the liquid crystal molecules between the electrodes Rotate to approach the rotation angle α.
F i g . 4 I Dに、 ッイスト弾性定数 K 2を約 1 0 X 1 0— 1 2 N (二 ユートン) とする場合の電極上および電極間の透過率の分布を摸式的に 示す。 F ig in. 4 ID, schematic manner shows an electrode and on the transmittance between the electrodes distribution when the'isuto elastic constant K 2 to about 1 0 X 1 0- 1 2 N ( two Yuton).
電極が透明である場合は、 前述した電極上の液晶分子の再配向動作に より、 電極間の A部分の透過率の平均透過率の 5 〜 3 0 %が、 電極上で の B部分の透過率の平均値透過率となる。  If the electrode is transparent, the above-described reorientation of the liquid crystal molecules on the electrode causes the average transmittance of the portion A between the electrodes to be 5 to 30% of the transmittance of the portion B on the electrode. The average value of the transmittance is the transmittance.
また、 後述するように、 ツイス ト弾性定数 K 2を 2 . 0 X 1 0 - 1 2 N (ニュートン) 以下にすれば、 電極間の A部分の透過率の平均透過率の 5 0 %以上が、 電極上での B部分の透過率の平均値透過率となることが 分かった。 したがって、 全体部分の平均透過率は、 A+ B部分の透過率 の平均値透過率となり、 引き上げられる。 As described later, the twisted elastic constant K 2 2 0 X 1 0 - . If the 1 2 N (Newton) or less, more 50% of the average transmittance of the transmittance of the portion A between the electrodes It was found that the average value of the transmittance of the portion B on the electrode was the transmittance. Therefore, the average transmittance of the entire portion becomes the average transmittance of the transmittance of the A + B portions, and is increased.
つまり、 従来全く光を透過させない金属層で構成されたものと比べて 各画素当りの開口率を実質的に向上させることができるようになる。 本例のシミュレーションでは、 初期プレチルト角を零度に設定して計 算しているが、 実際は、 液晶層の配向膜との界面付近の初期プレチルト 角が約 1 0度以下、 好ましくは 6度以下にラビング処理にて設定するこ とが必要である。 また、 後述する実施例では、 約 5度に設定している。 このような範囲に初期プレチルト角を設定することで、 液晶層界面の 液晶分子を基板面内方向に規制することができ、 電界印加時でも電極上 の液晶層の平均チルト角は、 4 5度未満を維持できることになる。 つま り、 電界印加時でも、 電極上の液晶が、 いわゆるホメオト口ピック配向 となることを防止できる。  In other words, the aperture ratio per pixel can be substantially improved as compared with a conventional structure formed of a metal layer that does not transmit light at all. In the simulation of this example, the calculation is performed with the initial pretilt angle set to zero degree, but in practice, the initial pretilt angle near the interface between the liquid crystal layer and the alignment film is about 10 degrees or less, preferably 6 degrees or less. It must be set by rubbing. In an embodiment described later, the angle is set to about 5 degrees. By setting the initial pretilt angle in such a range, the liquid crystal molecules at the interface of the liquid crystal layer can be regulated in the in-plane direction of the substrate. Even when an electric field is applied, the average tilt angle of the liquid crystal layer on the electrode is 45 degrees. Will be maintained. In other words, even when an electric field is applied, the liquid crystal on the electrode can be prevented from being in a so-called home-port pick alignment.
F i g . 4 4は、 横電界方式の液晶表示装置において、 液晶層内の液 晶分子のチルト角と、 全方位でコントラスト比が 10以上となる視野角 範囲を示すシミュレーション結果の特性図の一例である。 FIG. 44 shows the liquid in the liquid crystal layer in the horizontal electric field type liquid crystal display device. FIG. 8 is an example of a characteristic diagram of a simulation result showing a tilt angle of crystal molecules and a viewing angle range in which a contrast ratio in all directions is 10 or more.
すなわち、 チルト角が、 30度程度であれば、 表示面に対して垂直方 向から約 40度傾斜した視野角範囲内の全方位でコントラスト比が 1 0以上となり、 ほぼ、 従来の縦電界方式の液晶表示装置と同等の特性が 得られる。 更に、 チルト角を小さくするにつれ、 視野角範囲は拡大し、 10度程度であれば、 約 80度傾斜した視野角範囲内まで、 5度以下で あれば、 ほぼ全域まで広がり、 広視野角特性が得られる。  In other words, if the tilt angle is about 30 degrees, the contrast ratio becomes 10 or more in all directions within the viewing angle range inclined about 40 degrees from the direction perpendicular to the display surface. The same characteristics as those of the liquid crystal display device can be obtained. Furthermore, as the tilt angle is reduced, the viewing angle range expands, and if it is about 10 degrees, it extends to within the viewing angle range inclined at about 80 degrees, and if it is 5 degrees or less, it spreads to almost the entire area, wide viewing angle characteristics Is obtained.
本実施例では、 電界無印加時および電界印加時の電極間および透明電 極上の液晶層内の液晶分子の平均チルト角を常に低減するため、 後述す る配向膜 OR I I、 OR I 2のラビング方向は、 2枚の基板 SUB 1、 SUB 2側の液晶層の界面の液晶分子の初期プレチルト角がスプレイ 状態となる様に初期配向状態を設定し、 液晶層の中央部付近の液晶分子 ができるかぎり界面と平行になるようにする。  In this embodiment, in order to always reduce the average tilt angle of liquid crystal molecules between electrodes and in a liquid crystal layer on a transparent electrode when no electric field is applied and when an electric field is applied, rubbing of the alignment films OR II and OR I 2 described later is performed. The orientation is set so that the initial pretilt angle of the liquid crystal molecules at the interface between the liquid crystal layers on the two substrates SUB 1 and SUB 2 is in the splay state, and the liquid crystal molecules near the center of the liquid crystal layer are formed. As far as possible, it should be parallel to the interface.
〔図面の簡単な説明〕  [Brief description of drawings]
F i g. 1は、 本発明の実施例 1のアクティブ ·マトリックス型カラ 一液晶表示装置の液晶表示部の一画素とその周辺を示す要部平面図で ある。  FIG. 1 is a plan view of a principal part showing one pixel of a liquid crystal display portion of an active matrix type single liquid crystal display device of the first embodiment of the present invention and the periphery thereof.
F i g. 2は、 F i g. 1の 3— 3切断線における画素の断面図であ る。  FIG. 2 is a cross-sectional view of a pixel taken along section line 3-3 of FIG.
F i g. 3は、 F i g. 1の 4一 4切断線における薄膜トランジスタ 素子 TFTの断面図である。  FIG. 3 is a cross-sectional view of the thin-film transistor element TFT at the 4-14 cutting line of FIG.
F i g. 4は、 F i g. 1の 5— 5切断線における蓄積容量 C s t g の断面図である。 F i g. 5は、 表示パネルのマトリクス周辺部の構成を説明するため の平面図である。 FIG. 4 is a cross-sectional view of the storage capacitor C stg along the section line 5-5 in FIG. FIG. 5 is a plan view for explaining the configuration of the periphery of the matrix of the display panel.
F i g. 6は、 左側に走査信号端子、 右側に外部接続端子の無いパネ ル縁部分を示す断面図である。  FIG. 6 is a cross-sectional view showing a scanning signal terminal on the left side and a panel edge portion without an external connection terminal on the right side.
F i g. 7 Aは、 ゲート端子 GTMとゲート配線 GLの接続部近辺を 示す平面図と、 F i g. 7Bは、 その断面図である。  FIG. 7A is a plan view showing the vicinity of the connection between the gate terminal GTM and the gate wiring GL, and FIG. 7B is a sectional view thereof.
F i g. 8 Aは、 ドレイン端子 DTMと映像信号線 DLとの接続部付 近を示す平面図と、 F i g. 8Bは、 その断面図である。  FIG. 8A is a plan view showing the vicinity of the connection between the drain terminal DTM and the video signal line DL, and FIG. 8B is a sectional view thereof.
F i g. 9Aは、 共通電極端子 CTM、 共通バスライン CBおよび共 通電圧信号線 CLの接続部付近を示す平面図と、 F i g. 9Bは、 その 断面図である。  FIG. 9A is a plan view showing the vicinity of a connection portion of a common electrode terminal CTM, a common bus line CB, and a common voltage signal line CL, and FIG. 9B is a cross-sectional view thereof.
F i g. 10は、 本発明のアクティブ ·マトリックス型カラー液晶表 示装置のマトリクス部とその周辺を含む回路図である。  FIG. 10 is a circuit diagram of the active matrix color liquid crystal display device of the present invention, including a matrix portion and its periphery.
F i g. 1 1は、 本発明のアクティブ 'マトリックス型カラー液晶表 示装置の駆動波形を示す図である。  FIG. 11 is a diagram showing a drive waveform of the active-matrix type color liquid crystal display device of the present invention.
F i g. 1 2は、 基板 SUB 1側の工程 A〜Cの製造工程を示す画素 部とゲート端子部の断面図のフローチヤ一トである。  FIG. 12 is a flowchart of a cross-sectional view of a pixel portion and a gate terminal portion showing a manufacturing process of processes A to C on the substrate SUB1 side.
F i g. 1 3は、 基板 SUB 1側の工程 D〜Fの製造工程を示す画素 部とゲート端子部の断面図のフローチヤ一トである。  FIG. 13 is a flowchart of a cross-sectional view of a pixel portion and a gate terminal portion showing a manufacturing process of processes D to F on the substrate SUB1 side.
F i g. 14は、 基板 SUB 1側の工程 G〜Hの製造工程を示す画素 部とゲート端子部の断面図のフローチヤ一トである。  FIG. 14 is a flowchart of a cross-sectional view of a pixel portion and a gate terminal portion showing a manufacturing process of processes G to H on the substrate SUB1 side.
F i g. 15は、 液晶表示パネルに周辺の駆動回路を実装した状態を 示す上面図である。  FIG. 15 is a top view showing a state where peripheral driving circuits are mounted on the liquid crystal display panel.
F i g. 16は、 駆動回路を構成する集積回路チップ CH Iがフレキ '配線基板に搭载されたテープキャリアパッケージ TCPの断面 構造を示す図である。 Fig. 16 shows that the integrated circuit chip CH I that constitutes the drive circuit is flexible. FIG. 6 is a diagram showing a cross-sectional structure of a tape carrier package TCP mounted on a wiring board.
F i g. 17は、 テープキャリアパッケージ TCPを液晶表示パネル PNLの走查信号回路用端子 GTMに接続した状態を示す要部断面図 である。  FIG. 17 is a cross-sectional view of a principal part showing a state where the tape carrier package TCP is connected to the running signal circuit terminal GTM of the liquid crystal display panel PNL.
F i g. 18は、 液晶表示モジュールの分解斜視図である。  FIG. 18 is an exploded perspective view of the liquid crystal display module.
F i g. 19は、 印加電界方向、 ラビング方向、 偏光板透過軸の関係 を示す図である。  FIG. 19 is a diagram showing a relationship among a direction of an applied electric field, a rubbing direction, and a transmission axis of a polarizing plate.
F i g. 20は、 本発明の実施例 2のアクティブ ·マトリックス型力 ラー液晶表示装置の液晶表示部の一画素とその周辺を示す要部平面図 である。  FIG. 20 is a plan view of a principal part showing one pixel of a liquid crystal display portion of an active matrix color liquid crystal display device of Example 2 of the present invention and the periphery thereof.
F i g. 21は、 本発明の実施例 3のアクティブ ·マトリックス型力 ラー液晶表示装置の液晶表示部の一画素とその周辺を示す要部平面図 Cあ 。  FIG. 21 is a main part plan view C showing one pixel of a liquid crystal display portion of an active matrix type color liquid crystal display device of Example 3 of the present invention and its periphery.
F i g. 22は、 本発明の実施例 4のアクティブ ·マトリックス型力 ラー液晶表示装置の液晶表示部の一画素とその周辺を示す要部平面図 である。  FIG. 22 is a fragmentary plan view showing one pixel of a liquid crystal display portion of an active matrix color liquid crystal display device according to a fourth embodiment of the present invention and the periphery thereof.
F i g. 23は、 本発明の実施例 5のアクティブ 'マトリックス型力 ラー液晶表示装置の液晶表示部の一画素とその周辺を示す要部平面図 である。  FIG. 23 is a fragmentary plan view showing one pixel of a liquid crystal display portion of an active matrix liquid crystal display device of Example 5 of the present invention and the periphery thereof.
F i g. 24 A〜Cは、 本発明の実施例 6のアクティブ ·マトリック ス型カラー液晶表示装置の液晶表示部の一画素とその周辺を示す要部 平面図及び断面図である。  FIGS. 24A to 24C are a plan view and a cross-sectional view of a principal part showing one pixel of a liquid crystal display portion and its periphery of an active matrix type color liquid crystal display device according to a sixth embodiment of the present invention.
F i g. 25は、 本発明の実施例 7のアクティブ .マトリ ックス型力 ラー液晶表示装置の液晶表示部の一画素とその周辺を示す要部平面図 である。 FIG. 25 is the active matrix force of Example 7 of the present invention. FIG. 4 is a plan view of a principal part showing one pixel of a liquid crystal display section of a color liquid crystal display device and its periphery.
F i g. 26は、 F i g. 25の 6— 6切断線における断面図である c F i g. 26 may, F i g. C is a cross-sectional view taken along 25 of 6-6 cut line
F i g. 27は、 F i g. 25の 7— 7切断線における薄膜トランジ スタ素子 T FTの断面図である。 FIG. 27 is a cross-sectional view of the thin-film transistor element TFT taken along section line 7-7 of FIG.
F i g. 28は、 F i g. 25の 8— 8切断線における蓄積容量 C s t gの断面図である。  FIG. 28 is a cross-sectional view of the storage capacitance C stg at the 8-8 section line of FIG. 25.
F i g. 29 Aは、 ゲート端子 GTMとゲート配線 GLの接続部近辺 を示す平面図と、 F i g. 29Bは、 その断面図である。  FIG. 29A is a plan view showing the vicinity of the connection between the gate terminal GTM and the gate wiring GL, and FIG. 29B is a sectional view thereof.
F i g. 30Aは、 ドレイン端子 DTMと映像信号線 DLとの接続部 付近を示す平面図と、 F i g. 30Bは、 その断面図である。  FIG. 30A is a plan view showing the vicinity of the connection between the drain terminal DTM and the video signal line DL, and FIG. 30B is a sectional view thereof.
F i g. 31 Aは、 共通電極端子 CTM1、 共通バスライン CB 1お よび共通電圧信号線 CLの接続部付近を示す平面図と、 F i g. 3 I B は、 その断面図である。  FIG. 31A is a plan view showing the vicinity of the connection between the common electrode terminal CTM1, the common bus line CB1, and the common voltage signal line CL, and FIG. 3IB is a cross-sectional view thereof.
F i g. 32 Aは、 共通電極端子 CTM2、 共通バスライン CB 2お よび共通電圧信号線 CLの接続部付近を示す平面図と、 F i g. 32 B は、 その断面図である。  FIG. 32A is a plan view showing the vicinity of a connection portion of the common electrode terminal CTM2, the common bus line CB2, and the common voltage signal line CL, and FIG. 32B is a sectional view thereof.
F i g. 33は、 本発明のアクティブ ·マトリックス型カラー液晶表 示装置のマトリクス部とその周辺を含む回路図である。  FIG. 33 is a circuit diagram of the active matrix color liquid crystal display device of the present invention, including the matrix portion and its periphery.
F i g. 34は、 本発明のアクティブ 'マトリックス型カラー液晶表 示装置の駆動波形を示す図である。  FIG. 34 is a diagram showing a drive waveform of the active'matrix type color liquid crystal display device of the present invention.
F i g. 35は、 基板 SUB 1側の工程 A〜Cの製造工程を示す画素 部とゲート端子部の断面図のフローチヤ一トである。  FIG. 35 is a flowchart of a cross-sectional view of a pixel portion and a gate terminal portion showing manufacturing processes of processes A to C on the substrate SUB1 side.
F i g. 36は、 基板 SUB 1側の工程 D〜Eの製造工程を示す画素 部とゲート端子部の断面図のフローチャートである。 Fig. 36 is a pixel showing the manufacturing process of processes D to E on the substrate SUB 1 side. It is a flowchart of the sectional view of a part and a gate terminal part.
F i g. 37は、 基板 SUB 1側の工程 Fの製造工程を示す画素部と ゲート端子部の断面図のフローチヤ一トである。  FIG. 37 is a flowchart of a cross-sectional view of a pixel portion and a gate terminal portion illustrating a manufacturing process in a process F on the substrate SUB1 side.
F i g. 38は、 本発明の実施例 8のアクティブ♦マトリックス型力 ラー液晶表示装置の液晶表示部の一画素とその周辺を示す要部平面図 である。  FIG. 38 is a plan view of relevant parts showing one pixel of a liquid crystal display portion of an active matrix liquid crystal display device of Example 8 of the present invention and the periphery thereof.
F i g. 39は、 本発明の実施例 9のアクティブ ·マトリックス型力 ラー液晶表示装置の液晶表示部の一画素とその周辺を示す要部平面図 である。  FIG. 39 is a plan view of relevant parts showing one pixel of a liquid crystal display portion of an active matrix color liquid crystal display device of Example 9 of the present invention and the periphery thereof.
F i g. 40は、 本発明の実施例 10のアクティブ ·マトリックス型 カラー液晶表示装置の液晶表示部の一画素とその周辺を示す要部平面 図である。  FIG. 40 is a plan view of relevant parts showing one pixel of a liquid crystal display portion of an active matrix type color liquid crystal display device of Example 10 of the present invention and the periphery thereof.
F i g. 41 A〜Dは、 本発明の原理を示す図で、 F i g. 41 A は、 電極に電圧を印加した時の液晶層内の電位分布を示す特性図、 F i g. 4 I Bは、 液晶層の中央部付近の液晶分子の再配向状態を示す平面 図、 F i g. 41 Cは、 F i g. 41 Bに示す液晶分子の回転角 αを示 す特性図、 F i g. 4 IDは、 上下偏光板、 上下基板、 電極上および電 極間の液晶層を透過する光の透過率分布を示す特性図の一例である。  FIGS. 41A to 41D are diagrams showing the principle of the present invention, and FIG. 41A is a characteristic diagram showing a potential distribution in a liquid crystal layer when a voltage is applied to an electrode. 4IB is a plan view showing the reorientation state of the liquid crystal molecules near the center of the liquid crystal layer, FIG. 41C is a characteristic diagram showing the rotation angle α of the liquid crystal molecules shown in FIG. 41B, FIG. 4 ID is an example of a characteristic diagram showing the transmittance distribution of light transmitted through the liquid crystal layer on the upper and lower polarizers, the upper and lower substrates, the electrodes, and between the electrodes.
F i g. 42は、 本発明の原理を示す図で、 F i g. 42 Aは、 電圧 を透明電極に印加した場合の等電位線の状態を示す特性図、 F i g. 4 2Bおよび F i g. 42Cは、 電界印加した時の液晶層内の液晶分子の 回転角ひおよびチルト (起き上がり) 角を示す図の一例である。  42 is a diagram showing the principle of the present invention, FIG. 42A is a characteristic diagram showing the state of equipotential lines when a voltage is applied to the transparent electrode, FIG. 42B and FIG. FIG. 42C is an example of a diagram showing rotation angles and tilt angles of liquid crystal molecules in a liquid crystal layer when an electric field is applied.
F i g. 43は、 本発明の実施例 1 1のアクティブ ·マトリックス型 カラー液晶表示装置の開口率向上の原理を示す図で、 F i g. 43 A は、 電極に電圧を印加した時の液晶層内の電位分布を示す特性図、 F i g. 43Bは、 液晶層の中央部付近の液晶分子の再配向状態を示す平面 図、 F i g. 43Cは、 F i g. 43 Bに示す液晶分子の回転角ひを示 す特性図、 F i g. 43Dは、 上下偏光板、 上下基板、 電極上および電 極間の液晶層を透過する光の透過率分布を示す特性図の一例である。 FIG. 43 is a diagram showing the principle of improving the aperture ratio of the active matrix type color liquid crystal display device of Example 11 of the present invention. Is a characteristic diagram showing the potential distribution in the liquid crystal layer when a voltage is applied to the electrode, FIG. 43B is a plan view showing the realignment state of liquid crystal molecules near the center of the liquid crystal layer, FIG. 43C is a characteristic diagram showing the rotation angle of the liquid crystal molecule shown in FIG. 43B, and FIG. 43D is a light transmitted through the liquid crystal layer on the upper and lower polarizers, the upper and lower substrates, the electrodes, and between the electrodes. FIG. 3 is an example of a characteristic diagram showing a transmittance distribution of FIG.
F i g. 44は、 横電界方式の液晶表示装置において、 液晶層内の液 晶分子のチルト角と全方位でコン トラス ト比が 10以上となる視野角 範囲を示すシミュレーション結果の特性図の一例である。  FIG. 44 is a characteristic diagram of a simulation result showing a tilt angle of a liquid crystal molecule in a liquid crystal layer and a viewing angle range in which a contrast ratio is 10 or more in all directions in a horizontal electric field type liquid crystal display device. This is an example.
〔発明を実施するための最良の形態〕  [Best mode for carrying out the invention]
本発明、 本発明の更に他の目的及び本発明の更に他の特徴は図面を参 照した以下の説明から明らかとなるであろう。  The present invention, other objects of the present invention, and still other features of the present invention will become apparent from the following description with reference to the drawings.
(実施例 1 )  (Example 1)
《アクティブ♦マトリクス液晶表示装置》  << Active ♦ matrix liquid crystal display device >>
以下、 アクティブ ·マトリクス方式のカラー液晶表示装置に本発明を 適用した実施例を説明する。 なお、 以下説明する図面で、 同一機能を有 するものは同一符号を付け、 その繰り返しの説明は省略する。  Hereinafter, an embodiment in which the present invention is applied to an active matrix type color liquid crystal display device will be described. In the drawings described below, components having the same function are denoted by the same reference numerals, and repeated description thereof will be omitted.
《マトリクス部 (画素部) の平面構成》  << Planar configuration of matrix section (pixel section) >>
F i g. 1は本発明のアクティブ ·マトリクス方式カラー液晶表示装 置の一画素とその周辺を示す平面図である。 (図の斜線部分は透明導電 膜 g 2を示す。 )  FIG. 1 is a plan view showing one pixel of the active matrix type color liquid crystal display device of the present invention and its periphery. (The shaded area in the figure indicates the transparent conductive film g2.)
F i g. 1に示すように、 各画素は走査信号線 (ゲート信号線または 水平信号線) GLと、 対向電圧信号線 (対向電極配線) CLと、 隣接す る 2本の映像信号線 (ドレイン信号線または垂直信号線) D Lとの交差 領域内 (4本の信号線で囲まれた領域内) に配置されている。 各画素は 薄膜トランジスタ TFT、 蓄積容量 C s t g、 画素電極 PXおよび対向 電極 CTを含む。 走査信号線 GL、 対向電圧信号線 CLは図では左右方 向に延在し、 上下方向に複数本配置されている。 映像信号線 DLは上下 方向に延在し、 左右方向に複数本配置されている。 画素電極 PXはソー ス電極 SD 1を介して薄膜トランジスタ TFTと接続され、 対向電極 C Tは対向電圧信号線 C Lと一体になつている。 As shown in Fig. 1, each pixel has a scanning signal line (gate signal line or horizontal signal line) GL, a counter voltage signal line (counter electrode wiring) CL, and two adjacent video signal lines ( (Drain signal line or vertical signal line) It is arranged in the intersection area with DL (in the area surrounded by four signal lines). Each pixel is Includes thin film transistor TFT, storage capacitance C stg, pixel electrode PX and counter electrode CT. The scanning signal lines GL and the counter voltage signal lines CL extend left and right in the figure, and a plurality of scanning signal lines GL and counter voltage signal lines CL are arranged in the vertical direction. The video signal lines DL extend in the vertical direction, and a plurality of video signal lines DL are arranged in the horizontal direction. The pixel electrode PX is connected to the thin film transistor TFT via the source electrode SD1, and the counter electrode CT is integrated with the counter voltage signal line CL.
映像信号線 DLに沿って上下に隣接する 2画素では、 F i g. 1の A 線で折曲げたとき、 平面構成が重なり合う構成となっている。 これは、 対向電圧信号線 C Lを映像信号線 D Lに沿って上下に隣接する 2画素 で共通化し、 対向電圧信号線 CLの電極幅を拡大することにより、 対向 電圧信号線 CLの抵抗を低減するためである。 これにより、 外部回路か ら左右方向の各画素の対向電極 CTへ対向電圧を十分に供給するため ことが容易になる。  The two pixels vertically adjacent to each other along the video signal line DL have a configuration in which the plane configuration overlaps when bent at the A line in FIG. This is because the opposing voltage signal line CL is shared by two vertically adjacent pixels along the video signal line DL, and the electrode width of the opposing voltage signal line CL is increased, thereby reducing the resistance of the opposing voltage signal line CL. That's why. This makes it easy to sufficiently supply a counter voltage from the external circuit to the counter electrode CT of each pixel in the left-right direction.
画素電極 P Xと対向電極 C Tは互いに対向し、 各画素電極 P Xと対向 電極 C Tとの間の電界により液晶 L Cの光学的な状態を制御し、 表示を 制御する。 画素電極 PXと対向電極 CTは櫛歯状に構成され、 それぞれ、 図の上下方向に長細い電極となっている。  The pixel electrode PX and the counter electrode CT are opposed to each other, and the electric state between each pixel electrode PX and the counter electrode CT controls the optical state of the liquid crystal LC to control display. The pixel electrode PX and the counter electrode CT are formed in a comb-like shape, and each is an electrode that is elongated vertically in the figure.
1画素内の対向電極 CTの本数 O (櫛歯の本数) は、 画素電極 PXの 本数(櫛歯の本数) Pと 0 = P + 1の関係を必ず持つように構成する(本 実施例では、 0=3、 P = 2) 。 これは、 対向電極 CTと画素電極 PX を交互に配置し、 かつ、 対向電極 CTを映像信号線 DLに必ず隣接させ るためである。 これにより、 対向電極 CTと画素電極 PXの間の電界が、 映像信号線 DLから発生する電界から影響を受けないように、 対向電極 C Tで映像信号線 D Lからの電気力線をシールドすることができる。 対 向電極 CTは、 後述の対向電圧信号線 CLにより常に外部から電位を供 給されているため、 電位は安定している。 そのため、 映像信号線 DLに 隣接しても、 電位が変動がほとんどない。 また、 これにより、 画素電極 PXの映像信号線 DLからの幾何学的な位置が遠くなるので、 画素電極 P Xと映像信号線 D Lの間の寄生容量が大幅に減少し、 画素電極電位 V sの映像信号電圧による変動も抑制できる。 これらにより、 上下方向に 発生するクロストーク (縦スミアと呼ばれる画質不良) を抑制すること ができる。 The number O of the counter electrodes CT in one pixel (the number of comb teeth) is configured to always have a relationship of 0 = P + 1 with the number of pixel electrodes PX (the number of comb teeth) P (in this embodiment, , 0 = 3, P = 2). This is because the counter electrode CT and the pixel electrode PX are alternately arranged, and the counter electrode CT is always adjacent to the video signal line DL. This allows the counter electrode CT to shield the lines of electric force from the video signal line DL so that the electric field between the counter electrode CT and the pixel electrode PX is not affected by the electric field generated from the video signal line DL. it can. versus The potential of the counter electrode CT is stable because the counter electrode CT is always supplied with a potential from the outside by a counter voltage signal line CL described later. Therefore, the potential hardly fluctuates even when adjacent to the video signal line DL. In addition, since the geometric position of the pixel electrode PX from the video signal line DL is farther away, the parasitic capacitance between the pixel electrode PX and the video signal line DL is greatly reduced, and the pixel electrode potential Vs Fluctuation due to the video signal voltage can also be suppressed. Thus, crosstalk (defective image quality called vertical smear) occurring in the vertical direction can be suppressed.
画素電極 PXと対向電極 CTの電極幅はそれぞれ 6 zmとする。 これ は、 液晶層の厚み方向に対して、 液晶層全体に十分な電界を印加するた めに、 後述の液晶層の厚み 3. 9 μπιよりも十分大きく設定し、 かつ開 口率を大きくするためにできるだけ細くする。 また、 映像信号線 D の 電極幅は断線を防止するために、 画素電極 Ρ Xと対向電極 C Τに比較し て若干広く 8 mとする。 ここで、 映像信号線 DLの電極幅が、 隣接す る対向電極 CTの電極幅の 2倍以下になるように設定する。 または、 映 像信号線 DLの電極幅が歩留りの生産性から決まっている場合には、 映 像信号線 D Lに隣接する対向電極 C Tの電極幅を映像信号線 D Lの電 極幅の 1Z2以上にする。 これは、 映像信号線 DLから発生する電気力 線をそれぞれ両脇の対向電極 CTで吸収するためであり、 ある電極幅か ら発生する電気力線を吸収するには、 それと同一幅以上のの電極幅を持 つ電極が必要である。 したがって、 映像信号線 DLの電極の半分 (4 /i mずつ) から発生する電気力線をそれぞれ両脇の対向電極 CTが吸収し ればよいため、 映像信号線 D Lに隣接する対向電極 CTの電極幅が 1 Z 2以上とする。 これにより、 映像信号の影響により、 クロストークが発 生する、 特に上下方向 (縦方向のクロストーク) を防止する。 The electrode width of each of the pixel electrode PX and the counter electrode CT is 6 zm. This is because, in order to apply a sufficient electric field to the entire liquid crystal layer in the thickness direction of the liquid crystal layer, the thickness of the liquid crystal layer described later is set to be sufficiently larger than 3.9 μπι, and the aperture ratio is increased. To be as thin as possible. The electrode width of the video signal line D is set to 8 m, which is slightly wider than the pixel electrode ΡX and the counter electrode CΤ in order to prevent disconnection. Here, the electrode width of the video signal line DL is set to be equal to or less than twice the electrode width of the adjacent counter electrode CT. Alternatively, when the electrode width of the video signal line DL is determined from the productivity of the yield, the electrode width of the counter electrode CT adjacent to the video signal line DL is set to 1Z2 or more of the electrode width of the video signal line DL. I do. This is because the lines of electric force generated from the video signal line DL are absorbed by the counter electrodes CT on both sides, respectively.In order to absorb the lines of electric force generated from a certain electrode width, the lines of the same width or more must be absorbed. An electrode with an electrode width is required. Therefore, since the lines of electric force generated from half (4 / im each) of the electrodes of the video signal line DL need only be absorbed by the counter electrodes CT on both sides, the electrodes of the counter electrode CT adjacent to the video signal line DL are required. The width should be 1 Z 2 or more. This causes crosstalk due to the effect of the video signal In particular, preventing vertical (cross-talk in the vertical direction).
走査信号線 GLは末端側の画素 (後述の走查電極端子 GTMの反対 側) のゲート電極 GTに十分に走查電圧が印加するだけの抵抗値を満足 するように電極幅を設定する。 また、 対向電圧信号線 CLも末端側の画 素 (後述の共通バスライン CBの反対側) の対向電極 CTに十分に対向 電圧が印加できるだけの抵抗値を満足するように電極幅を設定する。 一方、 画素電極 PXと対向電極 CTの間の電極間隔は、 用いる液晶材 料によって変える。 これは、 液晶材料によって最大透過率を達成する電 界強度が異なるため、 電極間隔を液晶材料に応じて設定し、 用いる映像 信号駆動回路 (信号側ドライバ) の耐圧で設定される信号電圧の最大振 幅の範囲で、 最大透過率が得られるようにするためである。 後述の液晶 材料を用いると電極間隔は、 16 //mとなる。  The width of the scanning signal line GL is set so as to satisfy a resistance value sufficient to apply a scan voltage to the gate electrode GT of the terminal pixel (the opposite side of the scan electrode terminal GTM described later). The electrode width of the counter voltage signal line CL is also set so as to satisfy a resistance value enough to apply a counter voltage to the counter electrode CT of the pixel on the terminal side (opposite to the common bus line CB described later). On the other hand, the electrode interval between the pixel electrode PX and the counter electrode CT changes depending on the liquid crystal material used. This is because the electric field strength that achieves the maximum transmittance varies depending on the liquid crystal material, so the electrode spacing is set according to the liquid crystal material, and the maximum signal voltage set by the withstand voltage of the video signal drive circuit (signal driver) used. This is so that the maximum transmittance can be obtained in the range of the amplitude. When a liquid crystal material described later is used, the electrode interval becomes 16 // m.
《マトリクス部 (画素部) の断面構成》  << Cross-sectional configuration of matrix section (pixel section) >>
F i g. 2は F i g. 1の 3— 3切断線における断面を示す図、 F i g. 3は F i g. 1の 4一 4切断線における薄膜トランジスタ TFTの 断面図、 F i g. 4は F i g. 1の 5— 5切断線における蓄積容量 C s t gの断面を示す図である。 F i g. 2〜F i g. 4に示すように、 液 晶層 L Cを基準にして下部透明ガラス基板 S U B 1側には薄膜トラン ジスタ TFT、 蓄積容量 C s t gおよび電極群が形成され、 上部透明ガ ラス基板 SUB 2側にはカラーフィルタ F I L、 遮光用ブラックマトリ タスパターン BMが形成されている。  FIG. 2 is a cross-sectional view of FIG. 1 taken along the line 3-3, FIG. 3 is a cross-sectional view of the thin film transistor TFT taken along the line 4-14 of FIG. 1, FIG. FIG. 4 is a diagram showing a cross section of the storage capacitor C stg at the section line 5-5 in FIG. As shown in Fig. 2 to Fig. 4, a thin film transistor TFT, a storage capacitor C stg and an electrode group are formed on the lower transparent glass substrate SUB 1 side with respect to the liquid crystal layer LC, On the transparent glass substrate SUB2 side, a color filter FIL and a black matrix pattern BM for shading are formed.
また、 透明ガラス基板 SUB 1、 SUB 2のそれぞれの内側 (液晶し C側) の表面には、 液晶の初期配向を制御する配向膜 OR I 1、 OR I 2力設けられており、 透明ガラス基板 SUB 1、 SUB 2のそれぞれの 外側の表面には、 偏光軸が直交して配置された (クロスニコル配置) 偏 光板が設けられている。 In addition, the transparent glass substrates SUB 1 and SUB 2 have alignment films OR I 1 and OR I 2 on the inner surface (liquid crystal C side) to control the initial alignment of the liquid crystal. SUB 1 and SUB 2 On the outer surface, there is provided a polarizing plate whose polarization axes are arranged orthogonally (crossed Nicols arrangement).
《TFT基板》  《TFT substrate》
まず、 下側透明ガラス基板 SUB 1側 (TFT基板) の構成を詳しく  First, the configuration of the lower transparent glass substrate SUB 1 side (TFT substrate) is described in detail.
《薄膜 《Thin film
薄膜トランジスタ TFTは、 ゲ一ト電極 GTに正のバイアスを印加す ると、 ソース一 ドレイン間のチャネル抵抗が小さくなり、 バイアスを零 にすると、 チャネル抵抗は大きくなるように動作する。  The thin film transistor TFT operates such that when a positive bias is applied to the gate electrode GT, the channel resistance between the source and the drain decreases, and when the bias is set to zero, the channel resistance increases.
薄膜トランジスタ T FTは、 F i g. 3に示すように、 ゲート電極 G T、 ゲート絶縁膜 G I、 i型 (真性、 intrinsic^ 導電型決定不純物が ドープされていない) 非晶質シリコン (S i ) からなる i型半導体層 A S、 一対のソース電極 SD 1、 ドレイン電極 SD2を有す。 なお、 ソー ス、 ドレインは本来その間のバイアス極性によって決まるもので、 この 液晶表示装置の回路ではその極性は動作中反転するので、 ソース、 ドレ インは動作中入れ替わると理解されたい。 しカゝし、 以下の説明では、 便 宜上一方をソース、 他方をドレインと固定して表現する。  As shown in Fig. 3, the thin film transistor TFT is composed of a gate electrode GT, a gate insulating film GI, i-type (intrinsic, not doped with intrinsic ^ conductivity type determining impurities) amorphous silicon (S i) The semiconductor device has an i-type semiconductor layer AS, a pair of source electrodes SD1, and a drain electrode SD2. It should be understood that the source and the drain are originally determined by the bias polarity between them, and in the liquid crystal display circuit, the polarity is inverted during the operation, so that the source and the drain are switched during the operation. However, in the following description, for convenience, one is expressed as a source and the other is expressed as a drain.
《ゲート電極 GT》  《Gate electrode GT》
ゲート電極 G Tは走査信号線 G Lと連続して形成されており、 走査信 号線 GLの一部の領域がゲート電極 GTとなるように構成されている。 ゲート電極 G Tは薄膜トランジスタ TF Tの能動領域を超える部分で あり、 i型半導体層 ASを完全に覆うよう (下方からみて) それより大 き目に形成されている。 これにより、 ゲート電極 GTの役割のほかに、 i型半導体層 ASに外光やバックライ ト光が当たらないように工夫さ れている。 本例では、 ゲート電極 GTは、 単層の導電膜 g 1で形成され ている。 導電膜 g 1としては例えばスパッタで形成されたアルミニウム (A 1 ) 膜が用いられ、 その上には A 1の陽極酸化膜 AOFが設けられ ている。 The gate electrode GT is formed continuously with the scanning signal line GL, and a part of the scanning signal line GL is configured to be the gate electrode GT. The gate electrode GT is a portion beyond the active region of the thin film transistor TFT, and is formed to be larger (as viewed from below) so as to completely cover the i-type semiconductor layer AS. As a result, in addition to the role of the gate electrode GT, the device is devised so that external light and backlight do not hit the i-type semiconductor layer AS. Have been. In this example, the gate electrode GT is formed of a single conductive film g1. As the conductive film g1, for example, an aluminum (A1) film formed by sputtering is used, and an A1 anodic oxide film AOF is provided thereon.
《走査信号線 GL》  《Scan signal line GL》
走査信号線 GLは導電膜 g 1で構成されている。 この走査信号線 GL の導電膜 g 1はゲート電極 GTの導電膜 g 1と同一製造工程で形成さ れ、 かつ一体に構成されている。 この走査信号線 GLにより、 外部回路 からゲート電圧 Vgをゲート電極 GTに供給する。 また、 走査信号線 G L上にも A 1の陽極酸化膜 AOFが設けられている。 なお、 映像信号線 DLと交差する部分は映像信号線 DLとの短絡の確率を小さくするた め細くし、 また、 短絡しても、 レーザートリミングで切り離すことがで きるように二股にしている。  The scanning signal line GL is formed of the conductive film g1. The conductive film g1 of the scanning signal line GL is formed in the same manufacturing process as the conductive film g1 of the gate electrode GT, and is integrally formed. The gate voltage Vg is supplied from an external circuit to the gate electrode GT through the scanning signal line GL. Further, an anodic oxide film AOF of A1 is also provided on the scanning signal line GL. The portion that intersects with the video signal line DL is made thinner to reduce the probability of short-circuit with the video signal line DL, and is made bifurcated so that even if it is short-circuited, it can be separated by laser trimming.
《対向電極 CT》 '  《Counter electrode CT》 ''
対向電極 CTはゲート電極 GTおよび走査信号線 GLと同層の導電 膜 g lで構成されている。 また、 対向電極 CT上にも A 1の陽極酸化膜 AOFが設けられている。 対向電極 CTには対向電圧 V c omが印加さ れるように構成されている。 本実施例では、 対向電圧 Vc omは映像信 号線 DLに印加される最小レベルの駆動電圧 Vdm i nと最大レベル の駆動電圧 Vdm a xとの中間直流電位から、 薄膜トランジスタ素子 T F Tをオフ状態にするときに発生するフィ一ドスルー電圧 Δ V s分だけ 低い電位に設定されるが、 映像信号駆動回路で使用される集積回路の電 源電圧を約半分に低減したい場合は、 交流電圧を印加すれば良い。 The counter electrode CT is composed of the same conductive film gl as the gate electrode GT and the scanning signal line GL. An A1 anodic oxide film AOF is also provided on the counter electrode CT. The counter electrode CT is configured to apply a counter voltage Vcom. In the present embodiment, the counter voltage Vcom is used to turn off the thin film transistor element TFT from the intermediate DC potential between the minimum level drive voltage Vdm in and the maximum level drive voltage Vdm ax applied to the video signal line DL. Although the potential is set to be lower by the generated feedthrough voltage ΔVs, if it is desired to reduce the power supply voltage of the integrated circuit used in the video signal drive circuit to about half, an AC voltage may be applied.
《対向電圧信号線 CL》 対向電圧信号線 CLは導電膜 g 1で構成されている。 この対向電圧信 号線 CLの導電膜 g 1はゲート電極 GT、 走査信号線 GLおよび対向電 極 CTの導電膜 g 1と同一製造工程で形成され、 かつ対向電極 CTと一 体に構成されている。 この対向電圧信号線 CLにより、 外部回路から対 向電圧 V c omを対向電極 CTに供給する。 また、 対向電圧信号線 CL 上にも A 1の陽極酸化膜 AOFが設けられている。 なお、 映像信号線 D Lと交差する部分は、 走査信号線 G Lと同様に映像信号線 D Lとの短絡 の確率を小さくするため細くし、 また、 短絡しても、 レーザートリミン グで切り離すことができるように二股にしている。 << Counter voltage signal line CL >> The counter voltage signal line CL is formed of the conductive film g1. The conductive film g1 of the counter voltage signal line CL is formed in the same manufacturing process as the gate electrode GT, the scanning signal line GL, and the conductive film g1 of the counter electrode CT, and is formed integrally with the counter electrode CT. . The counter voltage signal line CL supplies a counter voltage Vcom from an external circuit to the counter electrode CT. An anodic oxide film AOF of A1 is also provided on the counter voltage signal line CL. The portion that intersects with the video signal line DL is thinned to reduce the probability of a short circuit with the video signal line DL, as is the case with the scanning signal line GL. Even if the short circuit occurs, it can be separated by laser trimming. I am bifurcated.
《絶縁膜 G I》  《Insulating film G I》
絶縁膜 G Iは、 薄膜トランジスタ TFTにおいて、 ゲート電極 GTと 共に半導体層 ASに電界を与えるためのゲート絶縁膜として使用され る。 絶縁膜 G Iはゲート電極 GTおよび走査信号線 GLの上層に形成さ れている。 絶縁膜 G Iとしては例えばプラズマ CVDで形成された窒化 シリコン膜が選ばれ、 1 200〜 2700 Aの厚さに (本実施例では、 The insulating film GI is used as a gate insulating film for applying an electric field to the semiconductor layer AS together with the gate electrode GT in the thin film transistor TFT. The insulating film GI is formed above the gate electrode GT and the scanning signal line GL. As the insulating film GI, for example, a silicon nitride film formed by plasma CVD is selected, and has a thickness of 1,200 to 2,700 A (in this embodiment,
240 OA程度) 形成される。 ゲート絶縁膜 G Iは、 マトリクス部 AR の全体を囲むように形成され、 周辺部は外部接続端子 DTM、 GTMを 露出するよう除去されている。 絶縁膜 G Iは走査信号線 GLおよび対向 電圧信号線 C Lと映像信号線 D Lの電気的絶縁にも寄与している。 240 OA) formed. The gate insulating film GI is formed so as to surround the entire matrix portion AR, and the peripheral portion is removed so as to expose the external connection terminals DTM and GTM. The insulating film GI also contributes to electrical insulation between the scanning signal line GL and the counter voltage signal line CL and the video signal line DL.
《i型半導体層 AS》  《I-type semiconductor layer AS》
i型半導体層 ASは、 非晶質シリコンで、 200〜220 OAの厚さ に (本実施例では、 2000A程度の膜厚) で形成される。 層 d Oはォ 一ミックコンタク ト用のリン (P) をドープした N( + )型非晶質シリコ ン半導体層であり、 下側に i型半導体層 ASが存在し、 上側に導電層 d 1 (d 2) が存在するところのみに残されている。 The i-type semiconductor layer AS is made of amorphous silicon and has a thickness of 200 to 220 OA (in this embodiment, a film thickness of about 2000 A). The layer d O is an N (+) type amorphous silicon semiconductor layer doped with phosphorus (P) for a homogenous contact, an i-type semiconductor layer AS is present on the lower side, and a conductive layer d is present on the upper side. 1 (d 2) remains only where it exists.
i型半導体層 A Sは走査信号線 G Lおよび対向電圧信号線 C Lと映 像信号線 DLとの交差部 (クロスオーバ部) の両者間にも設けられてい る。 この交差部の i型半導体層 ASは交差部における走查信号線 G お よび対向電圧信号線 C Lと映像信号線 D Lとの短絡を低減する。  The i-type semiconductor layer AS is also provided between the scanning signal line GL and the intersection (crossover portion) between the counter voltage signal line CL and the video signal line DL. The i-type semiconductor layer AS at the intersection reduces a short circuit between the scanning signal line G and the counter voltage signal line CL and the video signal line DL at the intersection.
《ソース電極 SD1、 ドレイン電極 SD 2》  《Source electrode SD1, Drain electrode SD 2》
ソース電極 SD1、 ドレイン電極 SD 2のそれぞれは、 N( + )型半導 体層 d 0に接触する導電膜 d 1とその上に形成された導電膜 d 2とか ら構成されている。  Each of the source electrode SD1 and the drain electrode SD2 is composed of a conductive film d1 in contact with the N (+) type semiconductor layer d0 and a conductive film d2 formed thereon.
導電膜 d 1はスパッタで形成したクロム (C r) 膜を用い、 500〜 100 OAの厚さに (本実施例では、 60 OA程度) で形成される。 C r膜は膜厚を厚く形成するとストレスが大きくなるので、 200 OA程 度の膜厚を越えない範囲で形成する。 C r膜は N( + )型半導体層 d 0と の接着性を良好にし、 導電膜 d 2の A 1が N( + )型半導体層 d 0に拡散 することを防止する (いわゆるバリア層の) 目的で使用される。 導電膜 d 1として、 C r膜の他に高融点金属 (Mo、 T i、 T a、 W) 膜、 高 融点金属シリサイ ド (Mo S i 2、 T i S i 2、 Ta S i 2、 WS i 2) 膜を用いてもよレ、。 The conductive film d1 is formed of a chromium (Cr) film formed by sputtering to a thickness of 500 to 100 OA (about 60 OA in this embodiment). Since the stress increases when the Cr film is formed with a large thickness, the Cr film is formed within a thickness not exceeding about 200 OA. The Cr film improves the adhesion to the N (+) type semiconductor layer d0, and prevents A1 of the conductive film d2 from diffusing into the N (+) type semiconductor layer d0 (the so-called barrier layer). ) Used for purposes. As the conductive film d 1, in addition to refractory metal C r layer (Mo, T i, T a , W) film, a refractory metal Shirisai de (Mo S i 2, T i S i 2, Ta S i 2, WS i 2 ) You can use a membrane.
導電膜 d 2は A 1のスパッタリングで 3000〜5000 Aの厚さ に (本実施例では、 4000 A程度) 形成される。 A 1膜は C r膜に比 ベてストレスが小さく、 厚い膜厚に形成することが可能で、 ソース電極 S D 1、 ドレイン電極 S D 2および映像信号線 D Lの抵抗値を低減した り、 ゲート電極 GTや i型半導体層 ASに起因する段差乗り越えを確実 にする (ステップカバーレツジを良くする) 働きがある。 導電膜 d 1、 導電膜 d 2を同じマスクパターンでパターユングした後、 同じマスクを用いて、 あるいは導電膜 d 1、 導電膜 d 2をマスクとして、 N ( + )型半導体層 d 0が除去される。 つまり、 i型半導体層 A S上に残 つていた N ( + )型半導体層 d 0は導電膜 d 1、 導電莫 d 2以外の部分が セルファラインで除去される。 このとき、 N ( + )型半導体層 d 0はその 厚さ分は全て除去されるようエッチングされるので、 i型半導体層 A S も若干その表面部分がェツチングされるが、 その程度はェッチング時間 で制御すればよい。 The conductive film d2 is formed to a thickness of 3000 to 5000 A (about 4000 A in this embodiment) by sputtering of A1. The A1 film has less stress than the Cr film and can be formed with a large film thickness, reducing the resistance of the source electrode SD1, the drain electrode SD2 and the video signal line DL, and the gate electrode. GT and i-type semiconductor layer It has the function to ensure that the step caused by AS is overcome (to improve the step coverage). After patterning the conductive film d1 and the conductive film d2 with the same mask pattern, the N (+) type semiconductor layer d0 is removed using the same mask or using the conductive film d1 and the conductive film d2 as a mask. Is done. That is, in the N (+)-type semiconductor layer d0 remaining on the i-type semiconductor layer AS, portions other than the conductive film d1 and the conductive layer d2 are removed by the self-alignment. At this time, since the N (+) type semiconductor layer d0 is etched so as to completely remove its thickness, the surface of the i-type semiconductor layer AS is also slightly etched. What is necessary is to control.
《映像信号線 D L》  《Video signal line D L》
映像信号線 D Lはソース電極 S D 1、 ドレイン電極 S D 2と同層の第 2導電膜 d 2、 第 3導電膜 d 3で構成されている。 また、 映像信号線 D Lはドレイン電極 S D 2と一体に形成されている。  The video signal line DL is composed of a second conductive film d2 and a third conductive film d3 in the same layer as the source electrode SD1 and the drain electrode SD2. Further, the video signal line DL is formed integrally with the drain electrode SD2.
《画素電極 P X》  《Pixel electrode P X》
画素電極 P Xは、 透明導電層 g 2で形成されている。 この透明導電膜 g 2はスパッタリングで形成された透明導電膜 (Indium- Tin- Oxide I T O :ネサ膜) からなり、 1 0 0〜2 0 0 0 Αの厚さに (本実施例では、 1 4 0 O A程度の膜厚) 形成される。  The pixel electrode PX is formed of the transparent conductive layer g2. The transparent conductive film g2 is made of a transparent conductive film (Indium-Tin-Oxide ITO: Nesa film) formed by sputtering and has a thickness of 100 to 200 mm (in the present embodiment, 14 to 14 mm). (Thickness of about 0 OA) is formed.
画素電極が本実施例のように透明になることにより、 その部分の透過 光により、 白表示を行う時の最大透過率が向上するため、 画素電極が不 透明な場合よりも、 より明るい表示を行うことができる。 この時、 後述 するように、 電圧無印加時には、 液晶分子は初期の配向状態を保ち、 そ の状態で黒表示をするように偏光板の配置を構成する (ノーマリブラッ クモードにする) にしているので、 画素電極を透明にしても、 その部分 の光を透過することがなく、 良質な黒を表示することができる。 これに より、 最大透過率が向上させ、 かつ十分なコントラスト比を達成するこ とができる。 By making the pixel electrode transparent as in this embodiment, the maximum transmittance when white display is performed is improved due to the transmitted light in that part, so that a brighter display is provided than when the pixel electrode is opaque. It can be carried out. At this time, as described later, when no voltage is applied, the liquid crystal molecules maintain the initial alignment state, and the polarizing plate is arranged so as to display black in that state (normal black mode). However, even if the pixel electrode is transparent, it is possible to display high-quality black without transmitting light in that portion. to this Thus, the maximum transmittance can be improved and a sufficient contrast ratio can be achieved.
《蓄積容量 C s t g》  《Storage capacity C s t g》
画素電極 P Xは、 薄膜トランジスタ T F Tと接続される端部と反対側 の端部において、 対向電圧信号線 C Lと重なるように形成されている。 この重ね合わせは、 F i g . 4からも明らかなように、 画素電極 P Xを 一方の電極 P L 2とし、 対向電圧信号 C Lを他方の電極 P L 1とする蓄 積容量 (静電容量素子) C s t gを構成する。 この蓄積容量 C s t gの 誘電体膜は、 薄膜トランジスタ TF Tのゲート絶縁膜として使用される 絶縁膜 G Iおよび陽極酸化膜 AO Fで構成されている。  The pixel electrode PX is formed so as to overlap the counter voltage signal line CL at an end opposite to the end connected to the thin film transistor TFT. As is clear from Fig. 4, this superposition is performed by using a storage capacitor (capacitance element) C stg in which the pixel electrode PX is used as one electrode PL 2 and the counter voltage signal CL is used as the other electrode PL 1. Is configured. The dielectric film of the storage capacitor C stg is composed of an insulating film GI used as a gate insulating film of the thin film transistor TFT and an anodic oxide film AOF.
F i g . 1に示すように平面的には蓄積容量 C s t gは対向電圧信号 線 C Lの導電膜 g 1の幅を広げた部分に形成されている。  As shown in FIG. 1, the storage capacitance C stg is formed in a portion where the width of the conductive film g1 of the counter voltage signal line CL is increased in plan view.
《保護膜 P S V 1》  《Protective film P S V 1》
薄膜トランジスタ T F T上には保護膜 P SV 1が設けられている。 保 護膜 P S V 1は主に薄膜トランジスタ T F Tを湿気等から保護するた めに形成されており、 透明性が高くしかも耐湿性の良いものを使用する c 保護膜 P S V 1はたとえばプラズマ CVD装置で形成した酸化シリコ ン膜ゃ窒化シリコン膜で形成されており、 1 μ πι程度の膜厚で形成する c 保護膜 P S V 1は、 マトリクス部 ARの全体を囲むように形成され、 周辺部は外部接続端子 DTM、 GTMを露出するよう除去されている。 保護膜 P S V 1とゲ一ト絶縁膜 G Iの厚さ関係に関しては、 前者は保護 効果を考え厚くされ、 後者はトランジスタの相互コンダクタンス g mを 薄くされる。 従って、 保護効果の高い保護膜 P S V 1は周辺部もできる だけ広い範囲に亘つて保護するようゲート絶縁膜 G Iよりも大きく形 成されている。 A protective film PSV1 is provided on the thin film transistor TFT. Coercive Mamorumaku PSV 1 is mainly formed in order to protect the thin film transistor TFT from moisture or the like, c protective film PSV 1 to use a good addition moisture resistance high transparency was formed by, for example, the plasma CVD apparatus C Protective film PSV 1 is formed so as to surround the entire matrix part AR, and the peripheral part is an external connection terminal DTM. The GTM has been removed to expose. Regarding the thickness relationship between the protective film PSV1 and the gate insulating film GI, the former is made thicker in consideration of the protective effect, and the latter is made thinner for the transconductance gm of the transistor. Therefore, the protective film PSV1, which has a high protective effect, is larger than the gate insulating film GI so as to protect the peripheral area as much as possible. Has been established.
《カラーフィルタ基板》  《Color filter substrate》
次に、 F i g. 1, F i g. 2に戻り、 上側透明ガラス基板 SUB 2 側 (カラーフィルタ基板) の構成を詳しく説明する。  Next, returning to FIGS. 1 and 2, the configuration of the upper transparent glass substrate SUB 2 side (color filter substrate) will be described in detail.
《遮光膜 BM》  《Light shielding film BM》
上部透明ガラス基板 SUB 2側には、 不要な間隙部 (画素電極 PXと 対向電極 CTの間以外の隙間) からの透過光が表示面側に出射して、 コ ントラスト比等を低下させないように遮光膜 BM (いわゆるブラックマ トリクス) を形成している。 遮光膜 BMは、 外部光またはバックライ ト 光が i型半導体層 ASに入射しないようにする役割も果たしている。 す なわち、 薄膜トランジスタ TFTの i型半導体層 ASは上下にある遮光 膜 BMおよび大き目のゲート電極 GTによってサンドィツチにされ、 外 部の自然光やバックライ ト光が当たらなくなる。  On the upper transparent glass substrate SUB2 side, make sure that the transmitted light from unnecessary gaps (gap other than between the pixel electrode PX and the counter electrode CT) is emitted to the display surface side and does not lower the contrast ratio etc. The light shielding film BM (so-called black matrix) is formed. The light shielding film BM also serves to prevent external light or backlight light from entering the i-type semiconductor layer AS. That is, the i-type semiconductor layer AS of the thin film transistor TFT is sandwiched by the upper and lower light-shielding films BM and the large gate electrode GT, so that external natural light and backlight do not hit.
F i g. 1に示す遮光膜 BMの閉じた多角形の輪郭線は、 その内側が 遮光膜 BMが形成されない開口を示している。 この輪郭線のパターンは、 1例であり、 より開口部分を大きくする場合には、 F i g. 1の点線の 遮光膜 BM1の様にすることもできる。 F i g. 1中の拡大された領域 は電界方向が乱れるが、 その部分の表示は、 画素内の映像情報に 1対 1 で対応し、 かつ、 黒の場合には黒、 白の場合には白になるため、 表示の 一部として利用することが可能である。 また、 図の上下方向の境界線は 上下基板の合わせ精度によつて決まり、 合わせ精度が映像信号線 D Lに 隣接する対向電極 CTの電極幅よりも良い場合には、 対向電極の幅の間 に設定れば、 より開口部を拡大することができる。  The closed polygonal outline of the light-shielding film BM shown in FIG. 1 indicates an opening inside which the light-shielding film BM is not formed. This contour pattern is an example, and when the opening portion is further enlarged, the light shielding film BM1 indicated by a dotted line in FIG. 1 can be used. In the enlarged area in Fig. 1, the direction of the electric field is disturbed, but the display of that part corresponds to the video information in the pixels on a one-to-one basis, and when black, black and white Is white, so it can be used as part of the display. Also, the vertical boundaries in the figure are determined by the alignment accuracy of the upper and lower substrates, and if the alignment accuracy is better than the electrode width of the counter electrode CT adjacent to the video signal line DL, the gap between the widths of the counter electrodes is If set, the opening can be further enlarged.
遮光膜 BMは光に対する遮蔽性を有し、 かつ、 画素電極 PXと対向電 極 C Tの間の電界に影響を与えないように絶縁性の高レ、膜で形成され ており、 本実施例では黒色の顔料をレジスト材に混入し、 1. 2 μπι程 度の厚さで形成している。 The light shielding film BM has a light shielding property, and has a counter electrode with the pixel electrode PX. It is formed of a high-insulating film that does not affect the electric field between the pole CT.In this embodiment, a black pigment is mixed into the resist material, and the thickness is about 1.2 μπι. Has formed.
遮光膜 ΒΜは各画素の周囲に格子状に形成され、 この格子で 1画素の 有効表示領域が仕切られている。 従って、 各画素の輪郭が遮光膜 ΒΜに よってはっきりとする。 つまり、 遮光膜 ΒΜは、 ブラックマトリクスと i型半導体層 A Sに対する遮光との 2つの機能をもつ。  The light-shielding film 形成 is formed in a grid around each pixel, and an effective display area of one pixel is partitioned by the grid. Therefore, the outline of each pixel is made clear by the light shielding film ΒΜ. That is, the light shielding film 膜 has two functions of a black matrix and light shielding for the i-type semiconductor layer AS.
遮光膜 BMは周辺部にも額縁状に形成され、 そのパターンはドット状 に複数の開口を設けた F i g. 1に示すマトリクス部のパターンと連続 して形成されている。 周辺部の遮光膜 BMは、 シール部 SLの外側に延 長され、 パソコン等の実装機に起因する反射光等の漏れ光がマトリタス 部に入り込むのを防いでいる。 他方、 この遮光膜 BMは基板 SUB 2の 縁よりも約 0. 3〜1. Omm程内側に留められ、 基板 SUB 2の切断 領域を避けて形成されている。  The light-shielding film BM is also formed in a frame shape in the peripheral portion, and its pattern is formed continuously with the pattern of the matrix portion shown in FIG. 1 in which a plurality of openings are provided in a dot shape. The light-shielding film BM in the peripheral portion extends outside the seal portion SL to prevent leaked light such as reflected light due to a mounting machine such as a personal computer from entering the matrix portion. On the other hand, the light-shielding film BM is kept about 0.3-1. Omm inward from the edge of the substrate SUB2, and is formed avoiding the cut region of the substrate SUB2.
《カラーフィルタ F I L》  《Color filter F I L》
カラーフィルタ F I Lは画素に対向する位置に赤、 緑、 青の繰り返し でストライプ状に形成される。 カラ一フィルタ F I Lは遮光膜 BMのェ ッジ部分と重なるように形成されている。  The color filter FIL is formed in a stripe shape by repeating red, green, and blue at a position facing the pixel. The color filter FIL is formed so as to overlap the edge of the light shielding film BM.
カラーフィルタ F I Lは次のように形成することができる。 まず、 上 部透明ガラス基板 SUB 2の表面にァクリル系樹脂等の染色基材を形 成し、 フォトリソグラフィ技術で赤色フィルタ形成領域以外の染色基材 を除去する。 この後、 染色基材を赤色染料で染め、 固着処理を施し、 赤 色フィルタ Rを形成する。 つぎに、 同様な工程を施すことによって、 緑 色フィルタ G、 青色フィルタ Bを順次形成する。 《オーバーコート膜 oc》 The color filter FIL can be formed as follows. First, a dye base such as acryl resin is formed on the surface of the upper transparent glass substrate SUB2, and the dye base other than the red filter forming region is removed by photolithography. Thereafter, the dyed base material is dyed with a red dye and subjected to a fixing treatment to form a red filter R. Next, a green filter G and a blue filter B are sequentially formed by performing a similar process. 《Overcoat film oc》
オーバーコート膜 OCはカラーフィルタ F I Lの染料の液晶しじへ の漏洩の防止、 および、 カラーフィルタ F I L、 遮光膜 BMによる段差 の平坦化のために設けられている。 オーバーコート膜 O Cはたとえばァ クリル樹脂、 エポキシ樹脂等の透明樹脂材料で形成されている。  The overcoat film OC is provided to prevent the dye of the color filter FIL from leaking into the liquid crystal stripes and to flatten the steps due to the color filter FIL and the light shielding film BM. The overcoat film OC is formed of, for example, a transparent resin material such as an acrylic resin or an epoxy resin.
《液晶層および偏向板》  《Liquid crystal layer and polarizing plate》
次に、 液晶層、 配向膜、 偏光板等について説明する。  Next, the liquid crystal layer, the alignment film, the polarizing plate, and the like will be described.
《液晶層》  《Liquid crystal layer》
液晶材料 L Cとしては、 誘電率異方性 Δ εが正でその値が 1 3. 2、 屈折率異方性 Δ ηが 0. 0 8 1 (5 8 9 nm、 2 0°C) のネマティック 液晶を用いる。 液晶層の厚み (ギャップ) は、 3. 9 μπιとし、 リタデ ーシヨン A n . dは 0. 3 1 6とする。 このリタデーシヨン Δ n · dの値 により、 後述の配向膜と偏光板と組み合わせ、 液晶分子がラビング方向 から電界方向に 4 5° 回転したとき最大透過率を得ることができ、 可視 光の範囲ないで波長依存性がほとんどない透過光を得ることができる。 なお、 液晶層の厚み (ギャップ) は、 ポリマビーズで制御している。 なお、 液晶材料 LCは、 特に限定したものではなく、 誘電率異方性厶 £は負でもよい。 また、 誘電率異方性 Δ εは、 その値が大きいほうが、 駆動電圧が低減できる。 また、 屈折率異方性 Δ ηは小さレ、ほう力 S、 液晶 層の厚み (ギャップ) を厚くでき、 液晶の封入時間が短縮され、 かつギ ャップばらつきを少なくすることができる。  As a liquid crystal material LC, a nematic material having a positive dielectric anisotropy Δε of 13.2 and a refractive index anisotropy Δη of 0.081 (589 nm, 20 ° C) Use liquid crystal. The thickness (gap) of the liquid crystal layer is 3.9 μπι, and the retardation An.d is 0.316. With the value of this retardation Δnd, the maximum transmittance can be obtained when the liquid crystal molecules are rotated by 45 ° from the rubbing direction to the electric field direction in combination with the alignment film and the polarizing plate described later. It is possible to obtain transmitted light having almost no wavelength dependence. The thickness (gap) of the liquid crystal layer is controlled by polymer beads. The liquid crystal material LC is not particularly limited, and the dielectric anisotropy may be negative. In addition, the larger the value of the dielectric anisotropy Δε, the more the driving voltage can be reduced. In addition, the refractive index anisotropy Δη can be small, the force S can be increased, and the thickness (gap) of the liquid crystal layer can be increased, the liquid crystal sealing time can be shortened, and gap variation can be reduced.
また、 液晶材料の材料物性と透明導電膜の対向電極部分あるレ、は画素 電極部分での透過光強度の関係を調べると、 液晶材料のッイスト弹性定 数 K 2に大きく依存することが分かつた。 これは電極間の開口部におい て光透過をもたらす横電界による面内ッイスト変形の、 透明導電膜の電 極上部での減衰が、 上記の液晶材料のッイスト弾性定数 K2に応じた固 有の曲率で生じるためである。 したがって、 透明導電膜の電極部分での 光透過をより大きくして、 この透明導電膜の電極を含んだ開口部全体の 輝度を向上させるには、 ッイスト弾性定数 K 2の小さな液晶材料を用い て、 上記の減衰曲率を小さくすればよい。 ツイス ト弾性定数 K2の効果 については、 実施例 1 1で更に記載する。 In addition, an examination of the relationship between the physical properties of the liquid crystal material and the transmitted light intensity at the pixel electrode portion of the transparent conductive film revealed that the relationship greatly depends on the twist 弹 property constant K 2 of the liquid crystal material. . This is in the opening between the electrodes This is because the in-plane twist deformation due to the transverse electric field that causes light transmission causes attenuation at the upper part of the electrode of the transparent conductive film with a specific curvature corresponding to the above-mentioned twist elastic constant K2 of the liquid crystal material. Therefore, in order to further increase the light transmission at the electrode portion of the transparent conductive film and to improve the brightness of the entire opening including the electrode of the transparent conductive film, a liquid crystal material having a small twist elastic constant K 2 is used. The above-mentioned attenuation curvature may be reduced. The effect of the twist elastic constant K2 will be further described in Example 11.
本実施例 1では、 ツイスト弾性定数 K 2として、 室温で、 5. 1 X 1 0一12 N (ニュートン) を使用している。 In the first embodiment, as the twist elastic constant K 2, 5.1 × 10 12 N (Newton) at room temperature is used.
なお、 ツイス ト弾性定数 K 2の測定方法は、 例えば、 文献として 岡 野 光治、 小林 駿介共編 液晶 ·基礎編 p 216〜220 (培風館、 The method of measuring the twist elastic constant K 2 is described in, for example, the literature, Koji Okano, Shunsuke Kobayashi, co-edited by Liquid Crystal and Basics, p.216-220 (Baifukan,
1985年) に記載があり、 ツイストした液晶セルのしきい値電圧測定 から求めることができる。 1985), and can be obtained by measuring the threshold voltage of a twisted liquid crystal cell.
《配向膜》  《Orientation film》
配向膜 OR Iとしては、 ポリイミ ドを用いる。 ラビング方向は上下基 板で互いに平行にし、 初期配向方向 RDRと印加電界方向 EDR (E X) とのなす初期配向角 ψ LCは 75° とする。 F i g. 19にその関 係を示す。  Polyimide is used as the alignment film ORI. The rubbing directions are parallel to each other on the upper and lower substrates, and the initial alignment angle ψ LC between the initial alignment direction RDR and the applied electric field direction EDR (EX) is 75 °. Fig. 19 shows the relationship.
なお、 初期配向方向 R D Rと印加電界方向 E D Rとのなす初期配向角 φ LCは、 液晶材料の誘電率異方性 Δ £が正であれば、 45°C以上 9 0°C未満、 誘電率異方性 Δ εが負であれば、 0° を超え 45° 以下でな ければならない。  Note that the initial alignment angle φ LC formed by the initial alignment direction RDR and the applied electric field direction EDR is 45 ° C or more and less than 90 ° C and the dielectric constant difference if the dielectric anisotropy Δ £ of the liquid crystal material is positive. If the anisotropy Δε is negative, it must be greater than 0 ° and less than 45 °.
さらに、 本実施例では、 ラビング方向を配向膜 OR I I、 OR I 2で 互いに平行することで、 電極間及び電極上の表示に寄与する液晶層の上 下界面の液晶分子の初期プレチルト角が、 スプレイ状態となり、 液晶分 子が互いに光学特性を補償する効果を出し、 広い視野角特性が得られる c また、 ラビング方向を配向膜 OR I 1、 OR I 2で互いに反平行する ことで、 液晶層の上下界面の液晶分子のプレチルト角がパラレル状態と なり、 平均の液晶層内のチルト角は、 より増加するが、 10度以下にプ レチルト角を設定することで、 本発明の同檨な効果が得られる。 Further, in this embodiment, the rubbing directions are parallel to each other by the alignment films OR II and OR I 2, so that the liquid crystal layer between the electrodes and the display on the electrodes can be formed. The initial pretilt angle of the liquid crystal molecules at the lower interface is in a splay state, and the liquid crystal molecules have the effect of compensating optical characteristics with each other, and a wide viewing angle characteristic can be obtained. By being antiparallel to each other in step 2, the pretilt angles of the liquid crystal molecules at the upper and lower interfaces of the liquid crystal layer are in a parallel state, and the average tilt angle in the liquid crystal layer increases, but the pretilt angle is set to 10 degrees or less. By doing so, the same effect of the present invention can be obtained.
《偏光板》  "Polarizer"
偏光板 POLとしては、 日東電工社製 G 1220DUを用い、 下側の 偏光板 POL 1の偏光透過軸 MAX 1をラビング方向 RDRと一致さ せ、 上側の偏向板 POL 2の偏光透過軸 MAX 2を、 それに直交させる c F i g. 19にその関係を示す。 これにより、 本発明の画素に印加され る電圧 (画素電極 PXと対向電極 CTの間の電圧) を増加させるに伴い、 透過率が上昇するノーマリクローズ特性を得ることができ、 また、 電圧 無印加時には、 良質な黒表示ができる。 G1220DU manufactured by Nitto Denko Corporation was used as the polarizer POL, and the polarization transmission axis MAX1 of the lower polarization plate POL1 was matched with the rubbing direction RDR, and the polarization transmission axis MAX2 of the upper polarizer POL2 was used. The relationship is shown in c F i g. 19 which is orthogonal to it. As a result, it is possible to obtain a normally closed characteristic in which the transmittance increases as the voltage (voltage between the pixel electrode PX and the counter electrode CT) applied to the pixel of the present invention increases. In addition, high quality black display can be obtained.
また、 偏光板 POL 2自体には、 外部からの静電気の影響を防止する ため、 その比抵抗値を低減する目的で、 透明導電膜が一面に形成されて いる。 この透明導電膜は、 上基板 SUB 2と上偏光板 POL 2との間に 形成しても良い。  In addition, a transparent conductive film is formed on the entire surface of the polarizing plate POL2 for the purpose of reducing its specific resistance in order to prevent the influence of external static electricity. This transparent conductive film may be formed between the upper substrate SUB2 and the upper polarizer POL2.
《マトリクス周辺の構成》  《Configuration around the matrix》
F i g. 5は上下のガラス基板 SUB 1、 SUB 2を含む表示パネル PNLのマトリクス (AR) 周辺の要部平面を示す図である。 また、 F i g. 6は、 左側に走査回路が接続されるべき外部接続端子 GTM付近 の断面を、 右側に外部接続端子が無いところのシール部付近の断面を示 す図である。 このパネルの製造では、 小さいサイズであればスループット向上のた め 1枚のガラス基板で複数個分のデバイスを同時に加工してから分割 し、 大きいサイズであれば製造設備の共用のためどの品種でも標準化さ れた大きさのガラス基板を加工してから各品種に合ったサイズに小さ く し、 いずれの場合も一通りの工程を経てからガラスを切断する。 F i g. 5、 F i g. 6は後者の例を示すもので、 F i g. 5、 F i g. 6 の両図とも上下基板 SUB 1、 SUB 2の切断後を表しており、 LNは 両基板の切断前の縁を示す。 いずれの場合も、 完成状態では外部接続端 子群 Tg、 Tdおよび端子 COT (添字略) が存在する (図で上辺と左 辺の) 部分はそれらを露出するように上側基板 SUB 2の大きさが下側 基板 SUB 1よりも内側に制限されている。 端子群 Tg、 Tdはそれぞ れ後述する走査回路接続用端子 GTM、 映像信号回路接続用端子 DTM とそれらの引出配線部を集積回路チップ CH Iが搭載されたテープキ ャリアパッケージ TCP (F i g. 16、 F i g. 1 7) の単位に複数 本まとめて名付けたものである。 各群のマトリクス部から外部接続端子 部に至るまでの引出配線は、 両端に近づくにつれ傾斜している。 これは、 パッケージ T C Pの配列ピッチ及び各パッケージ T C Pにおける接続 端子ピツチに表示パネル P N Lの端子 D TM、 G TMを合わせるためで ある。 また、 対向電極端子 CTMは、 対向電極 CTに対向電圧を外部回 路から与えるための端子である。 マトリクス部の対向電圧信号線 CLは、 走査回路用端子 GTMの反対側 (図では右側) に引き出し、 各対向電圧 信号線を共通バスライン CBで一纏めにして、 対向電極端子 CTMに接 続している。 FIG. 5 is a diagram showing a main part plane around a matrix (AR) of the display panel PNL including the upper and lower glass substrates SUB 1 and SUB 2. FIG. 6 is a diagram showing a cross section near the external connection terminal GTM to which the scanning circuit is to be connected on the left side, and a cross section near the seal portion where there is no external connection terminal on the right side. In the manufacture of this panel, if small size divided from simultaneously processing a plurality fraction of the device in order one glass substrate was improved throughput, any breed for shared manufacturing facilities if large size After processing a glass substrate of standardized size, it is reduced to a size suitable for each product type. In each case, the glass is cut after a single process. Fig. 5 and Fig. 6 show examples of the latter. Both figures of Fig. 5 and Fig. 6 show the upper and lower substrates SUB 1 and SUB 2 after cutting. LN indicates the edge of both substrates before cutting. In any case, in the completed state, the external connection terminal groups Tg and Td and the terminal COT (subscript omitted) exist (the upper and left sides in the figure) are the size of the upper substrate SUB2 so that they are exposed. Is limited to the inside of the lower substrate SUB 1. The terminal groups Tg and Td are connected to a scanning circuit connection terminal GTM and a video signal circuit connection terminal DTM, respectively, and a lead-out wiring portion thereof, described later, by a tape carrier package TCP (Fig) on which an integrated circuit chip CH I is mounted. . 16, Fig. 1 7) Multiple units are collectively named. The lead wiring from the matrix section of each group to the external connection terminal section is inclined as approaching both ends. This is because the terminals DTM and GTM of the display panel PNL are matched with the arrangement pitch of the package TCP and the connection terminal pitch of each package TCP. The counter electrode terminal CTM is a terminal for applying a counter voltage to the counter electrode CT from an external circuit. The counter voltage signal line CL in the matrix section is drawn out to the opposite side (right side in the figure) of the scanning circuit terminal GTM, and the respective counter voltage signal lines are grouped together by a common bus line CB and connected to the counter electrode terminal CTM. I have.
透明ガラス基板 SUB 1、 SUB 2の間にはその縁に沿って、 液晶封 入口 I N Jを除き、 液晶 LCを.封止するようにシールパターン S が 形成される。 シール材は例えばェポキシ樹脂から成る。 Liquid crystal sealing between transparent glass substrates SUB 1 and SUB 2 Except for the inlet INJ, a seal pattern S is formed to seal the liquid crystal LC. The sealing material is made of, for example, an epoxy resin.
配向膜 OR I 1、 OR I 2の層は、 シールパターン S Lの内側に形成 される。 偏光板 POL 1、 POL 2はそれぞれ下部透明ガラス基板 SU B l、 上部透明ガラス基板 SUB 2の外側の表面に構成されている。 液 晶 LCは液晶分子の向きを設定する下部配向膜 OR I 1と上部配向膜 OR I 2との間でシールパターン S Lで仕切られた領域に封入されて いる。 下部配向膜 OR I 1は下部透明ガラス基板 SUB 1側の保護膜 P S V 1の上部に形成される。  The layers of the alignment films OR I1 and OR I2 are formed inside the seal pattern SL. The polarizers POL 1 and POL 2 are respectively formed on the outer surfaces of the lower transparent glass substrate SUB 2 and the upper transparent glass substrate SUB 2. The liquid crystal LC is sealed in a region partitioned by a seal pattern SL between the lower alignment film ORI1 and the upper alignment film ORI2 for setting the direction of liquid crystal molecules. The lower alignment film OR I1 is formed on the lower transparent glass substrate SUB1 side on the protective film PSV1.
この液晶表示装置は、 下部透明ガラス基板 SUB 1側、 上部透明ガラ ス基板 SUB 2側で別個に種々の層を積み重ね、 シールパターン SLを 基板 SUB 2側に形成し、 下部透明ガラス基板 SUB 1と上部透明ガラ ス基板 SUB 2とを重ね合わせ、 シール材 S Lの開口部 I N Jから液晶 LCを注入し、 注入口 I N Jをエポキシ樹脂などで封止し、 上下基板を 切断することによって組み立てられる。  In this liquid crystal display device, various layers are separately stacked on the lower transparent glass substrate SUB 1 side and the upper transparent glass substrate SUB 2 side, and a seal pattern SL is formed on the substrate SUB 2 side. It is assembled by superimposing the upper transparent glass substrate SUB2, injecting liquid crystal LC from the opening INJ of the sealing material SL, sealing the inlet INJ with epoxy resin, and cutting the upper and lower substrates.
《ゲート端子部》  《Gate terminal section》
F i g. 7 Aは表示マトリクスの走查信号線 GLからその外部接続端 子 GTMまでの接続構造を示す平面図であり、 F i g. 7Bは、 F i g. 7 Aの B— B切断線における断面を示している。 なお、 同図は F i g. 5右中央付近に対応し、 斜め配線の部分は便宜状一直線状で表した。  FIG. 7A is a plan view showing a connection structure from the scanning signal line GL of the display matrix to its external connection terminal GTM, and FIG. 7B is a view of FIG. 3 shows a cross section taken along a cutting line. 5 corresponds to the vicinity of the right center of FIG. 5 and the diagonal wiring portion is represented by a straight line for convenience.
AOはホトレジスト直接描画の境界線、 言い換えれば選択的陽極酸化 のホトレジストパターンである。 従って、 このホトレジストは陽極酸化 後除去され、 図に示すパターン AOは完成品としては残らないが、 ゲー ト配線 G Lには断面図に示すように酸化膜 A O Fが選択的に形成され るのでその軌跡が残る。 平面図において、 ホトレジストの境界線 AOを 基準にして左側はレジストで覆い陽極酸化をしない領域、 右側はレジス トから露出され陽極酸化される領域である。 陽極酸化された A 1層 g 1 は表面にその酸化物 A 1203膜 AOFが形成され下方の導電部は体積 が減少する。 勿論、 陽極酸化はその導電部が残るように適切な時間、 電 圧などを設定して行われる。 AO is the boundary line of photoresist direct writing, in other words, the photoresist pattern of selective anodic oxidation. Therefore, this photoresist is removed after anodic oxidation, and the pattern AO shown in the figure does not remain as a finished product, but the oxide film AOF is selectively formed on the gate wiring GL as shown in the sectional view. So the trajectory remains. In the plan view, the left side is the area covered with resist and not anodized, and the right side is the area exposed from the resist and anodized with reference to the photoresist boundary line AO. A 1 layer g 1 which is anodized conductive portion of the lower oxide thereof A 1 2 0 3 film AOF is formed on the surface volume decreases. Of course, the anodic oxidation is performed by setting an appropriate time and voltage so that the conductive portion remains.
図中 A 1層 g 1は、 判り易くするためハッチを施してあるが、 陽極化 成されない領域は櫛状にパターユングされている。 これは、 A 1層の幅 が広いと表面にホイス力が発生するので、 1本 1本の幅は狭くし、 それ らを複数本並列に束ねた構成とすることにより、 ホイス力の発生を防ぎ つつ、 断線の確率や導電率の犠牲を最低限に押さえる狙いである。  In the figure, the A1 layer g1 is hatched for easy understanding, but the region that is not anodized is patterned in a comb shape. This is because if the width of the A1 layer is large, a hoisting force is generated on the surface, so the width of each layer is narrowed and a plurality of them are bundled in parallel to reduce the generation of the Hoisse force. The aim is to minimize the probability of disconnection and sacrificing conductivity while preventing it.
ゲート端子 GTMは A 1層 g 1と、 更にその表面を保護し、 かつ、 T CP (Ta p e Ca r r i e r P a c k e g e) との接続の信頼性 を向上させるための透明導電層 g 2とで構成されている。 この透明導電 膜 g 2は画素電極 PXと同一工程で形成された透明導電膜 I TOを用 いている。 また A 1層 g 1上及びその側面部に形成された導電層 d 1及 び d 2は、 A 1層と透明導電層 g 2との接続不良を補うために、 A 1層 と透明導電層 g 2の両方に接続性の良い C r層 d 1を接続し、 接続抵抗 の低減を図るためのものであり、 導電層 d 2は導電層 d 1と同一マスク 形成しているために残っているものである。  The gate terminal GTM is composed of an A1 layer g1 and a transparent conductive layer g2 for further protecting the surface and improving the reliability of connection with a TCP (Tape Carrier Package). ing. The transparent conductive film g2 uses a transparent conductive film ITO formed in the same process as the pixel electrode PX. In addition, the conductive layers d 1 and d 2 formed on the A 1 layer g 1 and on the side surfaces thereof are made up of the A 1 layer and the transparent conductive layer in order to compensate for poor connection between the A 1 layer and the transparent conductive layer g 2. This is to connect the C r layer d 1 with good connectivity to both g 2 and reduce the connection resistance, and the conductive layer d 2 remains because the same mask as the conductive layer d 1 is formed. Is what it is.
平面図において、 ゲート絶縁膜 G Iはその境界線よりも右側に、 保護 膜 P S V 1もその境界線よりも右側に形成されており、 左端に位置する 端子部 GTMはそれらから露出し外部回路との電気的接触ができるよ うになつている。 図では、 ゲート線 GLとゲート端子の一つの対のみが 示されているが、 実際はこのような対が F i g. 7A、 Bに示すように 上下に複数本並べられ端子群 Tg (F i g. 5) が構成され、 ゲート端 子の左端は、 製造過程では、 基板の切断領域を越えて延長され配線 SH g (図示せず) によって短絡される。 製造過程におけるこのような短絡 線 SHgは陽極化成時の給電と、 配向膜 OR I 1のラビング時等の静電 破壊防止に役立つ。 In the plan view, the gate insulating film GI is formed on the right side of the boundary line, the protective film PSV 1 is formed on the right side of the boundary line, and the terminal portion GTM located on the left end is exposed therefrom and connected to an external circuit. Electrical contact has been made. In the figure, only one pair of gate line GL and gate terminal 7A and B, these pairs are arranged up and down to form a terminal group Tg (Fig. 5), and the left end of the gate terminal is During the manufacturing process, it is extended beyond the cutting area of the substrate and short-circuited by wiring SH g (not shown). Such a short-circuit line SHg in the manufacturing process is useful for power supply during anodization and prevention of electrostatic breakdown during rubbing of the alignment film ORI1.
《ドレイン端子 DTM》  《Drain terminal DTM》
F i g. 8 Aは映像信号線 DLからその外部接続端子 DTMまでの接 続を示す平面図を示し、 F i g. 8Bは、 F i g. 8八の8— 8切断線 における断面を示す。 なお、 同図は F i g. 5右上付近に対応し、 図面 の向きは便宜上変えてあるが右端方向が基板 SUB 1の上端部に該当 する。  FIG. 8A is a plan view showing the connection from the video signal line DL to the external connection terminal DTM, and FIG. 8B is a cross-sectional view taken along a line 8-8 in FIG. Show. 5 corresponds to the vicinity of the upper right of FIG. 5, and the direction of the drawing is changed for convenience, but the right end corresponds to the upper end of the substrate SUB1.
TSTdは検査端子でありここには外部回路は接続されないが、 プロ 一ブ針等を接触できるよう配線部より幅が広げられている。 同様に、 ド レイン端子 D TMも外部回路との接続ができるよう配線部より幅が広 げられている。 外部接続ドレイン端子 DTMは上下方向にに配列され、 ドレイン端子 DTMは、 F i g. 5に示すように端子群 Td (添字省略) を構成し基板 SUB 1の切断線を越えて更に延長され、 製造過程中は静 電破壊防止のためその全てが互いに配線 SHd (図示せず) によって短 絡される。 検査端子 TSTdは F i g. 8 Aに示すように一本置きの映 像信号線 DLに形成される。  TSTd is a test terminal. No external circuit is connected here, but it is wider than the wiring part so that probe needles etc. can be contacted. Similarly, the width of the drain terminal DTM is wider than that of the wiring portion so that the drain terminal DTM can be connected to an external circuit. The external connection drain terminals DTM are arranged in the vertical direction, and the drain terminals DTM constitute a terminal group Td (subscript omitted) as shown in FIG. 5 and further extend beyond the cutting line of the substrate SUB 1. During the manufacturing process, all of them are short-circuited to each other by wiring SHd (not shown) to prevent electrostatic breakdown. The test terminal TSTd is formed on every other video signal line DL as shown in FIG. 8A.
ドレイン接続端子 DTMは透明導電層 g 2単層で形成されており、 ゲ 一ト絶縁膜 G Iを除去した部分で映像信号線 DLと接続されている。 こ の透明導電膜 g 2はグート端子 GTMの時と同様に画素電極 PXと同 一工程で形成された透明導電膜 I TOを用いている。 ゲート絶縁膜 G I の端部上に形成された半導体層 ASはゲート絶縁膜 G Iの縁をテーパ 状にエッチングするためのものである。 ドレイン端子 D T M上では外部 回路との接続を行うため保護膜 P S V 1は勿論のこと取り除かれてい る。 The drain connection terminal DTM is formed of a single layer of the transparent conductive layer g2, and is connected to the video signal line DL at a portion where the gate insulating film GI is removed. This transparent conductive film g2 is the same as the pixel electrode PX as in the case of the Gout terminal GTM. The transparent conductive film ITO formed in one step is used. The semiconductor layer AS formed on the edge of the gate insulating film GI is for etching the edge of the gate insulating film GI in a tapered shape. On the drain terminal DTM, the protective film PSV1 is removed as well as the connection for connection with the external circuit.
マトリクス部からドレイン端子部 DTMまでの引出配線は、 映像信号 線 DLと同じレベルの層 d 1、 d 2が保護膜 P SV 1の途中まで構成さ れており、 保護膜 P SV 1の中で透明導電膜 g 2と接続されている。 こ れは、 電触し易い A 1層 d 2を保護膜 P SV 1やシールパターン Sしで できるだけ保護する狙いである。  In the lead-out wiring from the matrix part to the drain terminal part DTM, the layers d 1 and d 2 at the same level as the video signal line DL are formed up to the middle of the protective film P SV 1, and within the protective film P SV 1 Connected to transparent conductive film g2. This is intended to protect the A1 layer d2, which is easy to be touched, as much as possible with the protective film PSV1 and the seal pattern S.
《対向電極端子 CTM》  《Counter electrode terminal CTM》
F i g. 9 Aは対向電圧信号線 CLからその外部接続端子 CTMまで の接続を示す平面図を示し、 F i g. 9Bは、 F i g. 9Aの B— B切 断線における断面を示す。 なお、 同図は F i g. 5左上付近に対応する c 各対向電圧信号線 C Lは共通バスライン C Bで一纏めして対向電極 端子 CTMに引き出されている。 共通バスライン CBは導電層 g 1の上 に導電層 d l、 導電層 d 2を積層した構造となっている。 これは、 共通 バスライン C Bの抵抗を低減し、 対向電圧が外部回路から各対向電圧信 号線 CLに十分に供給されるようにするためである。 本構造では、 特に 新たに導電層を負荷することなく、 共通バスラインの抵抗を下げられる のが特徴である。 共通バスライン CBの導電層 g 1は導電層 d 1、 導電 層 d 2と電気的に接続されるように、 陽極化成はされていない。 また、 ゲート絶縁膜 G Iからも露出している。 9A shows a plan view showing the connection from the counter voltage signal line CL to its external connection terminal CTM, and FIG. 9B shows a cross section of FIG. 9A taken along the line BB. . Incidentally, the figure F i g. 5 corresponds to the vicinity of the upper left c each counter voltage signal line CL is drawn to the counter electrode terminals CTM and collectively in the common bus line CB. The common bus line CB has a structure in which a conductive layer dl and a conductive layer d2 are stacked on a conductive layer g1. This is to reduce the resistance of the common bus line CB so that the opposing voltage is sufficiently supplied from an external circuit to each opposing voltage signal line CL. The feature of this structure is that the resistance of the common bus line can be reduced without adding a new conductive layer. The conductive layer g1 of the common bus line CB is not anodized so as to be electrically connected to the conductive layer d1 and the conductive layer d2. It is also exposed from the gate insulating film GI.
対向電極端子 CTMは、 導電層 g 1の上に透明導電層 g 2が積層され た構造になっている。 この透明導電膜 g 2は他の端子の時と同様に画素 電極 PXと同一工程で形成された透明導電膜 I TOを用いている。 透明 導電層 g 2により、 その表面を保護し、 電食等を防ぐために耐久性のよ い透明導電層 g 2で、 導電層 g lを覆っている。 The counter electrode terminal CTM has a transparent conductive layer g2 laminated on the conductive layer g1. It has a structure. This transparent conductive film g2 uses a transparent conductive film ITO formed in the same process as the pixel electrode PX, as in the case of the other terminals. The transparent conductive layer g2 covers the conductive layer gl with a durable transparent conductive layer g2 to protect its surface and prevent electrolytic corrosion and the like.
《表示装置全体等価回路》  《Equivalent circuit of entire display device》
表示マトリクス部の等価回路とその周辺回路の結線図を F i g. 10 に示す。 同図は回路図ではあるが、 実際の幾何学的配置に対応して描か れている。 ARは複数の画素を二次元状に配列したマトリタス ·アレイ である。  Fig. 10 shows the connection diagram of the equivalent circuit of the display matrix section and its peripheral circuits. Although this figure is a circuit diagram, it is drawn corresponding to the actual geometric arrangement. AR is a matrix matrix in which a plurality of pixels are arranged two-dimensionally.
図中、 Xは映像信号線 DLを意味し、 添字 G、 Bおよび Rがそれぞれ 緑、 青および赤画素に対応して付加されている。 Yは走査信号線 GLを 意味し、 添字 1、 2、 3、 ·'·、 endは走査タイミングの順序に従って付 加されている。  In the figure, X represents a video signal line DL, and suffixes G, B, and R are added corresponding to green, blue, and red pixels, respectively. Y means the scanning signal line GL, and the suffixes 1, 2, 3, · '·, and end are added according to the order of the scanning timing.
走査信号線 Y (添字省略) は垂直走査回路 Vに接続されており、 映像 信号線 X (添字省略) は映像信号駆動回路 Hに接続されている。  The scanning signal line Y (subscript omitted) is connected to the vertical scanning circuit V, and the video signal line X (subscript omitted) is connected to the video signal driving circuit H.
SUPは 1つの電圧源から複数の分圧した安定化された電圧源を得 るための電源回路やホスト (上位演算処理装置) からの CRT (陰極線 管) 用の情報を T FT液晶表示装置用の情報に交換する回路を含む回路 である。  The SUP uses a power supply circuit to obtain a plurality of divided and stabilized voltage sources from one voltage source, and CRT (cathode ray tube) information from the host (upper processing unit) for TFT liquid crystal display devices. This is a circuit that includes a circuit that exchanges information.
《駆動方法》  《Driving method》
F i g. 1 1に本発明の液晶表示装置の駆動波形を示す。  FIG. 11 shows a drive waveform of the liquid crystal display device of the present invention.
実施例 1では、 対向電圧信号線じしが、 アルミニウムという低抵抗金 属の導電膜 g 1から形成されているため、 負荷インピーダンスが少なく、 対向電圧の波形変形が少なくなる。 このため、 対向電圧を交流化でき、 信号線電圧を低減できる利点がある。 In the first embodiment, since the counter voltage signal line is formed of the conductive film g1 of aluminum, which is a low-resistance metal, the load impedance is small and the waveform of the counter voltage is less deformed. For this reason, the opposite voltage can be converted to AC, There is an advantage that the signal line voltage can be reduced.
すなわち、 対向電圧を Vc hと Vc 1の 2値の交流矩型波にし、 それ に同期させて走査信号 Vg ( i— 1) 、 Vg ( i ) の非選択電圧を 1走 査期間ごとに、 Vg 1 hと Vg 1 1の 2値で変化させる。 対向電圧の振 幅値と非選択電圧の振幅値は同一にする。 映像信号電圧は、 液晶層に印 加したい電圧から、 対向電圧の振幅の 1Z2を差し引いた電圧である。 対向電圧は直流でもよいが、 交流化することで映像信号電圧の最大振 幅を低減でき、 映像信号駆動回路 (信号側ドライバ) に耐圧の低いもの を用いることが可能になる。 後述する実施例 2、 3では、 対向電圧信号 線 CLが、 透明導電膜. g 2から形成されているため、 比較的抵抗が高く なり、 対向電圧は直流方式が好ましい。  That is, the counter voltage is changed to a binary alternating rectangular wave of Vch and Vc1, and the non-selection voltages of the scanning signals Vg (i-1) and Vg (i) are synchronized with the rectangular wave in each scanning period. Vg 1 h and Vg 1 1 The amplitude value of the counter voltage and the amplitude value of the non-selection voltage are the same. The video signal voltage is the voltage obtained by subtracting 1Z2 of the amplitude of the counter voltage from the voltage to be applied to the liquid crystal layer. The opposite voltage may be DC, but by converting it to AC, the maximum amplitude of the video signal voltage can be reduced, and a video signal drive circuit (signal side driver) with a low withstand voltage can be used. In Examples 2 and 3 to be described later, since the opposing voltage signal line CL is formed of the transparent conductive film g2, the resistance is relatively high, and the opposing voltage is preferably a direct current method.
《蓄積容量 C s t gの働き》  << Function of storage capacity C st g >>
蓄積容量 C s t gは、 画素に書き込まれた (薄膜トランジスタ T FT がオフした後の) 映像情報を、 長く蓄積するために設ける。 本発明で用 いている電界を基板面と平行に印加する方式では、 電界を基板面に垂直 に印加する方式と異なり、 画素電極と対向電極で構成される容量 (いわ ゆる液晶容量) がほとんど無いため、 蓄積容量 C s t gが映像情報を画 素に蓄積することができない。 したがって、 電界を基板面と平行に印加 する方式では、 蓄積容量 C s t gは必須の構成要素である。  The storage capacitance C stg is provided to store the video information written to the pixel (after the thin film transistor TFT is turned off) for a long time. In the method of applying an electric field parallel to the substrate surface used in the present invention, unlike the method of applying the electric field perpendicular to the substrate surface, there is almost no capacitance (so-called liquid crystal capacitance) composed of the pixel electrode and the counter electrode. Therefore, the storage capacity C stg cannot store video information in the pixel. Therefore, in a system in which an electric field is applied in parallel with the substrate surface, the storage capacitance C stg is an essential component.
また、 蓄積容量 C s t gは、 薄膜トランジスタ TFTがスィツチング するとき、 画素電極電位 V sに対するゲート電位変化 Δ V の影響を低 減するようにも働く。 この様子を式で表すと、 次のようになる。  The storage capacitance C stg also serves to reduce the effect of the gate potential change ΔV on the pixel electrode potential Vs when the thin film transistor TFT switches. This situation is expressed as follows.
厶 V s ={C g s/(C g s + C s t g+Cp i x)} X Δ V g ここで、 C g sは薄膜トランジスタ TFTのゲート電極 GTとソース 電極 SD 1との間に形成される寄生容量、 Cp i xは画素電極 PXと対 向電極 CTとの間に形成される容量、 AV sは AVgによる画素電極電 位の変化分いわゆるフィードスルー電圧を表わす。 この変化分 Δ V sは 液晶 LCに加わる直流成分の原因となる力 保持容量 C s t gを大きく すればする程、 その値を小さくすることができる。 液晶 LCに印加され る直流成分の低減は、 液晶 LCの寿命を向上し、 液晶表示画面の切り替 え時に前の画像が残るいわゆる焼き付きを低減することができる。 V s = {C gs / (C gs + C st g + C pix)} X ΔV g where C gs is the gate electrode GT and source of the thin film transistor TFT The parasitic capacitance formed between the electrode SD1 and Cpix is the capacitance formed between the pixel electrode PX and the counter electrode CT, and AVs is the so-called feedthrough voltage, which is the change in the pixel electrode potential due to AVg. Express. This change ΔV s can be reduced as the force holding capacity C stg causing the DC component applied to the liquid crystal LC is increased. The reduction of the DC component applied to the liquid crystal LC improves the life of the liquid crystal LC, and reduces the so-called burn-in in which the previous image remains when the liquid crystal display screen is switched.
前述したように、 グート電極 GTは i型半導体層 ASを完全に覆うよ う大きくされている分、 ソース電極 SD 1、 ドレイン電極 SD2とのォ ーバラップ面積が増え、 従って寄生容量 C g sが大きくなり、 画素電極 電位 Vsはゲート (走査) 信号 Vgの影響を受け易くなるという逆効果 が生じる。 しカゝし、 蓄積容量 C s t gを設けることによりこのデメリッ トも解消することができる。  As described above, since the good electrode GT is made large to completely cover the i-type semiconductor layer AS, the overlap area between the source electrode SD1 and the drain electrode SD2 increases, and therefore the parasitic capacitance Cgs increases. On the other hand, there is an adverse effect that the pixel electrode potential Vs is easily affected by the gate (scanning) signal Vg. However, by providing the storage capacitance C stg, this disadvantage can be eliminated.
《製造方法》  "Production method"
つぎに、 上述した液晶表示装置の基板 SUB 1側の製造方法について F i g. 1 2〜F i g. 14を参照して説明する。 なお同図において、 中央の文字は工程名の略称であり、 左側は F i g. 3に示す薄膜トラン ジスタ T FT部分、 右側は F i g. 7に示すゲート端子付近の断面形状 でみた加工の流れを示す。 工程 B、 工程 Dを除き工程 A〜工程 Iは各写 真処理に対応して区分けしたもので、 各工程のいずれの断面図も写真処 理後の加工が終わりフォトレジストを除去した段階を示している。 なお、 写真処理とは本説明ではフォ トレジス トの塗布からマスクを使用した 選択露光を経てそれを現像するまでの一連の作業を示すものとし、 繰返 しの説明は避ける。 以下区分けした工程に従って説明する。 工程 A、 F i g. 12 Next, a method of manufacturing the above-described substrate SUB1 side of the liquid crystal display device will be described with reference to FIGS. In the same figure, the middle letter is the abbreviation of the process name, the left side is the thin film transistor TFT part shown in Fig. 3 and the right side is the cross-sectional shape near the gate terminal shown in Fig. 7 The flow of is shown. Except for Steps B and D, Steps A to I are classified according to each photoprocessing.All cross-sectional views of each step show the stage where the processing after photoprocessing is completed and the photoresist is removed. ing. In this description, photographic processing refers to a series of operations from application of a photo resist, through selective exposure using a mask to development of the resist, and a description thereof will not be repeated. Description will be given below according to the divided steps. Process A, F i g. 12
AN 635ガラス (商品名) からなる下部透明ガラス基板 SUB 1上 に膜厚が 300 OAの A 1— P d、 A 1— S i、 A 1— Ta、 A 1 -T i一 T a等からなる導電膜 g 1をスパッタリングにより設ける。 写真処 理後、 リン酸と硝酸と氷酢酸との混酸液で導電膜 g 1を選択的にェッチ ングする。 それによつて、 ゲート電極 GT、 走査信号線 GL、 対向電極 CT、 対向電圧信号線 CL、 電極 PL 1、 ゲート端子 GTM、 共通バス ライン CBの第 1導電層、 対向電極端子 CTMの第 1導電層、 ゲート端 子 GTMを接続する陽極酸化バスライン SHg (図示せず) および陽極 酸化バスライン SHgに接続された陽極酸化パッド (図示せず) を形成 する。  A1—Pd, A1—Si, A1—Ta, A1—Ta, A1—Ti, Ta1, etc. with a thickness of 300 OA on the lower transparent glass substrate SUB1 made of AN 635 glass (trade name) The conductive film g1 is provided by sputtering. After the photoprocessing, the conductive film g1 is selectively etched with a mixed acid solution of phosphoric acid, nitric acid, and glacial acetic acid. Accordingly, the gate electrode GT, the scanning signal line GL, the counter electrode CT, the counter voltage signal line CL, the electrode PL1, the gate terminal GTM, the first conductive layer of the common bus line CB, and the first conductive layer of the counter electrode terminal CTM. Then, an anodized bus line SHg (not shown) for connecting the gate terminal GTM and an anodized pad (not shown) connected to the anodized bus line SHg are formed.
工程 F i g. 12  Process F i g. 12
直接描画による陽極酸化マスク AOの形成後、 3 %酒石酸をアンモニ ァにより PH6. 25±0. 05に調整した溶液をエチレンダリコール 液で 1 : 9に稀釈した液からなる陽極酸化液中に基板 SUB 1を浸漬し、 化成電流密度が 0. 5 mAZ cm2になるように調整する (定電流化成) 。 次に所定の A 1203膜厚が得られるのに必要な化成電圧 1 25 Vに達 するまで陽極酸化を行う。 その後この状態で数 10分保持することが望 ましい (定電圧化成) 。 これは均一な A 1203膜を得る上で大事なこと である。 それによつて、 導電膜 g 1を陽極酸化され、 ゲート電極 GT、 走査信号線 GL、 対向電極 CT、 対向電圧信号線 CLおよび電極 PL 1 上に膜厚が 180 OAの陽極酸化膜 AOFが形成される。 After the formation of an anodic oxidation mask AO by direct writing, the substrate was placed in an anodic oxidation solution consisting of a solution of 3% tartaric acid adjusted to PH 6.25 ± 0.05 with ammonia, diluted 1: 9 with ethylene dalicol solution. Immerse SUB 1 and adjust the formation current density to 0.5 mAZ cm 2 (constant current formation). Then anodic oxidation until the reach the anodizing voltage 1 25 V required 1 2 0 3 film thickness given A is obtained. After that, it is desirable to keep this state for several tens of minutes (constant voltage formation). This is important for achieving a uniform A 1 2 0 3 film. As a result, the conductive film g1 is anodized, and an anodized film AOF having a thickness of 180 OA is formed on the gate electrode GT, the scanning signal line GL, the counter electrode CT, the counter voltage signal line CL, and the electrode PL1. You.
工程 F i g. 1 2  Process F i g. 1 2
プラズマ CVD装置にアンモニアガス、 シランガス、 窒素ガスを導入 して、 膜厚が 220 OAの窒化 S i膜を設け、 プラズマ CVD装置にシ ランガス、 水素ガスを導入して、 S莫厚が 200 OAの i型非晶質 S i膜 を設けたのち、 プラズマ CVD装置に水素ガス、 ホスフィンガスを導入 して、 膜厚が 300 Aの N( + )型非晶質 S i膜を設ける。 Ammonia gas, silane gas, and nitrogen gas introduced into plasma CVD equipment Then, a 220-OA thick nitrided Si film was provided, silane gas and hydrogen gas were introduced into the plasma CVD apparatus, and a 200-OA thick i-type amorphous Si film was formed. Hydrogen gas and phosphine gas are introduced into a plasma CVD apparatus to provide an N (+)-type amorphous Si film having a thickness of 300 A.
工程 D、 F i g. 13  Process D, F i g. 13
写真処理後、 ドライエッチングガスとして S F6、 CC 14を使用して N( + )型非晶質 S i膜、 i型非晶質 S i膜を選択的にエッチングするこ とにより、 i型半導体層 ASの島を形成する。 After photographic processing, SF 6, CC 1 4 using N (+) type amorphous S i film as a dry etching gas by a selective child etching the i-type amorphous S i layer, i-type The island of the semiconductor layer AS is formed.
工程 E、 F i g. 13  Process E, F i g. 13
写真処理後、 ドライエッチングガスとして SF6を使用して、 窒化 S i膜を選択的にエッチングする。 After photo processing, the Si nitride film is selectively etched using SF 6 as a dry etching gas.
工程 F、 F i g. 13  Process F, F i g. 13
膜厚が 140 OAの I TO膜からなる透明導電膜 g 2をスパッタリ ングにより設ける。 写真処理後、 エッチング液として塩酸と硝酸との混 酸液で透明導電膜 g 2を選択的にエッチングすることにより、 ゲート端 子 GTMの最上層、 ドレイン端子 DTMおよび対向電極端子 CTMの第 2導電層を形成する。  A transparent conductive film g2 made of an ITO film having a thickness of 140 OA is provided by sputtering. After photographic processing, the transparent conductive film g2 is selectively etched with a mixed acid solution of hydrochloric acid and nitric acid as an etchant, thereby forming the second conductive layer of the top layer of the gate terminal GTM, the drain terminal DTM and the counter electrode terminal CTM. Form a layer.
工程 G、 F i g. 14  Process G, F i g. 14
膜厚が 600 Aの C rからなる導電膜 d 1をスパッタリングにより 設け、 さらに膜厚が 400 OAの A 1— P d、 A l— S i、 A l— Ta、 A 1 -T i—T a等からなる導電膜 d 2をスパッタリングにより設け る。 写真処理後、 導電膜 d 2を工程 Bと同様な液でエッチングし、 導電 膜 d 1を工程 Aと同様な液でエッチングし、 映像信号線 DL、 ソース電 極 SD1、 ドレイン電極 SD 2、 画素電極 PX、 電極 PL 2、 共通バス ライン CBの第 2導電層、 第 3導電層およびドレイン端子 DTMを短絡 するバスライン SHd (図示せず) を形成する。 つぎに、 ドライエッチ ング装置に CC 14、 S F6を導入して、 N( + )型非晶質 S U莫をエッチ ングすることにより、 ソースとドレイン間の N( + )型半導体層 d 0を選 択的に除去する。 A conductive film d1 made of Cr with a film thickness of 600 A is provided by sputtering, and a film thickness of A1—Pd, Al—Si, Al—Ta, and A1−T i—T with a film thickness of 400 OA A conductive film d2 made of a or the like is provided by sputtering. After the photographic processing, the conductive film d2 is etched with the same solution as in step B, and the conductive film d1 is etched with the same solution as in step A. The video signal line DL, the source electrode SD1, the drain electrode SD2, and the pixel Electrode PX, electrode PL 2, common bus A bus line SHd (not shown) for short-circuiting the second conductive layer and the third conductive layer of the line CB and the drain terminal DTM is formed. Then, by introducing the CC 1 4, SF 6 dry etch ring system, N (+) type by etching bridging amorphous SU trillions, N between the source and the drain (+) type semiconductor layer d 0 Is selectively removed.
工程 F i g. 14  Process F i g. 14
プラズマ CVD装置にアンモニアガス、 シランガス、 窒素ガスを導入 して、 膜厚が 1 xmの窒化 S i膜を設ける。 写真処理後、 ドライエッチ ングガスとして S F 6を使用した写真蝕刻技術で窒化 S i膜を選択的に エッチングすることによって、 保護膜 P S V 1を形成する。 Ammonia gas, silane gas, and nitrogen gas are introduced into the plasma CVD device to provide a 1 xm-thick Si nitride film. After photographic processing, by selectively etching the nitride S i film with photolithography technique using SF 6 as a dry etching Ngugasu, a protective film PSV 1.
《表示パネル P N Lと駆動回路基板 P C B 1》  《Display panel PNL and drive circuit board PCB1》
F i g. 1 5は、 F i g. 5等に示した表示パネル PNLに映像信号 駆動回路 Hと垂直走査回路 Vを接続した状態を示す上面図である。  FIG. 15 is a top view showing a state where the video signal driving circuit H and the vertical scanning circuit V are connected to the display panel PNL shown in FIG. 5 and the like.
CH Iは表示パネル PNLを駆動させる駆動 I Cチップ (下側の 5個 は垂直走査回路側の駆動 I Cチップ、 左の 1 0個ずつは映像信号駆動回 路側の駆動 I Cチップ) である。 TCPは F i g. 1 6、 F i g. 1 7 で後述するように駆動用 I Cチップ CH Iがテープ 'オートメイティ ド *ボンディング法 (TAB) により実装されたテープキャリアパッケ ージ、 PCB 1は上記 TCPやコンデンサ等が実装された駆動回路基板 で、 映像信号駆動回路用と走查信号駆動回路用の 2つに分割されている。  CH I is a driving IC chip for driving the display panel PNL (the lower five driving IC chips on the vertical scanning circuit side and the left ten driving IC chips on the video signal driving circuit side). As shown in Fig. 16 and Fig. 17 for TCP, the driving IC chip CHI is a tape carrier package with a tape 'automated * bonding method (TAB), as described later in Figs. Is a drive circuit board on which the above-mentioned TCP and capacitors are mounted, and is divided into two for a video signal drive circuit and a scan signal drive circuit.
F G Pはフレームダランドパッ ドであり、 シールドケース S HDに切り 込んで設けられたパネ状の破片が半田付けされる。 FCは下側の駆動回 路基板 P C B 1と左側の駆動回路基板 P CB 1を電気的に接続するフ ラットケーブルである。 フラットケーブル FCとしては図に示すように、 複数のリード線 (りん青銅の素材に S n鍍金を施したもの) をストライ プ状のポリエチレン層とポリビュルアルコール層とでサンドィツチし て支持したものを使用する。 FGP is a frame daland pad, and panel-like fragments cut into the shield case S HD are soldered. FC is a flat cable that electrically connects the lower drive circuit board PCB1 and the left drive circuit board PCB1. As shown in the figure, the flat cable FC Use multiple lead wires (phosphor bronze material plated with Sn) sandwiched between a striped polyethylene layer and a polybutyl alcohol layer.
《T CPの接続構造》  《TCP connection structure》
F i g. 16は走査信号駆動回路 Vや映像信号駆動回路 Hを構成する、 集積回路チップ CH Iがフレキシブル配線基板に搭載されたテープキ ャリアパッケージ TCPの断面構造を示す図であり、 F i g. 1 7はそ れを液晶表示パネルの、 本例では走査信号回路用端子 GTMに接続した 状態を示す要部断面図である。  FIG. 16 is a diagram showing a cross-sectional structure of a tape carrier package TCP constituting the scanning signal driving circuit V and the video signal driving circuit H and having the integrated circuit chip CH I mounted on a flexible wiring board. g.17 is a cross-sectional view of a principal part showing a state where the liquid crystal display panel is connected to a scanning signal circuit terminal GTM in the present example.
同図において、 TTBは集積回路 CH Iの入力端子 ·配線部であり、 TTMは集積回路 CH Iの出力端子 ·配線部であり、 例えば Cuから成 り、 それぞれの内側の先端部 (通称インナーリード) には集積回路 CH Iのボンディングパッド P ADがいわゆるフェースダウンボンディン グ法により接続される。 端子 TTB、 TTMの外側の先端部 (通称ァゥ ターリード) はそれぞれ半導体集積回路チップ CH Iの入力及び出力に 対応し、 半田付け等により CRT/TF T変換回路♦電源回路 S U Pに、 異方性導電膜 A C Fによつて液晶表示パネル P N Lに接続される。 パッ ケージ T C Pは、 その先端部がパネル P N L側の接続端子 G TMを露出 した保護膜 P SV1を覆うようにパネルに接続されており、 従って、 外 部接続端子 GTM (DTM) は保護膜 P S VIかパッケージ TCPの少 なくとも一方で覆われるので電触に対して強くなる。  In the same figure, TTB is an input terminal and a wiring portion of the integrated circuit CH I, and TTM is an output terminal and a wiring portion of the integrated circuit CH I, which are made of, for example, Cu. ), The bonding pad PAD of the integrated circuit CHI is connected by the so-called face-down bonding method. Terminals TTB, TTM, outer tips (commonly referred to as “arter leads”) correspond to the input and output of the semiconductor integrated circuit chip CH I, respectively. CRT / TF T conversion circuit by soldering etc. ♦ Power supply circuit SUP, anisotropic It is connected to the liquid crystal display panel PNL by the conductive film ACF. The package TCP is connected to the panel so that the tip thereof covers the protective film PSV1 exposing the connection terminal GTM on the panel PNL side.Therefore, the external connection terminal GTM (DTM) is connected to the protective film PSVI. Or at least one of the packages TCP is covered, so it is more resistant to touch.
BF 1はポリイミ ド等からなるベースフィルムであり、 SRSは半田 付けの際半田が余計なところへつかないようにマスクするためのソル ダレジスト膜である。 シールパターン S Lの外側の上下ガラス基板の隙 間は洗浄後ェポキシ樹脂 E P X等により保護され、 パッケージ T C Pと 上側基板 SUB 2の間には更にシリコーン樹脂 S I Lが充填され保護 が多重化されている。 BF1 is a base film made of polyimide or the like, and SRS is a solder resist film for masking so that solder does not adhere to unnecessary portions during soldering. The gap between the upper and lower glass substrates outside the seal pattern SL The space between them is washed and then protected by epoxy resin EPX, etc. The space between the package TCP and the upper substrate SUB2 is further filled with silicone resin SIL to multiplex protection.
《駆動回路基板 PC B 2》  《Drive circuit board PC B 2》
駆動回路基板 PCB 2は、 I C、 コンデンサ、 抵抗等の電子部品が搭 載されている。 この駆動回路基板 PCB 2には、 1つの電圧源から複数 の分圧した安定化された電圧源を得るための電源回路や、 ホスト (上位 演算処理装置) からの CRT (陰極線管) 用の情報を T FT液晶表示装 置用の情報に変換する回路を含む回路 SUPが搭載されている。 C Jは 外部と接続される図示しないコネクタが接続されるコネクタ接続部で める。  The drive circuit board PCB 2 has electronic components such as ICs, capacitors, and resistors mounted thereon. This drive circuit board PCB 2 contains a power supply circuit for obtaining a plurality of divided and stabilized voltage sources from one voltage source, and information for a CRT (cathode ray tube) from the host (upper processing unit). A circuit SUP that includes a circuit that converts the information into information for a TFT liquid crystal display device is mounted. C J is a connector connecting part to which a connector (not shown) connected to the outside is connected.
駆動回路基板 PC B 1と駆動回路基板 PCB 2とはフラットケープ ル FCにより電気的に接続されている。  The drive circuit board PCB 1 and the drive circuit board PCB 2 are electrically connected by a flat cable FC.
《液晶表示モジュールの全体構成》  《Overall configuration of LCD module》
F i g. 1 8は、 液晶表示モジュール MDLの各構成部品を示す分解 斜視図である。  FIG. 18 is an exploded perspective view showing each component of the liquid crystal display module MDL.
SHDは金属板から成る枠状のシールドケース (メタルフレーム) 、 LCWその表示窓、 PNLは液晶表示パネル、 SPBは光拡散板、 LC Bは導光体、 RMは反射板、 BLはバックライ ト蛍光管、 LCAはバッ クライトケースであり、 図に示すような上下の配置関係で各部材が積み 重ねられてモジュール MDLが組み立てられる。  SHD is a frame-shaped shield case (metal frame) made of a metal plate, LCW display window, PNL is a liquid crystal display panel, SPB is a light diffusion plate, LCB is a light guide, RM is a reflection plate, and BL is backlight fluorescent light. The tube and LCA are the backlight case, and the components are stacked in the vertical arrangement as shown in the figure to assemble the module MDL.
モジュール MD Lは、 シールドケース S HDに設けられた爪とフック によって全体が固定されるようになっている。  The entire module MD L is fixed by claws and hooks provided on the shield case S HD.
バックライ トケース LCAはバックライ ト蛍光管 BL、 光拡散板 SP B光拡散板、 導光体 LCB、 反射板 RMを収納する形状になっており、 導光体 LCBの側面に配置されたバックライ ト蛍光管 BLの光を、 導光 体 LCB、 反射板 RM、 光拡散板 S PBにより表示面で一様なバックラ イ トにし、 液晶表示パネル PNL 側に出射する。 Backlight case LCA is backlight fluorescent tube BL, light diffusion plate SP B Light diffusing plate, light guide LCB, and reflector RM are housed.Light from the backlight fluorescent tube BL arranged on the side of the light guide LCB is reflected by the light guide LCB, reflector RM, The backlight is made uniform on the display surface by the light diffusion plate SPB, and emitted to the liquid crystal display panel PNL side.
バックライ ト蛍光管 BLにはインバータ回路基板 PCB 3が接続さ れており、 ノくックライ ト蛍光管 B Lの電源となっている。  The inverter circuit board PCB 3 is connected to the backlight fluorescent tube BL, and is used as a power supply for the knock light fluorescent tube BL.
以上、 本実施例では、 画素電極を透明にすることにより、 白表示を行 うときの最大透過率が約 30% (本実施例では 31. 8%) 向上できる。 具体的には、 本実施例では、 不透明な画素電極を採用した場合の約 3. 8%から透明な画素電極を採用した場合の約 5. 0%に透過率が向上し た。  As described above, in the present embodiment, by making the pixel electrode transparent, the maximum transmittance for white display can be improved by about 30% (31.8% in the present embodiment). Specifically, in this example, the transmittance was improved from about 3.8% when an opaque pixel electrode was used to about 5.0% when a transparent pixel electrode was used.
また、 端子の信頼性を向上するための I TO膜も同時に形成すること ができ、 信頼性と生産性を両立することができる。  In addition, an ITO film for improving the reliability of the terminal can be formed at the same time, so that both reliability and productivity can be achieved.
(実施例 2 )  (Example 2)
本実施例は下記の要件を除けば、 実施例 1と同一である。 F i g. 2 0に画素の平面図を示す。 図の斜線部分は透明導電膜 g 2を示す。  This embodiment is the same as Embodiment 1 except for the following requirements. FIG. 20 shows a plan view of a pixel. The hatched portion in the figure indicates the transparent conductive film g2.
《画素電極 PX》  《Pixel electrode PX》
本実施例では、 画素電極 PXはソース電極 SD 1、 ドレイン電極 SD 2と同層の第 2導電膜 d 2、 第 3導電膜 d 3で構成されている。 また、 画素電極 PXはソース電極 SD 1と一体に形成されている。  In the present embodiment, the pixel electrode PX is composed of the second conductive film d2 and the third conductive film d3 in the same layer as the source electrode SD1 and the drain electrode SD2. The pixel electrode PX is formed integrally with the source electrode SD1.
《対向電極 CT》  《Counter electrode CT》
本実施例では、 対向電極 CTを透明導電膜 g 2で構成する。 この透明 導電膜 g 2は実施例 1と同様、 スパッタリングで形成された透明導電膜 (Indium-Tin-Oxide I T O:ネサ膜) からなり、 100〜200 θΑ の厚さに (本実施例では、 140 OA程度の B莫厚) 形成される。 In this embodiment, the counter electrode CT is formed of the transparent conductive film g2. This transparent conductive film g2 is made of a transparent conductive film (Indium-Tin-Oxide ITO: Nesa film) formed by sputtering, as in Example 1, and has a thickness of 100 to 200θΑ. (In this embodiment, the thickness of B is about 140 OA).
《対向電圧信号線 CL》  << Counter voltage signal line CL >>
対向電圧信号線 CLは透明導電膜 g 2で構成されて、 かつ対向電極 C Tと一体に構成されている。  The counter voltage signal line CL is formed of the transparent conductive film g2, and is formed integrally with the counter electrode CT.
《グート端子部》  《Gut terminal section》
本実施例では、 ゲート端子 GTMの A 1層 g 1の表面を保護し、 かつ、 TCP (Ta p e C a r r i e r P a c k e g e) との接続の信頼 性を向上させるための透明導電層 g 2を対向電極 CTと同一工程で形 成する。 構成は実施例 1と何ら変わりはなく、 F i g. 7A、 Bに示す 通りである。  In this embodiment, a transparent conductive layer g2 for protecting the surface of the A1 layer g1 of the gate terminal GTM and improving the reliability of connection with a TCP (Tape Carrier Package) is provided as a counter electrode. Formed in the same process as CT. The configuration is not different from that of the first embodiment, and is as shown in FIGS. 7A and 7B.
《ドレイン端子 DTM》  《Drain terminal DTM》
本実施例では、 ドレイン接続端子 DTMの透明導電層 g 2にゲート端 子 GTMの時と同様に対向電極 CTと同一工程で形成された透明導電 膜 I TOを用いている。 構成は層の上下関係が実施例 1と少し異なるが、 本質的ではないので図は省略する。  In this embodiment, a transparent conductive film ITO formed in the same step as the counter electrode CT is used for the transparent conductive layer g2 of the drain connection terminal DTM, as in the case of the gate terminal GTM. The structure is slightly different from that of the first embodiment in the vertical relationship of the layers, but is not essential, so that the illustration is omitted.
《対向電極端子 CTM》  《Counter electrode terminal CTM》
対向電極端子 CTMの導電層 g 1の上の透明導電層 g 2は他の端子 の時と同様に対向電極 C Tと同一工程で形成された透明導電膜 I T O を用いている。 構成は実施例 1と何ら変わりはなく、 F i g. 9A、 B に示す通りである。  The transparent conductive layer g2 on the conductive layer g1 of the counter electrode terminal CTM uses the transparent conductive film I T O formed in the same step as the counter electrode CT as in the case of the other terminals. The configuration is no different from that of Example 1, and is as shown in FIGS. 9A and 9B.
《製造方法》  "Production method"
本実施例では、 実施例 1の工程 Bと工程 Cの間に工程 Fが入る順番にな る。 工程の順序としては F i g. 1 2から F i g. 1 5の工程順序が、 A→B→F→C→D→E→G→Hの順になる。 マスクパターンは、 走査 信号線 GL、 走査電極 GTと対向電圧信号線 CLが分離し、 各端子の透 明導電層 g 2と対向電圧信号線 CLのパターンが同一マスクに形成さ れる。 In the present embodiment, the order is such that the step F is inserted between the step B and the step C of the first embodiment. As for the order of the steps, the order of steps from FIG. 12 to FIG. 15 is as follows: A → B → F → C → D → E → G → H. The mask pattern is scanned The signal line GL, the scanning electrode GT and the counter voltage signal line CL are separated, and the pattern of the transparent conductive layer g2 of each terminal and the pattern of the counter voltage signal line CL are formed on the same mask.
以上により、 対向電極を透明にすることにより、 最大透過率を約 1 6% (本実施例では 1 5. 9%) 向上させることができ、 液晶表示パネ ノレ PNLの透過率が約 4. 4%になる。  As described above, by making the opposing electrode transparent, the maximum transmittance can be improved by about 16% (15.9% in this embodiment), and the transmittance of the liquid crystal display panel PNL is about 4.4%. %become.
(実施例 3)  (Example 3)
本実施例は下記の要件を除けば、 実施例 1および実施例 2と同一である。 F i g. 21に画素の平面図を示す。 図の斜線部分は透明導電膜 g 2を 示す。 This embodiment is the same as Embodiments 1 and 2 except for the following requirements. FIG. 21 shows a plan view of a pixel. The hatched portion in the figure indicates the transparent conductive film g2.
《対向電極 CT》  《Counter electrode CT》
本実施例では、 対向電極 CTを透明導電膜 g 2で構成する。 この透明 導電膜 g 2は実施例 1と同様にスパッタリングで形成された透明導電 膜 (Indium- Tin- Oxide I TO:ネサ膜) からなり、 1 00〜 2000 Aの厚さに (本実施例では、 1400A程度の膜厚) 形成される。  In this embodiment, the counter electrode CT is formed of the transparent conductive film g2. This transparent conductive film g2 is made of a transparent conductive film (Indium-Tin-Oxide ITO: Nesa film) formed by sputtering in the same manner as in Example 1, and has a thickness of 100 to 2000 A (in this example, , About 1400 A).
《対向電圧信号線 CL》  << Counter voltage signal line CL >>
対向電圧信号線 CLは透明導電膜 g 2で構成されて、 かつ対向電極 C Tと一体に構成されている。  The counter voltage signal line CL is formed of the transparent conductive film g2, and is formed integrally with the counter electrode CT.
《製造方法》  "Production method"
本実施例では、 実施例 1の工程 Bと工程 Cの間に工程 Fが追加される 順番になる。 工程の順序としては F i g. 12から F i g. 1 5の工程 順序が、 A→B→F→C→D→E→F→G→Hの順になる。 マスクパタ ーンは、 走査信号線 GL、 走査電極 GTと対向電圧信号線 CLのパター ンが独立したマスクに形成される。 本実施例では、 画素電極と対向電極の両方を透明にすることにより、 実施例 1または実施例 2以上に、 白表示を行うときの最大透過率を約 5 0% (本実施例では 47. 7%) 向上させることができ、 液晶表示パネ ル PNLの透過率が約 5. 6%になる。 In the present embodiment, the order in which the step F is added between the step B and the step C in the first embodiment is set. As for the order of the steps, the order of steps from FIG. 12 to FIG. 15 is A → B → F → C → D → E → F → G → H. In the mask pattern, the patterns of the scanning signal line GL, the scanning electrode GT, and the counter voltage signal line CL are formed on independent masks. In this embodiment, by making both the pixel electrode and the counter electrode transparent, the maximum transmittance when performing white display is about 50% compared to the first embodiment or the second embodiment (47. 7%), and the transmittance of the liquid crystal display panel PNL becomes about 5.6%.
(実施例 4 )  (Example 4)
本実施例は下記の要件を除けば、 実施例 1および実施例 3と同一であ る。 F i g. 22に画素の平面図を示す。 図の斜線部分は透明導電膜 g 2を示す。  This embodiment is the same as Embodiments 1 and 3 except for the following requirements. Fig. 22 shows a plan view of the pixel. The hatched portion in the figure indicates the transparent conductive film g2.
《対向電圧信号線 CL》  << Counter voltage signal line CL >>
対向電圧信号線 CLは導電膜 g 1で構成する。 本実施例では、 導電膜 1に〇 を用ぃる。 また、 対向電圧信号線 CLと対向電極 CTとを接 続するために、 陽極化成を行わない。 また、 ゲート絶縁膜 G Iにスルー ホール PHを形成する。 また、 導電膜 g 1は C r以外にも、 Ta、 T i、 Mo、 W、 A 1またはそれらの合金、 もしくは、 それらを積層したクラ ッド構造で形成してもよい。  The counter voltage signal line CL is formed of the conductive film g1. In this embodiment, a conductive film 1 is used. In addition, anodization is not performed to connect the counter voltage signal line CL and the counter electrode CT. Also, a through hole PH is formed in the gate insulating film GI. In addition, the conductive film g1 may be formed of Ta, Ti, Mo, W, A1, an alloy thereof, or a clad structure in which they are laminated, in addition to Cr.
《製造方法》  "Production method"
本実施例では、 実施例 1の工程 Bが削除される。 また、 工程 E時にス ルーホール P Hを形成し、 工程 F時に画素電極 PXと対向電極 CTを同 一マスクで同時に形成する。  In this embodiment, step B of the first embodiment is deleted. In the process E, a through hole PH is formed, and in the process F, the pixel electrode PX and the counter electrode CT are simultaneously formed using the same mask.
本実施例では、 実施例 1および実施例 3の効果に加え、 対向電圧信号 線 C Lの抵抗を低減することにより、 対向電極間の電圧の伝わりを円滑 にし、 電圧の歪みを低減することにより、 水平方向に発生するクロス ト ーク (横スミア) を低減できる。  In this embodiment, in addition to the effects of the first and third embodiments, by reducing the resistance of the common voltage signal line CL, the voltage transmission between the common electrodes is smoothed, and the voltage distortion is reduced. Crosstalk (horizontal smear) generated in the horizontal direction can be reduced.
また、 画素電極 PXと対向電極 CTを同一マスクで同時に形成するこ とにより、 実施例 4で 2回行っている工程 Fが 1回になり、 生産性も向 上する。 Also, the pixel electrode PX and the counter electrode CT can be formed simultaneously with the same mask. Thus, Step F, which is performed twice in Example 4, is performed once, and productivity is also improved.
(実施例 5 )  (Example 5)
本実施例は下記の要件を除けば、 実施例 1および実施例 4と同一である。 This embodiment is the same as Embodiments 1 and 4 except for the following requirements.
F i g. 23に画素の平面図を示す。 図の斜線部分は透明導電膜 g 2を 示す。 Fig. 23 shows a plan view of the pixel. The hatched portion in the figure indicates the transparent conductive film g2.
《対向電極 CT》  《Counter electrode CT》
本実施例では、 中央の対向電極 CTだけを透明導電膜 g 2で構成する。 映像信号線に隣接した対向電極は対向電圧信号線と一体に金属膜で形 成する。  In this embodiment, only the central counter electrode CT is formed of the transparent conductive film g2. The counter electrode adjacent to the video signal line is formed of a metal film integrally with the counter voltage signal line.
本実施例では、 実施例 1から実施例 4の効果に加え、 映像信号線に隣 接した対向電極を不透明にすることにより、 映像信号に伴うクロストー クを抑制することができる。 その理由は作用の項で示したとおりである。  In this embodiment, in addition to the effects of the first to fourth embodiments, by making the opposing electrode adjacent to the video signal line opaque, it is possible to suppress crosstalk accompanying the video signal. The reason is as described in the section of operation.
(実施例 6 )  (Example 6)
上述した実施例 2および 3は、 そのいずれにおいても対向電極 C丁と ともに対向電極信号線 C Lが透明導電層 g 2で構成されたものである。 この場合において、 本実施例は F i g. 24 A〜Cに示す構成によつ て該対向電極信号線 CLの抵抗値を大幅に低減させるようにしたもの である。  In each of Embodiments 2 and 3 described above, the counter electrode signal line CL is formed of the transparent conductive layer g2 together with the counter electrode C. In this case, in this embodiment, the resistance value of the common electrode signal line CL is significantly reduced by the configuration shown in FIGS. 24A to 24C.
F i g. 24 Aは、 F i g. 20の対向電極信号線 CLの 1部分を示 す平面図であり、 F i g. 24 Bは同図 24 Aの b— b線における断面 図である。  FIG. 24A is a plan view showing a part of the counter electrode signal line CL of FIG. 20. FIG. 24B is a cross-sectional view taken along the line bb of FIG. 24A. is there.
同図において、 F i g. 20と異なる点は、 対向電極信号線 CLは 2 層構造からなり、 その下層として抵抗値が小さい A 1層 10が形成され、 この A 1層 1 0の上面に該 A 1層 1 0を完全に被覆して I T O膜 1 1 が形成されている。 そして、 対向電極 C Tは前記 I T O膜 1 1の一部を 延在させた延在部で構成したものとなっている。 20 is different from FIG. 20 in that the counter electrode signal line CL has a two-layer structure, and an A1 layer 10 having a small resistance value is formed as a lower layer thereof. An ITO film 11 is formed on the upper surface of the Al layer 10 by completely covering the Al layer 10. Further, the counter electrode CT is configured by an extended portion in which a part of the ITO film 11 is extended.
このようにした場合、 対向電極信号線 C Lの低抵抗化を図れるともに、 A 1層 1 0に発生するいわゆるホイス力と称されるひげ状の突起によ る層間絶縁膜を介した他の導電層と (たとえば映像信号線 D L ) の電気 的短絡を防止できるようになる。  In this case, the resistance of the counter electrode signal line CL can be reduced, and another conductive material through the interlayer insulating film formed by a so-called whisker-like protrusion generated in the A1 layer 10 is formed. An electrical short between the layer and the video signal line DL, for example, can be prevented.
すなわち、 八 1層1 0はその上層に映像信号線 D Lに対する層間絶縁 膜を形成する際にホイス力が発生し上述した弊害をもたらすことが知 られているが、 この A 1層 1 0を完全に被覆するようにして I T O膜を 形成することによつて該ホイス力が発生しないことが確かめられてい る。  In other words, it is known that the layer 10 has a negative effect when the interlayer insulating film for the video signal line DL is formed thereon, causing the above-mentioned adverse effects. It has been confirmed that the formation of the ITO film so as to cover the surface does not generate the hoisting force.
更に、 F i g . 2 4 Cは、 対向電極 C Tを 2重配線で構成したもので、 本例では、 A 1層 1 0の配線を被覆するようにして I T O膜 1 1の配 線を形成する。 配線の中心線付近は、 電極間に電圧を印加した場合でも 低透過率であるため、 本例のように、 不透明な金属配線を配置しても、 ほとんど開口率の減少は無レ、。  Further, FIG. 24C is a structure in which the counter electrode CT is configured by double wiring. In this example, the wiring of the ITO film 11 is formed so as to cover the wiring of the A1 layer 10. . Since the transmittance near the center line of the wiring is low even when a voltage is applied between the electrodes, even if an opaque metal wiring is arranged as in this example, the aperture ratio hardly decreases.
対向電極あるいは画素電極に 2重配線を採用することで、 大画面で問 題となる電極の断線不良を大幅に低減できる。  Adopting double wiring for the counter electrode or pixel electrode can significantly reduce the problem of electrode disconnection, which is a problem on large screens.
(実施例 7 )  (Example 7)
《アクティブ ·マトリクス液晶表示装置》  《Active matrix liquid crystal display device》
以下、 アクティブ♦マトリクス方式のカラー液晶表示装置に本発明を 適用した実施例を説明する。 なお、 以下説明する図面で、 同一機能を有 するものは同一符号を付け、 その繰り返しの説明は省略する。 JP9 691 Hereinafter, an embodiment in which the present invention is applied to an active matrix type color liquid crystal display device will be described. In the drawings described below, components having the same function are denoted by the same reference numerals, and repeated description thereof will be omitted. JP9 691
52  52
《マトリクス部 (画素部) の平面構成》 << Planar configuration of matrix section (pixel section) >>
F i g. 25は本発明のアクティブ ·マトリタス方式カラー液晶表示 装置の一画素とその周辺を示す平面図である。 (図の斜線部分は透明導 電膜 i 1を示す。 )  FIG. 25 is a plan view showing one pixel of the active matrix type liquid crystal display device of the present invention and its periphery. (The shaded area in the figure indicates the transparent conductive film i1.)
F i g. 25に示すように、 各画素は、 走査信号線 (ゲート信号線ま たは水平信号線) GLと、 対向電圧信号線 (対向電極配線) じ と、 隣 接する 2本の映像信号線 (ドレイン信号線または垂直信号線) DLとの 交差領域内 (4本の信号線で囲まれた領域内) に配置されている。 各画 素は薄膜トランジスタ TFT、 蓄積容量 C s t g、 画素電極 PXおよび 対向電極 CTを含む。 走査信号線 GL、 対向電圧信号線 CLは図では左 右方向に延在し、 上下方向に複数本配置されている。 映像信号線 DLは 上下方向に延在し、 左右方向に複数本配置されている。 画素電極 PXは 透明導電膜 i 1で形成され、 ソース電極 SD 1を介して薄膜トランジス タ TFTと電気的に接続され、 対向電極 CTも透明導電膜 i 1で形成さ れ、 対向電圧信号線 CLと電気的に接続されている。  As shown in Fig. 25, each pixel is composed of a scanning signal line (gate signal line or horizontal signal line) GL, a counter voltage signal line (counter electrode wiring), and two adjacent video signals. Line (drain signal line or vertical signal line) It is arranged in the intersection area with DL (in the area surrounded by four signal lines). Each pixel includes a thin film transistor TFT, a storage capacitor C stg, a pixel electrode PX, and a counter electrode CT. The scanning signal lines GL and the counter voltage signal lines CL extend in the left and right directions in the figure, and are arranged in a plurality in the vertical direction. The video signal lines DL extend vertically and a plurality of video signal lines DL are arranged horizontally. The pixel electrode PX is formed of the transparent conductive film i 1 and is electrically connected to the thin-film transistor TFT via the source electrode SD 1, and the counter electrode CT is also formed of the transparent conductive film i 1 and the counter voltage signal line CL Is electrically connected to
画素電極 P Xと対向電極 CTは互いに対向し、 各画素電極 P Xと対向 電極 C Tとの間の電界により液晶 L Cの光学的な状態を制御し、 表示を 制御する。 画素電極 PXと対向電極 CTは櫛歯状に構成され、 それぞれ、 図の上下方向に長細い電極となっている。  The pixel electrode PX and the counter electrode CT face each other, and the electric state between each pixel electrode PX and the counter electrode CT controls the optical state of the liquid crystal LC to control display. The pixel electrode PX and the counter electrode CT are formed in a comb-like shape, and each is an electrode that is elongated vertically in the figure.
1画素内の対向電極 CTの本数 O (櫛歯の本数) は、 画素電極 P の 本数(櫛歯の本数) Pと 0=P+ 1の関係を必ず持つように構成する(本 実施例では、 0=3、 P二 2) 。 これは、 対向電極 CTと画素電極 PX を交互に配置し、 かつ、 対向電極 CTを映像信号線 DLに必ず隣接させ るためである。 これにより、 対向電極 CTと画素電極 PXの間の電界が、 映像信号線 DLから発生する電界から影響を受けないように、 対向電極 C Tで映像信号線 D Lからの電気力線をシールドすることができる。 対 向電極 CTは、 後述の対向電圧信号線 CLにより常に外部から電位を供 給されているため、 電位は安定している。 そのため、 映像信号線 DLに 隣接しても、 電位が変動がほとんどない。 また、 これにより、 画素電極 PXの映像信号線 DLからの幾何学的な位置が遠くなるので、 画素電極 P Xと映像信号線 D Lの間の寄生容量が大幅に減少し、 画素電極電位 V sの映像信号電圧による変動も抑制できる。 これらにより、 上下方向に 発生するクロストーク (縦スミアと呼ばれる画質不良) を抑制すること ができる。 The number O of the counter electrodes CT in one pixel (the number of comb teeth) is configured to always have a relationship of 0 = P + 1 with the number of pixel electrodes P (the number of comb teeth) P (in this embodiment, 0 = 3, P2 2). This is because the counter electrode CT and the pixel electrode PX are alternately arranged, and the counter electrode CT is always adjacent to the video signal line DL. As a result, the electric field between the counter electrode CT and the pixel electrode PX becomes The lines of electric force from the video signal line DL can be shielded by the counter electrode CT so as not to be affected by the electric field generated from the video signal line DL. The potential of the counter electrode CT is stable because the counter electrode CT is always supplied with a potential from the outside via a counter voltage signal line CL described later. Therefore, the potential hardly fluctuates even when adjacent to the video signal line DL. In addition, since the geometric position of the pixel electrode PX from the video signal line DL is farther away, the parasitic capacitance between the pixel electrode PX and the video signal line DL is greatly reduced, and the pixel electrode potential Vs Fluctuation due to the video signal voltage can also be suppressed. Thus, crosstalk (defective image quality called vertical smear) occurring in the vertical direction can be suppressed.
画素電極 PXと対向電極 CTの電極幅はそれぞれ 6 //mとする。 これ は、 液晶層の厚み方向に対して、 液晶層全体に十分な電界を印加するた めに、 後述の液晶層の厚み 3.9 μπιよりも十分大きく設定し、 かつ開 口率を大きくするためにできるだけ細くする。 また、 映像信号線 Dしの 電極幅は断線を防止するために、 画素電極 Ρ Xと対向電極 C Τに比較し て若干広ぐ 8 zzmとする。 ここで、 映像信号線 DLの電極幅が、 隣接す る対向電極 CTの電極幅の 2倍以下になるように設定する。 または、 映 像信号線 DLの電極幅が歩留りの生産性から決まっている場合には、 映 像信号線 D Lに隣接する対向電極 C Tの電極幅を映像信号線 D Lの電 極幅の 1Z2以上にする。 これは、 映像信号線 DLから発生する電気力 線をそれぞれ両脇の対向電極 C Tで吸収するためであり、 ある電極幅か ら発生する電気力線を吸収するには、 それと同一幅以上のの電極幅を持 つ電極が必要である。 したがって、 映像信号線 DLの電極の半分 (4 μ mずつ) から発生する電気力線をそれぞれ両脇の対向電極 CTが吸収し ればよいため、 映像信号線 D Lに隣接する対向電極 C Tの電極幅が 1 / 2以上とする。 これにより、 映像信号の影響により、 クロストークが発 生する、 特に上下方向 (縦方向のクロストーク) を防止する。 The electrode width of the pixel electrode PX and the counter electrode CT is 6 // m. This is because, in order to apply a sufficient electric field to the entire liquid crystal layer in the thickness direction of the liquid crystal layer, the liquid crystal layer thickness is set to be sufficiently larger than 3.9 μπι, which will be described later, and the aperture ratio is increased. Make it as thin as possible. The electrode width of the video signal line D is set to 8 zzm, which is slightly wider than the pixel electrode X and the counter electrode C to prevent disconnection. Here, the electrode width of the video signal line DL is set to be equal to or less than twice the electrode width of the adjacent counter electrode CT. Alternatively, when the electrode width of the video signal line DL is determined from the productivity of the yield, the electrode width of the counter electrode CT adjacent to the video signal line DL is set to 1Z2 or more of the electrode width of the video signal line DL. I do. This is because the lines of electric force generated from the video signal line DL are absorbed by the counter electrodes CT on both sides, respectively.In order to absorb the lines of electric force generated from a certain electrode width, the lines of the same width or more must be absorbed. An electrode with an electrode width is required. Therefore, the counter electrodes CT on both sides absorb the electric lines of force generated from half of the electrodes of the video signal line DL (4 μm each). Therefore, the electrode width of the counter electrode CT adjacent to the video signal line DL is 1 or more. This prevents crosstalk from occurring due to the effect of the video signal, particularly in the vertical direction (vertical crosstalk).
走査信号線 GLは末端側の画素 (後述の走査電極端子 GTMの反対 側) のゲート電極 GTに十分に走査電圧が印加するだけの抵抗値を満足 するように電極幅を設定する。 また、 対向電圧信号線 C Lも末端側の画 素 (後述の共通バスライン CB 1および CB 2から最も遠い画素すなわ ち CB 1と CB 2の中間の画素) の対向電極 CTに十分に対向電圧が印 加できるだけの抵抗値を満足するように電極幅を設定する。  The width of the scanning signal line GL is set so as to satisfy a resistance value enough to apply a scanning voltage to the gate electrode GT of the terminal pixel (the opposite side of the scanning electrode terminal GTM described later). In addition, the counter voltage signal line CL is also sufficiently connected to the counter electrode CT of the pixel on the terminal side (the pixel farthest from the common bus lines CB 1 and CB 2 described later, that is, the pixel between CB 1 and CB 2) Set the electrode width so as to satisfy the resistance value that can be applied.
一方、 画素電極 PXと対向電極 CTの間の電極間隔は、 用いる液晶材 料によって変える。 これは、 液晶材料によって最大透過率を達成する電 界強度が異なるため、 電極間隔を液晶材料に応じて設定し、 用いる映像 信号駆動回路 (信号側ドライバ) の耐圧で設定される信号電圧の最大振 幅の範囲で、 最大透過率が得られるようにするためである。 後述の液晶 材料を用いると電極間隔は、 となる。  On the other hand, the electrode interval between the pixel electrode PX and the counter electrode CT changes depending on the liquid crystal material used. This is because the electric field strength that achieves the maximum transmittance varies depending on the liquid crystal material, so the electrode spacing is set according to the liquid crystal material, and the maximum signal voltage set by the withstand voltage of the video signal drive circuit (signal driver) used. This is so that the maximum transmittance can be obtained in the range of the amplitude. When a liquid crystal material described later is used, the electrode spacing becomes:
《マトリクス部 (画素部) の断面構成》  << Cross-sectional configuration of matrix section (pixel section) >>
F i g. 26は F i g. 25の 6— 6切断線における断面図、 F i g. 27は F i g. 25の 7— 7切断線における薄膜トランジスタ TFTの 断面図、 F i g. 28は F i g. 25の 8— 8切断線における蓄積容量 C s t gの断面図である。  FIG. 26 is a cross-sectional view of the thin film transistor TFT taken along the line 7—7 of FIG. 25, and FIG. 27 is a cross-sectional view of the thin film transistor TFT taken along the line 7—7 of FIG. 25. 25 is a cross-sectional view of the storage capacitor C stg at the section line 8-8 in FIG. 25.
F i g. 26〜F i g. 28に示すように、 液晶層 LCを基準にして 下部透明ガラス基板 SUB 1側には薄膜トランジスタ TFT、 蓄積容量 C s t gおよび電極群が形成され、 上部透明ガラス基板 SUB 2側には カラーフィルタ F I L、 遮光用ブラックマトリタスパターン BMが形成 されている。 As shown in Fig. 26 to Fig. 28, the lower transparent glass substrate SUB 1 side is formed with a thin film transistor TFT, a storage capacitor C stg and an electrode group based on the liquid crystal layer LC, and the upper transparent glass substrate On the SUB 2 side, a color filter FIL and black matrix for light shielding BM are formed. Have been.
また、 透明ガラス基板 SUB 1、 SUB 2のそれぞれの内側 (液晶し C側) の表面には、 液晶の初期配向を制御する配向膜 OR I、 OR I 2 が設けられており、 透明ガラス基板 SUB 1、 SUB 2のそれぞれの外 側の表面には、 偏光軸が直交して配置された (クロスニコル配置) 偏光 板が設けられている。  The transparent glass substrates SUB 1 and SUB 2 are provided with alignment films OR I and OR I 2 on the inner surface (liquid crystal C side) for controlling the initial alignment of the liquid crystal. On the outer surface of each of 1 and SUB 2, a polarizing plate having a polarization axis arranged orthogonally (crossed Nicols arrangement) is provided.
《TFT基板》  《TFT substrate》
まず、 下側透明ガラス基板 SUB 1側 (TFT基板) の構成を詳しく 説明する。  First, the configuration of the lower transparent glass substrate SUB 1 side (TFT substrate) will be described in detail.
《薄膜トランジスタ TFT》  《Thin film transistor TFT》
薄膜トランジスタ TFTは、 ゲ一ト電極 GTに正のバイアスを印加す ると、 ソース一ドレイン間のチャネル抵抗が小さくなり、 バイアスを零 にすると、 チャネル抵抗は大きくなるように動作する。  The thin film transistor TFT operates such that when a positive bias is applied to the gate electrode GT, the channel resistance between the source and the drain decreases, and when the bias is set to zero, the channel resistance increases.
薄膜トランジスタ TFTは、 F i g. 27に示すように、 ゲート電極 GT、 絶縁膜 G I、 i型 (真性、 intrinsic, 導電型決定不純物がドー プされていない) 非晶質シリコン (S i) からなる i型半導体層 AS、 一対のソース電極 SD 1、 ドレイン電極 SD 2を有す。 なお、 ソース、 ドレインは本来その間のバイアス極性によって決まるもので、 この液晶 表示装置の回路ではその極性は動作中反転するので、 ソース、 ドレイン は動作中入れ替わると理解されたい。 しカゝし、 以下の説明では、 便宜上 一方をソース、 他方をドレインと固定して表現する。  As shown in Fig. 27, the thin film transistor TFT is composed of a gate electrode GT, an insulating film GI, and an i-type (intrinsic, intrinsic, conductivity type doping impurity-doped) amorphous silicon (Si). It has an i-type semiconductor layer AS, a pair of source electrodes SD1, and a drain electrode SD2. It should be understood that the source and the drain are originally determined by the bias polarity between them, and in the circuit of this liquid crystal display device, the polarity is inverted during the operation, so the source and the drain are understood to be switched during the operation. However, in the following description, one is fixed and the other is fixed as a drain for convenience.
《ゲート電極 GT》  《Gate electrode GT》
ゲート電極 GTは走査信号線 GLと連続して形成されており、 走査信 号線 G Lの一部の領域がゲート電極 G Tとなるように構成されている。 CTJP9 1 The gate electrode GT is formed continuously with the scanning signal line GL, and a part of the scanning signal line GL is configured to be the gate electrode GT. CTJP9 1
56 ゲート電極 G Tは薄膜トランジスタ T F Τの能動領域を超える部分で ある。 本例では、 ゲート電極 GTは、 単層の導電膜 g 3で形成されてい る。 導電月莫 g 3としては例えばスパッタで形成されたクロム一モリブデ ン合金 (C r—Μο) 膜が用いられるがそれに限ったものではない。 《走査信号線 GL》  56 The gate electrode GT is a portion beyond the active area of the thin film transistor T F Τ. In this example, the gate electrode GT is formed of a single conductive film g3. As the conductive layer 3, for example, a chromium-molybdenum alloy (Cr— 膜 ο) film formed by sputtering is used, but not limited thereto. 《Scan signal line GL》
走査信号線 GLは導電膜 g 3で構成されている。 この走査信号線 GL の導電膜 g 3はゲート電極 GTの導電膜 g 3と同一製造工程で形成さ れ、 かつ一体に構成されている。 この走査信号線 GLにより、 外部回路 力 らゲート電圧 Vgをゲート電極 GTに供給する。 本例では、 導電膜 g 3としては例えばスパッタで形成されたクロム一モリブデン合金 (C r 一 Mo) 膜が用いられる。 また、 走査信号線 GLおよびはゲート電極 G Tは、 クロム一モリブデン合金のみに限られたものではなく、 たとえば、 低抵抗化のためにアルミニウムまたはアルミニウム合金をクロムーモ リブデンで包み込んだ 2層構造としてもよい。 さらに、 映像信号線 DL と交差する部分は映像信号線 D Lとの短絡の確率を小さくするため細 く し、 また、 短絡しても、 レーザートリミングで切り離すことができる ように二股にしても良い。  The scanning signal line GL is formed of the conductive film g3. The conductive film g3 of the scanning signal line GL is formed in the same manufacturing process as the conductive film g3 of the gate electrode GT, and is integrally formed. The gate voltage Vg is supplied to the gate electrode GT from an external circuit by the scanning signal line GL. In this example, as the conductive film g3, for example, a chromium-molybdenum alloy (Cr-Mo) film formed by sputtering is used. Further, the scanning signal line GL and the gate electrode GT are not limited to chromium-molybdenum alloy, but may have a two-layer structure in which aluminum or an aluminum alloy is wrapped with chromium-molybdenum to reduce resistance. . Further, the portion that intersects with the video signal line DL may be narrowed to reduce the probability of a short circuit with the video signal line DL, or may be bifurcated so that the short circuit can be separated by laser trimming.
《対向電圧信号線 CL》  << Counter voltage signal line CL >>
対向電圧信号線 CLは導電膜 g 3で構成されている。 この対向電圧信 号線 CLの導電膜 g 3はゲート電極 GT、 走査信号線 GLおよび対向電 極 CTの導電膜 g 3と同一製造工程で形成され、 かつ対向電極 CTと電 気的に接続できるように構成されている。 この対向電圧信号線 C Lによ り、 外部回路から対向電圧 Vc omを対向電極 CTに供給する。  The counter voltage signal line CL is formed of the conductive film g3. The conductive film g3 of the counter voltage signal line CL is formed in the same manufacturing process as the gate electrode GT, the scanning signal line GL, and the conductive film g3 of the counter electrode CT, and can be electrically connected to the counter electrode CT. Is configured. The counter voltage Vcom is supplied to the counter electrode CT from an external circuit by the counter voltage signal line CL.
また、 対向電圧信号線 CLは、 クロム一モリブデン合金のみに限られ たものではなく、 たとえば、 低抵抗化のためにアルミニウムまたはアル ミニゥム合金をクロム一モリブデンで包み込んだ 2層構造としてもよ い。 The counter voltage signal line CL is limited to chromium-molybdenum alloy only. For example, a two-layer structure in which aluminum or an aluminum alloy is wrapped with chromium-molybdenum to reduce resistance may be used.
さらに、 映像信号線 D Lと交差する部分は映像信号線 D Lとの短絡の 確率を小さくするため細くし、 また、 短絡しても、 レーザートリミング で切り離すことができるように二股にしても良い。  Further, the portion that intersects with the video signal line D L may be narrowed to reduce the probability of short-circuit with the video signal line D L, or may be bifurcated so that even if it is short-circuited, it can be separated by laser trimming.
《絶縁膜 G I》  《Insulating film G I》
絶縁膜 G Iは、 薄膜トランジスタ TFTにおいて、 ゲート電極 GTと 共に半導体層 ASに電界を与えるためのゲート絶縁膜として使用され る。 絶縁膜 G Iはゲ一ト電極 GTおよび走査信号線 GLの上層に形成さ れている。 絶縁膜 G Iとしては例えばプラズマ CVDで形成された窒化 シリコン膜が選ばれ、 2500〜 450 OAの厚さに (本実施例では、 350 OA程度) 形成される。 また、 絶縁膜 G Iは走査信号線 GLおよ び対向電圧信号線 CLと映像信号線 DLの層間絶縁膜としても働き、 そ れらの電気的絶縁にも寄与している。 また、 絶縁膜 G Iは後述の保護膜 P S V 1と同一のホトマスクでパターユングされ、 一括で加工される。 《i型半導体層 AS》  The insulating film GI is used as a gate insulating film for applying an electric field to the semiconductor layer AS together with the gate electrode GT in the thin film transistor TFT. The insulating film GI is formed above the gate electrode GT and the scanning signal line GL. As the insulating film GI, for example, a silicon nitride film formed by plasma CVD is selected, and is formed to a thickness of 2500 to 450 OA (about 350 OA in this embodiment). The insulating film GI also functions as an interlayer insulating film between the scanning signal line GL, the counter voltage signal line CL, and the video signal line DL, and also contributes to their electrical insulation. The insulating film GI is patterned using the same photomask as a protective film PSV1 to be described later, and is processed collectively. 《I-type semiconductor layer AS》
i型半導体層 ASは、 非晶質シリコンで、 200〜2500 Aの厚さ に (本実施例では、 1200A程度の膜厚) で形成される。  The i-type semiconductor layer AS is made of amorphous silicon and has a thickness of 200 to 2500 A (in this embodiment, a film thickness of about 1200 A).
層 d 0はォーミックコンタクト用のリン (P) をドープした N( + )型 非晶質シリコン半導体層であり、 下側に i型半導体層 ASが存在し、 上 側に導電層 d 3が存在するところのみに残されている。  The layer d0 is an N (+)-type amorphous silicon semiconductor layer doped with phosphorus (P) for ohmic contact. An i-type semiconductor layer AS exists on the lower side, and a conductive layer d3 on the upper side. Is left only where it exists.
i型半導体層 ASおよび層 d 0は、 走査信号線 GLおよび対向電圧信 号線 CLと映像信号線 DLとの交差部 (クロスオーバ部) の両者間にも 設けられている。 この交差部の i型半導体層 ASは交差部における走査 信号線 G Lおよび対向電圧信号線 C Lと映像信号線 D Lとの短絡を低 減する。 The i-type semiconductor layer AS and the layer d0 are also provided between the intersections (crossover portions) of the scanning signal lines GL and the counter voltage signal lines CL and the video signal lines DL. Is provided. The i-type semiconductor layer AS at the intersection reduces a short circuit between the scanning signal line GL and the counter voltage signal line CL and the video signal line DL at the intersection.
《ソース電極 SD1、 ドレイン電極 SD 2》  《Source electrode SD1, Drain electrode SD 2》
ソース電極 SD 1、 ドレイン電極 SD 2のそれぞれは、 N( + )型半導 体層 d 0に接触する導電膜 d 3から構成されている。  Each of the source electrode SD1 and the drain electrode SD2 is formed of a conductive film d3 which is in contact with the N (+) type semiconductor layer d0.
導電膜 d 3はスパッタで形成したクロム一モリブデン合金 (C r一 M o) 膜を用い、 500〜3000 Aの厚さに (本実施例では、 2500 A程度) で形成される。 C r一 Mo膜は低応力であるので、 比較的膜厚 を厚く形成することができ配線の低抵抗化に寄与する。 また、 Cr— M o膜は N( + )型半導体層 d 0との接着性も良好である。 導電膜 d 3とし て、 C r—Mo膜の他に高融点金属 (Mo、 T i、 Ta、 W) 膜、 高融 点金属シリサイド (Mo S i 2、 T i S i 2、 T a S i 2、 WS i 2) 膜 を用いてもよく、 また、 アルミニウム等との積層構造にしてもよレ、。 導電膜 d 3をマスクパターンでパターユングした後、 導電膜 d 3をマ スクとして、 N( + )型半導体層 d 0が除去される。 つまり、 i型半導体 層 AS上に残っていた N( + )型半導体層 d 0は導電膜 d 1、 導電膜 d 2 以外の部分がセルファラインで除去される。 このとき、 N( + )型半導体 層 d 0はその厚さ分は全て除去されるようエッチングされるので、 i型 半導体層 A Sも若干その表面部分がェツチングされるが、 その程度はェ ッチング時間で制御すればよい。  The conductive film d3 is formed using a chromium-molybdenum alloy (Cr-Mo) film formed by sputtering to a thickness of 500 to 3000A (about 2500A in this embodiment). Since the Cr-Mo film has low stress, it can be formed relatively thick, which contributes to lowering the resistance of the wiring. Further, the Cr—Mo film has good adhesion to the N (+) type semiconductor layer d 0. As the conductive film d 3, in addition to the Cr—Mo film, a high melting point metal (Mo, Ti, Ta, W) film, a high melting point metal silicide (MoSi 2, TiSi 2, TaS i 2, WS i 2) A film may be used, or a laminated structure with aluminum or the like may be used. After patterning the conductive film d3 with a mask pattern, the N (+) type semiconductor layer d0 is removed using the conductive film d3 as a mask. That is, in the N (+)-type semiconductor layer d0 remaining on the i-type semiconductor layer AS, portions other than the conductive film d1 and the conductive film d2 are removed by self-alignment. At this time, since the N (+) type semiconductor layer d0 is etched so as to entirely remove the thickness thereof, the surface of the i-type semiconductor layer AS is also slightly etched. Can be controlled by
《映像信号線 DL》  《Video signal line DL》
映像信号線 DLはソース電極 SD 1、 ドレイン電極 SD 2と同層の導 電膜 d 3で構成されている。 また、 映像信号線 DLはドレイン電極 SD 2と一体に形成されている。 本例では、 導電膜 d 3はスパッタで形成し たクロム一モリブデン合金 (C r一 Mo) 膜を用い、 500〜3000 Aの厚さに (本実施例では、 2500A程度) で形成される。 C r_M o膜は低応力であるので、 比較的膜厚を厚く形成することができ配線の 低抵抗化に寄与する。 また、 C r一 Mo膜は N( + )型半導体層 d 0との 接着性も良好である。 導電膜 d 3として、 C r—Mo膜の他に高融点金 属 (Mo、 T i、 Ta、 W) 膜、 高融点金属シリサイ ド (Mo S i 2、 T i S i 2、 Ta S i 2、 WS i 2) 膜を用いてもよく、 また、 ァノレミニ ゥム等との積層構造にしてもよレ、。 The video signal line DL is composed of a conductive film d3 in the same layer as the source electrode SD1 and the drain electrode SD2. The video signal line DL is connected to the drain electrode SD It is formed integrally with 2. In this embodiment, the conductive film d3 is formed of a chromium-molybdenum alloy (Cr-Mo) film formed by sputtering to a thickness of 500 to 3000 A (about 2500 A in this embodiment). Since the Cr_Mo film has low stress, it can be formed relatively thick, which contributes to lowering the resistance of the wiring. Further, the Cr-Mo film has good adhesion to the N (+)-type semiconductor layer d0. As the conductive film d 3, C in addition to the high melting point metals of the r-Mo film (Mo, T i, Ta, W) film, a refractory metal Shirisai de (Mo S i 2, T i S i 2, Ta S i 2 , WS i 2 ) A film may be used, or a laminated structure with an anolem minimum or the like may be used.
《蓄積容量 C s t g》  《Storage capacity C s t g》
導電膜 d 3は、 薄膜トランジスタ TFTのソース電極 SD 2部分にお いて、 対向電圧信号線 CLと重なるように形成されている。 この重ね合 わせは、 F i g. 28からも明らかなように、 ソース電極 SD 2 (d 3) を一方の電極とし、 対向電圧信号 CLを他方の電極とする蓄積容量 (静 電容量素子) C s t gを構成する。 この蓄積容量 C s t gの誘電体膜は、 薄膜トランジスタ T FTのゲート絶縁膜として使用される絶縁膜 G I で構成されている。  The conductive film d3 is formed so as to overlap the counter voltage signal line CL in the source electrode SD2 portion of the thin film transistor TFT. As shown in FIG. 28, this superposition is based on the storage capacitance (capacitance element) in which the source electrode SD 2 (d 3) is used as one electrode and the counter voltage signal CL is used as the other electrode. Configure C stg. The dielectric film of the storage capacitor C stg is composed of an insulating film GI used as a gate insulating film of the thin film transistor TFT.
F i g. 25に示すように平面的には蓄積容量 C s t gは対向電圧信 号線 CLの一部分に形成されている。  As shown in FIG. 25, the storage capacitance C stg is formed in a part of the counter voltage signal line CL in plan view.
《保護膜 PSV1》  《Protective film PSV1》
薄膜トランジスタ TFT上には保護膜 P SV 1が設けられている。 保 護膜 P S V 1は主に薄膜トランジスタ T FTを湿気等から保護するた めに形成されており、 透明性が高く しかも耐湿性の良いものを使用する c 保護膜 P S V 1はたとえばプラズマ CVD装置で形成した酸化シリコ ン膜ゃ窒化シリコン膜で形成されており、 0.3〜 l m程度の膜厚で 形成する。 A protective film PSV1 is provided on the thin film transistor TFT. Coercive Mamorumaku PSV 1 is mainly formed in order to protect the thin film transistor T FT from moisture or the like, c protective film PSV 1 to use a good addition moisture resistance high transparency, for example formed by a plasma CVD apparatus Oxidized silico The film is formed of a silicon nitride film and has a thickness of about 0.3 to lm.
保護膜 PSV1は、 外部接続端子 DTM、 GTMを露出するよう除去 されている。 保護膜 P S V 1と絶縁膜 G Iの厚さ関係に関しては、 前者 は保護効果を考え厚くされ、 後者はトランジスタの相互コンダクタンス gmを薄くされる。 また、 保護膜 PSV1は絶縁膜 G Iと同一ホトマス クでパターユングし、 一括で加工する。 また、 画素部では、 対向電圧信 号線 CLと後述の対向電極 CTとの電気的接続、 および、 ソース電極 S D 2と画素電極 PXとの電気的接続のために、 スルーホール TH2およ び TH1を設けている。 スルーホール TH 2では、 保護膜 PSV1と絶 縁膜 G Iがー括で加工されるので g 3層までの孔があき、 スルーホール TH 1では d 3でブロッキングされるので d 3層までの孔があく。  The protective film PSV1 has been removed to expose the external connection terminals DTM and GTM. Regarding the thickness relationship between the protective film PSV1 and the insulating film GI, the former is made thicker in consideration of the protective effect, and the latter is made thinner for the transconductance gm of the transistor. The protective film PSV1 is putterung with the same photomask as the insulating film GI, and is processed collectively. In the pixel section, through holes TH2 and TH1 are provided for electrical connection between the counter voltage signal line CL and the counter electrode CT described later, and for electrical connection between the source electrode SD2 and the pixel electrode PX. Provided. In the through-hole TH2, the protective film PSV1 and the insulating film GI are processed together to form a hole up to the g3 layer. In the through-hole TH1, the hole up to the d3 layer is blocked by the d3. Evil.
《画素電極 PX》  《Pixel electrode PX》
画素電極 PXは、 透明導電層 i 1で形成されている。 この透明導電膜 i 1はスパッタリングで形成された透明導電膜 (Indium-Tin-Oxide I TO :ネサ膜) からなり、 100〜2000 Aの厚さに (本実施例では、 1400A程度の膜厚) 形成される。 また、 画素電極 PXはスルーホー ル TH1を介して、 ソース電極 SD 2に接続されている。  The pixel electrode PX is formed of the transparent conductive layer i1. This transparent conductive film i1 is made of a transparent conductive film (Indium-Tin-Oxide ITO: Nesa film) formed by sputtering, and has a thickness of 100 to 2000 A (in this embodiment, a film thickness of about 1400 A). It is formed. The pixel electrode PX is connected to the source electrode SD2 via the through hole TH1.
画素電極が本実施例のように透明になることにより、 その部分の透過 光により、 白表示を行う時の最大透過率が向上するため、 画素電極が不 透明な場合よりも、 より明るい表示を行うことができる。 この時、 後述 するように、 電圧無印加時には、 液晶分子は初期の配向状態を保ち、 そ の状態で黒表示をするように偏光板の配置を構成する (ノーマリブラッ クモードにする) にしているので、 画素電極を透明にしても、 その部分 の光を透過することがなく、 良質な黒を表示することができる。 これに より、 最大透過率が向上させ、 かつ十分なコントラスト比を達成するこ とができる。 By making the pixel electrode transparent as in this embodiment, the maximum transmittance when white display is performed is improved due to the transmitted light in that part, so that a brighter display is provided than when the pixel electrode is opaque. It can be carried out. At this time, as described later, when no voltage is applied, the liquid crystal molecules maintain the initial alignment state, and the polarizing plate is arranged so as to display black in that state (normal black mode). Even if the pixel electrode is transparent, High-quality black can be displayed without transmitting light. Thereby, the maximum transmittance can be improved and a sufficient contrast ratio can be achieved.
《対向電極 CT》  《Counter electrode CT》
対向電極 CTは透明導電層 i 1で形成されている。 この透明導電膜 i 1はスパッタリングで形成された透明導電膜 (Indium- Tin- Oxide I T O :ネサ膜) からなり、 100〜200 Ό Aの厚さに (本実施例では、 140 OA程度の膜厚) 形成される。 また、 対向電極 CTはスルーホー ノレ TH 2を介して、 対向電圧信号線 CLに接続されている。  The counter electrode CT is formed of the transparent conductive layer i1. The transparent conductive film i1 is made of a transparent conductive film (Indium-Tin-Oxide ITO: Nesa film) formed by sputtering, and has a thickness of 100 to 200 ΌA (in this embodiment, a film thickness of about 140 OA). ) It is formed. The counter electrode CT is connected to the counter voltage signal line CL via the through-hole TH2.
対向電極 CTには対向電圧 V c omが印加されるように構成されて いる。 本実施例では、 対向電圧 Vc omは映像信号線 DLに印加される 最小レベルの駆動電圧 V dm i nと最大レベルの駆動電圧 V d m a x との中間直流電位から、 薄膜トランジスタ素子 T F Tをオフ状態にする ときに発生するフィードスルー電圧 Δν s分だけ低い電^:に設定され るが、 映像信号駆動回路で使用される集積回路の電源電圧を約半分に低 減したい場合は、 交流電圧を印加すれば良い。  The counter electrode CT is configured to apply a counter voltage Vcom. In the present embodiment, the counter voltage Vcom is used when the thin film transistor element TFT is turned off from the intermediate DC potential between the minimum level drive voltage Vdmin and the maximum level drive voltage Vdmax applied to the video signal line DL. Is set to a voltage that is lower by the amount of feedthrough voltage Δν s generated in the video signal, but if you want to reduce the power supply voltage of the integrated circuit used in the video signal drive circuit to about half, you can apply an AC voltage .
《カラーフィルタ基板》  《Color filter substrate》
次に、 F i g. 25、 F i g. 26に戻り、 上側透明ガラス基板 SU B 2側 (カラーフィルタ基板) の構成を詳しく説明する。  Next, returning to FIGS. 25 and 26, the configuration of the upper transparent glass substrate SU B2 side (color filter substrate) will be described in detail.
《遮光膜 BM》  《Light shielding film BM》
上部透明ガラス基板 SUB 2側には、 不要な間隙部 (画素電極 PXと 対向電極 CTの間以外の隙間) からの透過光が表示面側に出射して、 コ ントラスト比等を低下させないように遮光膜 BM (いわゆるブラックマ トリクス) を形成している。 遮光膜 BMは、 外部光またはバックライ ト 光が i型半導体層 A Sに入射しないようにする役割も果たしている。 す なわち、 薄膜トランジスタ T F Tの i型半導体層 A Sは上下にある遮光 膜 BMおよび大き目のゲート電極 G Tによってサンドィツチにされ、 外 部の自然光やバックライ ト光が当たらなくなる。 On the upper transparent glass substrate SUB2 side, make sure that the transmitted light from unnecessary gaps (gap other than between the pixel electrode PX and the counter electrode CT) is emitted to the display surface side and does not lower the contrast ratio etc. The light shielding film BM (so-called black matrix) is formed. Light shielding film BM is used for external light or backlight It also plays a role in preventing light from entering the i-type semiconductor layer AS. That is, the i-type semiconductor layer AS of the thin film transistor TFT is sandwiched by the upper and lower light-shielding films BM and the large gate electrode GT, so that external natural light and backlight do not hit.
F i g . 2 5に示す遮光膜 BMは、 薄膜トランジスタ素子 T F T上部 に左右方向に線状に延在した構成である。 このパターンは、 1例であり、 開口部を孔状にあけたマトリクス状の様にすることもできる。 櫛歯電極 端部等の電界方向が乱れる部分においては、 その部分の表示は、 画素内 の映像情報に 1対 1で対応し、 力つ、 黒の場合には黒、 白の場合には白 になるため、 表示の一部として利用することが可能である。 また、 図の 上下方向における対向電極 C Tと映像信号線 D Lとの間隙部は、 ゲート 電極 G Tと同一工程で形成した遮光層 S Hで遮光する。 これにより左右 方向の上下方向の遮光は、 T F T工程のァライメント精度で高精度に遮 光できるので、 映像信号線 D Lに隣接する対向電極 C Tの電極間に遮光 層 S Hの境界を設定でき、 上下基板のあわせ精度に依存する遮光膜 B M による遮光よりも、 より開口部を拡大することができる。  The light-shielding film BM shown in FIG. 25 has a configuration extending linearly in the left-right direction above the thin-film transistor element TFT. This pattern is an example, and the pattern may be a matrix with openings formed in holes. In the area where the electric field direction is disturbed, such as the end of the comb electrode, the display of that area corresponds to the video information in the pixel on a one-to-one basis. It can be used as part of the display. The gap between the counter electrode CT and the video signal line DL in the vertical direction in the figure is shielded from light by a light shielding layer SH formed in the same step as the gate electrode GT. As a result, the light shielding in the vertical direction in the horizontal direction can be shielded with high precision with the alignment accuracy of the TFT process. The aperture can be enlarged more than the light shielding by the light shielding film BM which depends on the alignment accuracy.
遮光膜 BMは光に対する遮蔽性を有し、 かつ、 画素電極 P Xと対向電 極 C Tの間の電界に影響を与えないように絶縁性の高い膜で形成され ており、 本実施例では黒色の顔料をレジスト材に混入し、 程 度の厚さで形成している。  The light-shielding film BM has a light-shielding property and is formed of a highly insulating film so as not to affect the electric field between the pixel electrode PX and the counter electrode CT. Pigment is mixed into the resist material to form a film of moderate thickness.
遮光膜 B Mは各行の画素に左右方向に線状に形成され、 この線で各行 の有効表示領域が仕切られている。 従って、 各行の画素の輪郭が遮光膜 BMによってはっきりとする。 つまり、 遮光膜 B Mは、 ブラックマトリ タスと i型半導体層 A Sに対する遮光との 2つの機能をもつ。 遮光膜 BMは周辺部にも額縁状に形成され、 そのパターンは F i g. 25に示すマトリクス部のパターンと連続して形成されている。 周辺部 の遮光膜 BMは、 シール部 S Lの外側に延長され、 パソコン等の実装機 に起因する反射光等の漏れ光がマトリクス部に入り込むのを防いぐと 共に、 ノくックライ ト等の光が表示エリア外に漏れるのも防いでいる。 他 方、 この遮光膜 BMは基板 SUB 2の縁よりも約 0. 3〜1. Omm程 内側に留められ、 基板 SUB 2の切断領域を避けて形成されている。 《カラーフィルタ F I L》 The light-shielding film BM is formed in the pixels of each row in a linear shape in the left-right direction, and the lines partition the effective display area of each row. Therefore, the outline of the pixels in each row is made clear by the light shielding film BM. That is, the light shielding film BM has two functions of black matrix and light shielding for the i-type semiconductor layer AS. The light-shielding film BM is also formed in a frame shape at the peripheral portion, and its pattern is formed continuously with the pattern of the matrix portion shown in FIG. The light shielding film BM in the peripheral portion is extended outside the seal portion SL to prevent leakage light such as reflected light due to a mounting machine such as a personal computer from entering the matrix portion and to prevent light such as knock light from being emitted. Is prevented from leaking out of the display area. On the other hand, the light-shielding film BM is retained about 0.3 to 1. Omm inside the edge of the substrate SUB2, and is formed so as to avoid the cut region of the substrate SUB2. 《Color filter FIL》
実施例 1と同じ。  Same as Example 1.
《オーバーコート膜 oc》  《Overcoat film oc》
実施例 1と同じ。  Same as Example 1.
《液晶層、 配向膜および偏向板》  《Liquid crystal layer, alignment film and deflection plate》
実施例 1と同じ。  Same as Example 1.
《マトリクス周辺の構成》  《Configuration around the matrix》
実施例 1と同じ。  Same as Example 1.
《ゲート端子部》  《Gate terminal section》
F i g. 29 Aは表示マトリタスの走査信号線 GLからその外部接続 端子 GTMまでの接続構造を示す平面図であり、 F i g. Bは、 F i g. 29 Aの B— B切断線における断面図を示している。 なお、 同図は、 F i g. 5右中央付近に対応し、 斜め配線の部分は便宜状一直線状で示し た。  FIG. 29A is a plan view showing a connection structure from the scanning signal line GL of the display matrix to the external connection terminal GTM, and FIG. B is a section line B—B of FIG. 29A. FIG. 5 corresponds to the vicinity of the right center of FIG. 5, and the oblique wiring portion is shown as a straight line for convenience.
図中 C r _Mo層 g 3は、 分かり易くするためハッチを施してある。 ゲート端子 GTMは、 C rーMo層g 3と、 更にその表面を保護し、 かつ、 TCP (Ta p e Ca r r i e r P a c k a g e) との接続 の信頼性を向上させるための透明導電層 i 1とで構成されている。 この 透明導電層 i 1は画素電極 PXと同一工程で形成された透明導電膜 I TOを用いている。 In the figure, the Cr_Mo layer g3 is hatched for easy understanding. The gate terminal GTM protects the Cr-Mo layer g3 and its surface, and connects to TCP (Tape Carrier Package). And a transparent conductive layer i1 for improving the reliability of the device. This transparent conductive layer i1 uses a transparent conductive film ITO formed in the same step as the pixel electrode PX.
平面図において、 絶縁膜 G Iおよび保護膜 P S V 1はその境界線より も右側に形成されており、 左端に位置する端子部 GTMはそれらから露 出し外部回路との電気的接触ができるようになつている。 図では、 ゲー ト線 GLとゲート端子の一つの対のみが示されているが、 実際はこのよ うな対が F i g. 29 Aに示すように上下に複数本並べられ端子群 Tg (F i g. 5) が構成され、 ゲート端子の左端は、 製造過程では、 基板 の切断領域を越えて延長され配線 SHg (図示せず) によって短絡され る。 製造過程における配向膜 OR I 1のラビング時等の静電破壊防止に 役立つ。  In the plan view, the insulating film GI and the protective film PSV 1 are formed on the right side of the boundary line, and the terminal GTM located on the left end is exposed therefrom so that electrical contact with an external circuit can be made. I have. In the figure, only one pair of the gate line GL and the gate terminal is shown, but in reality, such pairs are arranged in a plural number up and down as shown in FIG. 29A, and the terminal group Tg (F i g. 5) is configured, and the left end of the gate terminal is extended beyond the cutting area of the substrate in the manufacturing process and is short-circuited by the wiring SHg (not shown). It is useful for preventing electrostatic breakdown at the time of rubbing of the alignment film ORI1 in the manufacturing process.
《ドレイン端子 DTM》  《Drain terminal DTM》
F i g. 3 OAは映像信号線 DLからその外部接続端子 DTMまでの 接続を示す平面図を示し、 F i g. 3 OBは、 F i g. 30八の:6—:8 切断線における断面を示す。 なお、 同図は F i g. 5右上付近に対応し、 図面の向きは便宜上変えてあるが右端方向が基板 SUB 1の上端部に 該当する。  FIG. 3 OA shows a plan view showing the connection from the video signal line DL to its external connection terminal DTM, and FIG. 3 OB shows the FIG. 3 shows a cross section. 5 corresponds to the vicinity of the upper right of FIG. 5 and the direction of the drawing is changed for convenience, but the right end corresponds to the upper end of the substrate SUB1.
TSTdは検査端子でありここには外部回路は接続されないが、 プロ 一ブ針等を接触できるよう配線部より幅が広げられている。 同様に、 ド レイン端子 DTMも外部回路との接続ができるよう配線部より幅が広 げられている。 外部接続ドレイン端子 D TMは上下方向にに配列され、 ドレイン端子 DTMは、 F i g. 5に示すように端子群 Td (添字省略) を構成し基板 SUB 1の切断線を越えて更に延長され、 製造過程中は静 電破壊防止のためその全てが互いに配線 SHd (図示せず) によって短 絡される。 検査端子 TSTdは F i g. 8に示すように一本置きの映像 信号線 DLに形成される。 TSTd is a test terminal. No external circuit is connected here, but it is wider than the wiring part so that probe needles etc. can be contacted. Similarly, the drain terminal DTM is wider than the wiring part so that it can be connected to an external circuit. The external connection drain terminals DTM are arranged vertically, and the drain terminals DTM constitute a terminal group Td (subscript omitted) as shown in FIG. 5 and further extend beyond the cutting line of the substrate SUB1. , Quiet during the manufacturing process All of them are short-circuited to each other by wiring SHd (not shown) to prevent electric breakdown. The inspection terminal TSTd is formed on every other video signal line DL as shown in FIG.
ドレイン接続端子 DTMは透明導電層 i 1で形成されており、 保護膜 P S V 1を除去した部分で映像信号線 DLと接続されている。 この透明 導電膜 i 1はゲート端子 GTMの時と同様に画素電極 PXと同一工程 で形成された透明導電膜 I TOを用いている。  The drain connection terminal DTM is formed of the transparent conductive layer i1, and is connected to the video signal line DL at a portion where the protective film PSV1 is removed. This transparent conductive film i1 uses a transparent conductive film ITO formed in the same step as the pixel electrode PX, as in the case of the gate terminal GTM.
マトリクス部からドレイン端子部 DTMまでの引出配線は、 映像信号 線 D Lと同じレベルの層 d 3が構成されている。  The lead wiring from the matrix section to the drain terminal section DTM has a layer d3 at the same level as the video signal line DL.
《対向電極端子 CTM》  《Counter electrode terminal CTM》
F i g. 31 Aは対向電圧信号線 C Lからその外部接続端子 CTMま での接続を示す平面図を示し、 F i g. 3 I Bは、 F i g. 31 の:6 一 B切断線における断面図を示す。 なお、 同図は F i g. 5左上付近に 対応する。  FIG. 31A is a plan view showing the connection from the counter voltage signal line CL to the external connection terminal CTM, and FIG. 3 IB is a diagram of FIG. FIG. This figure corresponds to the vicinity of the upper left of FIG.
各対向電圧信号線 CLは、 共通バスライン CB 1で一纏めして対向電 極端子 CTMに引き出されている。 共通バスライン CBは導電層 g 3の 上に導電層 3を積層し、 透明導電層 i 1でそれらを電気的に接続した構 造となっている。 これは、 共通バスライン CBの抵抗を低減し、 対向電 圧が外部回路から各対向電圧信号線 CLに十分に供給されるようにす るためである。 本構造では、 特に新たに導電層を負荷することなく、 共 通バスラインの抵抗を下げられるのが特徴である。  Each counter voltage signal line CL is brought together to the counter electrode terminal CTM by a common bus line CB1. The common bus line CB has a structure in which a conductive layer 3 is laminated on a conductive layer g3 and they are electrically connected by a transparent conductive layer i1. This is to reduce the resistance of the common bus line CB so that the opposing voltage is sufficiently supplied from an external circuit to each opposing voltage signal line CL. The feature of this structure is that the resistance of the common bus line can be reduced without adding a new conductive layer.
対向電極端子 CTMは、 導電層 g 3の上に透明導電層 i 1が積層され た構造になっている。 この透明導電膜 i 1は他の端子の時と同様に画素 電極 PXと同一工程で形成された透明導電膜 I TOを用いている。 透明 導電層 i 1により、 その表面を保護し、 電食等を防ぐために耐久性のよ い透明導電層 i 1で、 導電層 g 3を覆っている。 また透明導電層 i 1と 導電層 g 3および導電層 d 3との接続は保護膜 P S V 1および絶縁膜 G Iにスルーホールを形成し導通を取っている。 The counter electrode terminal CTM has a structure in which a transparent conductive layer i1 is laminated on a conductive layer g3. This transparent conductive film i1 uses a transparent conductive film ITO formed in the same process as the pixel electrode PX, as in the case of the other terminals. Transparent The conductive layer i1 covers the conductive layer g3 with a transparent conductive layer i1 having high durability in order to protect the surface and prevent electrolytic corrosion and the like. The connection between the transparent conductive layer i 1 and the conductive layer g 3 and the conductive layer d 3 is formed by forming through-holes in the protective film PSV 1 and the insulating film GI to establish conduction.
一方、 F i g. 32 Aは対向電圧信号線 CLのもう一方の端からその 外部接続端子 CTM 2までの接続を示す平面図を示し、 F i g. 32B は、 F i g. 32 Aの B_B切断線における断面図を示す。 なお、 同図 は F i g. 5右上付近に対応する。 ここで、 共通バスライン CB 2では 各対向電圧信号線 CLのもう一方の端 (ゲート端子 GTM側) をで一纏 めして対向電極端子 CTM 2に引き出されている。 共通バスライン CB On the other hand, FIG. 32A is a plan view showing the connection from the other end of the counter voltage signal line CL to its external connection terminal CTM2, and FIG. FIG. 4 shows a cross-sectional view taken along the line B_B. This figure corresponds to the vicinity of the upper right of FIG. 5. Here, in the common bus line CB2, the other end (gate terminal GTM side) of each counter voltage signal line CL is brought together to be pulled out to the counter electrode terminal CTM2. Common bus line CB
1と異なる点は、 走査信号線 GLとは絶縁されるように、 導電層 d 3と 透明導電層 i 1で形成していることである。 また、 走査信号線 Gしとの 絶縁は絶縁膜 G Iで行っている。 The difference from 1 is that the conductive layer d3 and the transparent conductive layer i1 are formed so as to be insulated from the scanning signal line GL. Insulation from the scanning signal line G is performed by the insulating film GI.
《表示装置全体等価回路》  《Equivalent circuit of entire display device》
表示マトリクス部の等価回路とその周辺回路の結線図を F i g. 33 に示す。 同図は回路図ではあるが、 実際の幾何学的配置に対応して描か れている。 ARは複数の画素を二次元状に配列したマトリクス ·アレイ である。  Fig. 33 shows the connection diagram of the equivalent circuit of the display matrix section and its peripheral circuits. Although this figure is a circuit diagram, it is drawn corresponding to the actual geometric arrangement. AR is a matrix array in which a plurality of pixels are arranged two-dimensionally.
図中、 Xは映像信号線 DLを意味し、 添字 G、 Bおよび Rがそれぞれ 緑、 青および赤画素に対応して付加されている。 Yは走査信号線 GLを 意味し、 添字 1、 2、 3、 ···、 e n dは走査タイミングの順序に従って 付加されている。  In the figure, X represents a video signal line DL, and suffixes G, B, and R are added corresponding to green, blue, and red pixels, respectively. Y means the scanning signal line GL, and the suffixes 1, 2, 3,..., And end are added according to the order of the scanning timing.
走査信号線 Y (添字省略) は垂直走査回路 Vに接続されており、 映像 信号線 X (添字省略) は映像信号駆動回路 Hに接続されている。 S U Pは 1つの電圧源から複数の分圧した安定化された電圧源を得 るための電源回路やホスト (上位演算処理装置) からの C R T (陰極線 管) 用の情報を T F T液晶表示装置用の情報に交換する回路を含む回路 である。 The scanning signal line Y (subscript omitted) is connected to the vertical scanning circuit V, and the video signal line X (subscript omitted) is connected to the video signal driving circuit H. The SUP uses a power supply circuit to obtain a plurality of divided and stabilized voltage sources from one voltage source and CRT (cathode ray tube) information from the host (upper processing unit) for TFT liquid crystal display devices. A circuit that includes a circuit that exchanges information.
《駆動方法》  《Driving method》
F i g . 3 4に本実施例の液晶表示装置の駆動波形を示す。 対向電圧 V cは一定電圧とする。 走査信号 V gは 1走查期間ごとに、 オンレベル をとり、 その他はオフレベルをとる。 映像信号電圧は、 液晶層に印加し たい電圧の 2倍の振幅で正極と負極を 1フレーム毎に反転して 1つの 画素に伝えるように印加する。 ここで、 映像信号電圧 V dは 1列毎に極 性を反転し、 1行毎にも極性を反転する。 これにより、 極性が反転した 画素が上下左右にとなりあう構成となり、 フリ ツ力、 クロストーク (ス ミア) を発生しにくくすることができる。 また、 対向電圧 V cは映像信 号電圧の極性反転のセンタ一電圧から、 一定量さげた電圧に設定する。 これは、 薄膜トランジスタ素子がオンからオフに変わるときに発生する フィードスルー電圧を補正するものであり、 液晶に直流成分の少ない交 流電圧を印加するために行う。 これは、 液晶は直流が印加されると、 残 像、 劣化等が激しくなるためである。  FIG. 34 shows a drive waveform of the liquid crystal display device of this embodiment. The counter voltage Vc is a constant voltage. The scanning signal V g takes an on level every run period, and takes an off level in the others. The video signal voltage is applied so that the positive and negative polarities are inverted every frame and transmitted to one pixel with twice the amplitude of the voltage to be applied to the liquid crystal layer. Here, the polarity of the video signal voltage Vd is inverted every column, and the polarity is also inverted every row. As a result, the pixels whose polarities are inverted are arranged up and down and left and right, and it is possible to reduce the occurrence of flitting force and crosstalk (smear). Also, the counter voltage Vc is set to a voltage that is a fixed amount lower than the center voltage of the polarity inversion of the video signal voltage. This is to correct the feedthrough voltage generated when the thin film transistor element changes from on to off, and is performed to apply an alternating voltage with a small DC component to the liquid crystal. This is because, when a direct current is applied to the liquid crystal, afterimages, deterioration, and the like become severe.
また、 この他に、 対向電圧は交流化することで映像信号電圧の最大振 幅を低減でき、 映像信号駆動回路 (信号側ドライバ) に耐圧の低いもの を用いることも可能である。  In addition to this, the maximum amplitude of the video signal voltage can be reduced by converting the counter voltage into an alternating current, and a video signal drive circuit (signal-side driver) having a low withstand voltage can be used.
《蓄積容量 C s t gの働き》  << Function of storage capacity C st g >>
実施例 1と同じ。  Same as Example 1.
《製造方法》 つぎに、 上述した液晶表示装置の基板 SUB 1側の製造方法について F i g. 35〜F i g. 37を参照して説明する。 なお同図において、 中央の文字は工程名の略称であり、 左側は F i g. 27に示す薄膜トラ ンジスタ T FT部分、 右側は F i g. 29に示すゲート端子付近の断面 形状でみた加工の流れを示す。 工程 B、 工程 Dを除き工程 A〜工程 Iは 各写真処理に対応して区分けしたもので、 各工程のいずれの断面図も写 真処理後の加工が終わりフォトレジストを除去した段階を示している。 なお、 写真処理とは本説明ではフォトレジストの塗布からマスクを使用 した選択露光を経てそれを現像するまでの一連の作業を示すものとし、 繰返しの説明は避ける。 以下区分けした工程に従って、 説明する。 "Production method" Next, a method for manufacturing the above-described liquid crystal display device on the substrate SUB 1 side will be described with reference to FIGS. In the same figure, the middle letter is the abbreviation of the process name, the left side is the thin film transistor TFT part shown in Fig. 27, and the right side is the cross-sectional shape near the gate terminal shown in Fig. 29. The flow of is shown. Except for Step B and Step D, Step A to Step I are classified according to each photographic process.All cross-sectional views of each process show the stage where the processing after photo processing is completed and the photoresist is removed. I have. In this description, photographic processing refers to a series of operations from application of a photoresist, through selective exposure using a mask to development thereof, and a repeated description thereof will be omitted. The explanation will be given in accordance with the following steps.
工程 A、 F i g. 35  Process A, F i g. 35
AN635ガラス (商品名) 力、らなる下部透明ガラス基板 SUB 1上 に膜厚が 2000 Aの C r—Mo等からなる導電膜 g 3をスパッタリ ングにより設ける。 写真処理後、 硝酸第 2セリウムアンモンで導電膜 g 3を選択的にエッチングする。 それによつて、 ゲート電極 GT、 走査信 号線 GL、 対向電圧信号線 CL、 ゲート端子 GTM、 共通バスライン C B 1の第 1導電層、 対向電極端子 C TM 1の第 1導電層、 ゲート端子 G TMを接続するバスライン SHg (図示せず) を形成する。  AN635 glass (trade name) A conductive film g3 made of Cr—Mo or the like having a thickness of 2000 A is provided on the lower transparent glass substrate SUB1 by sputtering. After the photographic processing, the conductive film g3 is selectively etched with ceric ammonium nitrate. Accordingly, the gate electrode GT, the scanning signal line GL, the counter voltage signal line CL, the gate terminal GTM, the first conductive layer of the common bus line CB1, the first conductive layer of the counter electrode terminal CTM1, the gate terminal GTM Are formed to form a bus line SHg (not shown).
工程 F i g. 35  Process F i g. 35
プラズマ CVD装置にアンモニアガス、 シランガス、 窒素ガスを導入 して、 膜厚が 350 OAの窒化 S i膜を設け、 プラズマ CVD装置にシ ランガス、 水素ガスを導入して、 膜厚が 120 OAの i型非晶質 S i膜 を設けたのち、 プラズマ CVD装置に水素ガス、 ホスフィンガスを導入 して、 膜厚が 300 Aの N( + )型非晶質 S i膜を設ける。 工程 (:、 F i g. 35 Ammonia gas, silane gas, and nitrogen gas are introduced into the plasma CVD device to provide a 350 OA-thick Si nitride film, and silane gas and hydrogen gas are introduced into the plasma CVD device to produce a 120 OA-thick i film. After forming the amorphous Si film, a hydrogen gas and a phosphine gas are introduced into the plasma CVD apparatus to form an N (+) amorphous Si film having a thickness of 300 A. Process (:, F i g. 35
写真処理後、 ドライエッチングガスとして SF6、 CC 14を使用して N( + )型非晶質 S i膜、 i型非晶質 S i膜を選択的にエッチングするこ とにより、 i型半導体層 ASの島を形成する。 After photographic processing, SF 6, CC 1 4 using N (+) type amorphous S i film as a dry etching gas by a selective child etching the i-type amorphous S i layer, i-type The island of the semiconductor layer AS is formed.
工程 D、 F i g. 36  Process D, F i g. 36
膜厚が 300 Aの C rからなる導電膜 d 3をスパッタリングにより 設ける。 写真処理後、 導電膜 d 3を工程 Aと同様な液でエッチングし、 映像信号線 DL、 ソース電極 SD 1、 ドレイン電極 SD 2、 共通バスラ イン CB 2の第 1導電層、 およびドレイン端子 DTMを短絡するバスラ イン SHd (図示せず) を形成する。 つぎに、 ドライエッチング装置に CC 14、 SF6を導入して、 N( + )型非晶質 S i膜をエッチングするこ とにより、 ソースと ドレイン間の N( + )型半導体層 d 0を選択的に除去 する。 A conductive film d3 made of Cr and having a thickness of 300 A is provided by sputtering. After the photoprocessing, the conductive film d3 is etched with the same liquid as in step A, and the video signal line DL, the source electrode SD1, the drain electrode SD2, the first conductive layer of the common bus line CB2, and the drain terminal DTM are removed. Form a shorting bus line SHd (not shown). Then, by introducing the CC 1 4, SF 6 dry etching apparatus, N (+) type by the amorphous S i layer and child etching, N between the source and the drain (+) type semiconductor layer d 0 Is selectively removed.
工程 E、 F i g. 36  Process E, F i g. 36
プラズマ CVD装置にアンモニアガス、 シランガス、 窒素ガスを導入 して、 膜厚が 0.4 μπιの窒化 S i膜を設ける。 写真処理後、 ドライエ ツチングガスとして S F 6を使用して窒化 S i膜を選択的にェッチング することによって、 保護膜 P SV 1および絶縁膜 G Iをパターユングす る。 Ammonia gas, silane gas, and nitrogen gas are introduced into the plasma CVD apparatus to provide a 0.4 μπι-nitride Si film. After photographic processing, by selectively Etchingu nitride S i film using SF 6 as Delahaye Tsuchingugasu, you putter Jung protective film P SV 1 and the insulating film GI.
工程 F、 F i g. 37  Process F, F i g. 37
膜厚が 140 OAの I TO膜からなる透明導電膜 i 1をスパッタリ ングにより設ける。 写真処理後、 エッチング液として塩酸と硝酸との混 酸液で透明導電膜 i 1を選択的にエッチングすることにより、 ゲート端 子 G TMの最上層、 ドレイン端子 D TMおよび対向電極端子 C TM 1お よび C TM 2の第 2導電層を形成する。 A transparent conductive film i1 made of an ITO film having a thickness of 140 OA is provided by sputtering. After the photographic processing, the transparent conductive film i1 is selectively etched with a mixed acid solution of hydrochloric acid and nitric acid as an etchant, thereby forming the uppermost layer of the gate terminal GTM, the drain terminal DTM and the counter electrode terminal CTM1. You And a second conductive layer of CTM2.
《表示パネル P N Lと駆動回路基板 P C B 1》  《Display panel PNL and drive circuit board PCB1》
実施例 1と同じ。  Same as Example 1.
《T CPの接続構造》  《TCP connection structure》
実施例 1と同じ。  Same as Example 1.
《駆動回路基板 PC B 2》  《Drive circuit board PC B 2》
実施例 1と同じ。  Same as Example 1.
《液晶表示モジュールの全体構成》  《Overall configuration of LCD module》
実施例 1と同じ。  Same as Example 1.
以上、 本実施例では、 実施例 3同様に櫛歯電極を透明にすることによ り、 白表示を行うときの最大透過率が約 50%向上させることができ、 液晶表示パネル PNLの透過率が約 5. 7%に.なる。  As described above, in the present embodiment, by making the comb-teeth electrodes transparent as in Embodiment 3, the maximum transmittance when performing white display can be improved by about 50%, and the transmittance of the liquid crystal display panel PNL can be improved. Is about 5.7%.
また、 端子の信頼性を向上するための I TO膜も同時に形成すること ができ、 信頼性と生産性を両立することができる。  In addition, an ITO film for improving the reliability of the terminal can be formed at the same time, so that both reliability and productivity can be achieved.
また、 本実施例では、 実施例 1〜6と異なり、 I TOを保護膜 PSV の上層に形成するプロセスを用いているので、 対向電極を最上層に持つ てくることができ、 映像信号線からの漏洩電界のシールド効率も良好で あり、 クロスト一クを低減できる。  Also, in the present embodiment, unlike the first to sixth embodiments, the process of forming the ITO on the upper layer of the protective film PSV is used, so that the counter electrode can be provided on the uppermost layer, and the video signal line can be used. The shielding efficiency of the leaked electric field is good, and crosstalk can be reduced.
更に、 電極間の液晶を駆動する電気力線の経路に保護膜 P SVが介在 しないため、 保護膜 PSVでの電圧低減が無く、 液晶を駆動するための 最大駆動電圧値を実施例 1の 7. 5Vo 1 tから本例では 5. 0 Vo 1 tに低減できた。  Furthermore, since the protective film P SV does not intervene in the path of the electric force lines that drive the liquid crystal between the electrodes, there is no voltage reduction in the protective film PSV, and the maximum drive voltage value for driving the liquid crystal is set to 7 in Example 1. In this example, it was reduced from 5 Vo 1 t to 5.0 Vo 1 t.
本方式のような基板面に略平行な電界を印加して液晶を駆動する方 式では、 電極間の電気力線の経路に 2回保護膜が入るため、 また、 プロ セスを簡略化することができ、 生産性も向上する。 In the method in which a liquid crystal is driven by applying an electric field substantially parallel to the substrate surface as in this method, the protective film enters the path of the lines of electric force between the electrodes twice. Process can be simplified and productivity can be improved.
(実施例 8 )  (Example 8)
本実施例は下記の要件を除けば、 実施例 7と同一である。 F i g. 3 8に画素の平面図を示す。 図の斜線部分は透明導電膜 i 1を示す。  This embodiment is the same as Embodiment 7 except for the following requirements. Fig. 38 shows a plan view of the pixel. The hatched portion in the figure indicates the transparent conductive film i1.
《画素電極 PX》  《Pixel electrode PX》
本実施例では、 画素電極 PXはソース電極 SD 1、 ドレイン電極 SD 2と同層の導電膜 d 3で構成されている。 また、 画素電極 PXはソース 電極 SD 1と一体に形成されている。  In this embodiment, the pixel electrode PX is formed of the same conductive film d3 as the source electrode SD1 and the drain electrode SD2. The pixel electrode PX is formed integrally with the source electrode SD1.
本実施例では、 実施例 1の効果に加え、 透過率は犠牲になるが、 画素 電極 PXとソース電極 SD 1とのコンタク ト不良が回避できる。 また、 電極の一方が絶縁膜 (保護膜 PSV1) で覆われているため、 配向膜欠 陥があった場合に液晶を直流電流が流れる可能性減り、 液晶劣化等がな くなり、 信頼性が向上する。  In this embodiment, in addition to the effects of the first embodiment, the transmittance is sacrificed, but a contact failure between the pixel electrode PX and the source electrode SD1 can be avoided. In addition, since one of the electrodes is covered with an insulating film (protective film PSV1), the possibility of direct current flowing through the liquid crystal in the event of an alignment film defect is reduced, the liquid crystal is not degraded, and reliability is reduced. improves.
(実施例 9 )  (Example 9)
本実施例は下記の要件を除けば、 実施例 7と同一である。 F i g. 39 に画素の平面図を示す。 図の斜線部分は透明導電膜 i 1を示す。 This embodiment is the same as Embodiment 7 except for the following requirements. Fig. 39 shows a plan view of the pixel. The hatched portion in the figure indicates the transparent conductive film i1.
《対向電極 CT》  《Counter electrode CT》
本実施例では、 対向電極 CTを導電膜 g 3で対向電圧信号線 CLと一 体に構成する。  In this embodiment, the counter electrode CT is formed integrally with the counter voltage signal line CL by the conductive film g3.
本実施例では、 実施例 1の効果に加え、 透過率は犠牲になるが、 対向 電極 CTと対向電圧信号線 CLとのコンタク ト不良が回避できる。 また、 電極の一方が絶縁膜 (保護膜 PSV1) で覆われているため、 配向膜欠 陥があった場合に液晶を直流電流が流れる可能性減り、 液晶劣化等がな くなり、 信頼性が向上する。 (実施例 10 ) In this embodiment, in addition to the effect of the first embodiment, the transmittance is sacrificed, but a contact failure between the counter electrode CT and the counter voltage signal line CL can be avoided. In addition, since one of the electrodes is covered with an insulating film (protective film PSV1), the possibility of direct current flowing through the liquid crystal in the event of an alignment film defect is reduced, the liquid crystal is not degraded, and reliability is reduced. improves. (Example 10)
本実施例は下記の要件を除けば、 実施例 7と同一である。 F i g. 40 に画素の平面図を示す。 図の斜線部分は透明導電膜 i 1を示す。 This embodiment is the same as Embodiment 7 except for the following requirements. Fig. 40 shows a plan view of the pixel. The hatched portion in the figure indicates the transparent conductive film i1.
《遮光膜 BM》  《Light shielding film BM》
上部透明ガラス基板 SUB 2側には、 不要な間隙部 (画素電極 PXと 対向電極 CTの間以外の隙間) からの透過光が表示面側に出射して、 コ ントラスト比等を低下させないように遮光膜 BM (いわゆるブラックマ トリタス) を形成している。 遮光膜 BMは、 外部光またはバックライ ト 光が i型半導体層 ASに入射しないようにする役割も果たしている。 す なわち、 薄膜トランジスタ TFTの i型半導体層 ASは上下にある遮光 膜 BMおよび大き目のゲート電極 GTによってサンドィツチにされ、 外 部の自然光やバックライ ト光が当たらなくなる。  On the upper transparent glass substrate SUB2 side, make sure that the transmitted light from unnecessary gaps (gap other than between the pixel electrode PX and the counter electrode CT) is emitted to the display surface side and does not lower the contrast ratio etc. The light shielding film BM (so-called black matrix) is formed. The light shielding film BM also serves to prevent external light or backlight light from entering the i-type semiconductor layer AS. That is, the i-type semiconductor layer AS of the thin film transistor TFT is sandwiched by the upper and lower light-shielding films BM and the large gate electrode GT, so that external natural light and backlight do not hit.
F i g. 40に示す遮光膜 BMは、 薄膜トランジスタ素子 T FT上部 に上下左右方向に延在した構成であり、 開口部に孔をあけたマトリクス 状の形状を有する。 櫛歯電極端部等の電界方向が乱れる部分においては、 その部分の表示は、 画素内の映像情報に 1対 1で対応し、 かつ、 黒の場 合には黒、 白の場合には白になるため、 表示の一部として利用すること が可能である。  The light-shielding film BM shown in FIG. 40 has a configuration extending in the vertical and horizontal directions above the thin-film transistor element TFT, and has a matrix-like shape with holes formed in the openings. In the area where the electric field direction is disturbed, such as the end of a comb-shaped electrode, the display of that area corresponds to the video information in the pixel on a one-to-one basis, and is black for black and white for white. Therefore, it can be used as part of the display.
また、 本実施例では、 実施例 7と異なり、 遮光膜 BMは光に対する遮 蔽性を有し、 かつ、 映像信号線 DLのからの電界が画素電極 PXと対向 電極 C Tの間の電界に影響しないように導電性の高い膜で形成されて おり、 本実施例では対向基板 SUB 1面からクロム酸化物 (C r Ox) 、 クロム窒化物 (C r Nx) 、 クロム (C r) の 3層構造を 0. 2 μπι程 度の厚さで形成している。 このときクロム酸化物 (C r Ox) は、 表示 面の反射を抑えるために用いている。 また、 クロム (C r) は遮光膜 B Mに外部から電圧を与えられるよう遮光層 BMの最上層に設ける。 Further, in this embodiment, unlike Embodiment 7, the light shielding film BM has a light shielding property, and the electric field from the video signal line DL affects the electric field between the pixel electrode PX and the counter electrode CT. In this embodiment, three layers of chromium oxide (CrOx), chromium nitride (CrNx), and chromium (Cr) are formed from the counter substrate SUB1 surface. The structure is formed with a thickness of about 0.2 μπι. At this time, chromium oxide (CrOx) It is used to suppress surface reflection. Chromium (Cr) is provided on the uppermost layer of the light shielding layer BM so that a voltage can be externally applied to the light shielding layer BM.
遮光膜 BMは各行の画素に左右方向に線状に形成され、 この線で各行 の有効表示領域が仕切られている。 従って、 各行の画素の輪郭が遮光膜 BMによってはっきりとする。 つまり、 遮光膜 BMは.ブラックマトリ タスと i型半導体層 ASに対する遮光との 2つの機能をもつ。  The light-shielding film BM is formed in the pixels of each row in a linear shape in the left-right direction, and the lines partition the effective display area of each row. Therefore, the outline of the pixels in each row is made clear by the light shielding film BM. In other words, the light shielding film BM has two functions of black matrix and light shielding for the i-type semiconductor layer AS.
遮光膜 BMは周辺部にも額縁状に形成され、 そのパターンは F i g. 25に示すマトリクス部のパターンと連続して形成されている。 周辺部 の遮光膜 BMは、 シ一ル部 S Lの外側に延長され、 パソコン等の実装機 に起因する反射光等の漏れ光がマトリタス部に入り込むのを防いぐと 共に、 ノくックライ ト等の光が表示エリア外に漏れるのも防いでいる。 他 方、 この遮光膜 BMは基板 SUB 2の縁よりも約 0. 3〜1. Omm程 内側に留められ、 基板 SUB 2の切断領域を避けて形成されている。 《オーバーコート膜 OC》  The light-shielding film BM is also formed in a frame shape at the peripheral portion, and its pattern is formed continuously with the pattern of the matrix portion shown in FIG. The peripheral light-shielding film BM is extended outside the seal part SL to prevent leaked light such as reflected light from a mounting machine such as a personal computer from entering the matrices part, and to prevent knock light etc. Light is prevented from leaking out of the display area. On the other hand, the light-shielding film BM is retained about 0.3 to 1. Omm inside the edge of the substrate SUB2, and is formed so as to avoid the cut region of the substrate SUB2. 《Overcoat film OC》
実施例 1と同じ。 ただし、 遮光膜 BMに電位を与えられるようにスル 一ホールを形成してもよい。 電位としては、 対向電圧 Vcに接続するこ とが好ましい。  Same as Example 1. However, through holes may be formed so that a potential can be applied to the light shielding film BM. The potential is preferably connected to the counter voltage Vc.
本実施例では、 実施例 7の効果に加え、 遮光膜 BMが映像信号線 DL からの電界の影響をシールドするため、 それにより画素電極 PXと対向 電極 CTとの電界が影響されることがなくなる。 したがって、 映像信号 線 DLとのクロストークがなくなり、 画面に筋を引くような画質不良 (スミア) を解消できる。 また、 映像信号線 DLの両脇に配置される透 明な対向電極 CTを遮光層 SHで遮光する領域も小さくでき、 より高透 過率を達成することができる。 (実施例 1 1 ) In this embodiment, in addition to the effect of the seventh embodiment, the light shielding film BM shields the influence of the electric field from the video signal line DL, so that the electric field between the pixel electrode PX and the counter electrode CT is not affected. . Therefore, crosstalk with the video signal line DL is eliminated, and image quality defects (smears) that cause streaking on the screen can be eliminated. In addition, the area in which the transparent counter electrode CT disposed on both sides of the video signal line DL is shielded by the light shielding layer SH can be reduced, and a higher transmittance can be achieved. (Example 11)
F i g. 43は、 本実施例のアクティブ ·マトリックス型カラー液曰 曰曰 表示装置の開口率向上の原理を示す図で、 F i g. 43 Aは、 電極に 電圧を印加した時の液晶層内の電位分布を示す特性図、 F i g. 43B は、 液晶層の中央部付近の液晶分子の再配向状態を示す平面図、 F i g. 43Cは、 F i g. 43Bに示す液晶分子の回転角 αを示す特性図、 F i g. 43Dは、 上下偏光板、 上下基板、 電極上および電極間の液晶層 を透過する光の透過率分布を示す特性図の一例である。 FIG. 43 is a diagram showing the principle of improving the aperture ratio of the display device according to the active matrix color liquid of the present embodiment. FIG. 43A shows the liquid crystal when a voltage is applied to the electrodes. FIG. 43B is a characteristic diagram showing the potential distribution in the layer, FIG. 43B is a plan view showing the reorientation state of liquid crystal molecules near the center of the liquid crystal layer, and FIG. 43C is a liquid crystal shown in FIG. 43B. FIG. 43D is a characteristic diagram showing the rotation angle α of the molecule, and FIG. 43D is an example of a characteristic diagram showing the transmittance distribution of light transmitted through the liquid crystal layer on the upper and lower polarizers, the upper and lower substrates, the electrodes, and between the electrodes.
ここで、 下記の要件を除けば、 実施例 7と同一である。  Here, it is the same as Example 7 except for the following requirements.
本実施例では、 液晶層のツイスト弾性定数 K 2として約 2 X 10一 1 2 N (ニュートン) を使用した。 In this embodiment, using about 2 X 10 one 1 2 N (Newtons) as a twist elastic constant K 2 of the liquid crystal layer.
ッイスト弹性定数 K2として、 例えば、 約 10 X 10— 12N (ニュー トン) の比較的大きな値を使用すると、 F i g. 41 Bに示すように、 電極上中央部の液晶分子は、 ほとんど回転角ひが零であり、 この結果、 電極上中央部の透過率は、 ほぼ喑表示の値となる。 As'isuto弹性constant K2, for example, using a relatively large value of about 10 X 10- 12 N (Newton), as shown in F i g. 41 B, the liquid crystal molecules on the electrode central portion is almost rotation The angle is zero, and as a result, the transmittance at the center of the electrode is almost the value indicated by 喑.
一方、 本実施例では、 電極上中央部の液晶分子までも回転し、 電極間 の A部分の透過率の平均透過率の 50%以上が、 電極上での B部分の透 過率の平均値透過率となることが分かつた。  On the other hand, in this embodiment, the liquid crystal molecules at the center of the electrode also rotate, and the average transmittance of the portion A between the electrodes is 50% or more of the average transmittance of the portion B on the electrode. It was found that the transmittance was obtained.
したがって、 全体部分の平均透過率は、 A+B部分の透過率の平均値 透過率となり、 大幅に引き上げられる。  Therefore, the average transmittance of the entire portion is the average transmittance of the A + B portions, which is greatly increased.
〔産業上の利用可能性〕  [Industrial applicability]
本発明は、 上述したように液晶等に適用され、 液晶製造産業において 実用可能性がある。  The present invention is applied to a liquid crystal or the like as described above, and has practical application in the liquid crystal manufacturing industry.

Claims

求 の 車 n  Sought the car n
画素電極と対向電極を有し、 前記画素電極と前記対向電極の間の 基板面に略平行な電界成分により、 ッイスト可能な液晶層の液晶 分子を制御し、 表示をおこなうアクティブマトリクス型液晶表示 嘖  An active matrix type liquid crystal display that has a pixel electrode and a counter electrode, and controls the liquid crystal molecules of the twistable liquid crystal layer by an electric field component substantially parallel to the substrate surface between the pixel electrode and the counter electrode to perform display.
装置において、 少なくとも画素電極あるいは対向電極の一方が透 明電極であり、 前記電界成分を増加するにつれ、 前記表示装置の 光透過率が増加するように、 前記ツイスト可能な液晶の初期配向 状態、 偏光板の偏光軸が構成され、 電界無印加時の前記ツイスト 可能な液晶層の初期配向状態がホモジニァス配向状態であり、 電 界印加時の前記電極間及び電極上の液晶分子が基板面に略平行に 支配的に回転し、 前記光透過率の最大値が 4 . 0 %以上であり、 コントラスト比 1 0対 1以上の視野角範囲が、 表示面に対して垂 直方向から 4 0度以上傾斜した全方位の範囲内であることを特徴 とするアクティブマトリクス型液晶表示装置。 In the device, at least one of the pixel electrode and the counter electrode is a transparent electrode, and as the electric field component is increased, the initial alignment state of the twistable liquid crystal and the polarization are set so that the light transmittance of the display device increases. The polarization axis of the plate is configured, the initial alignment state of the twistable liquid crystal layer when no electric field is applied is a homogenous alignment state, and the liquid crystal molecules between the electrodes and on the electrodes when the electric field is applied are substantially parallel to the substrate surface. The maximum value of the light transmittance is 4.0% or more, and the viewing angle range with a contrast ratio of 10: 1 or more is inclined at least 40 degrees from the direction perpendicular to the display surface. An active matrix liquid crystal display device characterized by being within the range of the omnidirectional described above.
画素電極と対向電極を有し、 前記画素電極と前記対向電極の間の 基板面に略平行な電界成分により、 ッイスト可能な液晶層の液晶 分子を制御し、 表示をおこなうアクティブマトリタス型液晶表示 装置において、 少なくとも画素電極あるいは対向電極の一方が透 明電極であり、 前記電界成分を増加するにつれ、 前記表示装置の 光透過率が増加するように、 前記ツイスト可能な液晶の初期配向 状態、 偏光板の偏光軸が構成され、 電界無印加時の前記ツイスト 可能な液晶層の初期配向状態がホモジニァス配向状態であり、 ッ イスト弹性定数が 1 O X 1 0— 1 2 N (ニュートン) 以下であるこ とを特徴とするアクティブマトリクス型液晶表示装置。 画素電極と対向電極を有し、 前記画素電極と前記対向電極の間の 基板面に略平行な電界成分により、 ッイスト可能な液晶層の液晶 分子を制御し、 表示をおこなうアクティブマトリクス型液晶表示 装置において、 少なくとも画素電極あるいは対向電極の一方が透 明電極であり、 前記電界成分を増加するにつれ、 前記表示装置の 光透過率が増加するように、 前記ツイスト可能な液晶の初期配向 状態、 偏光板の偏光軸が構成され、 電界無印加時の前記ツイス ト 可能な液晶層の初期配向状態がホモジニァス配向状態であり、 液 晶層の上下界面の液晶分子の初期プレチルト角が 1 0度以下で、 液晶層内の液晶分子の初期チルト状態がスプレイ状態であること を特徴とするアクティブマトリクス型液晶表示装置。 An active matrix type liquid crystal display that has a pixel electrode and a counter electrode, and controls the liquid crystal molecules of the twistable liquid crystal layer by an electric field component substantially parallel to the substrate surface between the pixel electrode and the counter electrode to perform display. In the device, at least one of the pixel electrode and the counter electrode is a transparent electrode, and as the electric field component is increased, the initial alignment state of the twistable liquid crystal and the polarization are set so that the light transmittance of the display device increases. configured the polarization axis of the plate, the initial alignment state of the twisted liquid crystalline layer when no electric field is applied is Homojiniasu alignment state, and this Tsu ist弹性constant is less than 1 OX 1 0- 1 2 N (Newton) An active matrix type liquid crystal display device characterized by the above-mentioned. An active matrix type liquid crystal display device having a pixel electrode and a counter electrode, wherein liquid crystal molecules in a twistable liquid crystal layer are controlled by an electric field component substantially parallel to a substrate surface between the pixel electrode and the counter electrode to perform display. In at least one of the pixel electrode and the counter electrode is a transparent electrode, and as the electric field component increases, the initial alignment state of the twistable liquid crystal and the polarizing plate so that the light transmittance of the display device increases. The initial alignment state of the twistable liquid crystal layer when no electric field is applied is a homogenous alignment state, and the initial pretilt angle of liquid crystal molecules at the upper and lower interfaces of the liquid crystal layer is 10 degrees or less. An active matrix type liquid crystal display device, wherein the initial tilt state of liquid crystal molecules in a liquid crystal layer is a splay state.
画素電極と対向電極を有し、前記画素電極と前記対向電極の間 の基板面に略平行な電界成分により、 ッイスト可能な液晶層の 液晶分子を制御し、 表示をおこなうアクティブマトリクス型液 晶表示装置において、 少なくとも画素電極あるいは対向電極の 一方が透明電極であり、 前記電界成分を増加するにつれ、 前記 表示装置の光透過率が増加するように、 前記ツイスト可能な液 晶の初期配向状態、 偏光板の偏光軸が構成され、 電界無印加時 の前記ツイスト可能な液晶層の初期配向状態がホモジニァス 配向状態であり、 透明電極上の液晶層の液晶分子の平均のチル ト角が、 電界印加時でも 4 5度未満であることを特徴とするァ クティブマトリクス型液晶表示装置。 An active matrix type liquid crystal display having a pixel electrode and a counter electrode, wherein liquid crystal molecules in the twistable liquid crystal layer are controlled and displayed by an electric field component substantially parallel to a substrate surface between the pixel electrode and the counter electrode. In the device, at least one of the pixel electrode and the counter electrode is a transparent electrode, and as the electric field component is increased, the initial orientation state of the twistable liquid crystal and polarization are increased so that the light transmittance of the display device increases. The polarization axis of the plate is configured, the initial alignment state of the twistable liquid crystal layer when no electric field is applied is a homogeneous alignment state, and the average tilt angle of the liquid crystal molecules of the liquid crystal layer on the transparent electrode is However, the active matrix liquid crystal display device is characterized by being less than 45 degrees.
前記液晶のツイス ト弾性定数が 5 . 1 X 1 0— 1 2 N (ニュートン) 以下であることを特徴とする請求項 2に記載のアクティブマトリ タス型液晶表示装置。 Active matrix according to claim 2, wherein the twisted elastic constant of the liquid crystal 5. Is 1 X 1 0- 1 2 N (Newton) or less Tass type liquid crystal display.
前記液晶のツイス ト弾性定数が 2 X 1 0— 1 2 N (ニュー トン) 以 下であることを特徴とする請求項 2に記載のアクティブマトリク ス型液晶表示装置。 Active matrix scan type liquid crystal display device according to claim 2, wherein the a twisted elastic constant is 2 X 1 0- 1 2 N (Newton) or less of a liquid crystal.
前記ツイスト可能な液晶層の上下界面の液晶分子の初期プレチル ト角が 6度以下であることを特徴とする請求項 3に記載のァクテ ィブマトリクス型液晶表示装置。  4. The active matrix liquid crystal display device according to claim 3, wherein an initial pretilt angle of liquid crystal molecules at upper and lower interfaces of the twistable liquid crystal layer is 6 degrees or less.
前記ツイスト可能な液晶層の透明電極上の液晶分子の平均のチ ノレト角が、 電界印加時でも 3 0度以下であることを特徴とする 請求項 4に記載のアクティブマトリクス型液晶表示装置。 5. The active matrix type liquid crystal display device according to claim 4, wherein the average tinoret angle of liquid crystal molecules on the transparent electrode of the twistable liquid crystal layer is 30 degrees or less even when an electric field is applied.
前記ツイスト可能な液晶層の透明電極上の液晶分子の平均のチ ノレト角が、 電界印加時でも 1 0度以下であることを特徴とする 請求項 4に記載のアクティブマトリクス型液晶表示装置。 5. The active matrix type liquid crystal display device according to claim 4, wherein an average tinoret angle of liquid crystal molecules on the transparent electrode of the twistable liquid crystal layer is 10 degrees or less even when an electric field is applied.
画素電極あるいは対向電極が透明電極と不透明金属電極との 2重 構造であることを特徴とする請求項 1から 4のいずれかに記載の アクティブマトリクス型液晶表示装置。  5. The active matrix liquid crystal display device according to claim 1, wherein the pixel electrode or the counter electrode has a double structure of a transparent electrode and an opaque metal electrode.
前記アクティブマ卜リクス型液晶表示装置が、 更に、対向電極 間を電気的に接続する対向電圧信号線を有し、 隣接する 2本の 対向電圧信号線が、 対向電極によってスルーホールを介して接 続されることを特徴とする請求項 1から 4のいずれかに記載 のアクティブマトリクス型液晶表示装置。  The active matrix type liquid crystal display device further includes a counter voltage signal line for electrically connecting between the counter electrodes, and two adjacent counter voltage signal lines are connected to each other through the through hole by the counter electrodes. 5. The active matrix liquid crystal display device according to claim 1, wherein the active matrix type liquid crystal display device is connected to a liquid crystal display device.
前記アクティブマトリクス型液晶表示装置が、 更に、 ァクティ ブマトリクス素子を被覆する保護膜を有し、 少なくとも前記画 素電極あるいは前記対向電極の一方は、 前記保護膜の上に形成 され、 前記保護膜に形成されたスルーホールを介して、 ァクテ イブマトリクス素子あるいは対向電圧信号線と電気的に接続 されることを特徴とする請求項 1から 4のいずれかに記載の アクティブマトリクス型液晶表示装置。 The active matrix type liquid crystal display device further includes a protective film for covering the active matrix element, and at least one of the pixel electrode and the counter electrode is formed on the protective film. The active matrix device according to claim 1, wherein the active matrix device is electrically connected to an active matrix element or a counter voltage signal line via a through hole formed in the protective film. Liquid crystal display.
1 3. 対向電極が透明電極からなり、 更に、遮光パターンを対向電極 と映像信号線間に有することを特徴とする請求項 1から 4の いずれかに記載のアクティブマトリクス型液晶表示装置。  1 3. The active matrix liquid crystal display device according to claim 1, wherein the counter electrode is made of a transparent electrode, and further has a light-shielding pattern between the counter electrode and the video signal line.
14. 前記アクティブマトリクス型液晶表示装置が、 更に、対向電極 間を電気的に接続する対向電圧信号線を有し、 前記対向電圧信 号線は、 金属で形成されていることを特徴とする請求項 1から 請求項 4のいずれかに記載のアクティブマトリクス型液晶表  14. The active matrix liquid crystal display device further includes a counter voltage signal line for electrically connecting between counter electrodes, wherein the counter voltage signal line is formed of metal. The active matrix liquid crystal display according to any one of claims 1 to 4.
5. 前記対向電圧信号線は、金属で形成されていることを特徴とす る請求項 1 1に記載のアクティブマトリクス型液晶表示装置。5. The active matrix liquid crystal display device according to claim 11, wherein the counter voltage signal line is formed of a metal.
6. 前記アクティブマトリクス型液晶表示装置が、 更に、 映像信号 線を有し、 1画素内に映像信号線に隣接する 2本の対向電極を 含む 3本以上の対向電極を有し、 前記映像信号線に隣接する対 向電極は不透明であることを特徴とする請求項 1から請求項 4のいずれかに記載のアクティブマトリクス型液晶表示装置。6. The active matrix type liquid crystal display device further has a video signal line, and has three or more counter electrodes including two counter electrodes adjacent to the video signal line in one pixel, 5. The active matrix liquid crystal display device according to claim 1, wherein a counter electrode adjacent to the line is opaque.
7. 透明電極の透明導電膜は、 インジウム—チン—ォキサイド (I TO) であることを特徴とする請求項 1から請求項 4のいずれ かに記載のアクティブマトリクス型液晶表示装置。 7. The active matrix liquid crystal display device according to claim 1, wherein the transparent conductive film of the transparent electrode is indium-tin-oxide (ITO).
8. 対向電圧信号線は、 C r、 T a、 T i、 Mo、 W、 A lまたは それらの合金、 もしくは、 それらを積層したクラッド構造で形 成されていることを特徴とする請求項 1 4あるいは請求項 1 5に記載のアクティブマトリクス型液晶表示装置。 8. The counter voltage signal line is formed of Cr, Ta, Ti, Mo, W, Al, or an alloy thereof, or a clad structure obtained by laminating them. 16. The active matrix liquid crystal display device according to claim 14, wherein the active matrix liquid crystal display device is formed.
対向電圧信号線は、 C r、 T a、 T i、 M o、 W、 A 1または それらの合金の上にインジウム一チン一オキサイ ド ( I T O) 等の透明導電膜を積層したクラッド構造で形成されているこ とを特徴とする請求項 1 4あるいは請求項 1 5に記載のァク ティブマトリクス型液晶表示装置。  The counter voltage signal line is formed with a clad structure in which a transparent conductive film such as indium-tin-oxide (ITO) is laminated on Cr, Ta, Ti, Mo, W, A1, or an alloy thereof. 16. The active matrix liquid crystal display device according to claim 14 or claim 15, wherein
電界無印加時において、前記液晶層の初期ツイット角がほぼ零 で、 初期配向角は、 液晶材料の誘電率異方性 Δ εが正であれば、 4 5度以上 9 0度未満、 誘電率異方性 Δ εが負であれば、 0。 度を超え 4 5 ° 度以下であることを特徴とする請求項 1から 請求項 4のいずれかに記載のアクティブマトリタス型液晶表 示装置。 When no electric field is applied, the initial twist angle of the liquid crystal layer is almost zero, and the initial alignment angle is 45 degrees or more and less than 90 degrees when the dielectric anisotropy Δε of the liquid crystal material is positive. 0 if the anisotropy Δ ε is negative. 5. The active matrix type liquid crystal display device according to claim 1, wherein the temperature is higher than 45 degrees and lower than 45 degrees.
画素電極と対向電極を有し、前記画素電極と前記対向電極の間 の基板面に略平行な電界成分により液晶層の液晶分子を制御 し表示をおこなうアクティブマトリクス型液晶表示装置の製 造方法において、 少なくとも走査信号線端子部、 映像信号線端 子部、 あるいは対向電極端子部の最上層の導電層のいずれかと、 少なく とも画素電極あるいは対向電極の一方とを透明な導電 層で形成し、 更に、 同一工程で形成することを特徴とするァク ブマトリクス型液晶表示装置の製造方法。 A method for manufacturing an active matrix type liquid crystal display device having a pixel electrode and a counter electrode, wherein liquid crystal molecules in a liquid crystal layer are controlled and displayed by an electric field component substantially parallel to a substrate surface between the pixel electrode and the counter electrode. Forming at least one of the scanning signal line terminal portion, the video signal line terminal portion, or the uppermost conductive layer of the counter electrode terminal portion and at least one of the pixel electrode and the counter electrode with a transparent conductive layer; A method of manufacturing an active matrix liquid crystal display device, wherein the method is formed in the same step.
PCT/JP1996/003691 1996-12-18 1996-12-18 Transverse electric field system liquid crystal display device suitable for improving aperture ratio WO1998027454A1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
PCT/JP1996/003691 WO1998027454A1 (en) 1996-12-18 1996-12-18 Transverse electric field system liquid crystal display device suitable for improving aperture ratio
US09/331,266 US6532053B2 (en) 1996-12-18 1996-12-18 Transverse electric field system liquid crystal display device suitable for improving aperture ratio
JP52752598A JP3691854B2 (en) 1996-12-18 1996-12-18 Horizontal electric field type liquid crystal display device suitable for improving aperture ratio
TW085115891A TW494261B (en) 1996-12-18 1996-12-23 Liquid crystal display device using in plane switching with high opening ratio
US11/591,510 US7612853B2 (en) 1996-12-18 2006-11-02 Active matrix liquid crystal display device
US12/395,805 US20090167997A1 (en) 1996-12-18 2009-03-02 Liquid crystal display
US12/760,902 US8027005B2 (en) 1996-12-18 2010-04-15 Liquid crystal display having a pixel region with a source electrode of at least a high-melting-point metal layer
US13/206,951 US8233126B2 (en) 1996-12-18 2011-08-10 Liquid crystal display device with semiconductor layer of TFT and pixel electrode at different levels
US13/206,988 US20120057113A1 (en) 1996-12-18 2011-08-10 Liquid Crystal Display
US13/560,430 US8358394B2 (en) 1996-12-18 2012-07-27 Liquid crystal display
US13/853,540 US8730443B2 (en) 1996-12-18 2013-03-29 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1996/003691 WO1998027454A1 (en) 1996-12-18 1996-12-18 Transverse electric field system liquid crystal display device suitable for improving aperture ratio

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US09331266 A-371-Of-International 1996-12-18
US09/331,266 A-371-Of-International US6532053B2 (en) 1996-12-18 1996-12-18 Transverse electric field system liquid crystal display device suitable for improving aperture ratio
US09/804,190 Continuation US6831724B2 (en) 1999-06-18 2001-03-13 Lateral electric-field liquid crystal display device suitable for improvement of aperture ratio
US09/803,980 Continuation US6462799B2 (en) 1996-12-18 2001-03-13 Lateral electric-field liquid crystal display device suitable for improvement of aperture ratio

Publications (1)

Publication Number Publication Date
WO1998027454A1 true WO1998027454A1 (en) 1998-06-25

Family

ID=14154250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/003691 WO1998027454A1 (en) 1996-12-18 1996-12-18 Transverse electric field system liquid crystal display device suitable for improving aperture ratio

Country Status (3)

Country Link
JP (1) JP3691854B2 (en)
TW (1) TW494261B (en)
WO (1) WO1998027454A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000206571A (en) * 1998-12-31 2000-07-28 Samsung Electronics Co Ltd Thin film transistor substrate for liquid crystal display device and its production
JP2004219707A (en) * 2003-01-15 2004-08-05 Hitachi Displays Ltd Liquid crystal display device
US6856370B2 (en) 2000-08-22 2005-02-15 Nec Lcd Technologies, Ltd. Active matrix liquid crystal display unit having liquid crystal molecules less arranged like spray pattern and along bent line
DE19828391B4 (en) * 1997-06-25 2006-02-02 Boe-Hydis Technology Co., Ltd. liquid-crystal display
JP2006163407A (en) * 2004-12-04 2006-06-22 Lg Philips Lcd Co Ltd Liquid crystal display device and fabricating method thereof
JP2007101896A (en) * 2005-10-04 2007-04-19 Lg Philips Lcd Co Ltd Liquid crystal display apparatus and method for manufacturing liquid crystal display apparatus
US7858984B2 (en) 2004-06-24 2010-12-28 Lg Display Co., Ltd. Liquid crystal display device having a double layered structure and a single layered structure on the same layer
KR20200039671A (en) 2017-08-10 2020-04-16 제이엔씨 주식회사 Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display device using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5315136B2 (en) * 2009-06-05 2013-10-16 株式会社ジャパンディスプレイ Liquid crystal display

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995025291A1 (en) * 1994-03-17 1995-09-21 Hitachi, Ltd. Active matrix liquid crystal display device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995025291A1 (en) * 1994-03-17 1995-09-21 Hitachi, Ltd. Active matrix liquid crystal display device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19828391B4 (en) * 1997-06-25 2006-02-02 Boe-Hydis Technology Co., Ltd. liquid-crystal display
JP2000206571A (en) * 1998-12-31 2000-07-28 Samsung Electronics Co Ltd Thin film transistor substrate for liquid crystal display device and its production
US7978292B2 (en) 1998-12-31 2011-07-12 Samsung Electronics Co., Ltd. Thin film transistor array panels for a liquid crystal display and a method for manufacturing the same
US6856370B2 (en) 2000-08-22 2005-02-15 Nec Lcd Technologies, Ltd. Active matrix liquid crystal display unit having liquid crystal molecules less arranged like spray pattern and along bent line
JP2004219707A (en) * 2003-01-15 2004-08-05 Hitachi Displays Ltd Liquid crystal display device
US7858984B2 (en) 2004-06-24 2010-12-28 Lg Display Co., Ltd. Liquid crystal display device having a double layered structure and a single layered structure on the same layer
JP2006163407A (en) * 2004-12-04 2006-06-22 Lg Philips Lcd Co Ltd Liquid crystal display device and fabricating method thereof
US7671367B2 (en) 2004-12-04 2010-03-02 Lg Display Co., Ltd. Liquid crystal display device and fabricating method thereof
JP4537946B2 (en) * 2004-12-04 2010-09-08 エルジー ディスプレイ カンパニー リミテッド Liquid crystal display device and manufacturing method thereof
JP2007101896A (en) * 2005-10-04 2007-04-19 Lg Philips Lcd Co Ltd Liquid crystal display apparatus and method for manufacturing liquid crystal display apparatus
JP4537929B2 (en) * 2005-10-04 2010-09-08 エルジー ディスプレイ カンパニー リミテッド Liquid crystal display device and method of manufacturing liquid crystal display device
KR20200039671A (en) 2017-08-10 2020-04-16 제이엔씨 주식회사 Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display device using same

Also Published As

Publication number Publication date
TW494261B (en) 2002-07-11
JP3691854B2 (en) 2005-09-07

Similar Documents

Publication Publication Date Title
JP3474975B2 (en) Liquid crystal display device and method of manufacturing the same
US6532053B2 (en) Transverse electric field system liquid crystal display device suitable for improving aperture ratio
JP3674953B2 (en) Liquid crystal display
KR100376016B1 (en) Liquid crystal display device
JPH10186351A (en) Liquid crystal display device
JP3691854B2 (en) Horizontal electric field type liquid crystal display device suitable for improving aperture ratio
JP2001264809A (en) Liquid crystal display device
KR100497691B1 (en) Transverse electric field system liquid crystal display device suitable for improving aperture ratio
WO1999032924A1 (en) Liquid crystal display
JP3340894B2 (en) Active matrix type liquid crystal display
JPH1152420A (en) Liquid crystal display device
WO1999045430A1 (en) Liquid crystal display
JP3423909B2 (en) Active matrix type liquid crystal display
JP3478709B2 (en) Liquid crystal display
JP2005157404A (en) Lateral electrolytic type liquid crystal display device suitable for improvement in numerical aperture
JP4055778B2 (en) Liquid crystal display
JP3971782B2 (en) Liquid crystal display
JP3934141B2 (en) Liquid crystal display
JP4925474B2 (en) Horizontal electric field type liquid crystal display device suitable for improving aperture ratio
JP2007199745A (en) Liquid crystal display device
JP3595327B2 (en) Liquid crystal display
JP2003280037A (en) Active matrix type liquid crystal display device
JP2004280130A (en) Liquid crystal display
JP2005189877A (en) Lateral electric field-type liquid crystal display device suitable for improving aperture ratio

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1019997005448

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09331266

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 1019997005448

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019997005448

Country of ref document: KR