WO1998022812A1 - Sensor zur bestimmung der konzentration oxidierbarer bestandteile in einem gasgemisch - Google Patents

Sensor zur bestimmung der konzentration oxidierbarer bestandteile in einem gasgemisch Download PDF

Info

Publication number
WO1998022812A1
WO1998022812A1 PCT/DE1997/002490 DE9702490W WO9822812A1 WO 1998022812 A1 WO1998022812 A1 WO 1998022812A1 DE 9702490 W DE9702490 W DE 9702490W WO 9822812 A1 WO9822812 A1 WO 9822812A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor according
metals
sensor
measuring electrode
mixed metal
Prior art date
Application number
PCT/DE1997/002490
Other languages
English (en)
French (fr)
Inventor
Thomas Köhler
Bernd Schumann
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to DE59712928T priority Critical patent/DE59712928D1/de
Priority to EP97947708A priority patent/EP0892922B1/de
Priority to JP10523057A priority patent/JP2000503409A/ja
Priority to US09/101,648 priority patent/US6168700B1/en
Publication of WO1998022812A1 publication Critical patent/WO1998022812A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4073Composition or fabrication of the solid electrolyte
    • G01N27/4074Composition or fabrication of the solid electrolyte for detection of gases other than oxygen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4075Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts

Definitions

  • the invention relates to a sensor for determining the concentration of oxidizable constituents in a gas mixture, in particular for determining unsaturated and saturated hydrocarbons according to the preamble of the main claim.
  • Gas detectors the sensor materials of the general formula X A2_ A 'X 4 contain B0, are known from DE-23 34 044 C3. These are used to detect oxidizable gases. It is also known from DE-42 44 723 AI to use rare earth cuprates of the formula A2_ x L x CuO4 for the detection of oxygen in gas mixtures, in particular in exhaust gases from internal combustion engines and combustion plants.
  • DE-42 44 723 AI to use rare earth cuprates of the formula A2_ x L x CuO4 for the detection of oxygen in gas mixtures, in particular in exhaust gases from internal combustion engines and combustion plants.
  • the only known and relatively satisfactory solution is in the JP-OS 60 61 654 described in which hydrocarbon can be determined on metallic measuring electrodes made of a platinum-gold alloy
  • the sensor according to the invention with the material used for the measuring electrode of the general formula AB2Üg, i.e. Materials from the class of Ashynite in the narrower sense, which, according to their most common representatives, are also known as rare earth titanobates, the Samarskite, which are also known as yttrocolumbite, and the Euxenite, a very high resistance to corrosion at high temperatures and a low tendency to form sulfates on. Due to the possible structural variations of the connection classes, which are generally referred to as Ashynite for the sake of simplicity, it is possible to provide corresponding combinations of metals for the A and B positions in the AB2O5 structures for different gases to be determined.
  • AB2Üg Materials from the class of Ashynite in the narrower sense, which, according to their most common representatives, are also known as rare earth titanobates, the Samarskite, which are also known as yttrocolumbite, and the Euxenite, a very high resistance to corrosion at high
  • a particular advantage of the sensor according to the invention is the use of natural aeschynites as the measuring electrode, for example samarskitwiikite, yttrotantalite, and clopinite, which occur frequently in their deposits and are easy to obtain. This leads to an economical use of appropriately variable Ashynite.
  • aeschynites for example samarskitwiikite, yttrotantalite, and clopinite.
  • position B of the mixed metal oxides of the aeschynite family is at least partially replaced by transition metals.
  • transition metals are selected from the platinum metals, i.e. i.e. metals from the group ruthenium, rhodium, palladium, osmium, iridium and platinum, the coin metals copper, silver, gold, or the metals of the iron group, iron, cobalt and nickel as well as rhenium or by transition metals in the oxidation state +5.
  • platinum metals i.e. i.e. metals from the group ruthenium, rhodium, palladium, osmium, iridium and platinum
  • the coin metals copper, silver, gold, or the metals of the iron group, iron, cobalt and nickel as well as rhenium or by transition metals in the oxidation state +5.
  • Nickel doping has proven to be advantageous.
  • the B-positions of the Aeschynites are replaced by Ni 2+ cations in an amount of 0.005 to 0.2 mol percent. This increases the sensitivity to hydrocarbons and at the same time the electrical conductivity of the ⁇ schynites doped in this way.
  • the oxygen in the AB 2 Üg structure can be partially replaced by hydroxide or fluoride anions, which on the one hand brings about greater thermodynamic and kinetic stability and on the other hand also improves the electrical conductivity of the material.
  • an aeschynite is used which is also deficient in position A (A ⁇ _ x ), ie has a vacancy. This measure also decisively improves the electrical conductivity of the ⁇ schynites.
  • the structural formula of the eschynite can therefore also be used
  • the thickness of the aeschynite measuring electrode is preferably 5 to 100 micrometers, but preferably 20 to 30 micrometers, it being possible for the aeschynite measuring electrode to be applied by a method known per se, preferably using thick film technology.
  • the sensor is preferably constructed from different layers, i.e. a reference electrode, for example made of platinum, is applied to a flat electrically insulating substrate, for example aluminum oxide, over which a layer is ion-conducting
  • Solid electrolyte and the aeschynite measuring electrode is located.
  • the above sensor is used to determine unsaturated and saturated hydrocarbons in combustion exhaust gases.
  • the layer structure of the sensor allows increased miniaturization and therefore a simplification of the design and, moreover, a more cost-effective production, since the solid electrolyte is sintered porous.
  • the supply for a reference gas can be dispensed with, which considerably simplifies the construction of the probe.
  • FIG. 1 shows a section through a sensor according to the invention.
  • Figure 2 shows the measurement curve of a sensor according to the invention in the detection of a hydrocarbon.
  • An electrically insulating, planar ceramic substrate 6, for example aluminum oxide, has a reference electrode 5, for example made of platinum, a solid electrolyte 4, measuring electrodes 1 and 2 and a gas-permeable protective layer 3 on one large surface in layers one above the other, and a gas-permeable protective layer 3 on the opposite large surface of the substrate Heater device 7 applied with cover 8.
  • the senor is heated to a temperature between 300 and 1000 ° C., advantageously to approximately 600 ° C., by means of the heater device 7.
  • the solid electrolyte can be sintered porously, but the person skilled in the art can also choose other solutions known to him, such as the supply line via a reference channel or the supply line of a reference gas atmosphere.
  • the sensor generates a cell voltage via the oxygen-ion-conducting solid electrolyte through a first half-cell reaction set with the aid of the reference electrode and a second half-cell reaction on at least one measuring electrode which is influenced by the oxidizable gas components to be determined.
  • the concentration of the gas components is determined from the voltage values using calibration curves.
  • the sensor according to the invention is thus in the The simplest case with a reference electrode that catalyzes the equilibrium setting of the gas mixture, with a measuring electrode that is not able to catalyze the equilibrium setting of the gas mixture or can catalyze only a little. However, it is also possible to apply two measuring electrodes, as shown in FIG. 1, or also several measuring electrodes, each with different catalytic activity for setting
  • the measuring electrodes then react with different voltages depending on the type of gas with respect to the reference electrode.
  • the solid electrolyte is doped with foreign atoms, e.g. with an addition of 0.01 to 10 percent by volume platinum.
  • the gases to be measured are converted catalytically on the solid electrolyte, so that only the gases corresponding to the thermodynamic equilibrium are detected by the reference electrode or the solid electrolyte only converts the gases which interfere with the reference signal.
  • one or more measuring electrodes are made porous in addition to the solid electrolyte, which facilitates gas diffusion to the reference electrode.
  • compounds of the general formula AB2 ⁇ g ie compounds from the class of Ashynites, Samarskites and Euxenites, are used as measuring electrode materials.
  • Ashynites ie compounds from the class of Ashynites, Samarskites and Euxenites.
  • all these three classes of compounds are subsumed under the term "Ashynite".
  • These have a high specific sensitivity, in particular for saturated and unsaturated hydrocarbons. This is increased, for example, by partially replacing the B position with a transition metal.
  • An exemplary embodiment of this class of compounds is SmTiNi 0 03 N ⁇ 1 1 ° 6.
  • platinum, palladium or also coin metals can also be used in this connection for doping. This doping increases the sensitivity of the aeschynite used, particularly for unsaturated hydrocarbons.
  • SmTiNig 03 N ⁇ 1 1 # 6 w i r d represented by hydrothermal synthesis.
  • SmTiNig 03 N ⁇ 1 1 ° 6 'produced by hydrothermal synthesis is printed in a well-known thick-film technique on a substrate which carries a reference electrode, for example made of platinum, and above it a solid electrolyte layer consisting, for example, of stabilized zirconium or hafnium oxide.
  • a heater device is applied to the opposite side of the substrate. The sensor is heated at 1200 ° C for 90 minutes using a heat-up ramp
  • the solid electrolyte has pores in the size range from 10 ⁇ m to 100 ⁇ m.
  • the voltage across the cell thus constructed is measured against a resistance of 1 m ⁇ between the reference and the ⁇ schynite electrode.
  • the sensor is heated to 600 ° C by its heater. - o -
  • Figure 2 shows a measurement curve of the sensor according to the invention with the ⁇ schynit compound SrnTiNig 03 N ⁇ 1 1 ° 6 •
  • the upper part of Figure 2 shows the concentration of the measurement gas, in this case propene, with an oxygen admixture of 10 vol. % on. The value on the ordinate is multiplied by 10 2 ppm in order to determine the concentration in ppm.
  • the middle part shows the sensor signal, measured in volts, during the measurement period of one hour and 30 minutes.
  • the lower part of Figure 2 shows the increase in heating power, measured in watts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

Es wird ein Sensor vorgeschlagen, der zur Bestimmung der Konzentration oxidierbarer Bestandteile in einem Gasgemisch, insbesondere zur Bestimmung ungesättigter und gesättigter Kohlenwasserstoffe durch Messung der Spannung zwischen mindestens einer Meßelektrode (1, 2) und einer Referenzelektrode (5) dient. Als Material für die Meßelektrode (1, 2) dienen dabei Verbindungen der Äschynitklasse, worunter Äschynite, Euxenite und Samarskite der allgemeinen Formel AB2O6 zu verstehen sind, die teilweise dotiert oder defizitär besetzt sein können und die allgemeinen Summenformel A1-xB2-yB'y(O,OH,F)6±z aufweisen.

Description

Sensor zur Bestimmung der Konzentration oxidierbarer Bestandteile in einem Gasgemisch
Die Erfindung geht aus von einem Sensor zur Bestimmung der Konzentration oxidierbarer Bestandteile in einem Gasgemisch insbesondere zur Bestimmung ungesättigter und gesättigter Kohlenwasserstoffe nach der Gattung des Hauptanspruches .
Stand der Technik
Gasdetektoren, die Sensormaterialien der allgemeinen Formel A2_XA'XB04 enthalten, sind aus der DE-23 34 044 C3 bekannt. Diese werden zum Nachweis von oxidierbaren Gasen verwendet. Weiterhin ist aus der DE-42 44 723 AI bekannt, Cuprate der Seltenen Erden der Formel A2_xLxCuθ4 zum Nachweis von Sauerstoff in Gasgemischen, insbesondere in Abgasen von von Verbrennungsmaschinen und Verbrennungsanlagen zu verwenden. Jedoch hat es sich bisher als schwierig erwiesen, geeignete Materialien zur Bestimmung von gesättigten und ungesättigten Kohlenwasserstoffen zu finden. Dies lag an der geringen Korrosionsstabilität der verwendeten Elektrodenmaterialien, die bislang eine hohe Tendenz zu störender Sulfatbildung auf der Elektrodenoberfläche aufwiesen. Die einzige bisher bekannte und relativ befriedigende Lösung wird in der JP-OS 60 61 654 beschrieben, in der an metallischen Meßelektroden aus einer Platin-Gold Legierung bzw. aus Platin Kohlenwasserstoffe bestimmt werden können.
Vorteile der Erfindung
Gegenüber dem bekannten Stande der Technik weist der erfindungsgemäße Sensor mit dem verwendeten Material für die Meßelektrode der allgemeinen Formel AB2Üg ,d.h. Materialien aus der Klasse der Aschynite im engeren Sinne, die nach ihren häufigsten Vertretern auch als Titanniobate der Seltenen Erden bezeichnet werden, der Samarskite, die auch als Yttrocolumbite bezeichnet werden und der Euxenite, eine sehr hohe Korrosionsbeständigkeit bei hohen Temperaturen und eine geringe Tendenz zur Sulfatbildung auf. Durch die möglichen strukturellen Variationen der im folgenden zur Vereinfachung allgemein als Aschynite bezeichneten Verbindungsklassen ist es möglich, für verschiedene zu bestimmende Gase entsprechende Kombinationen von Metallen für die A- und B-Positionen in den AB2O5 Strukturen zur Verfügung zu stellen. Weiterhin ermöglicht diese große strukturelle Mannigfaltigkeit, daß nötigenfalls entsprechende Oktaederpositionen in der AB2θg-Struktur mit einer Vielzahl von Kationen vergleichbarer Ionenradii dotiert werden können. Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Hauptanspruche angegebenen Sensors möglich.
Ein besonderer Vorteil des erfindungsgemäßen Sensors besteht in der Verwendung von natürlichen Äschyniten als Meßelektrode, beispielsweise Samarskitwiikit, Yttrotantalit, und Clopinit, die an ihren Lagerstätten häufig vorkommen und einfach zu gewinnen sind. Dies führt zu einem kostengünstigen Einsatz entsprechend variierbarer Aschynite. Für eine spezifische Anwendung ist es allerdings auch in besonders vorteilhafter Weise möglich, beispielsweise durch das allgemein bekannte Verfahren der Hydrothermalsynthese bei niedriger Temperatur und geringem Druck, oder durch Hochtemperatursynthese in Quarzampullen die entsprechenden
Verbindungen gewünschter Stochiometrie einfach und in großem Maßstabe zu synthetisieren. Bei der Hydrothermalsynthese entstehen zuerst Verbindungen in der sogenannten Äschynitphase, die sich bei höherer Temperatur in die Euxenit-Hochtemperaturphase monotrop umwandeln.
In besonders bevorzugter Weise ist die Position B der gemischten Metalloxide der Äschynitfamilie zumindest teilweise ersetzt durch Übergangsmetalle. Diese sind ausgewählt aus den Platinmetallen, d.h. also Metalle der Gruppe Ruthenium, Rhodium, Palladium, Osmium, Iridium und Platin, den Münzmetallen Kupfer, Silber, Gold, bzw. den Metallen der Eisengruppe, Eisen, Kobalt und Nickel sowie Rhenium oder durch Übergangsmetalle im Oxidationszustand +5. Dabei haben sich insbesondere Verbindungen mit
Nickeldotierung als vorteilhaft erwiesen. Die B-Positionen des Äschynites werden in einer Menge von 0,005 bis 0,2 Molprozent durch Ni2+-Kationen ersetzt. Dies erhöht die Empfindlichkeit für Kohlenwasserstoffe und gleichzeitig die elektrische Leitfähigkeit des derart dotierten Äschynites.
In einer weiteren bevorzugten Ausführung kann der Sauerstoff in der AB2Üg-Struktur teilweise durch Hydroxid- oder Fluoridanionen ersetzt sein, was einerseits eine größere thermodynamisehe und kinetische Stabilität und andererseits auch eine verbesserte elektrische Leitfähigkeit des Materials bewirkt .
In einer weiteren bevorzugten Ausführung wird ein Äschynit verwendet, der auch in der Position A defizitär ist (A^_x) , d.h. eine Fehlstellenbesetzung aufweist. Auch diese Maßnahme verbessert die elektrische Leitfähigkeit des Äschynites entscheidend. In einer bevorzugten allgemeinen Ausführung kann deshalb die Strukturformel des Äschynites mit
Al-xB2-yB'y(0'OH'F)6±z
angegeben werden.
Bevorzugt beträgt die Dicke der Äschynit-Meßelektrode 5 bis 100 Mikrometer, vorzugsweise jedoch 20 bis 30 Mikrometer, wobei die Äschynit-Meßelektrode durch ein an sich bekanntes Verfahren, vorzugsweise in Dickfilmtechnik aufgebracht werden kann.
In bevorzugter Weise ist der Sensor aus verschiedenen Schichten aufgebaut, d.h., auf einem ebenen elektrisch isolierenden Substrat, beispielsweise Aluminiumoxid, ist eine Referenzelektrode beispielsweise aus Platin aufgebracht, worüber sich eine Schicht ionenleitenden
Festelektrolyten und die Äschynit-Meßelektrode befindet.
In vorteilhafter Ausführung wird der obige Sensor zur Bestimmung von ungesättigten und gesättigten Kohlenwasserstoffen, in Verbrennungsabgasen eingesetzt. Der Schichtaufbau des Sensors erlaubt eine erhöhte Miniaturisierung und daher eine konstruktive Vereinfachung und darüberhinaus eine kostengünstigere Herstellung, da der Festelektrolyt porös gesintert wird. Dadurch kann auf die Zuführung für ein Referenzgas verzichtet werden, was den Sondenaufbau erheblich vereinfacht.
Zeichnung Figur 1 zeigt einen Schnitt durch einen erfindungsgemäßen Sensor. Figur 2 zeigt die Meßkurve eines erfindungsgemäßen Sensors bei der Detektion eines Kohlenwasserstoffes .
Beschreibung der Ausführungsbeispiele
In Figur 1 ist ein erfindungsgemäßer Sensor im Schnitt dargestellt. Ein elektrisch isolierendes, planares keramisches Substrat 6, beispielsweise Aluminiumoxid, trägt auf der einen Großfläche in übereinanderliegenden Schichten eine Referenzelektrode 5, beispielsweise aus Platin, einen Festelektrolyten 4, Meßelektroden 1 und 2 sowie eine gasdurchlässige Schutzschicht 3. Auf der gegenüberliegenden Großfläche des Substrates ist eines Heizervorrichtung 7 mit Abdeckung 8 aufgebracht.
Zur Bestimmung der Konzentration oxidierbarer Bestandteile in Abgasen wird der Sensor mittels der Heizervorrichtung 7 auf eine Temperatur zwischen 300 und 1000°C, vorteilhafterweise auf ungefähr 600°C erhitzt. Um die Diffusion des Meßgases zur Referenzelektrode und die Einstellung des Sauerstoffgleichgewichtspotentiales zu ermöglichen, kann der Festelektrolyt porös gesintert sein, der Fachmann kann aber auch andere, ihm bekannte Lösungen wählen, wie z.B. die Zuleitung über einen Referenzkanal oder die Zuleitung einer Referenzgasatmosphäre.
Der Sensor erzeugt über den sauerstoffionenleitenden Festelektrolyten eine Zellspannung durch eine erste, mit Hilfe der Referenzelektrode eingestellte Halbzellenreaktion und eine zweite, durch die zu bestimmenden oxidierbaren Gaskomponenten beeinflußte Halbzellenreaktion an mindestens einer Meßelektrode. Über Kalibrierungskurven werden aus den Spannungswerten die Konzentration der Gaskomponenten ermittelt. Der erfindungsgemäße Sensor ist somit im einfachsten Fall mit einer Referenzelektrode, die die Gleichgewichtseinstellung des Gasgemisches katalysiert, mit einer Meßelektrode, die die Gleichgewichtseinstellung des Gasgemisches nicht oder nur wenig zu katalysieren vermag, einsatzfähig. Es ist jedoch auch möglich, zwei Meßelektroden aufzubringen, wie in Figur 1 dargestellt, oder auch mehrere Meßelektroden mit jeweils unterschiedlicher katalytischer Aktivität zur Einstellung von
Sauerstoffgleichgewichtszuständen. Die Meßelektroden reagieren dann mit unterschiedlicher, von der Gasart abhängiger Spannung bezogen auf die Referenzelektrode.
In einer weiteren Ausführungsform ist der Festelektrolyt mit Fremdatomen dotiert, z.B. mit einem Zusatz von 0,01 bis 10 Volumenprozent Platin. Dabei werden am Festelektrolyten die zu messenden Gase katalytisch umgesetzt, so daß nur die dem thermodynamisehen Gleichgewicht entsprechenden Gase von der Referenzelektrode erfaßt werden oder der Festelektrolyt setzt nur die das Referenzsignal störenden Gase um.
Nach einer weiteren Alternative werden zusätzlich zum Festelektrolyten eine oder mehrere Meßelektroden porös ausgebildet, wodurch die Gasdiffussion zur Referenzelektrode erleichtert wird.
Als Meßelektrodenstoffe werden erfindungsgemäß Verbindungen der allgemeinen Formel AB2θg, d.h. Verbindungen aus der Klasse der Aschynite, Samarskite und Euxenite verwendet. Im folgenden werden alle diese drei Verbindungsklassen unter dem Begriff „Aschynite" subsummiert . Diese haben eine hohe spezifische Empfindlichkeit, insbesondere für gesättigte und ungesättigte Kohlenwasserstoffe. Diese wird erhöht, indem beispielsweise die B-Position teilweise durch ein Übergangsmetall ersetzt wird. Ein Ausführungsbeispiel für diese Verbindungsklasse ist SmTiNi0 03N^1 1°6 • Statt Nickel können in dieser Verbindung ebenso Platin, Palladium oder auch Münzmetalle zur Dotierung verwendet werden. Diese Dotierung erhöht die Empfindlichkeit des verwendeten Äschynites insbesondere für ungesättigte Kohlenwasserstoffe. SmTiNig 03N^1 1°6 wi-rd durch Hydrothermalsynthese dargestellt .
Der hohen Empfindlichkeit von Äschyniten, insbesondere für ungesättigte Kohlenwasserstoffe, liegen adsorptive
Wechselwirkungen der π-Elektronen der Doppelbindungen des entsprechenden Kohlenwasserstoffes mit elektrophilen Akzeptorplätzen auf der (1,1,0) oder (1,1,1) Äschynitoberflache zugrunde.
Ein Herstellungsverfahren für einen erfindungsgemäßen Sensor beschreibt das nachfolgende Beispiel :
SmTiNig 03N^1 1°6' hergestellt durch Hydrothermalsynthese, wird in allgemein bekannter Dickfilmtechnik auf ein Substrat aufgedruckt, das eine Referenzelektrode, beispielsweise aus Platin, und darüber eine Festelektrolytschicht trägt, bestehend beispielsweise aus stabilisiertem Zirkonium- oder Hafniumoxid. Auf der gegenüberliegenden Seite des Substrates ist eine Heizervorrichtung aufgebracht. Der Sensor wird bei 1200°C 90 Minuten lang mit einer Aufheiz-Abkühlrampe von
300°C/h gesintert. Der Festelektrolyt hat nach dem Sintern Poren im Größenbereich von 10 μm bis 100 μm. Mit Hilfe einer isoliert zum Festelektrolyten angebrachten Platinleiterbahn, die nur die Meßelektrode kontaktiert, wird die Spannung an der so aufgebauten Zelle an einem Widerstand von 1 mΩ zwischen der Referenz- und der Äschynitelektrode gemessen. Der Sensor wird dabei durch seine Heizervorrichtung auf 600°C erwärmt. — o —
Figur 2 zeigt eine Meßkurve des erfindungsgemäßen Sensors mit der ÄschynitVerbindung SrnTiNig 03 N^1 1°6Der obere Teil von Figur 2 zeigt die Konzentration des Meßgases, in diesem Falle Propen, mit einer Sauerstoffbeimischung von 10 Vol . % an. Der Wert an der Ordinate wird dabei mit 102 ppm multipliziert, um die Konzentration in ppm ermitteln zu können. Der mittlere Teil zeigt das Sensorsignal, gemessen in Volt, während der Meßperiode von einer Stunde und 30 Minuten an. Der untere Teil von Figur 2 gibt die Erhöhung der Heizleistung, gemessen in Watt, wieder.

Claims

Ansprüche
1. Sensor zur Bestimmung der Konzentration oxidierbarer Bestandteile in einem Gasgemisch, insbesondere zur Bestimmung gesättigter und ungesättigter Kohlenwasserstoffe, bei dem ein ionenleitender Festelektrolyt (4) mit mindestens einer einer Referenzatmosphäre ausgesetzten
Referenzelektrode (5) und mit mindestens einer dem Meßgas ausgesetzten Meßelektrode (1, 2) ausgebildet ist, dadurch gekennzeichnet, daß die Meßelektrode (1, 2) aus einem gemischten Metalloxid der allgemeinen Formel
AB206
besteht , wobei A aus der Gruppe, bestehend aus dem Seltenerdmetallen, Y, La, den späten Alkalimetallen, den Erdalkalimetallen, den Elementen der dritten Hauptgruppe, den natürlich vorkommenden Aktiniden, Fe, Pb oder Bi,
und B aus der Gruppe, bestehend aus den Metallen der vierten bis fünften Nebengruppe Sn, Sb, Re oder Fe ausgewählt ist.
2. Sensor nach Anspruch 1, dadurch gekennzeichnet, daß die gemischten Metalloxide künstlich hergestellt und/oder natürlichen Ursprunges sind.
3. Sensor nach Anspruch 1, dadurch gekennzeichnet, daß die Position B der gemischten Metalloxide zumindest teilweise ersetzt ist durch Übergangsmetalle, ausgewählt aus den Platinmetallen, den Münzmetallen, der Eisengruppe, Rhenium, oder durch Übergangsmetalle im Oxidationszustand +5, ausgewählt aus den Übergangsmetallen der vierten bis fünften Nebengruppe .
4. Sensor nach Anspruch 3, dadurch gekennzeichnet, daß der Anteil der Ersatzionen der Position B des gemischten
Metalloxides 0,005 bis 0,2 Mol%, bezogen auf B, beträgt.
5. Sensor nach Anspruch 1, dadurch gekennzeichnet, daß die Sauerstoffposition der gemischten Metalloxide zumindest teilweise ersetzt oder im Überschuß besetzt ist durch Hydroxid- und/oder Fluoridanionen.
6. Sensor nach Anspruch 1, dadurch gekennzeichnet, daß die Position A der gemischten Metalloxide zumindest teilweise Fehlstellen aufweist.
7. Sensor nach Anspruch 1, dadurch gekennzeichnet, daß die Dicke der Meßelektrode (1, 2) 5 bis 100 μm, vorzugsweise 20 bis 30 μm beträgt.
8. Sensor nach Anspruch 1 oder 7, dadurch gekennzeichnet, daß die Meßelektrode (1, 2) mittels Dickfilmtechnik aufgebracht ist .
9. Sensor nach Anspruch 1, dadurch gekennzeichnet, daß in übereinanderliegenden Schichten auf der einen Fläche eines ebenen, elektrisch isolierenden Substrates (6) , die Referenzelektroden (5) der ionenleitende Festelektrolyt (4) und mindestens eine Meßelektrode (1, 2) angeordnet sind.
10. Verwendung des Sensors nach einem der vorhergehenen Ansprüche zur Bestimmung von Kohlenwasserstoffen, insbesondere von gesättigten und ungesättigen Kohlenwasserstoffen .
PCT/DE1997/002490 1996-11-15 1997-10-27 Sensor zur bestimmung der konzentration oxidierbarer bestandteile in einem gasgemisch WO1998022812A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE59712928T DE59712928D1 (de) 1996-11-15 1997-10-27 Sensor zur bestimmung der konzentration oxidierbarer bestandteile in einem gasgemisch
EP97947708A EP0892922B1 (de) 1996-11-15 1997-10-27 Sensor zur bestimmung der konzentration oxidierbarer bestandteile in einem gasgemisch
JP10523057A JP2000503409A (ja) 1996-11-15 1997-10-27 ガス混合物中の酸化可能性成分の濃度の測定のためのセンサ
US09/101,648 US6168700B1 (en) 1996-11-15 1997-10-27 Sensor for determining the concentration of oxidizable constituents in a gas mixture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19647268A DE19647268C1 (de) 1996-11-15 1996-11-15 Sensor zur Bestimmung der Konzentration oxidierbarer Bestandteile in einem Gasgemisch
DE19647268.7 1996-11-15

Publications (1)

Publication Number Publication Date
WO1998022812A1 true WO1998022812A1 (de) 1998-05-28

Family

ID=7811770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1997/002490 WO1998022812A1 (de) 1996-11-15 1997-10-27 Sensor zur bestimmung der konzentration oxidierbarer bestandteile in einem gasgemisch

Country Status (5)

Country Link
US (1) US6168700B1 (de)
EP (1) EP0892922B1 (de)
JP (1) JP2000503409A (de)
DE (2) DE19647268C1 (de)
WO (1) WO1998022812A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003504617A (ja) * 1999-07-09 2003-02-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 気体混合物中の気体成分の濃度を測定するためのセンサ

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005015569A1 (de) * 2005-04-05 2006-10-12 Robert Bosch Gmbh Keramisches Widerstands- oder Sensorelement

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3849282A (en) * 1971-07-09 1974-11-19 Solvay Metal electrodes and coatings therefor
DE4244723A1 (de) * 1992-01-27 1994-03-10 Roth Technik Gmbh Sauerstoffsensor auf der Basis komplexer Metalloxide
US5522979A (en) * 1994-04-19 1996-06-04 Nippondenso Co., Ltd. Stratified ceramic body, oxygen sensor using the same and fabrication method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6061654A (ja) 1983-09-14 1985-04-09 Ngk Insulators Ltd 酸素・可燃ガス分圧測定方法及び装置
JP3314426B2 (ja) * 1992-12-25 2002-08-12 株式会社デンソー 酸素センサ
US5397442A (en) * 1994-03-09 1995-03-14 Gas Research Institute Sensor and method for accurately measuring concentrations of oxide compounds in gas mixtures

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3849282A (en) * 1971-07-09 1974-11-19 Solvay Metal electrodes and coatings therefor
DE4244723A1 (de) * 1992-01-27 1994-03-10 Roth Technik Gmbh Sauerstoffsensor auf der Basis komplexer Metalloxide
US5522979A (en) * 1994-04-19 1996-06-04 Nippondenso Co., Ltd. Stratified ceramic body, oxygen sensor using the same and fabrication method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003504617A (ja) * 1999-07-09 2003-02-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 気体混合物中の気体成分の濃度を測定するためのセンサ
JP4690617B2 (ja) * 1999-07-09 2011-06-01 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 気体混合物中の気体成分の濃度を測定するためのセンサ

Also Published As

Publication number Publication date
JP2000503409A (ja) 2000-03-21
EP0892922B1 (de) 2008-03-19
US6168700B1 (en) 2001-01-02
DE59712928D1 (de) 2008-04-30
DE19647268C1 (de) 1998-05-07
EP0892922A1 (de) 1999-01-27

Similar Documents

Publication Publication Date Title
DE19912102C2 (de) Elektrochemischer Gassensor
DE3019072C2 (de) Vorrichtung zur Bestimmung der Sauerstoffkonzentration in Verbrennungsgasen
EP0904533B1 (de) Sensor zur bestimmung der konzentration oxidierbarer bestandteile in einem gasgemisch
EP1040346A1 (de) Gassensor und verfahren zu dessen herstellung
DE69933516T2 (de) Kohlenmonoxidsensor, Verfahren zu dessen Herstellung und Verfahren zu dessen Verwendung
DE2906459A1 (de) Vorrichtung zur messung der sauerstoffkonzentration in einem fluid
WO1997047963A1 (de) Sensor zur bestimmung der konzentration oxidierbarer bestandteile in einem gasgemisch
DE19549147C2 (de) Gassensor
DE4445033A1 (de) Verfahren zur Messung der Konzentration eines Gases in einem Gasgemisch sowie elektrochemischer Sensor zur Bestimmung der Gaskonzentration
DE102006062058A1 (de) Sensorelement zur Bestimmung der Konzentration einer oxidierbaren Gaskomponente in einem Messgas
EP0931256A1 (de) Sensorelement zur bestimmung der konzentration oxidierbarer bestandteile in einem gasgemisch
DE19963008B4 (de) Sensorelement eines Gassensors zur Bestimmung von Gaskomponenten
DE3624217C2 (de)
DE102009031773B4 (de) Potentiometrischer Sensor zur kombinierten Bestimmung der Konzentration eines ersten und eines zweiten Gasbestandteils einer Gasprobe, insbesondere zur kombinierten Bestimmung von CO2 und O2, entsprechendes Bestimmungsverfahren und Verwendung derselben
DE19647268C1 (de) Sensor zur Bestimmung der Konzentration oxidierbarer Bestandteile in einem Gasgemisch
EP1023591B1 (de) AUFBAUSTRUKTUR FÜR NO x?-SENSOREN
DE4447306A1 (de) Elektrochemischer Meßfühler mit einem potentialfrei angeordneten Sensorelement
EP1462796A2 (de) Gassensor und Verfahren zur Herstellung eines Gassensors
EP0420107B2 (de) Feststoff-Sauerstoffsensor
DE4436222A1 (de) Meßfühler zur Bestimmung des Sauerstoffgehaltes in Gasgemischen
EP1041383A2 (de) Poröse Elektrodenstruktur für einen Gassensor und Sensoranordnung
DE10259523A9 (de) Sensorelement
WO2004072634A1 (de) Sensorelement
DE10117819A1 (de) Methode und Vorrichtung auf der Basis halbleitender Oxide zur Bestimmung der Konzentration von reduzierenden Gasbestandteilen in reduzierenden Gasatmosphären
DE102005005442A1 (de) Festelektrolyt-Gassensor zur Messung von Wasserstoffspuren in Gasen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1997947708

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09101648

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997947708

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1997947708

Country of ref document: EP