WO1998021775A1 - Brennstoffzelle mit sauerstoffzufuhr in den brennstoff - Google Patents

Brennstoffzelle mit sauerstoffzufuhr in den brennstoff Download PDF

Info

Publication number
WO1998021775A1
WO1998021775A1 PCT/DE1997/002635 DE9702635W WO9821775A1 WO 1998021775 A1 WO1998021775 A1 WO 1998021775A1 DE 9702635 W DE9702635 W DE 9702635W WO 9821775 A1 WO9821775 A1 WO 9821775A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
fuel
oxygen
hydrogen
electrolyzer
Prior art date
Application number
PCT/DE1997/002635
Other languages
English (en)
French (fr)
Inventor
Volker Peinecke
Original Assignee
Forschungszentrum Jülich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Jülich GmbH filed Critical Forschungszentrum Jülich GmbH
Publication of WO1998021775A1 publication Critical patent/WO1998021775A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0656Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a fuel cell.
  • a z. B. from DE 19 505 913 known fuel cell has a cathode, an electrolyte and an anode.
  • the cathode becomes an oxidizing agent, e.g. E. Air and the anode becomes a fuel, e.g. B. supplied hydrogen.
  • Oxygen ions form on the cathode in the presence of the oxidizing agent.
  • the oxygen ions pass through the electrolyte and recombine on the anode side with the hydrogen originating from the fuel to form water. The recombination releases electrons and thus generates electrical energy.
  • PEM fuel cells are known in which proton-conducting membranes are provided as the electrolyte and platinum as the anode catalyst. PEM fuel cells are compared to so-called
  • SOFC fuel cells operated at low temperatures around 100 ° C.
  • Hydrogen can be obtained by reforming fuels such as methanol or methane.
  • the reforming reaction produces hydrogen and
  • Carbon dioxide also carbon monoxide (CO) in concentrations of about 0.5 to 2 vol .-%.
  • a disadvantage is that anode catalysts such as platinum are poisoned even at the lowest carbon monoxide concentrations, ie. H. high voltage and power losses occur even at carbon monoxide concentrations in hydrogen above about 10 ppm.
  • a downstream cleaning stage disadvantageously requires an additional reactor and corresponding control technology.
  • the cleaning is therefore complex and expensive.
  • CO concentrations below 100 ppm can practically not be achieved with conventional cleaning stages.
  • the CO content is therefore too high despite the cleaning level.
  • a disadvantage is therefore the loss of performance of a membrane fuel cell with CO contents between 10 ppm and 250 ppm, depending on the anode catalyst and depending on the load, between 20 and 90%. It is known to add small amounts of oxygen or air to the hydrogen gas to solve the problem. Poisoning effects due to CO can thus be completely eliminated. When about 1% oxygen was added to the hydrogen, the same performance data (current-voltage curves) as with pure, CO-free hydrogen were achieved.
  • the object of the invention is to provide a fuel cell in which catalyst poisoning can be avoided without the aforementioned disadvantages.
  • the device according to the main claim has a fuel cell with a fuel supply line for the fuel cell and an electrolyzer for feeding oxygen into the fuel supply line.
  • the oxygen fed in is free of nitrogen, so that the problems associated with the nitrogen no longer occur.
  • the oxygen feed can be regulated with relatively simple means. For this purpose, only means are to be provided that the performance of the electrolyzer, i. H. control his oxygen production.
  • the precisely controllable, expensive means for gas metering known from the prior art can therefore be dispensed with.
  • means are therefore provided which control the performance of the electrolyzer in such a way that oxygen production in the electrolyzer takes place as a function of the fuel cell electricity production. This ensures in a simple manner that the oxygen production corresponds to the oxygen demand.
  • means are provided for introducing product water generated in the fuel cell into the electrolyzer.
  • the water generated in the fuel cell is, for example, first fed into a container.
  • the water required for electrolysis is removed from this container.
  • the water requirement of the electrolyser is covered by the product water generated in the fuel cell.
  • FIG. 1 Fuel cell 1 with electrolyser 2 for feeding oxygen into the fuel supply line 3;
  • FIG. 2 electrolyzer 2 for feeding oxygen into the fuel supply line 3.
  • FIG. 1 shows a fuel cell 1 with an electrolyser 2 for feeding oxygen into the fuel supply line 3. 5
  • Supply line 3 is introduced into the fuel cell 1 hydrogen-rich gas as fuel.
  • the hydrogen-rich gas comes from a reforming reactor, not shown. It therefore contains small amounts of CO.
  • Air is fed into the fuel cell 1 via an oxidant supply line 4.
  • Water is introduced into the electrolyzer 2 via a water supply line 5.
  • the fuel supply line 3 is in the upper region of the electrolyzer 2, d. H. passed above the membrane-electrode assembly of the electrolyzer 2 (see FIG. 2).
  • the electrolyzer 2 produces oxygen and hydrogen.
  • the oxygen produced and the hydrogen produced are fed to the fuel supply line 3. In this way, oxygen gets into the hydrogen-rich gas.
  • the oxygen-enriched, hydrogen-rich gas then emerges from the electrolyzer 2 and reaches the fuel cell 1.
  • electricity is generated from the hydrogen-rich gas as fuel and air as the oxidizing agent.
  • the oxygen content in the hydrogen-rich gas prevents catalyst poisoning.
  • the product water is fed to a container, not shown.
  • the water temporarily stored here is fed to the water supply line 5 in accordance with the water consumption in the electrolyzer 2.
  • the removal of electric current from the fuel cell is indicated by the arrow 8.
  • a constant percentage of this current serves the energy supply of the electrolyser 2.
  • An electronic control (not shown) is provided for this.
  • Arrow 9 symbolizes the energy supply for the
  • Electrolyser 2 is operated in proportion to the power or current of fuel cell 1. An almost constant concentration of oxygen in the hydrogen-rich gas is thus easily available.
  • the electrolyzer 2 can alternatively be operated at constant power.
  • the fuel cell 1 When operating at constant power, the fuel cell 1 is to be supplied with a constant amount of hydrogen-rich gas. B 0.5% oxygen in the hydrogen-rich gas consumes about 2% of the electrical power of the fuel cell 1
  • the electrolyser preferably consists of only one cell, i.e. it has only one membrane electrode unit.
  • a (large-area) cell is usually sufficient to provide the required amount of oxygen.
  • the provision of only one cell is sufficient prefer, since no bipolar plate is required and the construction is therefore simple and inexpensive.
  • FIG. 2 illustrates the oxygen feed into the fuel supply line 3 of the fuel cell 1.
  • the electrolyzer 2 has a membrane 10 with electrodes 11 attached on both sides.
  • This membrane-electrode unit 10, 11 is located in a container-shaped widening 12 of the fuel supply line 3.
  • the water supply to the electrolyzer 2 is accomplished via a pipe 13.
  • Tube 13 is connected to the container, not shown, which is filled with product water of the fuel cell 1.
  • the membrane electrode assembly 10, 11 is contacted on both sides by current distributors 14.
  • the power distributors 14 are connected to the outer one via respective contacts 15 and cables 16
  • Power source namely connected to the fuel cell 1 or alternatively to a battery.
  • the membrane 10 with the electrodes 11 and the power supply means 14, 15, 16 are kept completely under water. This eliminates the risk of ignition for the resulting hydrogen-oxygen mixture.
  • the hydrogen-oxygen mixture is immediately diluted to low and therefore harmless concentrations by the fuel (H 2 ) after it has left the water.
  • a fuel cell with CO-containing gases can be operated very simply and inexpensively with minimal loss of power.
  • the integrated, simple electrolysis cell uses very little energy and is easy to control.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Fuel Cell (AREA)

Abstract

Die Erfindung bezieht sich auf eine Brennstoffzelle (1) mit einer Brennstoffversorgungsleitung (3) sowie mit einem Elektrolyseur (2) zur Einspeisung von Sauerstoff in die Brennstoffversorgungsleitung (3). Auf einfache und verhältnismäßig ungefährliche Weise können aufgrund des mittels des Elektrolyseurs eingespeisten Sauerstoffs Vergiftungen des Anodenkatalysators der Brennstoffzelle (1) vermieden werden.

Description

B e s c h r e i b u n g
Brennstoffzelle mit Sauerstoffzufuhr in den Brennstoff
Die Erfindung bezieht sich auf eine Brennstoffzelle.
Eine z. B. aus DE 19 505 913 bekannte Brennstoffzelle weist eine Kathode, einen Elektrolyten sowie eine Anode auf. Der Kathode wird ein Oxidationsmittel , z. E. Luft und der Anode wird ein Brennstoff, z. B. Wasserstoff zugeführt. An der Kathode bilden sich in Anwesenheit des Oxidationsmittels Sauerstoffionen . Die Sauerstoff - ionen passieren den Elektrolyten und rekombinieren auf der Anodenseite mit dem vom Brennstoff stammenden Was- serstoff zu Wasser. Mit der Rekombination werden Elektronen freigesetzt und so elektrische Energie erzeugt .
Es sind sogenannte PEM-Brennstoffzellen bekannt, bei denen protonenleitende Membranen als Elektrolyt und Platin als Anodenkatalysator vorgesehen sind. PEM- Brennstoffzellen werden im Vergleich zu sogenannten
SOFC-Brennstoffzellen bei geringen Temperaturen um die 100 °C betrieben.
Mehrere Brennstoffzellen werden in der Regel zur Erzie- iung großer Leistungen seriell miteinander zu einem so- genannten Brennstoffzellenstapel verbunden. Das -verbindende Element zweier Brennstoffzellen ist unter der Be- Zeichnung Interkonnektor oder aber bipolare Platte bekannt .
Wasserstoff kann durch Reformierung von Brennstoffen wie Methanol oder Methan gewonnen werden. Bei der Re- formierungsreaktion entstehen neben Wasserstoff und
Kohlendioxid auch Kohlenmonoxid (CO) in Konzentrationen von etwa 0,5 bis 2 Vol.-%.
Nachteilhaft werden Anodenkatalysatoren wie Platin schon bei geringsten Kohlenmonoxidkonzentrationen ver- giftet, d. h. es treten schon bei Kohlenmonoxidkonzentrationen im Wasserstoff oberhalb von etwa 10 ppm hohe Spannungs- und Leistungsverluste auf.
Es ist bekannt, zur Lösung des Problems im Anschluß an die Reformierung des Brenngases CO-Konzentrationen im Wasserstoff mittels nachgeschalteter Reinigungsstufen so gering wie möglich zu halten.
Nachteilhaft erfordert eine nachgeschaltete Reinigungsstufe einen zusätzlichen Reaktor und eine entsprechende Regeltechnik. Die Reinigung ist folglich aufwendig und teuer. Des weiteren lassen sich CO-Konzentrationen unter 100 ppm mit üblichen Reinigungsstufen praktisch nicht erreichen. Somit ist der CO-Gehait trotz Reinigungsstufe zu hoch.
Es ist ferner bekannt, zur Lösung des Problems CO-resi- scente Anodenkatalysatoren zu entwickeln und einzusetzen. Zu diesem Zweck wurden Platin-Ruπhenium-Legie- rungen als Katalysator verwendet. Allerdings tritt auch bei diesen verbesserten Katalysatoren noch ein deutlicher Spannungsverlust aufgrund von im Wasserstoff auftretenden CO auf. Ferner sind die Legierungen teuer und müssen aufwendig verarbeitet wer- den .
Nachteilhaft liegt daher der Leistungsverlust einer Membranbrennstoffzelle bei CO-Anteilen zwischen 10 ppm und 250 ppm, je nach Anodenkatalysator und abhängig von der Belastung, zwischen 20 und 90 %. Es ist bekannt, zur Lösung des Problems geringe Mengen Sauerstoff oder Luft zum Wasserstoffgas hinzuzugeben. Vergiftungseffekte aufgrund von CO lassen sich so komplett eliminieren. Bei Zusatz von etwa 1 % Sauerstoff zum Wasserstoff wurden die gleichen Leistungsdaten (Strom-Spannungs-Kurven) wie bei reinem, CO-freiem Wasserstoff erreicht.
Nachteilhaft ist bei der Zugabe von Sauerstoff oder Luft darauf zu achten, daß die auftretenden Sauerstoffkonzentrationen im Wasserstoff bei jedem H2-Durch- fluß, d. h. für jede Brennstoffzellen-Leistung unter der Zündgrenze liegen. Es müssen daher genau regelbare Durchflußregler (auch Mass-Flow-Controller genannt) oder spezielle Düsen etc. zur Gasdosierung installiert werden, die technisch aufwendig und teuer sind. Zudem muß eine hohe Betriebssicherheit geschaffen werden, um niemals Gasmischungen im zündfähigen Bereich herzustellen . Bei der Lufteindüsung tritt zusätzlich ein Inertgasproblem auf, da Stickstoff mit eingetragen wird. Die Zelle kann anodenseitig dann nicht mehr im "Dead-End"- Modus , das heißt mit geschlossenem Auslaß betrieben werden. Die daher erforderliche Austragung von Stickstoff bedingt gleichzeitig einen Austrag und Verlust von Wasserstoff.
Aufgabe der Erfindung ist die Schaffung einer Brennstoffzelle, bei der Katalysatorvergiftungen ohne die vorgenannten Nachteile vermieden werden.
Die Aufgabe wird durch eine Vorrichtung mit den Merkmalen des Hauptanspruchs gelöst. Vorteilhafte Ausgestaltungen ergeben sich aus den rückbezogenen Ansprüchen.
Die Vorrichtung gemäß Hauptanspruch weist eine Brenn- stoffzelle mit einer Brennstoffversorgungsleitung für die Brennstoffzelle sowie einen Elektrolyseur zur Einspeisung von Sauerstoff in die BrennstoffVersorgungsleitung auf. Der eingespeiste Sauerstoff ist frei von Stickstoff, so daß die mit dem Stickstoff verbundenen Probleme nicht mehr auftreten. Des weiteren kann die Sauerstoffeinspeisung mit verhältnismäßig einfachen Mitteln geregelt werden. Hierfür sind lediglich Mittel vorzusehen, die die Leistung des Elektrolyseurs, d. h. seine SauerstoffProduktion steuern. Die aus dem Stand der Technik bekannten genau regelbaren, aufwendigen Mittel zur Gasdosierung können daher entfallen.
Je größer die Stromproduktion der Brennstoffzelle ist, desto größer ist der Sauerstoffbedarf zur Vermeidung von Vergiftungen des Katalysators. Bei einer vorteilhaften Ausgestaltung der Erfindung sind daher Mittel vorgesehen, die die Leistung des Elektrolyseurs derart steuern, daß die Sauerstoffproduktion im Elektrolyseur abhängig von der Brennstoffzellen-Stromproduktion erfolgt. So wird auf einfache Weise zuverlässig sichergestellt, daß die Sauerstoffproduktion dem Sauerstoffbedarf entspricht.
In einer weiteren vorteilhaften Ausgestaltung der Er- findung sind Mittel zur Einleitung von in der Brennstoffzelle erzeugtem Produktwasser in den Elektrolyseur vorgesehen. Das in der Brennstof zelle erzeugte Wasser wird beispielsweise zunächst in einen Behälter eingespeist . Das zur Elektrolyse erforderliche Wasser wird aus diesem Behälter entnommen. Auf einfache und wirtschaftliche Weise wird so der Wasserbedarf des Elektrolyseurs durch das in der Brennstoffzelle erzeugte Produktwasser gedeckt .
Es zeigen:
Figur 1: Brennstoffzelle 1 mit Elektrolyseur 2 zur Einspeisung von Sauerstoff in die BrennstoffVersorgungsleitung 3 ;
Figur 2 : Elektrolyseur 2 zur Einspeisung von Sauerstoff in die Brennstoffversorgungsleitung 3.
Figur 1 zeigt eine Brennstoffzelle 1 mit einem Elektrolyseur 2 zur Einspeisung von Sauerstoff in die Brennstoffversorgungsleitung 3. Über die Brennstoffver- 5
sorgungsleitung 3 wird in die Brennstoffzelle 1 Wasserstoffreiches Gas als Brennstoff eingeleitet. Das Wasserstoffreiche Gas stammt aus einem nicht dargestellten Reformierungsreaktor . Es enthält daher geringe Mengen CO. Über eine Oxidationsmittelversorgungsleitung 4 wird Luft in die Brennstoffzelle 1 eingespeist.
Über eine Wasserversorgungsleitung 5 wird Wasser in den Elektrolyseur 2 eingeleitet. Die BrennstoffVersorgungsleitung 3 wird im oberen Bereich des Elektrolyseurs 2, d. h. oberhalb der Membran-Elektroden-Einheit des Elektrolyseurs 2 entlanggeleitet (vergleiche Figur 2) .
Der Elektrolyseur 2 produziert Sauerstoff und Wasserstoff. Der produzierte Sauerstoff sowie der produzierte Wasserstoff werden der Brennstoffversorgungsleitung 3 zugeführt. Auf diese Weise gelangt Sauerstoff in das Wasserstoffreiche Gas. Das mit Sauerstoff angereicherte, Wasserstoffreiche Gas tritt anschließend aus dem Elektrolyseur 2 aus und gelangt in die Brennstoffzelle 1. In der Brennstoffzelle 1 wird aus dem wasser- stoffreichen Gas als Brennstoff und Luft als Oxidati- onsmittel Strom erzeugt. Der Sauerstoffgehalt im Wasserstoffreichen Gas verhindert eine Katalysatorvergiftung .
Aus einer Wasserstoffabgasleitung 6 tritt unverbrauch- tes, Wasserstoffreiches Gas aus der Brennstoffzelle 1 aus. Aus der Produktwasser-Oxidationsmittei-Abgaslei- tung 7 tritt unverbrauchte Luft sowie Produktwasser aus der Brennstof zelle 1 aus. 5
7
Das Produktwasser wird einem nicht dargestellten Behalter zugeführt. Das hier zwischengelagerte Wasser wird der Wasserversorgungsleitung 5 entsprechend dem Wasserverbrauch im Elektrolyseur 2 zugeführt Die Entnahme von elektrischem Strom aus der Brennstoffzelle wird durch den Pfeil 8 angedeutet. Ein prozentual gleichbleibender Teil dieses Stromes dient dei Energieversorgung des Elektrolyseurs 2 Hierfür ist eine nicht dargestellte elektronische Ansteuerung vorgesehen Pfeil 9 symbolisiert die Energieversorgung für den
Elektrolyseur 2. Der Elektrolyseur 2 wird so proportional zur Leistung bzw. zum Strom der Brennstoffzelle 1 betrieben. Eine annähernd konstante Konzentration des Sauerstoffs im Wasserstoffreichen Gas liegt so auf em- fache Weise vor.
Der Elektrolyseur 2 kann alternativ mit konstanter Leistung betrieben werden Be Betrieb mit konstanter Leistung ist der Brennstoffzelle 1 eine konstante Menge an Wasserstoffreichem Gas zuzuführen Bei einem Bedarf von z. B 0,5 % Sauerstoff im wasserstoffreichen Gas werden etwa 2 % der elektrischen Leistung der Brennstoffzelle 1 verbraucht
Dei Elektrolyseur besteht vorzugsweise aus lediglich einer Zelle, d h. er weist nur eine Membran-Elektro den-Emheit auf Eine (großflacnige) Zelle reicht m dei Regel aus, um die erforderliche Sauerstoffmenge bereitzustellen Das Vorsehen von nur einer Zelle ist zu bevorzugen, da keine bipolare Platte erforderlich und somit der Aufbau einfach und kostengünstig ist.
Figur 2 verdeutlicht die Sauerstoffeinspeisung in die Brennstoffversorgungsleitung 3 der Brennstoffzelle 1. Der Elektrolyseur 2 weist eine Membran 10 mit beidseitig angebrachten Elektroden 11 auf. Diese Membran-Elektroden-Einheit 10, 11 befindet sich in einer behälter- förmigen Aufweitung 12 der Brennstoffversorgungsleitung 3. Die Wasserzuführung zum Elektrolyseur 2 wird über ein Rohr 13 bewerkstelligt. Rohr 13 ist mit dem nicht dargestellten Behälter, der mit Produktwaεser der Brennstoffzelle 1 gefüllt wird, verbunden. Die Membran- Elektroden-Einheit 10, 11 wird beidseitig von Stromverteilern 14 kontaktiert. Die Stromverteiler 14 sind über jeweilige Kontakte 15 und Kabeln 16 mit der äußeren
Stromquelle, nämlich mit der Brennstoffzelle 1 oder alternativ mit einer Batterie verbunden.
Die Membran 10 mit den Elektroden 11 und den Stromzuführmitteln 14, 15, 16 werden vollständig unter Wasser gehalten. Dadurch wird eine Zündgefahr für das entstehende Wasserstoff -Sauerstoff-Gemisch ausgeschlossen. Das Wasserstoff-Sauerstoff -Gemisch wird nach Austritt aus dem Wasser durch den Brennstoff (H2) sofort auf geringe und somit ungefährliche Konzentrationen verdünnt. Mit der Vorrichtung läßt sich eine Brennstof zelle mit CO-haltigen Gasen bei minimalem Leistungsverlust sehr einfach und kostengünstig betreiben. Die integrierte, einfach aufgebaute Elektrolysezelle verbraucht nur sehr wenig Energie und läßt sich leicht regeln.

Claims

P a t e n t a n s p r ü c h e
1. Brennstoffzelle (1) mit einer BrennstoffVersorgungsleitung (3) sowie mit einem Elektrolyseur (2) zur Einspeisung von Sauerstoff in die Brennstoffversor- gungsleitung (3) .
2. Brennstoffzelle (1) nach vornergehendem Anspruch mit Mitteln zur derartigen Steuerung der Leistung des Elektrolyseurs (2), daß die Sauerstoffproduktion im Elektrolyseur (2) abhangig von der Stromproduktion der Brennstoffzelle erfolgt.
3 Brennstoffzelle (1) nach einem der vorhergehenden Ansprüche mit Mitteln zur Einleitung von m der Brennstoffzelle (1) erzeugtem Produktwasser m den
Elektrolyseur (2) .
4. Brennstoffzelle (1) nach einem der vorhergehenden Ansprüche, bei der derartige Mittel vorgesehen sind, daß der Energiebedarf des Elektrolyseurs (2) durcn in der Brennstoffzelle (l erzeugtem Strom gedeckt wird .
PCT/DE1997/002635 1996-11-09 1997-11-06 Brennstoffzelle mit sauerstoffzufuhr in den brennstoff WO1998021775A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19646354.8 1996-11-09
DE19646354A DE19646354C1 (de) 1996-11-09 1996-11-09 Brennstoffzelle mit Sauerstoffzufuhr in den Brennstoff

Publications (1)

Publication Number Publication Date
WO1998021775A1 true WO1998021775A1 (de) 1998-05-22

Family

ID=7811194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1997/002635 WO1998021775A1 (de) 1996-11-09 1997-11-06 Brennstoffzelle mit sauerstoffzufuhr in den brennstoff

Country Status (2)

Country Link
DE (1) DE19646354C1 (de)
WO (1) WO1998021775A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2914504A1 (fr) * 2007-03-30 2008-10-03 Renault Sas Generateur electrochimique

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29823321U1 (de) 1998-04-07 1999-08-26 Novars Gesellschaft für neue Technologien mbH, 82343 Pöcking Kombination aus Elektrolyse- und Brennstoffzelle
ITMI20010459A1 (it) 2001-03-06 2002-09-06 Nuvera Fuel Cells Europ Srl Metodi per il funzionamento di celle a combustibile alimentate con gas contenenti idrogeno monossido di carbonio e raltivi dispositivi
DE10235859B4 (de) * 2002-08-05 2008-11-20 Forschungszentrum Jülich GmbH Korrosionsstabiler, gasdichter Medienanschluss für Niedertemperatur-Brennstoffzellen
CA2582865A1 (en) * 2004-10-05 2006-04-20 Ctp Hydrogen Corporation Conducting ceramics for electrochemical systems
WO2007126797A2 (en) * 2006-03-30 2007-11-08 Ctp Hydrogen Corporation Conducting ceramics for electrochemical systems
DE102007052148A1 (de) * 2007-10-31 2009-05-07 Robert Bosch Gmbh Verfahren zum Vermeiden von gasförmigen Verunreinigungseinschlüssen in mindestens einem Gasraum einer Brennstoffzelle während einer Stillstandszeit und Brennstoffzelle mit Mitteln zur Durchführung des Verfahrens
DE102017204730A1 (de) * 2017-03-21 2018-09-27 Robert Bosch Gmbh Brennstoffzellensystem und ein Verfahren zum Betrieb eines Brennstoffzellensystems

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1326570A (fr) * 1962-03-30 1963-05-10 Electro Chimie Soc D Procédé pour diminuer la consommation d'énergie dans une opération électrochimique
JPS5250545A (en) * 1975-10-20 1977-04-22 Sanyo Electric Co Oxygen hydrogen fuel cell
US4657829A (en) * 1982-12-27 1987-04-14 United Technologies Corporation Fuel cell power supply with oxidant and fuel gas switching
US4910099A (en) * 1988-12-05 1990-03-20 The United States Of America As Represented By The United States Department Of Energy Preventing CO poisoning in fuel cells
US4988580A (en) * 1988-10-26 1991-01-29 Toyo Engineering Corporation Fuel cell power generating system
JPH03203165A (ja) * 1989-12-28 1991-09-04 Mitsubishi Heavy Ind Ltd 固体高分子電解質型燃料電池装置と発電方法
GB2272430A (en) * 1992-11-11 1994-05-18 Vickers Shipbuilding & Eng Processing of fuel gases, in particular for fuel cells and apparatus therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316747A (en) * 1992-10-09 1994-05-31 Ballard Power Systems Inc. Method and apparatus for the selective oxidation of carbon monoxide in a hydrogen-containing gas mixture
DE4408962C2 (de) * 1994-03-16 1998-01-22 Daimler Benz Ag Verfahren zur Kohlenmonoxidentfernung aus einem Methanol/Wasserdampf-Reformierungsprozeßgas und dieses verwendende Vorrichtung
EP0718904A1 (de) * 1994-12-22 1996-06-26 Siemens Aktiengesellschaft Brennstoffzellensystem

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1326570A (fr) * 1962-03-30 1963-05-10 Electro Chimie Soc D Procédé pour diminuer la consommation d'énergie dans une opération électrochimique
JPS5250545A (en) * 1975-10-20 1977-04-22 Sanyo Electric Co Oxygen hydrogen fuel cell
US4657829A (en) * 1982-12-27 1987-04-14 United Technologies Corporation Fuel cell power supply with oxidant and fuel gas switching
US4988580A (en) * 1988-10-26 1991-01-29 Toyo Engineering Corporation Fuel cell power generating system
US4910099A (en) * 1988-12-05 1990-03-20 The United States Of America As Represented By The United States Department Of Energy Preventing CO poisoning in fuel cells
JPH03203165A (ja) * 1989-12-28 1991-09-04 Mitsubishi Heavy Ind Ltd 固体高分子電解質型燃料電池装置と発電方法
GB2272430A (en) * 1992-11-11 1994-05-18 Vickers Shipbuilding & Eng Processing of fuel gases, in particular for fuel cells and apparatus therefor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 7722, Derwent World Patents Index; Class L03, AN 77-39076Y, XP002062408 *
PATENT ABSTRACTS OF JAPAN vol. 015, no. 470 (E - 1139) 28 November 1991 (1991-11-28) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2914504A1 (fr) * 2007-03-30 2008-10-03 Renault Sas Generateur electrochimique

Also Published As

Publication number Publication date
DE19646354C1 (de) 1998-06-18

Similar Documents

Publication Publication Date Title
EP0596366B1 (de) Verfahren und Einrichtung zur Wasser- und/oder Inertgasentsorgung eines Brennstoffzellenblocks
DE69622747T2 (de) Vorrichtung zur verringerung des reaktandenübertritts in einer elektrochemischen brennstoffzelle
DE69526481T2 (de) Brennstoffzellengenerator mit Kontroll- und Messystem für den Kohlenmonoxidgehalt im Brennstoffgas
EP1194971A2 (de) Brennstoffzellen-system und brennstoffzelle für derartiges system
DE10115336A1 (de) Brennstoffzellensystem sowie Verfahren zum Betrieb eines Brennstoffzellensystems
WO1997040542A1 (de) Vorrichtung und verfahren zur kombinierten reinigung und kompression von co-haltigem wasserstoff sowie ihre verwendung in brennstoffzellenanlagen
EP1082769B1 (de) Elektrode mit für ein fluid durchgängigen poren und brennstoffzelle
EP0596367A1 (de) Brennstoffzellenblock und Verfahren zur Einstellung der Inertgasabfuhr aus dem Brennstoffzellenblock
DE102006007077A1 (de) Verfahren zum Betreiben einer Brennstoffzelle
DE19646354C1 (de) Brennstoffzelle mit Sauerstoffzufuhr in den Brennstoff
EP1256142B1 (de) Alkalische direkt-methanol brennstoffzelle
DE112017003988T5 (de) Wasserstoffverarbeitungsvorrichtung
DE10161282A1 (de) Kohlenmonoxid-Filter
DE10163539A1 (de) Steuerung der Zuführung von Oxidationsmittel
DE19652341C2 (de) Verfahren zur Aufbereitung von Brennstoff für Brennstoffzellen sowie zur Durchführung des Verfahrens geeignete Brennstoffzelle
DE112006002510B4 (de) Brennstoffzelle
DE29802444U1 (de) Hochtemperatur-Brennstoffzelle und Hochtemperatur-Brennstoffzellenstapel
DE102015208541A1 (de) Verfahren zur Regenerierung einer Brennstoffzelle und Brennstoffzellensystem
DE102011009958B4 (de) Brennstoffzellensystem mit reduzierter Kohlenstoffkorrosion sowie Verfahren zum Betreiben eines Brennstoffzellensystems
DE102007024162A1 (de) Brennstoffzellenvorrichtung
DE19707384C2 (de) Elektrochemischer Methanol-Reformer
DE10035426C2 (de) Hochtemperatur-Zelle für die Erzeugung von Synthesegas und freiem Sauerstoff
AT412045B (de) Vorrichtung und ein verfahren zur verbesserung des wirkungsgrades einer brennstoffzelle
DE10221147A1 (de) Verfahren zum Betreiben eines wenigstens eine Brennstoffzelle aufweisenden Brennstoffzellensystems
WO2001065620A2 (de) Brennstoffzelle und verfahren zur aufbereitung des prozessgases für eine brennstoffzelle

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA