WO1998020208A1 - Procede de dragage et appareil de dragage - Google Patents

Procede de dragage et appareil de dragage Download PDF

Info

Publication number
WO1998020208A1
WO1998020208A1 PCT/JP1997/003889 JP9703889W WO9820208A1 WO 1998020208 A1 WO1998020208 A1 WO 1998020208A1 JP 9703889 W JP9703889 W JP 9703889W WO 9820208 A1 WO9820208 A1 WO 9820208A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
suction pipe
case
suction
float
Prior art date
Application number
PCT/JP1997/003889
Other languages
English (en)
French (fr)
Inventor
Senji Oikawa
Original Assignee
Moburon Design Office Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moburon Design Office Co., Ltd. filed Critical Moburon Design Office Co., Ltd.
Priority to AU47242/97A priority Critical patent/AU4724297A/en
Priority to US09/297,325 priority patent/US6189243B1/en
Publication of WO1998020208A1 publication Critical patent/WO1998020208A1/ja

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • E02F3/8833Floating installations
    • E02F3/8841Floating installations wherein at least a part of the soil-shifting equipment is mounted on a ladder or boom
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • E02F3/90Component parts, e.g. arrangement or adaptation of pumps
    • E02F3/905Manipulating or supporting suction pipes or ladders; Mechanical supports or floaters therefor; pipe joints for suction pipes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • E02F3/90Component parts, e.g. arrangement or adaptation of pumps
    • E02F3/907Measuring or control devices, e.g. control units, detection means or sensors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • E02F3/90Component parts, e.g. arrangement or adaptation of pumps
    • E02F3/92Digging elements, e.g. suction heads
    • E02F3/9243Passive suction heads with no mechanical cutting means
    • E02F3/925Passive suction heads with no mechanical cutting means with jets
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • E02F3/90Component parts, e.g. arrangement or adaptation of pumps
    • E02F3/92Digging elements, e.g. suction heads
    • E02F3/9256Active suction heads; Suction heads with cutting elements, i.e. the cutting elements are mounted within the housing of the suction head
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F7/00Equipment for conveying or separating excavated material
    • E02F7/005Equipment for conveying or separating excavated material conveying material from the underwater bottom
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F7/00Equipment for conveying or separating excavated material
    • E02F7/02Conveying equipment mounted on a dredger
    • E02F7/023Conveying equipment mounted on a dredger mounted on a floating dredger

Definitions

  • the present invention relates to a dredging method and apparatus for efficiently dredging a large amount of sediment deposited in a dam, a lake or a harbor.
  • dams Some of the current dams have more than 80% of the total storage capacity sediment deposited, and many of the dams have been rapidly accumulating sediment and functioning as dams. Is declining.
  • a sand pump or the use of the siphon principle poses a problem in transporting a multiphase fluid (a fluid in which earth and sand are mixed).
  • a multiphase fluid a fluid in which earth and sand are mixed.
  • the transfer of a multiphase fluid has a very high resistance in the conduit.
  • Energy consumption for transportation increases.
  • the size of gravel particles in sediment that can be transported is usually limited to around 5 mm, making it difficult to dredge sediment containing gravel with a larger particle size.
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to efficiently suck up a large amount of sediment deposited on the water bottom, convey energy-saving and transport turbid water. It is an object of the present invention to provide a dredging method and a dredging device capable of performing dredging while preventing the spread of water.
  • the method of the present invention comprises: a case that is buried in water by communicating with the atmosphere; a suction pipe connected to the case and having a suction portion at a lower end; and a drain pump that discharges water from the case.
  • the water in the case is discharged by the drain pump to form a space in the case, and a water level difference is formed between the water surface in the case and the external water surface, and the water level is formed. It is characterized in that earth and sand are sucked in from the suction pipe by utilizing a water flow generated by the difference.
  • the suction pipe sucks earth and sand into the case, and that dredging is performed while the earth and sand accumulated in the case are carried out to the outside by a belt conveyor that leads into the case.
  • a container is provided detachably in the middle of the suction pipe, and that dredging is performed so that earth and sand are sucked into the container.
  • a dredging device comprises: a case connected to the atmosphere and buried in water; a suction pipe connected to the case, the suction pipe having a suction portion at a lower end; It is characterized by having a drainage pump that forms a water level difference between the inner water surface and the outer water surface.
  • a pocket portion is formed at a lower portion of the case, the suction pipe is connected to the pocket portion, and the sediment flowing from the suction pipe is laterally inserted into the pocket portion. It is preferable to provide a guide plate for guiding.
  • the case is movably provided on the upper end side of the dredger, and the case is provided with a first float which communicates with the atmosphere. It is preferable to provide a first water supply / drainage pump for adjusting the buoyancy by supplying / discharging water to / from the float.
  • a second float communicating with the atmosphere is provided in the suction pipe, and a second water supply / drainage pump is provided for supplying and discharging water to the second float to adjust buoyancy.
  • a container into which earth and sand flows from the suction pipe may be provided detachably in the middle of the suction pipe.
  • a dome-shaped cover for covering the suction portion to a lower end of the suction pipe.
  • the suction pipe covers the lower part of the suction part, It is preferable to attach a water bottom contact plate having holes.
  • the water bottom contact plate may be rotatably provided around a suction line of the suction pipe, and a motor for rotating the water bottom contact plate may be provided.
  • FIG. 1 is a schematic side view illustrating the first embodiment.
  • FIG. 2 shows a plan view of the first embodiment.
  • Figure 3 is a bottom view of the cover.
  • FIG. 4 is an explanatory diagram of the second embodiment from a schematic side view.
  • FIG. 5 is an explanatory sectional view of a portion of the cover and the bottom contact plate.
  • Figure 6 is a schematic illustration of the container.
  • FIG. 7 is an explanatory sectional view showing another embodiment of the projection.
  • FIG. 8 is an explanatory view showing another embodiment of the water bottom contact plate.
  • FIG. 1, FIG. 2, and FIG. 3 show a first embodiment.
  • the hull 19 shows the hull of the dredger. As shown in FIG. 2, the hull 19 is formed so that its plan shape is substantially U-shaped. The screen 20 is provided at each rear end of the U-shaped hull 19 so that the hull 19 can easily go straight and turn left and right.
  • Reference numeral 2 denotes a case, which has a cylindrical shape with an upper end opened from the upper part to the middle part, and is formed in a pocket part 21 having a closed lower end and a larger sectional area than the middle part. Case 2 is located in the U-shaped recess of the hull 19, and near its upper end, is supported by a shaft 1 mounted on the hull 19 in the horizontal direction. Direction).
  • Reference numeral 9 denotes an unloading conveyor, which is disposed inside the case 2 along the case 2, the lower side is located in the pocket 21, and the upper end faces the upper opening of the case 2. Sediment containing gravel in Part 21 (hereinafter referred to as sediment) can be carried out to the container 36 provided on the hull 19.
  • the conveyor 9 can be a belt conveyor or the like, and is not particularly limited. However, a bucket-type conveyor is desirably used so as to reliably carry out the earth and sand filled with water on the inclined conveying path.
  • Reference numeral 12 denotes a drainage pump for water level control, which is disposed on the hull 19 and drains the water in the bottle part 21 through a drain pipe 12a extending into the bottle part 21. Drainable.
  • the space 24 is formed by discharging the water in the pocket 21. The wastewater flows into the sedimentation tank 18.
  • a first float 10 is provided at the lower end of case 2.
  • the upper part of the float 10 and the upper part of the bracket part 21 communicate with each other through a communication pipe 14, and therefore, the float 10 communicates with the atmosphere.
  • Case 13 is a water supply / drainage pump that supplies and discharges water into the float 10 through the pipe 22 and adjusts the amount of water in the float 10 to control the flow.
  • the buoyancy acting on Case 10 and, therefore, Case 2 can be adjusted. This allows Case 2 to be immersed in the water at an arbitrary angle of inclination, and it is possible to perform dredging of sediment on shallow and deep bottoms.
  • Reference numeral 44 denotes a hanging rope for hanging the case 2.
  • the hanging rope 4 4 can be extended from the hull 19 by a required length.
  • Case 2 is inclined backward with respect to the direction of movement of the hull 19. This does not prevent the hull 19 from moving forward.
  • Reference numeral 3 denotes a suction pipe, the upper end of which communicates with the upper side of the defocused portion 21 and the lower end of which faces the water bottom.
  • Case 2 This causes Case 2 to communicate with the water.
  • a water level difference occurs between the water surface and the water surface in the pocket portion 21, and according to the principle of siphon. Then, the soil at the bottom of the water flows into the pocket portion 21 together with the water through the suction pipe 3.
  • the amount of water discharged by the drain pump 12 will be larger than the amount of soil and the like flowing into the pocket 21 through the suction pipe 3. It is set as follows.
  • Reference numeral 28 denotes a water level sensing switch, which includes, for example, a float with a magnet and two lead switches (not shown) which are turned on and off by the magnet.
  • the drain pump 12 is activated when the upper switch is turned on when the float rises, and the drain pump 12 is activated when the lower switch is turned on when the float is lowered. Control to stop.
  • a portion where the suction pipe 3 opens into the bracket 21 is provided with a shield 29 extending substantially horizontally over the opening 31 or a guide plate which is bent so that the tip side is slightly lowered from the horizontal position.
  • 3 9 is provided, so that the sediment flowing from the suction pipe 3 is guided in a substantially horizontal direction by the shield 29 or the inner plate 39, during which the soil with a large specific gravity is accumulated in the lower accumulation section 3 7 And set on conveyor 9 9 to the outside container 36.
  • the drain pipe 12a has an opening at the tip of the shield 29 or the guide plate 39 so that water is drained from the portion above the guide plate 39.
  • the suction pipe 3 can be bent by providing a bellows part 16 in the middle so that the tip is close to the water bottom.
  • Reference numeral 6 denotes a second float, which is attached to the suction pipe 3.
  • the float 6 communicates with the pocket 21 through a communication pipe 6a.
  • Float 6 is therefore also in communication with the atmosphere.
  • Water is supplied and drained into the float 6 by the water supply / drain pump 13, and the buoyancy acting on the float 6 and thus on the suction pipe 3 is adjusted.
  • the water supply / drain pump 13 supplies water to and drains from the first float 10 as well, but a pump for supplying and discharging water to and from the second float 6 may be provided separately.
  • the angle 25 indicates a range in which the suction pipe 3 is rotated by the float 6 as an example.
  • a substantially dome-shaped cover 4 is attached to the lower end of the suction pipe 3 so as to surround the suction port 7.
  • the cover 4 prevents the suction port 7 of the suction pipe 3 from being buried in the water bottom more than necessary.
  • the cover 4 is formed using a flexible material such as rubber, and a bellows portion 33 is provided so that the lower edge 38 is in contact with the bottom of the water.
  • a cut 4 3 a is formed on the rear side in the traveling direction to form a tongue piece 4 3, and this tongue piece 4 3 contacts the depression formed after dredging. Water flows into the cover 4 through the gap between the lower part and the water bottom.
  • a filter 41 having a star-shaped opening 42 is attached to a suction port 7 at the lower end of a suction pipe 3 protruding into the cover 4.
  • the filter 41 can quantify the suction amount and effectively prevent the suction port 7 from being clogged with debris, cloth, string, or the like.
  • An electromagnetic solenoid 5 is mounted on the suction pipe 3 near the cover 4, and the electromagnetic solenoid 5 is driven to protrude so that the excavation rest 23 allows the earth and sand 30 at the bottom of the water to be excavated. Has become. This separates the debris layer and makes it easier to suck through the suction port 7.
  • Reference numeral 8 denotes a circulating water discharge pipe whose tip projects into the cover 4 so that the supernatant water from the wastewater flowing into the sedimentation tank 18 by the pump 11 through the pipe 8a is discharged toward the bottom of the water. Has become. Since high-pressure water is discharged to the area surrounded by the cover 4, the high-pressure water can also separate the debris layer at the bottom of the water well and increase the dredging efficiency. Recycling the supernatant water also has the effect of reducing turbid water emissions.
  • Reference numeral 3 5 denotes a water volume adjusting hole opened at an appropriate position of the suction pipe 3, and the size of the opening can be adjusted by opening and closing a lid (not shown), whereby water flowing into the suction pipe 3 is formed. The amount of water can be adjusted to prevent tube clogging.
  • suction pipes 3 are attached to one case 2 as shown in FIG. This enables a wide range of dredging. Even if an abnormality occurs in one suction pipe 3, dredging work can be continued by another suction pipe 3 while the suction pipe 3 is being pulled up for inspection and repair. Needless to say, the number of suction pipes 3 is not limited.
  • the dredging work is started from drainage of the pocket 21. Water is sucked into case 2 from suction pipe 3 at the same time as drainage. Since the amount of drainage is larger than the amount of water, a space is gradually created in case 2 and a predetermined water level is secured in the pocket 21. A strong suction force acts due to the water level difference between the water surface and the water surface in the pocket portion 21, and the sediment at the bottom of the water is continuously sucked into the pocket portion 21 together with the water, and particles such as sand and gravel are removed. Large objects are guided laterally by shields 29 and guide plates 39, settle down, and are transported to containers 36 by conveyor 9.
  • the strong suction force (siphon principle) due to the difference in water level can guide the sediment together with the water into the pocket portion 21. This flow distance is short. In addition, a considerable amount of sediment and water is separated in the pocket portion 21 and the separated water and sediment are separately drained. Since the sediment is carried out, the fluid resistance value is reduced and energy loss is reduced. There is an advantage that can be reduced. The greater the water level difference, the greater the suction force can be obtained, and the more efficient dredging can be performed.
  • the inside of the pocket 21 is a low-pressure part, and the deeper the sink, the greater the difference in water level, the better the suction effect of sediment, and the higher the flow velocity. Becomes longer. Therefore, the length is adjusted by changing the length of the shield 29 and the angle of the guide plate 39 in accordance with the flow velocity.
  • stone particles are about 1 Omm ( ⁇ 3 mm) and flow velocity is 3 m / sec. Sediment of up to mm was separable. At 110 cm, sediment of about lmm was able to be separated. Particles smaller than that floated and flowed horizontally as turbid water.
  • the inclination angle of the case 2 and the inclination angle of the suction pipe 3 can be adjusted by adjusting the amount of water in the first float 10 and the second float 6 to adjust the buoyancy.
  • the concentration of the multiphase fluid (the amount of sediment relative to water) can be made fairly uniform, and the suction pipe 3 is clogged and a large amount of turbid water is generated. Emissions can be prevented.
  • the debris layer can be separated well and the discharge of turbid water to the outside can be reduced accordingly. .
  • Numeral 102 denotes a case, which is attached to the hull 101 so as to be submerged under the water except for the upper part.
  • the case 2 is formed in a cylindrical shape whose upper part is open, and has a large-diameter bracket part 102 a at the lower part.
  • Reference numeral 109 denotes a container formed in a double structure, which is located below the hull 101 via the support body 109a and attached to the hull 101 so as to be submerged.
  • the support body 109 a and the container 109 are attached to each other by a fixing means such as a bolt.
  • the inner room of container 109 is divided into room A and room B by partition wall 109b.
  • a joining wall 109 c is formed at the opening end of the inner chamber.
  • Reference numeral 105 denotes a suction pipe, one end of which communicates with the pocket part 102a, and the other end of which opens into water as a suction port 106.
  • the middle part of the suction pipe 105 opens wide downward, and the opening wall is provided with an introduction wall 105a separately or separately.
  • Reference numeral 125 denotes a water flow guide plate.
  • the suction pipe 105 on the side where the suction port 106 is present opens above the container 109, and the partition wall 1 extends from the opening 104. It is provided so that the tip side is slightly lowered over the position above 09b.
  • a plurality of suction pipes 105 on the side where the suction port 106 is present can be connected to the introduction wall 105a so that a wide range of dredging can be performed.
  • the number of the suction pipes 105 is not particularly limited. Since the vertical movement of the container 109 adversely affects the suction pipe 105, a part of the suction pipe 105 is formed in a flexible part 112 such as a bellows. It is better to absorb the shaking.
  • a drain pump 124 drains water in the case 102 by a drain pipe 117 extending through the cylindrical portion of the case 102. The wastewater flows into the sedimentation tank 1 2 1.
  • the large or heavy gravel, etc. is guided by the water flow guide plate 125 and settles in the room A on the near side, and the small or lightweight gravel, etc. Settles in room B at the back.
  • the water containing fine sand flows into the case 102 from the suction pipe 105, flows into the sedimentation tank 121 by the drainage pump 124, and becomes fine sand in the sedimentation tank 121. Will settle.
  • Reference numeral 120 denotes a water level sensing switch similar to the above, which detects the water level in the case 102, controls the drainage pump 124, and keeps the water level in the case 102 substantially constant. I do.
  • the outer chamber of the double-layered container 109 is formed as a float 119.
  • Float 1 19 communicates with the atmosphere through pipe 12 9.
  • Reference numeral 114 denotes a water supply / drainage pump which supplies and discharges water to the float 119 to adjust the buoyancy of the float 119. In other words, the buoyancy is adjusted by supplying and draining the water in the float 109 according to the weight of the gravel deposited in Room A and Room B.
  • a dome-shaped cover 115 is attached to cover the upper part of the suction port 106 of the suction pipe 105 in the same manner as described above. That is, the suction pipe 105 extends through the top of the dome-shaped cover 115, and the suction port 106 opens to the bottom of the water.
  • Reference numeral 116 denotes a water bottom contact plate, which is attached to the suction pipe 105 via the arm 108 so as to be perpendicular to the suction pipe 105 at a slight distance from the suction port 106.
  • Can be One end of the arm 108 is fixed to a ring 106 b through which the suction pipe 105 is inserted, and the ring 106 b is fixed to the suction pipe 105 by a set screw (not shown) or the like. . By loosening the set screw and moving the ring 106a on the suction pipe 105, the distance between the water bottom contact plate 1116 and the suction port 106 can be adjusted.
  • a suction hole 1 18 is opened at a position corresponding to the suction port 106 of the water bottom contact plate 1 16. Sediment mainly flows into the suction port 110 through the suction hole 118, and water containing sand flows into the suction port 106 through a gap between the upper surface of the water bottom contact plate 116 and the lower end of the suction pipe 105. Therefore, by adjusting the gap between the water bottom contact plate 1 16 and the suction port 106, the mixing ratio of water and earth and sand can be adjusted.
  • the end 1 126 of the bottom contact plate 1 16 is bent upward so that it can move smoothly on the bottom.
  • the outer diameter of the bottom contact plate 1 16 is set to be smaller than the diameter of the lower end of the cover 1 15, and there is a gap between the bottom end of the cover 1 15 and the outer end ⁇ of the bottom contact plate 1 16. Is formed.
  • a plurality of protrusions 1 2 3 having a sharp tip are formed on the lower surface of the water bottom contact plate 1 16.
  • a vibration device 122 is disposed on the upper surface side of the water bottom contact plate 116. When the vibration device 1 2 2 is driven, the water bottom contact plate 1 16 vibrates, and this vibration is transmitted to the protrusion 1 2 3. Is excavated, and the excavated sediment flows into the suction holes 1 18.
  • a small gap is created in the earth and sand fixed by the vibrating protrusions 1 2 and 3 to allow water to penetrate.
  • the earth and sand float by the buoyancy and flow of water.
  • the physical action of the vibration of the projections 123 has the advantage that the generation of turbid water can be minimized.
  • the water that has flowed into the sedimentation tank 1 2 1 is discharged into the cover 1 1 5 by the discharge pipe 1 07 after the sand or the like contained in the water is settled in the sedimentation tank 1 2 1. Further, the discharged water is discharged toward the water bottom from a gap between the lower end of the cover 115 and the outer end of the water bottom contact plate 116.
  • the soil excavated by the projections 123 is separated from the water bottom by the water discharged to the water bottom, and easily flows into the suction holes 118. In this way, once the drained turbid water is discharged to the bottom of the water and reused for suction of sediment, it is possible to prevent discharge of turbid water to the outside, which is an effective measure against turbid water. is there.
  • a float 128 to the suction pipe 105 on the side of the suction port 106.
  • the float 128 is connected to the atmosphere by a pipe 129, and water is supplied and discharged through a supply and discharge pipe 130 by a water supply and drain pump 127.
  • the bottom pressure of the contact plate 1 16 can be set flexibly.
  • Reference numeral 110 denotes a suspension rope, which suspends the suction pipe 105 on the side of the water bottom contact plate 116 so that the water bottom contact plate 116 can be held in a predetermined position or lifted. ing.
  • the portions denoted by reference numerals 112 and 113 are flexible portions such as a bellows portion, and the suction tube 105 and the discharge tube 107 can be bent by these portions.
  • the discharge pipe 107, the suction pipe 105, the pipe 122, and the supply / drain pipe 130 have appropriate lengths and can be extended according to the height of the water bottom.
  • the second embodiment is configured as described above.
  • the dredging operation is started by lowering the side of the bottom contact plate 1 16 so as to contact the bottom and driving the drain pump 124.
  • the water level in the case 102 gradually decreases and is controlled by the water level sensing switch 120 so as to reach a predetermined water level. It is the same as in the previous embodiment that earth and sand and the like at the bottom of the water are strongly sucked from the suction port 106 by the siphon principle based on the difference in water level between the water surface and the case 102.
  • the sediment is excavated by the protrusions 123, and is efficiently separated from the water bottom by the water discharged from the discharge pipe 107, and is sucked into the suction port 106.
  • the sediment containing the water sucked from the suction port 106 flows into the container 109 via a relatively short flow distance.
  • the sediment that has flowed in the horizontal direction from the opening 104 of the suction pipe 105 is guided to the water flow guide plate 125, and the relatively large particles of gravel are collected in the chamber.
  • Settles in A and small particles of sand settle in Room B.
  • Water containing finer sand flows into the pocket section 102a through the suction pipe 105 from the upper part of the chamber B, and is settled in the sedimentation tank 1 by the drainage pump 122. It flows into 2 1.
  • Fine sand settles down in the settling tank 1 2 1, and water is discharged from the discharge pipe 1 07 into the cover 1 1 5.
  • a dredger In the case of dredging in shallow water, etc., a dredger is moored offshore, the case 102 is submerged at a deep place to obtain the required water level difference, and the suction pipe 105 with the suction port 106 is placed in the shallow water. It can be extended to dredge the shallow water.
  • FIG. 7 shows a further preferred embodiment of the projections 123.
  • the protrusion 1 23 is formed on the bottom contact plate 1 16 so that the projection 1 2 3 is opened on the upper surface of the bottom contact plate 1 16, and the lower end of the bottom 1 2 3 a It consists of a sharp-edged head 1 2 3b attached to the head. At the connection between the cylinder 1 23 a and the head 1 2 3 b, an outlet 1 2 3 c that opens downward is provided.
  • the water discharged into the cover 115 is also discharged from the protrusions 123 toward the bottom of the water, so that the sediment and the like can be more effectively separated.
  • the ejection angle of the water from the injection holes 1 2 3 c are cylindrical portion 1 2 3 to the axis of a 4 5 0 within the rather is preferable to an acute angle, thereby the water toward the water bottom momentum It can be discharged well.
  • the maximum diameter of the head 123b is preferably larger than the diameter of the cylinder 123a so as to prevent clogging of the outlet 123c.
  • FIG. 8 shows still another embodiment of the water bottom contact plate 1 16.
  • the water bottom contact plate 1 16 is provided at the lower end of the suction pipe 105 so as to be rotatable about the axis of the suction pipe 105.
  • Numeral 1 2 3 is a projection provided on the outer surface of the water bottom contact plate 1 16.
  • An internal gear 1 26 a is provided on the inner peripheral surface of the terminal 1 26 that rises above the water bottom contact plate 1 16. Also, a motor 140 is attached to the suction pipe 105 via a mounting part 141, and a gear 144 provided on the rotating shaft of the motor 140 is engaged with the internal gear 126a. Thereby, the bottom contact plate 1 16 is configured to rotate.
  • the water bottom contact plate 1 16 is turned over, whereby the water bottom is positively excavated by the projections 123 and the dredging capacity can be further enhanced. It is not necessary to provide the vibration device 122.

Description

明 細 書 発明の名称
浚渫方法および浚渫装置 技術分野
本発明はダム、 湖沼あるいは港湾に堆積した大量の土砂を効率よ く浚渫する浚渫方法および装置に関する。 背景技術
現状のダムの中には、 全貯水容量のう ち土砂が 8 0 %以上堆積し ているものもあり、 また数多 く のダムも急速に土砂の堆積が進行し ダムと しての機能が減退しつつある。
そのため、 土砂を取り除く有効な浚渫方法が求められている。 従来の浚渫方法には、 デッパー、 ク ラブ、 バケ ツ ト、 ポンプを使 用する もの、 あるいはサイ フォ ン原理を利用するもの等が知られて おり、 砂礫の堆積状況に応じて適宜な方法が選択される。 技術的課題
浚渫方法は上記のよう に種々あるが、 いずれも次のよう な課題を 抱えている。
すなわち、 サイ フ ォ ン原理を利用する もの以外はいずれも大きな 動力を必要とする機械力に依存する方法であり、 装置が大型化し、 多大のコス トを要する。 また浚渫時に発生する濁水処理の対策もな されていない。
またサ ン ドポ ンプを使用する もの、 サイ フォ ン原理を利用する も のでは、 混相流体 (土砂と液体が混合した流体) の搬送が問題とな る。 すなわち、 混相流体の搬送は導管内の抵抗が非常に大き く なり 搬送のためのエネルギー消費量が大き く なる。 このため、 搬送でき る土砂中の砂礫の粒子の大きさ も普通 5 m m前後に限定され、 それ 以上の粒径の砂礫を含む土砂の浚渫が困難となる。
また、 サイ フ ォ ン原理を利用する場合、 ダム外に放出される水が 大量 ( 8 0 %前後) になる課題があり、 濁水も処理されぬまま放出 される。 サイ フ ォ ン原理を利用する場合、 水と土砂との混合比率が 注意されねばならない点である。 すなわち、 吸い込み管が水底に接 触しすぎる と土砂の混合比が急激に上がり、 流速が落ちて管閉鎖を 起こす。 また吸い込み管が水底から離れすぎる と水のみを吸い上げ て浚渫効率が急激に落ち、 濁水が大量に発生する。 このためサイ フ ォ ン原理を利用する場合、 吸い込み口と水底の間隔を一定に保持す る必要があるが、 現在技術的に解決されていない。 発明の開示
そ こで、 本発明は上記課題を解決すべ く なされたものであり、 そ の目的とする ところは、 水底に堆積している土砂を効率よ く 大量に 吸い上げ、 省エネルギー化して搬送し、 かつ濁水の拡散を防いで浚 渫が行える浚渫方法および浚渫装置を提供するにある。
すなわち、 本発明方法は、 大気に連通して水中に埋没されるケー スと、 該ケースに接続され、 下端に吸い込み部を有する吸い込み管 と、 前記ケース内の水を排出する排水ポ ンプとを具備する浚渫装置 を用い、 前記排水ポ ンプにより前記ケース内の水を排出してケース 内に空間を形成し、 該ケース内の水面と外部水面との間に水位差を 形成して、 該水位差により発生する水流を利用し、 前記吸い込み管 から土砂を吸い込むこ とを特徴と している。
前記吸い込み管により土砂を前記ケース内に吸い込み、 該ケース 内に堆積する土砂をケース内に通じるベル ト コ ンベアにより外部に 搬出しつつ浚渫を行う と好適である。 あるいは、 前記吸い込み管中途部にコ ンテナーを取り外し自在に 設けて、 該コ ンテナ一内に土砂を吸い込むよう にして浚渫を行う と 好適である。
また本発明に係る浚渫装置は、 大気に連通して水中に埋没される ケース と、 該ケースに接続され、 下端に吸い込み部を有する吸い込 み管と、 前記ケース内の水を排出し、 ケース内の水面と外部水面と の間に水位差を形成する排水ポンプとを具備する こ とを特徴と して いる。
前記ケース内に堆積する土砂を排出すべ く 、 ケース内に通じるベ ル ト コ ンベアを設ける と好適である。
また、 前記ケースには、 下部にポケ ッ ト部を形成し、 前記吸い込 み管を該ポケ ッ ト部に接続し、 該ポケ ッ ト部内に、 吸い込み管から 流入される土砂を横方向に案内するガイ ド板を設ける と好適である さ らに前記ケースを、 上端側において浚渫船に画動自在に設け、 前記ケースに、 大気に連通する第 1 のフ ロー トを設け、 該第 1 のフ ロー トに水を給排して浮力を調節する第 1 の給排水ポンプを設ける と好適である。
また、 前記吸い込み管に大気に連通する第 2 のフロー トを設け、 該第 2 のフ ロー ト に水を給排して浮力を調節する第 2 の給排水ボ ン プを設ける と好適である。
あるいは、 前記吸い込み管中途部に、 吸い込み管から土砂が流入 されるコ ンテナ一を取り外し自在に設けてもよい。
この場合、 前記コ ンテナ一に大気に連通する第 3 のフ口一 トを設 け、 該第 3 のフ ロー ト に水を給排して浮力を調整する第 3 の給排水 ポンプを設けると好都合である。
また、 前記吸い込み管の下端に前記吸い込み部を覆う ドーム状の カバ一を取り付ける とよい。
さ らに、 前記吸い込み管に前記吸い込み部の下方を覆って、 吸い込 み孔を有する水底接触板を取り付ける と好適である。
この場合、 前記水底接触板下面に、 水底に食い込む杭状の突起を 設けると好都合である。
さ らにこの場合、 前記水底接触板を振動させる振動装置を設ける とよい。
あるいは、 前記水底接触板を吸い込み管の蚰線を中心と して回転 可能に設け、 該水底接触板を回転させるモータを設ける とよい。
さ らにまた、 前記ケースから前記排水ポ ンプにより排出される濁 水を貯留する沈殿槽を設ける と好都合である。
この場合、 前記沈殿槽に貯留される水を前記 ドーム内に噴出する 循環ポンプを設ける とよい。 図面の簡単な説明
図 1 は第 1 の実施例を示す概略的な側面からの説明図である。 図 2 は第 1 の実施例の平面図を示す。
図 3 はカバ一の底面図である。
図 4 は第 2 の実施例の概赂的な側面からの説明図である。
図 5 はカバーと水底接触板の部位の断面説明図である。
図 6 はコ ンテナーの概略的な説明図である。
図 7 は突起の他の実施例を示す断面説明図である。
図 8 は水底接触板の他の実施例を示す説明図である。 実施例
以下添付図面を参照して本発明の好適な実施例を説明するが、 本 発明はこの実施例に限定されないこ とはもちろんであり、 発明の精 神を逸脱しない範囲内で多 く の改変を施し得る ものであり、 これら 改変も本発明に属する ものである。
第 1 実施例 図 1 、 図 2、 図 3 は第 1 の実施例を示す。
1 9 は浚渫船の船体を示す。 船体 1 9 は図 2 に示すように、 平面 形状がほぼ U字状をなすよう に形成されている。 スク リ ユー 2 0 は U字状の船体 1 9 の各後端部に設けられていて、 船体 1 9 の直進、 左右の旋回が容易にできるよう になつている。
2 はケースであり、 上部から中途部に亙って、 上端が開放された 筒状をなし、 下端側が閉塞される と共に中途部より断面積の大きな ポケ ッ ト部 2 1 に形成されている。 ケース 2 は船体 1 9 の U字状の 窪み内に位置し、 その上端部近傍において、 船体 1 9 に横方向に設 けられた軸 1 に軸支され、 下端部側が矢印 2 6方向 (上下方向) に 円弧回動可能になっている。
9 は搬出用のコ ンベアであり、 ケース 2 内にケース 2 に沿って配 設され、 下部側がポケ ッ ト部 2 1 内に位置し、 上端側がケース 2 の 上端開口部に臨み、 ポケ ッ ト部 2 1 内の礫を舍む土砂 (以下土砂と いう ) を船体 1 9 に配設されたコ ンテナー 3 6 に搬出可能になって いる。 コ ンベア 9 はベル ト コ ンベアなどを用いる こ とができ、 特に 限定されないが、 傾斜搬路を水を舍む土砂を確実に搬出できるよう にバケ ツ ト式のコ ンベアが望ま しい。
1 2 は水位コ ン ト ロール用の排水ポ ンプであり、 船体 1 9上に配 設され、 ボケ ッ ト部 2 1 内に延びる排水管 1 2 a を通じてボケ ッ ト 部 2 1 内の水を排水可能になっている。 ポケ ッ ト部 2 1 内の水が排 出される こ とにより空間部 2 4が形成される。 排水は沈殿槽 1 8 内 に流入される。
ケース 2 の下端側には第 1 のフロー ト 1 0が設けられている。 フ ロー ト 1 0 の上部側とボケ ッ ト部 2 1 の上部とは連通管 1 4 を通じ て連通しており、 したがってフロー ト 1 0 は大気に連通している。
1 3 は給排水ポンプであり、 管 2 2 を通じてフロー ト 1 0 内に水 を給排し、 フ ロー ト 1 0 内の水量を調節するこ とによって、 フ ロー ト 1 0、 したがってケース 2 に作用する浮力を調節できるよう にな つている。 これによつて、 ケース 2 は任意の傾斜角度で水中に没す る こ とができ、 浅い水底、 深い水底の土砂の浚渫を行う こ とができ る。
なお 4 4 はケース 2 を吊って保持する吊り ロープである。 該吊り ロープ 4 4 は船体 1 9 から所要長さ繰り出し可能になっている。 ケース 2 は船体 1 9 の進行方向に対して後方に向けて傾斜する。 これにより船体 1 9 の進行を妨げられる こ とがない。
3 は吸い込み管であり、 上端側がボケ 'ン ト部 2 1 の上部側に連通 し、 下端側が水底に臨むようになつている。 これによりケース 2が 水中と連絡する。 上記のように、 排水ポンプ 1 2 によりケース 2 内 の水が排出される こ とによって、 水面とポケ ッ ト部 2 1 内の水面と の間に水位差が生じ、 サイ フ ォ ンの原理により、 吸い込み管 3 を通 じて水底の土砂が水と共にポケ ッ ト部 2 1 内に流入するのである。 ボケ ッ ト部 2 1 内の水位を一定に確保するため、 排水ポンプ 1 2 に よる排水量の方が吸い込み管 3 を通じてポケ ッ ト部 2 1 内に流入す る土砂等の量より も多 く なるよう に設定される。 2 8 は水位感知ス ィ ツチであり、 例えばマグネ ッ ト付きフロー ト とこのマグネ 'ン トに よりオ ン、 オフされる上下 2個のリ ー ドスィ ツチ (図示せず) を備 え、 フロー トが上昇して上方のリ 一 ドスィ ツチがオ ンしたときに排 水ポンプ 1 2 を作動させ、 フロー トが下降して下方のリ 一 ドスイ ツ チがオ ンしたときに排水ポンプ 1 2 を停止するよう制御する。
吸い込み管 3がボケ ッ ト部 2 1 に開口する部位には、 該開口部 3 1 上方を覆ってほぼ水平に延びる遮蔽体 2 9、 あるいは先端側が水 平位置より も若干下降するよう曲がる案内板 3 9 が設けられている これにより吸い込み管 3 から流入する土砂は遮蔽体 2 9 あるいは案 内板 3 9 により ほぼ水平方向に案内され、 この間に比重の大きな土 石類は下方の集積部 3 7 に沈降し、 コ ンベア 9上に乗り、 コ ンベア 9 により外部のコ ンテナ一 3 6 に搬出される。
したがって、 吐出口 3 2 を通じて遮蔽体 2 9や案内板 3 9 の上方 に流れ込む水中には粒子の小さな土砂が舍まれるだけとなる。 前記 排水管 1 2 a はこの遮蔽体 2 9 あるいは案内板 3 9 の上方の部位の 水を排水するよう、 先端が該部位に開口している。
次に、 吸い込み管 3 は、 ケース 2 の傾斜角度が変わっても、 先端 が水底に近接するよう、 中途部に蛇腹部 1 6 を設けるなどして、 曲 折可能になつている。
6 は第 2 のフロー トであり、 吸い込み管 3 に取り付けられている , フロー ト 6 は連通管 6 a を通じてポケ ッ ト部 2 1 に連通している。 したがってフロー ト 6 は大気にも連通している。 フロー ト 6 内には 前記給排水ポンプ 1 3 により給排水され、 フロー ト 6、 したがって 吸い込み管 3 に作用する浮力が調整される。 給排水ポンプ 1 3 は第 1 のフロー ト 1 0 にも給排水するが、 第 2 のフロー ト 6 に給排水す るポンプは別途設けてもよい。 このように吸い込み管 3 に浮力を作 用させる こ とで吸い込み管 3が水底に自重により埋没しま う のを防 止でき、 浚渫が進んで船体 1 9が移動するとき容易に水底の凹凸に 追随して移動する。 なお角度 2 5 はフロー ト 6 により吸い込み管 3 が回動する範囲を例示的に示している。
吸い込み管 3 の下端部には、 ほぼ ドーム状をなすカバ一 4が吸い 込み口 7 を囲むよう にして取り付けられている。 カバー 4 は吸い込 み管 3 の吸い込み口 7 が必要以上に水底に埋没するのを防止する。 図 3 に示すように、 カバ一 4 はゴム製等のフ レキシブルな素材を 用いて形成され、 蛇腹部 3 3 を設ける こ とで下縁 3 8が水底に接地 するよう にしている。 また進行方向の後方となる緣には切り込み 4 3 a が形成されて舌片 4 3 が形成され、 この舌片 4 3 が浚渫後にで きる窪みに接地する。 カバ一 4 内にはその下緣と水底との隙間から 水が流入する。 カバー 4 内に突出する吸い込み管 3 の下端の吸い込み口 7 には星 型の開口部 4 2 を有するフ ィ ルタ一 4 1 が取り付けられている。 こ のフ ィ ルタ一 4 1 により吸い込み量の定量化が図れる と共に、 吸い 込み口 7 に土石類、 布、 紐などが詰まるのを効果的に防止する。
カバー 4近傍の吸い込み管 3上に電磁ソ レノ ィ ド 5 が取り付けら れ、 この電磁ソ レノ ィ ド 5 により突出入するよう躯動される掘削休 2 3 により水底の土砂 3 0 を掘削可能になっている。 これにより土 石層は剝離され、 吸い込み口 7 より吸い込み易 く される。 また 8 は 循環水吐出管であり、 先端がカバー 4 内に突出し、 管 8 a を通じて ポンプ 1 1 により沈殿槽 1 8 に流入されている排水の上澄み水が水 底に向けて吐出されるよう になっている。 カバ一 4 により囲まれて いる部位に高圧水が吐出されるので、 この高圧水によっても水底の 土石層の剝離が良好に行え、 浚渫効率が上がる。 上澄み水が再利用 される こ とで、 濁水の放出量を減じる効果もある。
なお、 吸い込み中、 水に対する土砂の混合比率が大き く なると管 の詰ま り現象が発生する。 3 5 は吸い込み管 3 の適所に開口した水 量調節孔であり、 図示しない蓋を開閉する こ とで開口部の大きさを 調整可能になっており、 これにより吸い込み管 3 内に流入する水の 量を調整可能になっていて、 管の詰ま りを防止できる。
また、 本実施例では、 図 2 に示すように 1 つのケース 2 に対して 6本の吸い込み管 3 を取り付けている。 これにより広い範囲の浚渫 が可能となる。 1 つの吸い込み管 3 に異常が発生しても、 この吸い 込み管 3 を引き上げて点検、 修理する間でも他の吸い込み管 3 によ り引き続いて浚渫作業を行う こ とができる。 なお吸い込み管 3 の数 は限定されないこ とはもちろんである。
上記のように構成されている。
浚渫作業は、 ポケ ッ ト部 2 1 の排水から開始される。 排水と同時 に吸い込み管 3から水等がケース 2 内に吸い込まれるが、 吸い込み 量より も排水量の方が多いので、 ケース 2 内に次第に空間が生じて きて、 ポケ ッ ト部 2 1 において所定の水位が確保される。 水面とポ ケ ッ ト部 2 1 内の水面との水位差により強力な吸い込み力が作用し 水底の土砂が水と共に連続してポケ ッ ト部 2 1 内に吸い込まれ、 砂 礫等の粒子の大きなものは遮蔽体 2 9 や案内板 3 9 により横方向に 案内され、 沈降して、 コ ンベア 9 により コ ンテナ一 3 6 に搬出され る。
このように、 吸い込み管 3内においては水位差による強力な吸い 込み力 (サイ フォ ン原理) により水と共に土砂をポケ ッ ト部 2 1 内 に導く こ とができ、 この流動距離が短いう ちに、 ポケ ッ ト部 2 1 内 でかなり の土砂と水とを分離し、 分離された水と土砂とを別途排水. 搬出するようにしているから、 流体抵抗値を少な く し、 エネルギー 損失を小さ く できるメ リ ッ トがある。 上記水位差が大きい程、 大き な吸い込み力を得る こ とができ、 効率のよい浚渫が行える。
上記のよう にポケ ッ ト部 2 1 内は低圧部であり、 深く沈める こ と によって水位差が大き く なるため土砂の吸引効果がよ く 、 また流速 も大き く なるため、 土砂類の沈降距離が長く なる。 したがって、 流 速に対応して遮蔽体 2 9 の長さや案内板 3 9 の角度を変えて調節す る。 実験例として、 石粒 1 O m m前後 ( ± 3 m m ) 、 流速 3 m /秒. 混合比約 1 5 %の二相流は、 6 0 c m前後の移動距離で分別でき、 8 5 c mでは 2 m mまでの土砂が分別でき、 1 1 0 c mでは l m m 程度の土砂の分別ができた。 それ以下の微粒子は浮遊し、 濁水とし て水平方向に流動した。
ケース 2 の傾斜角度や吸い込み管 3 の傾斜角度は前記したよう に 第 1 のフロー ト 1 0、 第 2 のフロー ト 6内の水量を調節して浮力を 調整する ことによって行え、 また吸い込み管 3が自在に屈曲可能に なっているので、 吸い込み管 3 の吸い込み口 7 が常に水底に近接し た位置になるように調整され、 こう して船体 1 9 の進行と共に連続 して効率よ く浚渫が行える。 吸い込み口 7 が水底から一定の位置を 維持されるこ とで、 混相流体の濃度 (水に対する土砂の量) をかな り均等にするこ とができ、 吸い込み管 3 の目詰ま りや、 大量の濁水 の排出を防止でき る。 また沈殿層 1 8 内の上澄み水を高圧水と して カバー 4 内に吐出させる こ とで、 土石層の剝離を良好に行え、 また 濁水の外部への放出をそれだけ少な く する こ とができる。
第 2 の実施例
図 4 〜図 8 は第 2 の実施例を示す。
1 0 1 は船休を示す。
1 0 2 はケースであり、 上部を除いて水中に没するよう に船体 1 0 1 に下方に向けて取り付けられている。
ケース 2 は、 上部が開放する筒状に形成され、 下部に大径のボケ ッ ト部 1 0 2 a が形成されている。
1 0 9 は二重構造に形成されたコ ンテナ一であり、 支持体 1 0 9 a を介して船体 1 0 1下方に位置して水中に没するよう船体 1 0 1 に取り付けられている。 支持体 1 0 9 a とコ ンテナ一 1 0 9 との取 付けは例えばボル ト等の固定手段によって行われる。
コ ンテナ一 1 0 9 の内室は隔壁 1 0 9 b によって室 Aと室 Bに区 画されている。 また内室の開口端緣には接合壁 1 0 9 c が形成され ている。
1 0 5 は吸い込み管であり、 一端側がポケ ッ ト部 1 0 2 a 内に連 通し、 他端側は吸い込み口 1 0 6 と して水中に開口する。 吸い込み 管 1 0 5 の中途部は下方に向けて広く開口し、 開口部に導入壁 1 0 5 a がー体または別体に設けられている。
コ ンテナ一 1 0 9が支持体 1 0 9 a に取り付けられる際、 接合壁 1 0 9 c と導入壁 1 0 5 a下端との間に砂礫等の夾雑物が挟ま らな いよう に、 ゴム製あるいは樹脂製のシール 1 1 1 が介装される。 こ れにより コ ンテナ一 1 0 9 と導入壁 1 0 5 a との間が液密になる。 浚渫中はコ ンテナ一 1 0 9 内部が負圧になり大きな水圧が作用する ため密閉状態が一層良好になる。
1 2 5 は水流ガイ ドプレー トであり、 吸い込み口 1 0 6 が存在す る側の吸い込み管 1 0 5 がコ ンテナー 1 0 9 の上方で開口する とこ ろの該開口部 1 0 4から隔壁 1 0 9 b の上方の位置に亙って先端側 が若干下降するように設けられている。
吸い込み口 1 0 6 が存在する側の吸い込み管 1 0 5 は導入壁 1 0 5 a に複数本連結して、 広い範囲の浚渫を行うよう にする こ とがで きる。 もちろんこの吸い込み管 1 0 5 の本数は特に限定されない。 コ ンテナ一 1 0 9 の上下動などの揺れは吸い込み管 1 0 5 に悪影 響を与えるため、 吸い込み管 1 0 5 の一部を蛇腹等のフ レキ シブル な部位 1 1 2 に形成して揺れを吸収するようにする とよい。
1 2 4 は排水ポ ンプであり、 ケース 1 0 2 の筒状部を延びる排水 管 1 1 7 によ りケース 1 0 2 内の水を排水する。 排水は沈殿槽 1 2 1 に流入される。
ケース 1 0 2 内の水が排水される こ とによ りケース 1 0 2 内の水 位は下がり、 水面との間に水位差が形成される。 これにより前記実 施例と同様に吸い込み口 1 0 6から水と共に土砂がコ ンテナ一 1 0 9 内に流入する。
その際、 粒径の大きな、 あるいは重量の大きな砂礫等は水流ガイ ドブレ一 ト 1 2 5 にガイ ドされて手前側の室 Aに沈降し、 粒径の小 さな、 あるいは軽量の砂礫等は奥側の室 Bに沈降する。 そして細か い砂等を含んだ水は吸い込み管 1 0 5 からケース 1 0 2 に流入し、 排水ポンプ 1 2 4 によつて沈殿槽 1 2 1 に流入され、 沈殿槽 1 2 1 内で細かい砂は沈降するのである。
なお 1 2 0 は前記と同様な水位感知スィ ツチであり、 ケース 1 0 2 内の水位を検知し、 排水ポンプ 1 2 4 を制御し、 ケース 1 0 2 内 の水位がほぼ一定を保つようにする。 次に、 二重構造のコ ンテナ一 1 0 9 の外室はフロー ト 1 1 9 に形 成されている。 フロー ト 1 1 9 は管 1 2 9 を通じて大気に連通して いる。 1 1 4 は給排水ポンプであり、 水をフロー ト 1 1 9 に給排し て、 フロー ト 1 1 9 の浮力を調整する。 すなわち、 室 Aや室 Bに堆 積する砂礫の重量に対応して、 フロー ト 1 0 9 内の水を給排水して 浮力を調整する。
吸い込み管 1 0 5 の吸い込み口 1 0 6 の上方を覆って前記と同様 に ドーム状のカバー 1 1 5 が取り付けられている。 すなわち ドーム 状のカバ一 1 1 5 の頂部を貫通して吸い込み管 1 0 5 が伸び、 吸い 込み口 1 0 6が水底に臨んで開口する。
1 1 6 は水底接触板であり、 吸い込み口 1 0 6 と若干の間隔をお いて吸い込み管 1 0 5 に対して垂直になるよう、 アーム 1 0 8 を介 して吸い込み管 1 0 5 に取り付けられる。 アーム 1 0 8 は吸い込み 管 1 0 5 が挿通する リ ング 1 0 6 b に一端が固定され、 リ ング 1 0 6 b は止めネジ (図示せず) 等によって吸い込み管 1 0 5 に固定さ れる。 止めネジを緩めてリ ング 1 0 6 a を吸い込み管 1 0 5上で移 動させる こ とにより、 水底接触板 1 1 6 の吸い込み口 1 0 6 に対す る間隔を調整可能になっている。
水底接触板 1 1 6 の吸い込み口 1 0 6 に対応する部位には吸い込 み孔 1 1 8 が開口されている。 土砂は主と してこの吸い込み孔 1 1 8から、 また砂分を含んだ水は水底接触板 1 1 6 の上面と吸い込み 管 1 0 5下端との間隙から吸い込み口 1 0 6 に流入する。 したがつ て水底接触板 1 1 6 と吸い込み口 1 0 6 との間隙を調整する こ とに よって水と土砂の混合割合を調整する こ とが可能となる。
水底接触板 1 1 6 の端緣 1 2 6 は上方に屈曲され、 これにより水 底をスムーズに移動可能になされている。 水底接触板 1 1 6 の外径 はカバー 1 1 5 の下端の径より も小さ く設定され、 カバ一 1 1 5下 端と水底接触板 1 1 6 の外端緣との間には間隙が形成されている。 水底接触板 1 1 6 の下面には先端が尖った突起 1 2 3が複数個形 成されている。 また水底接触板 1 1 6 の上面側には振動装置 1 2 2 が配設されている。 振動装置 1 2 2 が駆動される こ とにより水底接 触板 1 1 6 が振動し、 この振動が突起 1 2 3 に伝えられる こ とによ り、 突起 1 2 3 により水底の土砂 1 0 3が掘削され、 掘削された土 砂が吸い込み孔 1 1 8 に流入する。 すなわち振動する突起 1 2 3 に より固定化した土砂に僅かな隙間を作る こ とにより、 水を浸透させ. 水の浮力と流動により土砂を浮かせるのである。 攪拌する方法に比 して、 突起 1 2 3 の振動による物理的な作用は濁水の発生を可及的 に少な く できる利点がある。
沈殿槽 1 2 1 に流入された水は、 水中に舍まれる砂等が沈殿槽 1 2 1 で沈降された後、 放出管 1 0 7 により カバ一 1 1 5 内に吐出さ れる。 さ らにこの吐出された水はカバ一 1 1 5下端と水底接触板 1 1 6外端緣との間隙より水底に向けて吐出される。 突起 1 2 3 によ り掘削される土砂はこの水底に吐出される水により水底より剝離さ れ、 吸い込み孔 1 1 8 に流入しやす く なるのである。 このよう に、 一旦排水した濁水を再度水底に吐出して土砂の吸い込み用に再利用 する こ とによって、 濁水の外部への放出をな く する こ とができ、 濁 水対策と して有効である。
吸い込み口 1 0 6 の側の吸い込み管 1 0 5 にもフロ一 ト 1 2 8 を 取り付ける と好適である。 フロー ト 1 2 8 は管 1 2 9 により大気に 連通し、 また給排水ポンプ 1 2 7 により給排管 1 3 0 を通じて水が 給排される。 これにより フロー ト 1 2 8、 したがってカバー 1 1 5 や水底接触板 1 1 6 などが取り付けられた吸い込み管 1 0 5 に作用 する浮力が調整でき、 吸い込み管 1 0 5 の上下動を容易にし、 水底 接触板 1 1 6 の接地圧力を柔軟に設定できる。 また水底接地板 1 1 6側の重量と浮力とを均衡させるこ とにより、 船体 1 0 1 の移動に 追随して水底接触板 1 1 6側も容易に移動可能となっている。 1 1 0 は吊持用ロープであり、 水底接触板 1 1 6側の吸い込み管 1 0 5 を吊持し、 水底接触板 1 1 6側を所定の位置に保ったり、 吊 り上げ可能になっている。
なお、 符号 1 1 2、 1 1 3 で示す部位は蛇腹部等のフ レキシブル な部位であり、 この部位により吸い込み管 1 0 5や放出管 1 0 7が 屈曲可能になっている。 また、 放出管 1 0 7、 吸い込み管 1 0 5、 管 1 2 9、 給排管 1 3 0 は適当な長さを保有し、 水底の高さに応じ て繰り出し可能になっている。
第 2 の実施例は上記のように構成されている。
水底接触板 1 1 6 の側を水底に接触するよう下降させ、 そして排 水ポンプ 1 2 4 を駆動するこ とによって浚渫作業が開始される。 吸 い込み管 1 0 5 よりポケ ッ ト部 1 0 2 a に流入する水の量より も、 排水ポンプ 1 2 4 によりケース 1 0 2から排水される水の量の方が 多く なるよう に設定されている。 したがって、 ケース 1 0 2 内の水 位は次第に低下し、 水位感知スィ ツチ 1 2 0 により所定の水位にな るよう制御される。 水面とケース 1 0 2 内の水位差によるサイ フ ォ ン原理により水底の土砂等が吸い込み口 1 0 6 より強力に吸い込ま れる こ とは前記実施例と同様である。
前記したように、 土砂は突起 1 2 3 により掘削され、 また放出管 1 0 7 より吐出される水により水底から効率的に剥離されて吸い込 み口 1 0 6 に吸引される。
吸い込み口 1 0 6から吸引された水を舍む土砂は比較的短い流動 距離を経てコ ンテナ一 1 0 9 に流入される。 そして前記したように 吸い込み管 1 0 5 の開口部 1 0 4から横方向 (水平方向) に流入さ れた土砂は水流ガイ ドプレー ト 1 2 5 にガイ ドされて比較的粒子の 大きな砂礫は室 Aに沈降し、 小さな粒子の砂等は室 Bに沈降する。 さ らに細かな砂分を含む水は室 Bの上部から吸い込み管 1 0 5 を経 てポケ ッ ト部 1 0 2 a に流入し、 排水ポンプ 1 2 4 により沈降槽 1 2 1 に流入される。 沈降槽 1 2 1 では細かい砂分が沈降し、 さ らに 放出管 1 0 7 より カバ一 1 1 5 内に水が吐出されるのである。
なお、 浅瀬などの浚渫は、 浚渫船を沖に停泊させ、 水深の深いと ころにケース 1 0 2 を沈めて所要の水位差を得、 吸い込み口 1 0 6 のある吸い込み管 1 0 5 を浅瀬に延長して該浅瀬の浚渫をするよう にする こ とができ る。
コ ンテナー 1 0 9 内には砂礫等が次第に堆積され、 重量が増して く るが、 フロー ト 1 1 9 により浮力が調整され、 コ ンテナ一 1 0 9 の取付部等に負担がかからないようにする。 コ ンテナ一 1 0 9 が満 杯にな った ら、 浚渫作業を中止し、 コ ンテナー 1 0 9 を船体 1 0 1 から切り離す。 その際コ ンテナー 1 0 9 にはフ ロー ト 1 1 9 からの 浮力が作用するから、 コ ンテナ一 1 0 9 を水面に浮かせた状態で、 小さな牽引船やロープ等でも容易に移動できるので有利である。 船体 1 0 1 には新たなコ ンテナ一 1 0 9を取り付けて浚渫作業を 継続する。
図 7 は突起 1 2 3 のさ らに好適な実施例を示す。
本実施例では、 突起 1 2 3 を、 水底接触板 1 1 6 の上面に開口す るよう水底接触板 1 1 6 に取り付けられる筒部 1 2 3 a と、 該筒部 1 2 3 a の下端に取り付けられる、 先端が尖った頭部 1 2 3 b とよ り構成している。 筒部 1 2 3 a と頭部 1 2 3 b との接続部には下方 に向けて開口する噴出孔 1 2 3 c を設ける。
突起 1 2 3 を上記のよう に設ける こ とにより、 カバ一 1 1 5 内に 吐出された水が突起 1 2 3からも水底に向けて吐出され、 土砂等の 剥離をより効果的に行える。 なお、 噴出孔 1 2 3 c からの水の噴出 角度は、 筒部 1 2 3 a の軸線に対して 4 5 0 以内の鋭角とするのが 好ま し く 、 これにより水底に向けて水を勢いよ く吐出させる こ とが できる。 また頭部 1 2 3 b の最大径は筒部 1 2 3 a の径より も大き く して、 噴出孔 1 2 3 c の目詰ま りを防止するよう にする とよい。 図 8 は、 水底接触板 1 1 6 のさ らに他の実施例を示す。
本実施例では、 水底接触板 1 1 6 を吸い込み管 1 0 5 の下端に吸 い込み管 1 0 5 の軸線を中心と して回転可能に設けている。 1 2 3 は水底接触板 1 1 6 の外面に設けた突起である。
水底接触板 1 1 6 の上方に立ち上がる端緣 1 2 6 の内周面にはィ ンタ一ナルギア 1 2 6 a を設ける。 また吸い込み管 1 0 5 にはモ一 タ 1 4 0 を取付部 1 4 1 を介して取付け、 モータ 1 4 0 の回転軸に 設けたギア 1 4 2 をイ ンターナルギア 1 2 6 a に嚙合させ、 これに より水底接触板 1 1 6 を回転させるよう に構成している。
本実施例の場合、 水底接触板 1 1 6 を面転させ、 これにより突起 1 2 3 により水底を積極的に掘削し、 より一層の浚渫能力を高める こ とができる。 前記振動装置 1 2 2 は設ける必要がない。

Claims

請 求 の 範 囲 . 大気に連通して水中に埋没されるケースと、
該ケースに接続され、 下端に吸い込み部を有する吸い込み管と 前記ケース内の水を排出する排水ポ ンプと,
前記吸い込み管の中途部に取り外し自在に設けられたコ ンテナ 一とを具備する浚渫装置を用い、
前記排水ポ ンプにより前記ケース内の水を排出してケース内に 空間を形成し、 該ケース内の水面と外部水面との間に水位差を形 成して、 該水位差により発生する水流を利用し、 前記吸い込み管 から土砂を前記コ ンテナ一内に吸い込むこ とを特徴とする浚渫方 法。 . 大気に連通して水中に埋没されるケース と、
該ケースに接続され、 下端に吸い込み部を有する吸い込み管と. 前記ケース内の水を排出し、 ケース内の水面と外部水面との間 に水位差を形成する排水ポ ンプと、
前記吸い込み管の中途部に取り外し自在に設けられたコ ンテナ 一とを具備するこ とを特徴とする浚渫装置。 . 前記吸い込み管に大気に連通するフロー トが設けられ、 該フロ 一トに水を給排して浮力を調節する給排水ポ ンプを具備する こ と を特徴とする請求項 2記載の浚渫装置。 . 前記コ ンテナーに大気に連通するフロー トが設けられ、 該フロ — トに水を給排して浮力を調整する給排水ポンプを具備する こ と を特徴とする請求項 2記載の浚渫装置。
. 前記吸い込み管に大気に連通するフロー トが設けられ、 該フロ 一トに水を袷排して浮力を調節する給排水ポ ンプを具備し、 前記 コ ンテナーに大気に連通するフロー トが設けられ、 該フロー トに 水を給排して浮力を調整する給排水ポ ンプを具備する こ とを特徴 とする請求項 2記載の浚渫装置。 . 前記吸い込み管の下端に前記吸い込み部を覆う ドーム状のカバ —が取り付けられている こ とを特徴とする請求項 2記載の浚渫装
. 前記吸い込み管に前記吸い込み部の下方を覆って、 吸い込み孔 を有する水底接触板が取り付けれられている こ とを特徴とする請 求項 2記載の浚渫装置。 . 前記水底接触板下面に、 水底に食い込む杭状の突起が設けられ ている こ とを特徴とする請求項 7 記載の浚渫装置。 . 前記水底接触板を振動させる振動装置が設けられている こ とを 特徴とする請求項 7記載の浚渫装置。 0 . 前記水底接触板が吸い込み管の軸線を中心と して回転可能に 設けられ、
該水底接触板を回転させるモータを具備する ことを特徴とする 請求項 Ί記載の浚渫装置。 1 . 前記ケースから前記排水ポ ンプにより排出される濁水を貯留 する沈殿槽が設けられているこ とを特徴とする請求項 2記載の浚 渫装置。
2 . 前記吸い込み管の下端に前記吸い込み部を覆う ドーム状の力 バーが取り付けられ、 前記ケースから前記排水ポンプにより排出 される濁水を貯留する沈殿槽が設けられ、 前記沈殿槽に貯留される 水を前記 ドーム内に噴出する循環ポ ンプを具備する こ とを特徴と する請求項 2記載の浚渫装置。
PCT/JP1997/003889 1996-11-02 1997-10-27 Procede de dragage et appareil de dragage WO1998020208A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU47242/97A AU4724297A (en) 1996-11-02 1997-10-27 Dredging method and dredging apparatus
US09/297,325 US6189243B1 (en) 1996-11-02 1997-10-27 Dredging method and dredging apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP32748296 1996-11-02
JP8/327482 1996-11-02

Publications (1)

Publication Number Publication Date
WO1998020208A1 true WO1998020208A1 (fr) 1998-05-14

Family

ID=18199657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/003889 WO1998020208A1 (fr) 1996-11-02 1997-10-27 Procede de dragage et appareil de dragage

Country Status (4)

Country Link
US (1) US6189243B1 (ja)
CN (1) CN1085281C (ja)
AU (1) AU4724297A (ja)
WO (1) WO1998020208A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999025932A1 (en) * 1997-11-17 1999-05-27 De Groot Nijkerk Machinefabriek B.V. Method for extracting and grading sand
WO2001042568A1 (fr) * 1999-12-09 2001-06-14 Japan As Represented By Director General Of Agency Of Shinshu University Systeme et procede de decharge de depot
CN105951908A (zh) * 2016-05-10 2016-09-21 浙江省交通规划设计研究院 码头前沿疏深装置及其处理工艺

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO313596B1 (no) * 2000-12-27 2002-10-28 Gto Subsea As Fremgangsmåte ved hydraulisk mudring av masse fra sjöbunn
JP3755587B2 (ja) * 2001-06-29 2006-03-15 株式会社東洋電機工業所 土砂等除去装置
US7350322B2 (en) * 2004-04-02 2008-04-01 Brian Langdon Dewatering system apparatus and method for dredging buckets
CN100410490C (zh) * 2004-12-28 2008-08-13 桐柏银洞坡金矿有限公司 高压水切尾矿有价金属回收工艺及其所用设备
CA2534156C (en) * 2005-01-26 2012-05-29 Steven B. Taplin Sediment removal apparatus and method for removing sediment from open waterways
US7509759B2 (en) * 2005-01-26 2009-03-31 General Construction Company System and method of dewatering dredge spoils using sloping drain barge
GB0623450D0 (en) 2006-11-24 2007-01-03 Drabble Ray Faunal friendly dredging system
BE1018005A3 (nl) * 2008-02-18 2010-03-02 Rompay Boudewijn Gabriul Van Werkwijze voor het verwijderen van slib van de bodem van een watergebied.
BE1018378A3 (nl) * 2008-12-12 2010-09-07 Dredging Int Sleepkop voor een sleephopperzuiger en werkwijze voor het baggeren met behulp van deze sleepkop.
CN104058071B (zh) * 2013-03-18 2016-09-21 中国船舶工业集团公司第七〇八研究所 一种半潜式挖泥船
CN104594420A (zh) * 2014-12-07 2015-05-06 宁波保税区华萌生物科技有限公司 一种鱼塘淤泥清理装置
GB201513484D0 (en) * 2015-07-30 2015-09-16 Ihc Engineering Business Ltd Underwater trenching apparatus and pumping apparatus
CN106836342A (zh) * 2017-01-24 2017-06-13 黄河水利委员会黄河水利科学研究院 一种破土射流冲吸式吸泥头
CN106988407A (zh) * 2017-04-08 2017-07-28 安徽盛运重工机械有限责任公司 一种淤泥清理用泵吸装置
CN106948394A (zh) * 2017-05-10 2017-07-14 中交航局第二工程有限公司 碎石基床清淤装置及清淤方法
CN108286273A (zh) * 2017-06-22 2018-07-17 李光见 江河采沙石技术设计
US10167609B1 (en) 2018-01-12 2019-01-01 Cashman Dredging & Marine Contracting Co., LLC Carouseling articulated dredge and barge
WO2023147180A1 (en) * 2022-01-31 2023-08-03 Walker William Jeremy Floating filtering apparatus and dredging system therewith

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62284831A (ja) * 1986-05-30 1987-12-10 Furukawa Mining Co Ltd エアリフト式浚渫装置
JPH01207535A (ja) * 1988-02-15 1989-08-21 Penta Ocean Constr Co Ltd 真空エアリフト揚泥装置
JPH03151421A (ja) * 1989-11-08 1991-06-27 Takuo Mochizuki 浚渫用比重コントロール式サイフォン装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE789140A (nl) * 1971-09-23 1973-03-22 Ihc Holland Nv Werkwijze en inrichting voor het opzuigen van onder water gelegen bodemmateriaal
US4030216A (en) * 1975-10-28 1977-06-21 Nor-Am Resources Technology Inc. Method of and apparatus for underwater hydraulic conveying, as for ocean mining and the like, and continued transport of material in controlled floating containers
US4391468A (en) * 1978-04-07 1983-07-05 Kamyr, Inc. Method and apparatus for recovering mineral nodules from the ocean floor
US4253255A (en) * 1979-01-08 1981-03-03 Durell William E Automated dredging with vacuum assist
US4307525A (en) * 1979-08-16 1981-12-29 Amtec Development Company Pneumatic-hydraulic pump dredge
US4353174A (en) * 1980-08-11 1982-10-12 Amtec Development Company Electronic control system for pneumatic-hydraulic pump dredge

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62284831A (ja) * 1986-05-30 1987-12-10 Furukawa Mining Co Ltd エアリフト式浚渫装置
JPH01207535A (ja) * 1988-02-15 1989-08-21 Penta Ocean Constr Co Ltd 真空エアリフト揚泥装置
JPH03151421A (ja) * 1989-11-08 1991-06-27 Takuo Mochizuki 浚渫用比重コントロール式サイフォン装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999025932A1 (en) * 1997-11-17 1999-05-27 De Groot Nijkerk Machinefabriek B.V. Method for extracting and grading sand
US6499239B1 (en) 1997-11-17 2002-12-31 De Groot Nijkerk Machinefabriek Bv Method for extracting and grading sand
WO2001042568A1 (fr) * 1999-12-09 2001-06-14 Japan As Represented By Director General Of Agency Of Shinshu University Systeme et procede de decharge de depot
US6817120B2 (en) 1999-12-09 2004-11-16 Japan As Represented By Director General Of Shinshu University Deposit discharge system and method of discharging deposit
CN105951908A (zh) * 2016-05-10 2016-09-21 浙江省交通规划设计研究院 码头前沿疏深装置及其处理工艺
CN105951908B (zh) * 2016-05-10 2017-08-29 浙江省交通规划设计研究院 码头前沿疏深装置

Also Published As

Publication number Publication date
AU4724297A (en) 1998-05-29
CN1235652A (zh) 1999-11-17
CN1085281C (zh) 2002-05-22
US6189243B1 (en) 2001-02-20

Similar Documents

Publication Publication Date Title
WO1998020208A1 (fr) Procede de dragage et appareil de dragage
KR930008637B1 (ko) 준설장치
US3638432A (en) Stationary dredging apparatus
JP2001164543A (ja) ダム湖等の土砂排出機構及びダム湖等の土砂排出方法
US7089693B2 (en) Dredging method and apparatus
JP2007002437A (ja) 浚渫土砂の輸送システム
US5167841A (en) Removing material debris from body of water
JP2007063934A (ja) 土砂輸送システム
CN112673135B (zh) 用于从湿地的底部清除污泥和/或沙子的装置
JP2838054B2 (ja) 水圧を利用した浚渫方法と浚渫船の構造
JP2872984B2 (ja) 浚渫方法および浚渫装置
JPH03151421A (ja) 浚渫用比重コントロール式サイフォン装置
JP2020084427A (ja) 河川等の区域閉鎖式浄化工法
JP2004300710A (ja) 水底土砂排除装置、及び水底土砂の排除方法
KR20010009110A (ko) 오니토 준설장치
JPH11324008A (ja) ダム堆積物除去方法
JP4114512B2 (ja) 貯水池の排砂方法及び排砂装置
JPH03250125A (ja) 砂採取設備の濁水流出防止装置
EP0679422A1 (en) Method and device for desalinating dredged material
CN214940523U (zh) 一种河道淤泥疏浚设备
JPS6073922A (ja) 沈澱泥土浚渫工法
JPS6073920A (ja) 沈澱泥土浚渫船
US11959248B2 (en) Device for the removal of sludge and/or sand from the bottom of a wetland
JPH0960034A (ja) 薄層浚渫排送装置
JP2006241790A (ja) 浚渫土砂の輸送システム及びその輸送方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97199412.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU ID IL IS KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09297325

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA