WO1998023577A1 - Verfahren zur herstellung von (meth)acrylsäureestern - Google Patents

Verfahren zur herstellung von (meth)acrylsäureestern Download PDF

Info

Publication number
WO1998023577A1
WO1998023577A1 PCT/EP1997/006514 EP9706514W WO9823577A1 WO 1998023577 A1 WO1998023577 A1 WO 1998023577A1 EP 9706514 W EP9706514 W EP 9706514W WO 9823577 A1 WO9823577 A1 WO 9823577A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
extraction
reaction mixture
esterification
meth
Prior art date
Application number
PCT/EP1997/006514
Other languages
English (en)
French (fr)
Inventor
Heinrich Aichinger
Michael Fried
Gerhard Nestler
Albrecht Dams
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to AU54852/98A priority Critical patent/AU5485298A/en
Priority to JP52425598A priority patent/JP2001504507A/ja
Priority to DE59704617T priority patent/DE59704617D1/de
Priority to CA002272868A priority patent/CA2272868A1/en
Priority to US09/308,253 priority patent/US6177590B1/en
Priority to EP97951259A priority patent/EP0944573B1/de
Priority to BR9713288-8A priority patent/BR9713288A/pt
Publication of WO1998023577A1 publication Critical patent/WO1998023577A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/58Separation; Purification; Stabilisation; Use of additives by liquid-liquid treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the invention relates to a process for the preparation of esters of acrylic acid or methacrylic acid [(meth) acrylic acid].
  • (Meth) acrylic acid esters are generally produced on an industrial scale by esterifying (meth) acrylic acid with alkanols in the presence of strong acids as esterification catalysts (e.g. a mineral acid such as sulfuric acid or phosphoric acid, alkanesulfonic acids or arylsulfonic acids).
  • esterification catalysts e.g. a mineral acid such as sulfuric acid or phosphoric acid, alkanesulfonic acids or arylsulfonic acids.
  • the content of the catalysts in the esterification mixture can range from a tenth of a percent to several percent.
  • polybasic mineral acids are used as the catalyst, the mineral acid is easily esterified with the alkanol present to form the monoester, which is the actual esterification catalyst. After the esterification has ended, the reaction mixture contains a relatively large amount of this monoester.
  • the acids used as catalysts and their esters which may have formed must be removed from the reaction mixture before further processing. This is usually achieved by washing out and neutralizing the reaction mixture with alkali and alkaline earth metal lye or carbonate solutions. This results in waste water, the elimination of which is complex and polluting.
  • sulfuric acid is used as the catalyst, the monoester of sulfuric acid with the alkanol in question is predominantly formed, as mentioned.
  • the salts of the sulfuric acid monoesters, in particular the esters with higher alkanols are surface-active and, when disposed of, would significantly impair the quality of the waste water from the process and cause a not inconsiderable loss of valuable product. The recovery and recycling of the catalyst is therefore desirable for economic and ecological reasons.
  • EP-A-0 609 127 describes a process for the preparation of (meth) acrylic esters, the alcohol component being formed from the corresponding sulfuric acid monoester, which is formed in the esterification from sulfuric acid and the alcohol, by acidic hydrocarbons. lysis is recovered. This process is complex, polluting and uneconomical.
  • CZ-B-179 808 describes a process for the recovery of mineral acids from esterification mixtures by extracting the esterification mixture with water, concentrating the aqueous phase by distillation and recycling the concentrated aqueous catalyst solution thus obtained into the esterification reaction. This process is energy intensive.
  • EP-A-0 618 187 ( ⁇ US-A-5, 386, 052) describes a process for the preparation of (meth) acrylic esters, the catalyst being extracted with water and the extract, if appropriate after distillative concentration, being returned to the esterification reaction. to be led.
  • sulfuric acid is unsuitable as a catalyst because of the poor extractability of the sulfuric acid monoalkyl ester, because the large amount of water which would be necessary for adequate extraction of the sulfuric acid monoalkyl ester would adversely affect the esterification reaction.
  • Alkyl or arylsulfonic acids are therefore used as catalysts (column 2, lines 55ff), which are, however, considerably more expensive than sulfuric acid.
  • the invention is based on the object of developing a technically simple and economical process for the preparation of (meth) acrylic esters which manages with sulfuric acid as the esterification catalyst and which allows the esterification catalyst (sulfuric acid or monoalkylsulfuric acid) to be obtained as simply and completely as possible Separate the reaction mixture.
  • the catalyst should be direct, i.e. without additional distillative concentration, be traceable to the esterification without influencing the esterification.
  • the catalyst can be extracted from the reaction mixture (esterification mixture) if the alkanol content in the mixture is at most 5% by weight.
  • the invention therefore relates to a process for the preparation of (meth) acrylic acid esters by reacting (meth) acrylic acid with C 4 -C alkanols, preferably C 4 -C alkanols, particularly preferably C 4 -C 8 alkanols in the presence of sulfuric acid or a sulfuric acid mono-C 4 -C 2 alkyl ester as a catalyst, which is characterized in that the catalyst is regenerated from the reaction mixture by extraction with water and the aqueous catalyst solution is returned to the esterification, the concentration of unreacted alkanol in the extra- reaction mixture here is at most 5% by weight, based on the reaction mixture to be extracted.
  • the alkanol content has a major influence on the extractability of the monoalkyl sulfuric acid formed from sulfuric acid and alkanol, which acts as the actual esterification catalyst (see Table 1).
  • the catalyst can be extracted with small amounts of water, so that the extract can be returned directly to the esterification.
  • a reaction mixture whose alkanol content is ⁇ 3% by weight and in particular ⁇ 1% by weight is preferably extracted.
  • a high esterification conversion is preferably brought about, e.g. by distilling off the water of reaction; and / or a suitable ratio of the starting materials selected. If the residual alkanol content is still more than 5% by weight, the alkanol is distilled off in a conventional distillation apparatus (e.g. column with sieve plates, Raschig rings, aligned packs, etc.).
  • a conventional distillation apparatus e.g. column with sieve plates, Raschig rings, aligned packs, etc.
  • the distillation is carried out in a conventional manner; the distillation conditions depend on the type of alkanol used.
  • the alkanol is preferably distilled off to a level of residual alkanol in the reaction mixture, which enables the extraction of the catalyst (sulfuric acid) with water without problems.
  • the residual alkanol content is 5 5% by weight, preferably ⁇ 3% by weight, particularly preferably ⁇ 1% by weight, based on the reaction mixture.
  • the conditions for the extraction of the catalyst from the esterification mixture are preferably selected such that the catalyst concentration (sulfuric acid and sulfuric acid monoalkyl ester) in the aqueous phase is at least 20% by weight, in particular at least 25% by weight, based on the aqueous Extract, and the degree of extraction is at least 70% by weight, in particular at least 80% by weight, based on the amount of catalyst in the reaction mixture.
  • the first held extract can be returned to the esterification without concentrating it.
  • the extraction can be carried out in a manner known per se.
  • Preferably extracted in countercurrent e.g. in columns without energy input, pulsed columns, columns with inserts, mixer-settler equipment or in static mixers.
  • the extraction can be carried out at ambient temperature or a higher temperature, but expediently at a temperature in the range from about 15 to 40 ° C.
  • the esterification is carried out substantially in a conventional manner, ie by reaction of (meth) acrylic acid with a C 4 -C 2 ⁇ A lkanol in the presence of a catalyst and at elevated temperature.
  • the molar ratio of alkanol: acrylic acid or methacrylic acid is generally 1: 0.8-1.2.
  • C 4 -C 2 _ alkanols are, for example, pentanol, hexanol, heptanol, octanol, 2-Ethylhexa- nol, nonanol, 2-propylheptanol, decanol, undecanol, dodecanol, and preferably butanols, particularly n-butanol.
  • the sulfuric acid concentration in the reaction mixture is generally 0.5 to 10% by weight, preferably 1 to 5% by weight, based on the total batch.
  • polymerization inhibitors e.g. Phenothiazine, hydroquinone, hydroquinone monomethyl ether or mixtures thereof and optionally air (0.1 to 10 1 / h ⁇ 1) in an amount of 100 to 5000 ppm, based on the reaction mixture.
  • Saturated hydrocarbons e.g. cyclohexane
  • aromatics e.g. toluene
  • the reaction is preferably carried out without an additional entrainer.
  • the reaction temperature is generally about 70 to 160 ° C, preferably 90 to 130 ° C.
  • the reaction time is generally about 1 to 10, preferably 1 to 6 hours.
  • the reaction can be carried out under normal, negative or positive pressure.
  • the pressure is preferably set such that the water formed distills off during the esterification, for example in the form of a mixture of water, C 4 -C 14 -alkanol and ester (the organic components are fed back to the esterification.
  • the esterification can be continuous or discontinuous be carried out, the continuous reaction is preferred.
  • the esterification is carried out in conventional equipment, e.g. in an esterification unit from one or more heatable stirred reactors (cascade), which are optionally equipped with columns, condensers and phase separation vessels.
  • the reactor contents are mixed by stirring or other customary and suitable measures.
  • the ester is isolated from the reaction mixture freed from catalyst and, if appropriate, residual carboxylic acid and low boilers, in a customary manner, in particular by distillation, e.g. by distillation in a sieve tray column.
  • the invention is illustrated by the following example without restricting it.
  • the percentages are percentages by weight.
  • a stirred tank cascade consisting of 3 stirred reactors, each with 1 1 reaction volume and equipped with a column, condenser and phase separation vessel, was charged with 558 g of acrylic acid, 648 g of n-butanol, 16 g of sulfuric acid and 1 g of phenothiazine per hour.
  • the reaction temperature in the reactors was 106 ° C, 118 ° C and 123 ° C, the pressure 700 mbar.
  • a mixture of water, n-butanol and n-butyl acrylate was obtained, which disintegrated into an aqueous and an organic phase, the organic phase being fed to the column as reflux.
  • reaction discharge (1070 g / h) contained: 90.2% n-butyl acrylate, 2.7% n-butanol
  • Acrylic acid conversion 99%, conversion 98%
  • the reaction product cooled to 25 ° C. was extracted in a mixer-settler apparatus with 90 g / h of water at about 25 ° C.
  • the aqueous phase (97 g / h) contained 20.5% of sulfuric acid mono-n-butyl ester (85% recovery) and 0.5% sulfuric acid.
  • This aqueous phase was returned to the lower part of the distillation column of the first reactor, the addition of fresh sulfuric acid being reduced to 1.3 g / h.
  • the acrylic acid conversion was still 99%, the conversion 98%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von (Meth)acrylsäureestern durch Umsetzung von (Meth)acrylsäure mit C4-C12-Alkanolen in Gegenwart von Schwefelsäure oder eines Schwefelsäuremono-C4-C12-alkylesters als Katalysator, wobei der Katalysator durch Extraktion mit Wasser aus dem Reaktionsgemisch regeneriert und die wäßrige Katalysatorlösung wieder in die Veresterung zurückgeführt wird, wobei die Konzentration an nicht umgesetztem Alkanol im zu extrahierenden Reaktionsgemisch höchstens 5 Gew.-%, bezogen auf das zu extrahierende Reaktionsgemisch, beträgt.

Description

Verfahren zur Herstellung von (Meth) crylsäureestern
Beschreibung
Die Erfindung betrifft ein Verfahren zur Herstellung von Estern der Acrylsäure oder Methacrylsäure [ (Meth) acrylsäure] .
(Meth) crylsäureester werden großtechnisch in der Regel durch Veresterung der (Meth) crylsäure mit Alkanolen in Gegenwart von starken Säuren als Veresterungskatalysatoren (z.B. eine Mineralsäure, wie Schwefelsäure oder Phosphorsäure, Alkansulfonsäuren oder Arylsulfonsäuren) hergestellt. Solche Verfahren sind z.B. aus Kirk Othmer, "Encyclopedia of Chemical Technology", Vol. 1, S. 347-348 bekannt. Der Gehalt der Katalysatoren im Veresterungsgemisch kann sich in einer Größenordnung von Zehntelprozent bis zu mehreren Prozenten bewegen. Bei Verwendung von mehrbasischen Mineralsäuren als Katalysator kommt es leicht zur Veresterung der Mineralsäure mit dem anwesenden Alkanol unter Bildung des Mono- esters, welcher der eigentliche Veresterungskatalysator ist. Das Reaktionsgemisch enthält nach Beendigung der Veresterung eine größere Menge dieses Monoesters.
Die als Katalysatoren verwendeten Säuren und deren gegebenenfalls gebildeten Ester müssen vor der Weiterverarbeitung aus dem Reaktionsgemisch beseitigt werden. In der Regel wird dies durch Auswaschen und Neutralisieren des Reaktionsgemisches mit Alkali- und Erdalkalilauge oder Carbonatlösungen erreicht. Dabei fallen Abwässer an, deren Beseitigung aufwendig und umweltbelastend ist. Wird Schwefelsäure als Katalysator verwendet, so bildet sich, wie erwähnt, vorwiegend der Monoester der Schwefelsäure mit dem betreffenden Alkanol. Die Salze der Schwefelsäuremonoester , insbesondere der Ester mit höheren Alkanolen, sind oberflächenaktiv und würden bei ihrer Entsorgung die Qualität der Abwässer aus dem Prozeß erheblich beeinträchtigen und einen nicht unbeträchtlichen Verlust an Wertprodukt verursachen. Aus wirtschaftlichen und ökologischen Gründen ist somit die Wiedergewinnung und Rückführung des Katalysators wünschenswert.
Der Stand der Technik umfaßt mehrere Verfahren, die jedoch alle mit erheblichen Nachteilen behaftet sind.
Die EP-A-0 609 127 beschreibt ein Verfahren zur Herstellung von (Meth) acrylsäureestern, wobei die Alkoholkomponente aus dem ent- sprechenden Schwefelsäuremonoester, der bei der Veresterung aus Schwefelsäure und dem Alkohol gebildet wird, durch saure Hydro- lyse wiedergewonnen wird. Dieses Verfahren ist aufwendig, umw'elt- belastend und unwirtschaftlich.
Die CZ-B-179 808 beschreibt ein Verfahren zur Wiedergewinnung von Mineralsäuren aus Veresterungsgemischen durch Extraktion des Ver- esterungsgemisches mit Wasser, Konzentrierung der wäßrigen Phase durch Destillation und Rückführung der so erhaltenen konzentrierten wäßrigen Katalysatorlösung in die Veresterungsreaktion. Dieses Verfahren ist energieaufwendig.
Die EP-A-0 618 187 (^ US-A-5 , 386 , 052 ) beschreibt ein Verfahren zur Herstellung von (Meth) acrylsäureestern, wobei der Katalysator mit Wasser extrahiert und der Extrakt, gegebenenfalls nach destillativer Konzentrierung in die Veresterungsreaktion zurück- geführt wird. Es wird dabei jedoch besonders darauf hingewiesen, daß Schwefelsäure wegen der schlechten Extrahierbarkeit des Schwefelsäuremonoalkylesters als Katalysator ungeeignet ist, weil die große Wassermenge, die zur adäquaten Extraktion des Schwefelsäuremonoalkylesters nötig wäre, die Veresterungsreaktion negativ beeinträchtigen würde. Als Katalysator werden daher Alkyl- bzw. Arylsulfonsäuren verwendet (Spalte 2, Zeile 55ff ) , die jedoch wesentlich teurer sind als Schwefelsäure.
Der Erfindung liegt die Aufgabe zugrunde, ein technisch einfaches und wirtschaftliches Verfahren zur Herstellung von (Meth) acrylsäureestern zu entwickeln, das mit Schwefelsäure als Veresterungskatalysator auskommt und das es erlaubt, den Veresterungs- katalysator (Schwefelsäure bzw. Monoalkylschwefelsäure) möglichst einfach und vollständig vom erhaltenen Reaktionsgemisch abzutren- nen. Darüber hinaus soll der Katalysator wieder direkt, d.h. ohne zusätzliche destillative Konzentrierung, in die Veresterung rück- führbar sein ohne die Veresterung zu beeinflussen.
Überraschenderweise wurde gefunden, daß der Katalysator aus dem Reaktionsgemisch (Veresterungsgemisch) extrahiert werden kann, wenn der Alkanolgehalt in dem Gemisch höchstens 5 Gew.-% beträgt.
Gegenstand der Erfindung ist daher ein Verfahren zur Herstellung von (Meth) acrylsäureestern durch Umsetzung von (Meth) acrylsäure mit C4-Cι -Alkanolen, vorzugsweise C4-Cιo-Alkanolen, besonders bevorzugt C4-C8-Alkanolen in Gegenwart von Schwefelsäure oder eines Schwefelsäuremono-C4-C 2-alkylesters als Katalysator, das dadurch gekennzeichnet ist, daß der Katalysator durch Extraktion mit Wasser aus dem Reaktionsgemisch regeneriert und die wäßrige Katalysatorlösung wieder in die Veresterung zurückgeführt wird, wobei die Konzentration an nicht umgesetztem Alkanol im zu extra- hierenden Reaktionsgemisch höchstens 5 Gew.-%, bezogen auf das zu extrahierende Reaktionsgemisch, beträgt.
Es hat sich überraschenderweise gezeigt, daß der Alkanolgehalt einen großen Einfluß auf die Extrahierbarkeit des aus Schwefelsäure und Alkanol gebildeten Schwefelsäuremonoalkylesters , der als eigentlicher Veresterungskatalysator wirkt, hat (siehe Tabelle 1) . Dadurch kann der Katalysator mit geringen Wassermengen extrahiert werden, so daß der Extrakt direkt wieder der Vereste- rung zugeführt werden kann. Vorzugsweise extrahiert man ein Reaktionsgemisch, dessen Alkanolgehalt < 3 Gew.-% und insbesondere < 1 Gew.-% ist.
Um einen Alkanolgehalt von höchstens 5 Gew.-% zu erreichen, wird vorzugsweise ein hoher Veresterungsumsatz herbeigeführt, z.B. durch Abdestillation des Reaktionswassers; und/oder ein geeignetes Verhältnis der Einsatzstoffe gewählt. Wenn der Restalkanol- gehalt dann noch mehr als 5 Gew.-% beträgt, wird das Alkanol in einer herkömmlichen Destillationsapparatur (z.B. Kolonne mit Siebböden, Raschigringen, gerichteten Packungen etc.) abdestilliert. Überraschenderweise sind dabei trotz Anwesenheit des stark sauren Veresterungskatalysators keine säurekatalysierten Nebenreaktionen, wie Ether- oder Olefinbildung bzw. Addition des Alkanols an die Doppelbindung des (Meth) acrylats (Michael-Addition) in nennenswertem Umfang zu beobachten.
Die Destillation wird in üblicher Weise durchgeführt; die Destillationsbedingungen richten sich nach der Art des eingesetzten Alkanols.
Das Abdestillieren des Alkanols erfolgt vorzugsweise bis zu einem Gehalt an Restalkanol im Reaktionsgemisch, der die Extraktion des Katalysators (Schwefelsäure) mit Wasser problemlos ermöglicht. Insbesondere beträgt der Restalkanolgehalt ≤ 5 Gew.-%, vorzugs- weise < 3 Gew.-%, besonders bevorzugt < 1 Gew.-%, bezogen auf das Reaktionsgemisch.
Vorzugsweise werden die Bedingungen für die Extraktion des Katalysators aus dem Veresterungsgemisch so gewählt, daß die Kataly- satorkonzentration (Schwefelsäure und Schwefelsäuremonoalkyl- ester) in der wäßrigen Phase mindestens 20 Gew.-%, insbesondere mindestens 25 Gew.-%, bezogen auf den wäßrigen Extrakt, und der Extraktionsgrad mindestens 70 Gew.-%, insbesondere mindestens 80 Gew.-%, bezogen auf die Katalysatormenge im Reaktionsgemisch, beträgt. Um dies zu erreichen, verwendet man zur Extraktion etwa 5 bis 20 Gew.-% Wasser, insbesondere etwa 8 bis 15 Gew.-% Wasser, bezogen auf das Gesamtgewicht des Veresterungsgemisches. Der er- haltene Extrakt kann wieder der Veresterung zugeführt werden, ohne ihn aufzukonzentrieren.
Die Durchführung der Extraktion kann in an sich bekannter Weise erfolgen. Vorzugsweise extrahiert man im Gegenstrom, z.B. in Kolonnen ohne Energieeintrag, gepulsten Kolonnen, Kolonnen mit Einsätzen, Mixer-Settler-Apparaturen oder in statischen Mischern.
Die Extraktion kann bei Umgebungstemperatur oder höherer Tempera- tur durchgeführt werden, zweckmäßigerweise jedoch bei einer Temperatur im Bereich von etwa 15 bis 40°C.
Die Veresterung wird im wesentlichen in üblicher Weise durchgeführt, d.h. durch Umsetzung von (Meth) acrylsäure mit einem C4-Ci2~Alkanol in Gegenwart eines Katalysators und bei erhöhter Temperatur. Das molare Verhältnis Alkanol : Acrylsäure bzw. Meth- acrylsäure beträgt im allgemeinen 1:0,8-1,2. C4-Ci2 _Alkanole sind beispielsweise Pentanol, Hexanol, Heptanol, Octanol, 2-Ethylhexa- nol, Nonanol, 2-Propylheptanol , Decanol, Undecanol, Dodecanol, sowie vorzugsweise Butanole, insbesondere n-Butanol . Die Schwe- felsäurekonzentration im Reaktionsgemisch beträgt in der Regel 0,5 bis 10 Gew.-%, vorzugsweise 1 bis 5 Gew.-%, bezogen auf den Gesamtansatz .
Als Polymerisationsinhibitoren werden z.B. Phenothiazin, Hydro- chinon, Hydrochinonmonomethylether bzw. Gemische davon und gegebenenfalls Luft (0,1 bis 10 1/h x 1) in einer Menge von 100 bis 5000 ppm, bezogen auf das Reaktionsgemisch, verwendet. Als Schleppmittel zur Entfernung von Wasser aus dem Reaktions- gemisch können im erfindungsgemäßen Verfahren gesättigte Kohlenwasserstoffe (z.B. Cyclohexan) oder Aromaten (z.B. Toluol) verwendet werden; vorzugsweise wird die Reaktion aber ohne zusätzliches Schleppmittel durchgeführt.
Die Reaktionstemperatur liegt im allgemeinen bei etwa 70 bis 160°C, vorzugsweise bei 90 bis 130°C.
Die Reaktionszeit beträgt im allgemeinen etwa 1 bis 10, vorzugsweise 1 bis 6 Stunden.
Die Reaktion kann unter Normal-, Unter- oder Überdruck durchgeführt werden. Vorzugsweise wir der Druck so eingestellt, daß während der Veresterung das gebildete Wasser abdestilliert, z.B. in Form eines Gemisches aus Wasser, C4-C]_ -Alkanol und Ester (die organischen Komponenten werden dabei wieder der Veresterung zugeführt. Die Veresterung kann kontinuierlich oder diskontinuierlich durchgeführt werden, wobei die kontinuierliche Reaktionsführuήg bevorzugt ist.
Die Veresterung wird in üblichen Apparaturen durchgeführt, z.B. in einer Veresterungseinheit aus einem oder mehreren beheizbaren Rührreaktoren (Kaskade) , die gegebenenfalls mit Kolonnen, Kondensatoren und Phasentrenngefäßen ausgerüstet sind. Der Reaktorinhalt wird durch Rühren oder andere übliche und geeignete Maßnahmen durchmischt.
Falls nach der Extraktion des Katalysators noch eine Extraktion/ Neutralisation der Restsäuren (Katalysator und (Meth) acrylsäure) mit Hilfe einer wäßrigen Base notwendig ist, kann diese in einer herkömmlichen Extraktionsapparatur (siehe oben) erfolgen, wobei der Basenbedarf aufgrund des hohen Extraktionsgrades des Katalysators gering ist und die Extraktion überraschenderweise ohne die in der EP-A-0 566 074 beschriebenen Phasentrennprobleme verläuft.
Die Isolierung des Esters aus dem von Katalysator und gegebenen- falls Restcarbonsäure und Leichtsieder befreiten Reaktionsgemisch erfolgt in üblicher Weise, insbesondere destillativ, z.B. durch Destillation in einer Siebbodenkolonne.
Die Erfindung wird durch das nun folgende Beispiel erläutert, ohne sie einzuschränken. Bei den Prozentangaben handelt es sich um Gewichtsprozente.
Eine Rührkesselkaskade bestehend aus 3 Rührreaktoren mit je 1 1 Reaktionsvolumen, die mit Kolonne, Kondensator und Phasentrenn- gefäß ausgerüstet sind, wurde mit 558 g Acrylsäure, 648 g n-Bu- tanol, 16 g Schwefelsäure und 1 g Phenothiazin pro Stunde beschickt. Die Reaktionstemperatur in den Reaktoren betrug 106°C, 118°C bzw. 123°C, der Druck 700 mbar. Am Kopf der Kolonne fiel ein Gemisch aus Wasser, n-Butanol und n-Butylacrylat an, das in eine wäßrige und eine organische Phase zerfiel, wobei die organische Phase der Kolonne als Rücklauf zugeführt wurde.
Der Reaktionsaustrag (1070 g/h) enthielt gemäß Analyse: 90,2% n-Butylacrylat 2,7% n-Butanol
0,5% Acrylsäure
2,2% Butylschwefelsäure Rest: Nebenprodukte, Polymere, Oligomere, Phenothiazin
Acrylsäureumsatz : 99%, Umwandlung 98% Der auf 25°C abgekühlte Reaktionsaustrag wurde in einer Mixer-" Settler-Apparatur mit 90 g/h Wasser bei ca. 25°C extrahiert. Die wäßrige Phase (97 g/h) enthielt 20,5% Schwefelsäuremono-n-butyl- ester (85% Rückgewinnung) und 0,5% Schwefelsäure.
Diese wäßrige Phase wurde in den unteren Teil der Destillationskolonne des ersten Reaktors zurückgefahren, wobei die Zugabe von frischer Schwefelsäure auf 1,3 g/h reduziert wurde. Der Acryl- säureumsatz betrug weiterhin 99%, die Umwandlung 98%.
Die Abhängigkeit des Katalysator-Extraktionsgrades vom n-Butanol- gehalt des der Extraktion zugeführten Reaktionsgemisches wurde ermittelt, indem durch Veresterung von Acrylsäure mit n-Butanol in Gegenwart von Schwefelsäure hergestellte Veresterungsgemische, die unterschiedliche n-Butanolgehalte aufwiesen, in einem Scheidetrichter einmal mit 10 Gew.-% Wasser bei 25°C extrahiert wurden. Die Ergebnisse dieser Versuche sind in Tabelle 1 dargestellt und belegen die Bedeutung einer Reaktionsführung, die den Gehalt an nicht umgesetztem Alkanol unter 5%, vorzugsweise bei 0,1% bis 3%, hält.
Tabelle 1
Figure imgf000008_0001

Claims

Patentansprüche
1. Verfahren zur Herstellung von (Meth) acrylsäureestern durch Umsetzung von (Meth) acrylsäure mit einem C4-Ci2-Alkanol in
Gegenwart von Schwefelsäure oder eines Schwefelsäuremono- c 4 _c l2-alkylesters als Katalysator, dadurch gekennzeichnet, daß der Katalysator durch Extraktion mit Wasser aus dem Reaktionsgemisch regeneriert wird, wobei die Konzentration an nicht umgesetztem Alkanol im zu extrahierenden Reaktionsgemisch höchstens 5 Gew.-%, bezogen auf das zu extrahierende Reaktionsgemisch, beträgt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Alkanolkonzentration 0,1 bis 3 Gew.-% beträgt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die wäßrige Lösung des durch Extraktion mit Wasser aus dem Reaktionsgemisch regenerierten Katalysators wieder in die Veresterung zurückgeführt wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Extraktion des Katalysators so durchgeführt wird, daß der Extraktionsgrad mindestens 70 Gew.-%, insbeson- dere mindestens 80 Gew.-%, bezogen auf die Katalysatormenge im Reaktionsgemisch, beträgt.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Extraktion des Katalysators so durchgeführt wird, daß die Katalysatorkonzentration in der Wasserphase mindestens 20 Gew.-%, insbesondere mindestens 25 Gew.-%, bezogen auf den wäßrigen Extrakt, beträgt.
6. Verfahren nach einem der Ansprüche 1 bis 5 , dadurch gekenn- zeichnet, daß die Extraktion bei 15 bis 40°C durchgeführt wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Extraktion im Gegenstrom oder in einem sta- tischen Mischer durchgeführt wird.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß als Alkanol n-Butanol oder Isobutanol verwendet wird.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Reaktionstemperatur 70 bis 160°C, insbesondere 90 bis 130°C beträgt.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Reaktionszeit 1 bis 10, insbesondere 1 bis 6 Stunden beträgt.
PCT/EP1997/006514 1996-11-25 1997-11-21 Verfahren zur herstellung von (meth)acrylsäureestern WO1998023577A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU54852/98A AU5485298A (en) 1996-11-25 1997-11-21 Method for the production of (meth)acrylic acid esters
JP52425598A JP2001504507A (ja) 1996-11-25 1997-11-21 (メタ)アクリル酸エステルの製法
DE59704617T DE59704617D1 (de) 1996-11-25 1997-11-21 Verfahren zur herstellung von (meth)acrylsäureestern
CA002272868A CA2272868A1 (en) 1996-11-25 1997-11-21 Method for the production of (meth)acrylic acid esters
US09/308,253 US6177590B1 (en) 1996-11-25 1997-11-21 Method for the production of (meth)acrylic acid esters
EP97951259A EP0944573B1 (de) 1996-11-25 1997-11-21 Verfahren zur herstellung von (meth)acrylsäureestern
BR9713288-8A BR9713288A (pt) 1996-11-25 1997-11-21 Processo para preparar ésteres (met) acrìlico

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19648745A DE19648745A1 (de) 1996-11-25 1996-11-25 Verfahren zur Herstellung von (Meth)acrylsäureestern
DE19648745.5 1996-11-25

Publications (1)

Publication Number Publication Date
WO1998023577A1 true WO1998023577A1 (de) 1998-06-04

Family

ID=7812689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/006514 WO1998023577A1 (de) 1996-11-25 1997-11-21 Verfahren zur herstellung von (meth)acrylsäureestern

Country Status (13)

Country Link
US (1) US6177590B1 (de)
EP (1) EP0944573B1 (de)
JP (1) JP2001504507A (de)
KR (1) KR20000057212A (de)
CN (1) CN1238757A (de)
AU (1) AU5485298A (de)
BR (1) BR9713288A (de)
CA (1) CA2272868A1 (de)
CZ (1) CZ173299A3 (de)
DE (2) DE19648745A1 (de)
ID (1) ID22427A (de)
TW (1) TW402590B (de)
WO (1) WO1998023577A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999023059A1 (en) * 1997-10-31 1999-05-14 Celanese International Corporation Sulfur removal process from an acrylate stream
JP2003522812A (ja) * 2000-02-17 2003-07-29 ビーエーエスエフ アクチェンゲゼルシャフト α,β−不飽和カルボン酸エステルの製法
CN1305831C (zh) * 2004-05-31 2007-03-21 三菱化学株式会社 制备(甲基)丙烯酸的装置及制备(甲基)丙烯酸的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004043945A1 (en) * 2002-11-12 2004-05-27 Wiley Organics, Inc. Method for purifying and separating soy isoflavones
DE102005043719A1 (de) * 2005-09-13 2007-03-15 Röhm Gmbh Vorrichtung und Verfahren für kontinuierlich durchgeführte Gleichgewichtsreaktionen
CN102344366A (zh) * 2011-08-08 2012-02-08 江苏沿江化工资源开发研究院有限公司 两股溶剂侧线进料液液萃取提取丙烯酸丁酯的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0463434A2 (de) * 1990-06-21 1992-01-02 BASF Aktiengesellschaft Verfahren zur Herstellung von monoethylenisch ungesättigten Carbonsäureestern

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2552987C2 (de) * 1975-11-26 1983-09-29 Hoechst Ag, 6230 Frankfurt Verfahren zur kontinuierlichen Herstellung ätherfreier Acrylsäurealkylester
US5364754A (en) 1992-04-16 1994-11-15 Eastman Kodak Company Silver halide photographic emulsions precipitated in the presence of organic dichalcogenides
FR2700767B1 (fr) 1993-01-27 1995-04-07 Atochem Elf Sa Procédé perfectionné de fabrication de (méthacrylates d'alkyle par estérification directe.
JP3346822B2 (ja) 1993-03-31 2002-11-18 三菱化学株式会社 アクリル酸エステル又はメタクリル酸エステルの製造法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0463434A2 (de) * 1990-06-21 1992-01-02 BASF Aktiengesellschaft Verfahren zur Herstellung von monoethylenisch ungesättigten Carbonsäureestern

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999023059A1 (en) * 1997-10-31 1999-05-14 Celanese International Corporation Sulfur removal process from an acrylate stream
JP2003522812A (ja) * 2000-02-17 2003-07-29 ビーエーエスエフ アクチェンゲゼルシャフト α,β−不飽和カルボン酸エステルの製法
JP4758586B2 (ja) * 2000-02-17 2011-08-31 ビーエーエスエフ ソシエタス・ヨーロピア α,β−不飽和カルボン酸エステルの製法
CN1305831C (zh) * 2004-05-31 2007-03-21 三菱化学株式会社 制备(甲基)丙烯酸的装置及制备(甲基)丙烯酸的方法

Also Published As

Publication number Publication date
DE59704617D1 (de) 2001-10-18
EP0944573B1 (de) 2001-09-12
JP2001504507A (ja) 2001-04-03
DE19648745A1 (de) 1998-05-28
CN1238757A (zh) 1999-12-15
TW402590B (en) 2000-08-21
CA2272868A1 (en) 1998-06-04
BR9713288A (pt) 1999-10-26
AU5485298A (en) 1998-06-22
CZ173299A3 (cs) 1999-09-15
ID22427A (id) 1999-10-14
US6177590B1 (en) 2001-01-23
KR20000057212A (ko) 2000-09-15
EP0944573A1 (de) 1999-09-29

Similar Documents

Publication Publication Date Title
EP0765859B1 (de) Verfahren und Vorrichtung zur kontinuierlichen Herstellung von Alkylestern der (Meth)acrylsäure
DE69405138T2 (de) Verfahren zur Herstellung von Acryl- und Methacrylsäureestern
EP0795535B1 (de) Verfahren und Vorrichtung zur kontinuierlichen Herstellung von Alkylestern der (Meth)acrylsäure
EP0790230A1 (de) Verfahren zur kontinuierlichen Herstellung von Alkylestern der (Meth)acrylsäure
EP0463434B1 (de) Verfahren zur Herstellung von monoethylenisch ungesättigten Carbonsäureestern
EP0780359B1 (de) Verfahren zum Verestern von (Meth)acrylsäure mit einem Alkanol
DE19851983A1 (de) Verfahren zur kontinuierlichen Herstellung von Alkylestern der (Meth)acrylsäure
EP0780360B1 (de) Verfahren zur Veresterung von (Meth)acrylsäure mit einem Alkanol
EP0944573B1 (de) Verfahren zur herstellung von (meth)acrylsäureestern
EP0944574B1 (de) Verfahren zur herstellung von (meth)acrylsäureestern
EP1255722B1 (de) VERFAHREN ZUR HERSTELLUNG VON ESTERN alpha, beta -UNGESÄTTIGTER CARBONSÄUREN
DE69812682T2 (de) Entfernung von schwefel aus einem acrylatstrom
EP0202610B1 (de) Verfahren zur Herstellung von Alkylestern der alpha-beta-monoolefinisch ungesättigten Monocarbonsäuren
DE19701737A1 (de) Verfahren zum Verestern von (Meth)acrylsäure mit einem Alkanol
WO2002100815A1 (de) Verfahren zur herstellung von (meth)acrylsäureestern
EP0765861B1 (de) Verfahren zur Herstellung von Alkylestern der (Meth)acrylsäure
DE19536184A1 (de) Verfahren zum Verestern von (Meth)acrylsäure mit einem Alkanol
EP1053995B1 (de) Verfahren zur Herstellung von (Meth)acrylsäureestern
EP0941213A1 (de) Verfahren zur herstellung von (meth)acrylsäureestern
DE10063510A1 (de) Verfahren und Vorrichtung zur kontinuierlichen Herstellung von Alkylacrylaten
EP0706991A1 (de) Verfahren zur Herstellung von 1,4-Butandiolmono(meth)acrylat durch Veresterung von (Meth)acrylsäure mit 1,4-Butandiol, bei dem eine wässrige Lösung an nicht umgesetztem 1,4-Butandiol anfällt
MXPA99004556A (en) Method for the production of (meth)acrylic acid esters

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97180046.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AU BG BR BY CA CN CZ GE HU ID IL JP KR KZ LT LV MX NO NZ PL RO RU SG SI SK TR UA US AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2272868

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: PV1999-1732

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: PA/a/1999/004556

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 1998 524255

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1997951259

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019997004549

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09308253

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: PV1999-1732

Country of ref document: CZ

WWP Wipo information: published in national office

Ref document number: 1997951259

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997004549

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1997951259

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1019997004549

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: PV1999-1732

Country of ref document: CZ