WO1998013149A1 - Systeme de lavage utilisant un gaz liquefie de haute densite - Google Patents

Systeme de lavage utilisant un gaz liquefie de haute densite Download PDF

Info

Publication number
WO1998013149A1
WO1998013149A1 PCT/JP1997/003409 JP9703409W WO9813149A1 WO 1998013149 A1 WO1998013149 A1 WO 1998013149A1 JP 9703409 W JP9703409 W JP 9703409W WO 9813149 A1 WO9813149 A1 WO 9813149A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
cleaning
resistant
liquefied gas
washer
Prior art date
Application number
PCT/JP1997/003409
Other languages
English (en)
French (fr)
Inventor
Kunio Arai
Hiroshi Inomata
Richard Lee Smith
Original Assignee
Shuzurifuresher Kaihatsukyodokumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP08252962A external-priority patent/JP3074290B2/ja
Priority claimed from JP8322719A external-priority patent/JP3066400B2/ja
Application filed by Shuzurifuresher Kaihatsukyodokumiai filed Critical Shuzurifuresher Kaihatsukyodokumiai
Priority to EP97941235A priority Critical patent/EP0893166A4/en
Priority to US09/043,413 priority patent/US6092538A/en
Priority to KR1019980702074A priority patent/KR100342720B1/ko
Publication of WO1998013149A1 publication Critical patent/WO1998013149A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/102Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration with means for agitating the liquid
    • B08B3/104Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration with means for agitating the liquid using propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/12Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/0021Cleaning by methods not provided for in a single other subclass or a single group in this subclass by liquid gases or supercritical fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67057Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing with the semiconductor substrates being dipped in baths or vessels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S134/00Cleaning and liquid contact with solids
    • Y10S134/902Semiconductor wafer

Definitions

  • the present invention provides a low-cost system for washing using a high-density liquefied gas, without requiring any high-pressure generator such as an expensive compressor or high-pressure pump in the washing solvent recirculation system.
  • the present invention relates to a cleaning means capable of exhibiting high cleaning efficiency by expressing a plurality of cleaning power elements such as physical power, chemical power, and dissolving power in a series of operations continuously and in parallel.
  • the supercritical fluid in which the above-mentioned contaminated components are dissolved is transferred from the washer to the separation tank (or recovery tank), where the contaminated components are deposited, and the supercritical fluid which releases the contaminated components can be reused.
  • the narrowness of the supercritical fluid indicates that it is easy to penetrate into narrow parts, and the high density of the fluid indicates that the contaminants that adhere to and impregnate the substrate, especially High solubility in organic fluids.
  • the above-mentioned cleaning action is provided by a supercritical fluid containing contaminants.
  • the contained components are deposited in liquid and solid form. Therefore, the fact that these components can be recovered by pressure reduction in the separation tank is utilized.
  • a closed recirculation system will be constructed in which the supercritical fluid purified by depositing contaminants is recycled to the pressure washer through the storage means.
  • the gas to be used carbon dioxide, nitric oxide, ethane, propane, etc. are used.
  • carbon dioxide is nonflammable, harmless and inexpensive, and has a critical temperature of 31.1. It is preferably used because the pressure is 72.8 atm and handling is easy.
  • the fluid conveying means is generally provided with a high-pressure generator such as a compressor or a pump for setting the supercritical state. Since these devices require high pressure resistance, they are extremely expensive as cleaning devices.
  • the characteristics of the supercritical fluid as described above also include a subcritical fluid.
  • a subcritical fluid is a fluid in the region near the critical point in the pressure-temperature phase diagram, in which a compressed liquid and a compressed gas coexist. Fluids in this region are distinguished from supercritical fluids.
  • the features of the Japanese Unexamined Patent Publication No. 7-171527 are that a temperature control means is provided in the cleaning device and that the cavitation by ultrasonic energy is used. That is, in the washing machine, the state of the high-density liquefied gas is controlled by the temperature control means, and the cleaning efficiency is enhanced by the cavitation using ultrasonic energy.
  • the cleaning action is performed by immersing the object to be cleaned in a liquid indispensable for cavitation, but the liquid contains a lot of solid contaminants and floats. To adhere again. Such redeposition is not acceptable In the case of unsafe items, there is the inconvenience that a step of washing again with the washing fluid must be added.
  • the present invention has been made in view of the above circumstances, and achieves further reduction of cost items, development of strong cleaning power, achievement of efficient cleaning by eliminating redeposition, and critical temperature around room temperature. It is an object of the present invention to provide a cleaning means using a high-density liquefied gas that has achieved the cleaning of a dirt component such as a hardly soluble inorganic compound or polar substance even in a solvent having the following. Disclosure of the invention
  • the cleaning means of the present invention comprises: a plurality of nozzles for supporting a cleaning power bar for accommodating an object to be washed in the inside of a container and directly spraying a compressed liquid onto the object to be cleaned; and a low-pressure chamber connected to an upper portion of the container.
  • a high-density liquefied gas supply cylinder as a storage means for communicating the upper part between the pressure-resistant recovery container and the upper part between the high-pressure liquefied gas supply cylinder and the pressure-resistant washer; In the middle of the liquid pipe Consists recirculation system closed and a connection of E emissions Bok Leena container, on top of each other which like between the upper between the compressed liquid handset container The gas has been communicated to allow communication.
  • the energy required for heating and vaporization and cooling and liquefaction is smaller in the vicinity of the critical point, but the solvent is transported by this vaporization and liquefaction by the vapor pressure difference, and the gravity is set by the level difference based on the vapor pressure difference. Since all of this was achieved by drop transport, there is no need for an expensive high-pressure generator, and it is possible to reduce expenses.
  • the pressure washer which has a pressure-recovery unit in the lower chamber, is connected to the pressure-recovery device and immediately removes dirt that may be reattached, such as lumps that are dropped by pre-cleaning by jetting multiple nozzles.
  • the main wash which is drained out of the vessel and then performed under a solvent fill, may be advantageous in that it does not contain any dirt from the pre-wash. As a result, the chance of reattachment of dirty components such as lumps that may possibly reattach is completely lost, and reattachment is prevented. In addition, perfect repetition is possible, so perfect cleaning can be expected.
  • the cleaning means of the present invention comprises the above-mentioned cleaning mechanism, comprising: a plurality of nozzles for supporting a cleaning power rod for storing the object to be cleaned in the air inside the container and directly spraying a compressed liquid onto the object to be cleaned.
  • a pressure-resistant washer provided with a stirrer comprising a rotor blade at the bottom and a sound wave generator directed to the rotor blade on the side wall of the container, and a temperature control means installed at a lower position than the pressure-resistant washer, and being detachable.
  • a pressure-recovery container as a compartment of a pressure-resistant washer for receiving the cleaning liquid after the cleaning process, and a temperature control means installed at a higher position than the pressure-resistant washer.
  • a low-pressure chamber for expansion that communicates with the gas phase and recycles the liquid phase to the pressure-resistant washer.
  • the low-pressure chamber provided with the temperature control means cools and liquefies the introduced gas phase and returns it to the pressure-resistant washer through the recycle supply path.
  • the above-mentioned preferred cavitation is made permanent by this solvent circulation. Therefore, it is possible to enjoy the service for a long time.
  • FIG. 1 is an explanatory view of a basic configuration of the apparatus of the present invention
  • FIG. 2 is an explanatory view of an example of a plurality of recycling systems of the apparatus
  • FIG. 3a is a rough cleaning in a pressure-resistant cleaning device
  • FIG. 3b is an explanatory view of the main washing
  • FIG. 3c is an explanatory view of the stirrer.
  • FIGS. 4 and 5 are explanatory views of a function adding type of the apparatus of the present invention.
  • FIGS. 6a and 6b are explanatory views of pre-cleaning and main cleaning in the cleaning mechanism of the present invention.
  • FIG. 4 is an explanatory view of a stirring device.
  • Figure 7 is a phase diagram of pure substances and a graph of supercritical fluid and subcritical fluid regions. (The best mode for carrying out the invention
  • the pressure-resistant washer 1 supports a washing basket 2 for storing objects to be washed in the air directly below a plurality of nozzles 3 (necessary for effective washing). It is preferable that the nozzle 3 can swing. Pre-cleaning is performed by projecting the object to be cleaned in the cleaning basket 4 from the nozzle 3 by jet jet. The impact energy of the jet jet is effective in forcibly separating contaminants.
  • a solvent material cylinder 6 filled with a high-density liquefied gas that feeds a compressed liquid 5 through the high-pressure pipe 4 and the nozzle 3 to the pressure-resistant washer 1 is a temperature controller capable of controlling the temperature in the illustrated example.
  • a rotor 1 11 is provided at the bottom of the vessel 1 directly below the washing basket 2, and a sound wave generator 12 directed to the rotor 11 is arranged on the side wall of the vessel 1.
  • An entrainer container 13 is connected to the pipe 3 in front of the nozzle 3. If the entrainer container 13 has a dirt component that is hardly soluble and cannot be cleaned with only the high-density liquefied gas alone, lipophilic, hydrophilic or amphiphilic surfactants are stored in advance depending on the dirt component. Then, it is sucked and added to the compressed liquid 5 in the pipe 4 by the orifice action. The surfactant dissolves the hardly soluble dirt component by a so-called micellization phenomenon, so that re-adhesion hardly occurs due to its barrier effect.
  • a pressure-resistant container 14 that receives the cleaning liquid 5 ′ is disposed at a position lower than the pressure-resistant washer 1. Acceptance is made promptly by falling levels, vapor pressure differences, and gas-phase communication.
  • the container 14 has a built-in temperature controller 15 and has a drain cylinder 16 which is detachably assembled from the bottom of the container. Therefore, it is possible to remove the drain cylinder 16 containing a large amount of dirt components, refuse communication with the recirculation system, empty it at a predetermined place, and remount it.
  • the pressure-resistant recovery container 14 serves as a branch of the pressure-resistant washer 1.
  • the washing liquid 5 ′ containing the dirt (including the one-piece type) that drops in communication with the pre-washing described above is immediately received and cannot be stopped in the pressure-resistant washing machine 1 (FIG. 3).
  • the pressure-resistant cleaning device and the pressure-resistant recovery device 14 provide an excellent cleaning mechanism having a function of preventing redeposition. Therefore, high density liquefied gas alone is difficult to dissolve and clean
  • a surfactant is injected according to the dirt component to improve the detergency and prevent re-adhesion by the so-called micelle phenomenon. In one case, it is possible to further improve the cleaning efficiency by combining the objects with ultrasonic stirring.
  • the gas phase of the pressure-resistant recovery vessel 14 is further connected to the upper part of the high-density liquefied gas supply cylinder 18 as a storage means of the closed recirculation system installed at a higher position than the pressure-resistant cleaning vessel 1 via piping 19
  • the solvent heated and vaporized by the temperature controller 15 of the pressure-resistant recovery container 14 is transported to the upper cylinder 18 with a difference in vapor pressure.
  • the heavy contaminant entrainer concentrates in the lower liquid phase and precipitates. The concentrated part is dropped into a drain cylinder 16 and discharged out of the system to separate dirt components.
  • the separation and recovery function comprising the pressure-resistant recovery container 14 and the high-density liquefied gas supply cylinder 18 achieves the removal of the dirt components and the recovery and transportation of the solvent without any high-pressure generator. This is the ultimate reduction in cost items.
  • the cylinder 18 has a built-in temperature controller 20 for cooling and liquefying the vaporized solvent.
  • the pipe 21 below the cylinder 18 is connected to the pipe 4 so as to communicate with the nozzle 3 of the pressure washer 1.
  • a gas-phase communication pipe 22 is provided to complement this level difference drop transport. At this time, the fall is complemented by setting the temperature difference by heating the temperature controller 20.
  • a completely new recirculation system that can circulate the washing solvent only by the temperature control means without using any expensive high-pressure generator is provided.
  • the one introduced in Fig. 2 is the above-mentioned recirculation system (14 pressure-resistant recovery vessels and 18 high-density liquefied gas supply cylinders 18) (two in the example shown).
  • the operation of the washer 1 can be enhanced.
  • the liquid feed of both systems is switched by the three-way valve 23, 24, and the pneumatic feed is connected / disconnected by the three-way valve 25 taken out by the valves 26, 26, respectively.
  • the solvent was C 0 2 or less.
  • the temperature was controlled at 30 ° C.
  • the compressed liquid 5 in the washer 1 dropped to about 20 ° C due to the surfactant and the object to be washed.
  • the temperature was re-heated to 3 (TC in the temperature controller 15. With this, most of the supernatant liquid was vaporized.
  • the vaporization time of one system was about 40 minutes in 4 gallons. The time was reduced to 20 minutes with two systems In the high-density liquefied gas supply cylinder 18, the temperature was cooled to 0 ° C by the temperature controller 20 and the E-condensed liquid 5 was filled.
  • the pressure washer 101 supports the washing basket 102 for storing the object to be washed in the air directly below a plurality of nozzles 103 (necessary for effective washing).
  • the nozzle 103 is preferably swingable. Pre-cleaning is performed by projecting a jet jet from the nozzle 103 onto an object to be cleaned in the cleaning basket 102. The impact energy of the jet jet projection is effective for forcibly separating pollutants.
  • a rotating blade 105 is provided at the bottom of the vessel 101 directly below the cleaning basket 102, and the sound directed to the rotating blade 105 at the side wall of the vessel 101.
  • a wave generator 106 is provided to enable powerful agitation by synergistic action of cavitation and forced agitation of the ultrasonic energy and the rotating blade 105 rotating by the projection. The above-mentioned cavitation is effective in destroying and killing bacteria and bacteria by its sudden decompression.
  • a pressure recovery container 108 for receiving the cleaning liquid 107 'via the pipe 122 is arranged.
  • the container 108 has a built-in temperature controller 109 and has a drain cylinder 110 that is detachably assembled from the bottom of the container.
  • the EE-resistant recovery container 108 serves as a compartment of the pressure-resistant washer 101.
  • the washing liquid 1 0 7 ′ containing the dirt (including lump) that drops during the pre-washing described above immediately and does not stop in the pressure washer 10 1 immediately (Fig. 6a). Therefore, in the above-described main cleaning, which is performed by filling the compressed liquid I 07 in the pressure-resistant cleaning device 101 by cutting off the communication, the cleaning is performed without including dirt in the pre-cleaning, thereby improving the cleaning efficiency. (Fig. 6b). This eliminates the so-called redeposition. By removing the drain cylinder 110 containing the tapping and dirt components, emptying it in place, and reattaching it, it is possible to quickly and infinitely discharge the dirt out of the system.
  • an expansion low-pressure chamber 112 equipped with a temperature control means 111 is connected via a gas-phase communication pipe 113 and a liquid-phase supply pipe 114.
  • the communication with the gas-phase communication pipe 113 causes the compressed liquid 107 during the main washing to act on the entire liquid caused by expansion unlike the ultrasonic projection.
  • the cavitation is made permanent by promoting liquefaction by cooling the temperature control means 111 and communicating the liquid phase supply pipe 114 with the solvent.
  • the ideal vigorous flow of a solvent with good dissolving power is realized here.
  • Fig. 4 and Fig. 5 show different aspects, and Fig. 4 shows the case where the above cleaning mechanism is incorporated in a closed recirculation system without using any high-pressure generator for the solvent transport means. .
  • the solvent raw material cylinder 1 16 filled with a high-density liquefied gas or the like for sending the compressed liquid 107 through the nozzle 103 to the pressure-resistant washing machine 101 has a temperature. It is housed in a box 1 1 8 equipped with a temperature controller 1 1 7 so that it can be controlled, and is installed at a higher position than the pressure-resistant washer 1 0 1. (The cylinder 1 16 by the temperature controller 1 17 is surely transported by the steam pressure difference at a higher temperature setting than the pressure-resistant washer 101, and the communication between the upper parts of the two containers is established. It is backed up by the high-pressure piping 119 through gas phase communication).
  • the liquid phase supply pipe i 14 is connected to the pipe 115 on the way, and the liquid supply from the cylinder 116 or the low-pressure chamber 112 is switched by the three-way valve 130.
  • An entrainer container 120 is V-connected * to the nozzle 103 in front of the pipe 115. If the entrainer container 120 contains a dirt component that is hardly soluble and cannot be washed with only the high-density liquefied gas alone, depending on the dirt component, lipophilic, hydrophilic or amphiphilic surfactants 121, etc. Is stored in advance, and a bow absorption I is added to the compressed liquid 107 in the pipe 115 by orifice action.
  • a gas-phase communication pipe 123 for backup as described above is connected between the pressure-resistant cleaning vessel 101 and the pressure-resistant recovery vessel 108.
  • the gas phase of the pressure-resistant recovery vessel I 08 is further higher than the pressure-resistant cleaning vessel 101.
  • the high-density liquefied gas supply cylinder 1 2 4 as a storage means of the closed recirculation system installed at a higher position 1 2 4 The solvent heated and vaporized by the temperature controller 109 of the pressure-resistant recovery vessel 108 is transferred to the upper cylinder 124 with a difference in vapor pressure. .
  • the heavy contaminant entrainer concentrates in the lower liquid phase and precipitates. The concentrated part is dropped into a drain cylinder 110 and discharged out of the system to separate dirt components.
  • the separation and recovery mechanism including the pressure-resistant recovery container 108 and the high-density liquefied gas supply cylinder 124 achieves the removal of the dirt component and the recovery and conveyance of the solvent without any high-pressure generator.
  • the cylinder 124 has a built-in temperature controller 126 which cools and liquefies the vaporized solvent.
  • the pipe 1 2 7 at the bottom of the cylinder 1 2 4 is connected to the pipe 1 15 to communicate with the nozzle 103 of the pressure-resistant washer 101.
  • a gas-phase communication pipe 128 is installed to complement this level difference drop conveyance. At this time, the fall is complemented by setting the temperature difference by heating the temperature controller 126.
  • a recirculation system in which the solvent can be circulated only by the temperature control means is provided.
  • Fig. 5 shows the case where the above-mentioned cleaning mechanism is incorporated in a closed recirculation system that relies on a high-pressure generator to transport the solvent from the cylinder 1 16 to the pressure-resistant cleaning vessel 101.
  • the same components as those in FIG. 4 are denoted by the same reference numerals.
  • the cylinder 1 16 does not need to be installed at a higher level than the separate pressure-resistant washer 101, and the pressure pump 1 29 is arranged in the middle of the high-pressure pipe 115. Interphase communication between both parties is omitted. Also pressure-resistant washer 101 and pressure-resistant recovery container The gas phase communication with 108 is also omitted.
  • the lower pipe 1 2 7 of the cylinder 1 2 4 is connected in front of the pressurizing pump 1 2 9 in the middle of the high pressure pipe 1 1 5, and the air between the cylinder 1 2 4 and the pressure-resistant washer 10 1 is connected. Mutual communication has been omitted.
  • reference numeral 104 denotes a filter provided on the outlet side of the cylinder 124.
  • the cleaning mechanisms such as pressure-resistant washer, low-pressure chamber, pressure-resistant recovery unit, high-density liquefied gas supply cylinder, etc., and separation and recovery mechanism are equipped with powerful cleaning power, efficient removal of contaminants outside the system, and high-pressure generator. Achieve inexpensive solvent recovery and provide an inexpensive and efficient cleaning device. Industrial applicability
  • the cleaning means using a high-density liquefied gas according to the present invention has a high level of detergency, and has a high detergency. It is now possible to clean high-level dirt components and ultra-fine resist and submicron dirt components.
  • the cleaning means of the present invention also has an enormous cost reduction that enables the cleaning process to be performed in 2 to 5 minutes as a result of the batch processing of the plurality of processes. It is also possible to use fiber-based cleaning means, and instead of conventional dry cleaning solutions, it has become possible to perform pollution-free fiber cleaning.

Description

明 細 書 高密度液化ガスを使用の洗浄手段 技術分野
この発明は、 高密度液化ガスを使用する洗净において、 洗浄溶媒再循 環システムの中に高価なコンプレッサーや高圧ボンプ等の高圧発生装置 を一切必要とせずにローコストにてシステムを構築し得るうえに、 一連 の操作において物理力、 化学力、 溶解力等の複数の洗浄力要素を連続か つ並列にて発現するために高い洗浄効率を奏することができる洗浄手段 に関するものである。 背景技術
耐圧洗浄器内に半導体等の被洗浄物を収納し、 適宜供給手段により、 超臨界流体を耐圧洗浄器に注入して超臨界流体を被洗浄物に接触させる と、 被洗浄物に付着する汚れ成分が超臨界流体に溶解する。 超臨界流体 に移動する。 この汚れ成分を溶解した超臨界流体を、 適宜の手段により 、 耐圧洗浄器から排除すると、 あとに精密 ¾ ^された被洗浄物が得られ る。 超臨界流体は減圧操作により完全に気化する為、 従来の所謂ゥエツ ト洗浄法における煩わしい乾燥仕上げが不要である。
上記の汚れ成分を溶解した超臨界流体を洗浄器から分離槽 (あるいは 回収槽) に移送後汚れ成分が析出し、 汚れ成分を放出した超臨界流体は 再び利用することが可能である。
これは、 第 7図の純物質の伏態図と超臨界流体のグラフに見られるよ うに臨界点近傍で、 圧力および温度の条件が P > P。 (臨界圧力) , T 〉T。 (臨界温度) である高密度流体のことを意味する超臨界流体がも つ特性 「 ( 1 ) わずかの圧力変化で大きな密度変化が得られる。 一般に 物質の溶解度は密度と比例するので、 圧力変化のみにより大きな溶解度 差が得られることになる。 (2 ) 超臨界流体の密度は、 液体と類似して いるが、 低粘性, 高拡散性であり、 したがって、 物質移動の面でより有 利になる。 」 をたくみに利用した半導体基板等の洗浄に用いられるよう になつた最新の洗浄技術である。
その原理は、 第一に、 超臨界流体の拈度が小さいことは、 狭い部分へ の侵入がし易いことを示し、 該流体の密度が大きいことは、 基板に付着 •含浸する汚染物質、 特に有機質の流体への溶解性が高いこと、 第二に 、 上記した洗浄作用は、 汚染物質を含有する超臨界流体がもたらすが、 その密度を小さくすることにより溶解作用が小さくなり、 その分、 上記 した含有成分を液状及び固体状に析出する。 従って、 分離槽で、 減圧操 作によりこれらの成分を回収できることを、 利用して成る。
汚染物を析出して浄化された超臨界流体は貯蔵手段を介して耐圧洗浄 器にリサイクルするとして閉じられた再循環システムが構築される。 採用されるガスとしては、 炭酸ガス、 酸化窒素、 ェタン、 プロパン等 が用いられるが、 特に、 炭酸ガスは、 不燃性、 無害、 低廉であり、 しか も、 臨界温度が 3 1 . 1で、 臨界圧力が 7 2 . 8気圧であって、 取扱い が容易であるので好ましく用いられている。
既述の再循環システムにおける流体搬送手段には一般にコンプレッサ —やボンプ等の超臨界状態にするための高圧発生装置が介装される。 これ等の装置は高い耐圧能力が要求されるので、 洗浄装置としてはき わめて高価になる。
洗浄力を溶解作用のみに依存したのでは、 効果的でない場合には、 強 制攪拌を加えるとしたり、 超音波エネルギーをキヤビテーシヨ ンを生起 させるべく投射したりすることもなされる。 また、 難溶の各種汚れ成分 にはェントレーナの添加が効果的とされている。
上述の如き超臨界流体の特性は亜臨界流体をも持つ。
亜臨界流体とは、 圧力-温度状態図におレ、て臨界点手前近傍の領域に ある流体をいい、 圧縮液体と圧縮気体の併存状態にある。 この領域の流 体は、 超臨界流体とは区別される。
亜臨界あるいは広義には臨界点近傍の超臨界領域に存在するものを高 密度液化ガスと称する。
この臨界点近傍の高密度液化ガスを溶媒に使用するとして超臨界流体 の厳しい耐圧要求を緩らげ、 出費項目の低减化を期した比較的簡単な洗 浄手段の提案が特開平 7— 1 7 1 5 2 7号等にある。
当該特開平 7— 1 7 1 5 2 7号の特徴は洗浄器に温度制御手段を配し た点、 かつ、 超音波エネルギーによるキヤビテーシヨン利用にある。 すなわち、 洗净器において温度制御手段で高密度液化ガス状態を制御 し超音波エネルギーによるキヤビテ一シヨンにより洗浄効率を高めよう とした点にある。
しかし、 閉じられた再循環システムにおける汚れ成分分離、 溶媒回収 工程における高密度液化ガスの搬送動力についてポンプ等で搬送圧力を 付与する手段を採用しており出費項目の低^匕は不充分のままである。 また、 叙上の高密度液化ガス利用の洗浄手段にあっては、 特に、 超臨 界状態の高浸透性という洗浄利点が低下することを補完するべくこれを 強力な攪拌を生じさせるキヤビテーシヨンで補うとしているのであるが 、 投射部のみの局部的なことと被洗浄物の汚染度合によってはこの程度 の強制攪拌では不充分な場合もあり、 か様な事態に対応し得ない。 また 、 洗浄作用は被洗浄物をキヤビテーシヨンに不可欠な液体中に浸潰して おいてなすものであるが、 液体中には固体状の汚染物質も多く存在し浮 遊しており、 これが被洗浄物に再付着する。 かかる再付着が許容されな い物にあっては、 再度洗浄流体で洗浄するという工程が追加されねばな らないという不便がある。
さらに、 溶媒に室温付近に臨界温度を有する (C 02 等) 高密度液化 ガスを使用する場合、 難溶性の汚れ成分特に無機化合物や極性物質の汚 れ成分の洗浄には、 ェントレーナを添加してもほとんど効果がなく、 か かる難溶性の汚れ成分の洗浄についての解決が切望されているのが実情 である。
本発明は、 叙上の事情に鑑みなされたもので、 出費項目の一層の低減 化の達成と、 強力な洗浄力発現と、 再付着の解消による効率的洗浄の達 成、 室温付近に臨界温度を有する溶媒の場合でも難溶の無機化合物や極 性物質等の汚れ成分の洗浄を可能とさせる等を達成した高密度液化ガス を使用の洗浄手段を提供することを目的とする。 発明の開示
本発明の洗浄手段は、 被洗浄物を収納する洗浄力ゴを器内空中に支持 し当該被洗浄物へ圧縮液体を直射噴霧する複数のノズルと器上部に接続 の低圧室とを備え、 器底に回転翼と器側壁に当該回転翼に指向した音波 発生装置とからなる攪拌装置を設けた耐圧^^器と、 該耐圧洗浄器より も低い位置に設置の温度調節手段を備えると共に着脱自在に組付く ドレ ンボンべを垂下設の洗净処理後の洗浄液体を受け入れるための耐圧洗浄 器の分室としての耐圧回収容器と、 該耐圧洗浄器よりも高い位置に設置 の温度調節手段を備えると共に該耐圧回収容器上部ガスを受け入れるた めに耐圧回収容器との間の上部間を連絡の貯蔵手段としての高密度液化 ガス供給シリンダ一と、 該高密度液化ガス供給シリンダ一と耐圧洗浄器 との間の液送管途中に接続のェン卜レーナ容器とから閉じられた再循環 システムが構成され、 これ等各圧縮液体送受容器間の上部間を互いの上 部ガスが連通し得るよう連絡してある。
このことによって、 臨界点近傍の亜臨界, 超臨界の両域に存在すると ころの高密度液化ガスの利点を存分に活用する。
すなわち、 臨界点近傍ほど加温気化、 冷却液化の所要エネルギーは小 さくて済むが、 溶媒の搬送をこの気化、 液化状態での蒸気圧差による圧 送、 蒸気圧差を基にしたレベル差設定の重力落下搬送で全て達成したの で、 高価な高圧発生装置の必要がなく、 出費項目の低減化が期し得る。 また、 分室の耐圧回収器を下位に有する耐圧洗浄器は、 耐圧回収器と 連通状態で、 複数のノズルのジ ット噴射による前洗浄で落とされる塊 状等の再付着のおそれある汚れを直ちに器外に排出し、 次いで行われる 溶媒充満のもとでなされる本洗浄は前洗浄で生じた汚れを全く含まずに 済む有利のもとになし得る。 この結果、 再付着のおそれある塊状等の汚 れ成分の再付着の機会は完全に失われ再付着が阻止される。 また、 繰り 返し反復が可能なため、 完璧な洗浄が期し得る。
さらに、 低圧室を有して溶媒充満時に膨張させることができるため、 臨界点近傍特有の現象である膨張によるバブリングが洗浄器の全領域、 すなわち微細加工部等で容易に発生し、 これに起因するキャビテ一ショ ン所謂攙拌カを超音波エネルギー投射の場合と異なり、 溶媒全体で享受 できる。
また、 これに付随して必要に応じ超音波エネルギー投射も行なうこと ができかつこのエネルギーを付設攪拌器を介して全容器内に伝搬するこ とが可能であり、 局所的投射の場合と比較するとその効果は格段に大き い。
高密度液化ガス単体のみでは難溶で洗浄できない汚れ成分の場合には 、 対象物に応じた界面活性剤の添加により、 所謂ミセル化現象にて汚れ 成分が溶解することが新たに発見されたので、 これを利用して無機化合 物、 極性物質の洗浄をも達成される。 また、 ミセル化された汚れ成分は そのバリア効果でもって、 再付着は防止され、 洗浄力を向上させる。 また、 本発明の洗浄手段は、 上述の洗浄機構を、 被洗浄物を収納する 洗浄力ゴを器内空中に支持し当該被洗浄物へ圧縮液体を直射噴霧する複 数のノズルを備え、 器底に回転翼と器側壁に当該回転翼に指向した音波 発生装置とからなる攪拌装置を設けた耐圧洗浄器と、 該耐圧洗浄器より も低い位置に設置の温度調節手段を備えると共に着脱自在に組付く ドレ ンボンべを垂下設の洗浄処理後の洗浄液体を受け入れるための耐圧洗浄 器の分室としての耐圧回収容器と、 該耐圧洗浄器よりも高い位置に設置 の温度調節手段を備え耐圧洗浄器と気相間連絡すると共に耐圧洗浄器に 液相をリサイクル供給するようにした膨張用低圧室とから成るとしてあ 。
このことによって、 さらに、 温度調節手段を備える低圧室は導入気相 を冷却して液化し、 リサイクル供給路を介して耐圧洗浄器に戻すが、 こ の溶媒循環により上述した好適なるキヤビテーシヨンが永続化し、 長時 間享受を可能とすることができる。 図面の簡単な説明
第 1図は、 本発明装置の基本的構成説明図であり、 第 2図は、 この装 置のリサイクル系統を複数化例の説明図であり、 第 3図 aは、 耐圧洗浄 器における荒洗浄、 第 3図 bは、 同じく本洗浄、 第 3図 cは、 攪拌装置 の説明図である。
また第 4図, 第 5図は、 本発明装置の機能付加タイプの説明図であり 、 第 6図 a , bは、 本発明の洗浄機構における前洗浄、 本洗浄の説明図 、 第 6図 cは攪拌装置の説明図である。
第 7図は純物質の状態図と超臨界流体、 亜臨界流体領域のグラフであ る ( 発明を実施するための最良の形態
本発明をより詳細に説述するために、 添付の図面に従ってこれを説明 する。
第 1図において、
耐圧洗浄器 1は被洗浄物を収納する洗浄カゴ 2を複数 (効果的洗浄に 必要) のノズル 3の直下の空中に支持する。 ノズル 3は首振り可能が好 ましい。 ノズル 3からジヱット噴流で洗浄カゴ 4内の被洗浄物に投射さ れて前洗浄がなされる。 ジヱッ ト噴流の当射の衝撃エネルギーは汚染物 質を強制剥離するのに有効である。 当該耐圧洗浄器 1に高圧配管 4 , 該ノズル 3を介して圧縮液体 5を送り込む高密度液化ガスを充塡の溶媒 原料ボンべ 6は、 図示例にあっては、 温度制御可能に温度調節器 7を装 備のボックス 8内に収容され、 該耐 E洗浄器 1より高い位置に設置され ていて、 レベル差落下作用のもと圧縮液体 5を送り込むものとしている (温度調節器 7によるボンべ 6の対耐圧洗浄器 1よりも高温設定での蒸 気圧差で移送は確実にされるうえに、 両容器上部間連絡の高圧配管 9の 気相連通によりバックアップされる) 。
耐圧洗浄器 1上部に接続して当該器空間拡張用の低圧室 1 0 , …が設 けられている。 当該低圧室 1 0によって耐圧洗浄器 1中に充満の圧縮液 体 5に膨張によるパブリングを発生させることが可能である。 また、 第 3図 cに詳示の如く、 洗浄カゴ 2直下の器 1底に回転翼 1 1を設けると 共に器 1側壁に該回転翼 1 1を指向した音波発生装置 1 2を配して、 超 音波エネルギーとその投射で回転する回転翼 1 1 とのキヤビテーシヨン , 強制攪拌動の相乗作用で一層の強力攪拌を可能とする。 しかして、 充 満した圧縮液体 5中に浸漬してなされる被洗浄物の本洗浄は強烈なる攪 拌のもとでなされ得る。 叙上のバブリング、 キヤビテーシヨンは、 その 急激な減圧によりバクテリアや細菌を破壊■死滅させるのに有効となる 該配管 4のノズル 3手前にェントレーナ容器 1 3が接続されている。 該ェン卜レーナ容器 1 3には、 高密度液化ガス単体のみでは難溶で洗浄 できない汚れ成分を有する場合、 汚れ成分に応じて親油, 親水あるいは 両親媒性界面活性剤が予じめ収容され、 オリフィス作用でもつて配管 4 内の圧縮液体 5中に吸引添加される。 当該界面活性剤は難溶な汚れ成分 を所謂ミセル化現象でもって溶かすので、 そのバリァ効果で再付着が生 じ難い。
耐圧洗浄器 1よりも低い位置に洗浄液体 5 ' を受け入れる耐圧回収容 器 1 4が配される。 受け入れは、 レベル差落下、 蒸気圧差、 気相連通作 用によりすみやかになされる。 当該容器 1 4は温度調節器 1 5を内蔵し 、 かつ、 器底より着脱自在に組付く ドレンボンべ 1 6を垂下する。 よつ て再循環系との連絡を断っておいてたっぷりと汚れ成分を収容したドレ ンボンべ 1 6を取りはずし所定場所で空にして再装着することが可能で ある。 耐圧回収容器 1 4は耐圧洗浄器 1の分室の役割を果たす。 すなわ ち、 上述の前洗浄時連通して落下する汚れ ( 1状のものを含む) をたつ ぶりと含んだ洗浄液体 5 ' を直ちに受け入れて耐圧洗浄器 1内に止まら せない (第 3図 a ) 。 よって、 該連通を断ってなされる耐圧洗浄器 1内 に圧縮液体 5を充満させてなされる前述の本洗浄では前洗浄での汚れを 含むことなくなされるので洗浄効率の向上が図れる (第 3図 b ) 。 これ によって、 所謂再付着は完全に解消する。
この洗浄を反復することで高い洗净効率が保証される。 しかして、 耐 圧洗浄器と耐圧回収器 1 4とにより再付着阻止機能を有した優れた洗浄 機構が提供される。 しかして、 高密度液化ガス単体のみでは難溶で洗浄 し切れない汚れ成分を含む場合、 その汚れ成分に応じた界面活性剤を投 入させ、 その所謂ミセル化現象による洗浄力向上と再付着防止機能を、 ノズルの衝撃エネルギーの強制剝離、 バブリングによるキヤビテ一ショ ン、 超音波による攪拌と共に合目的に複合化させるとして、 一層の洗浄 効率向上を図ることができる。
耐圧洗浄容器 1との間には気相連通用の配管 1 7が連絡されている。 耐圧回収容器 1 4の気相は更に耐圧洗浄容器 1より高い位置に設置の閉 じられた再循環システムの貯蔵手段としての高密度液化ガス供給シリン ダー 1 8上部と配管 1 9を介して連絡していて、 耐圧回収容器 1 4の温 度調節器 1 5で加温気化された溶媒は蒸気圧差をもって上位のシリンダ - 1 8に搬送されるものとなっている。 一方、 気相の密度は低く溶解力 も小さいため、 比重の重い汚染物質ゃェントレーナは下の液相に濃縮さ れて沈澱する。 この濃縮部をドレンボンべ 1 6に落下させて系外に排出 して汚れ成分の分離をなす。 つまり、 この耐圧回収容器 1 4と高密度液 化ガス供給シリンダ一 1 8とからなる分離回収機能は、 汚れ成分の除去 と溶媒の回収搬送を何ら高圧発生装置を要せずに達成する。 究極的な出 費項目の低滅化実現である。
シリンダー 1 8は温度調節器 2 0を内蔵し いて、 これをもって上記 気化溶媒を冷却液化する。 シリンダー 1 8下部の配管 2 1は耐圧洗浄器 1のノズル 3に連絡すべく該配管 4に接続している。 このレベル差落下 搬送を補完すべく気相間連絡管 2 2が架配されている。 尚、 この際、 該 温度調節器 2 0の加温による温度差設定でもって落下を補完する。 ここ に高価な高圧発生装置を一切用いることなく温度調節手段のみで洗浄溶 媒の循環が可能な全く新規な再循環システムが提供される。
第 2図に紹介のものは、 上述の再循環系 (耐圧回収容器 1 4一高密度 液化ガス供給シリンダー 1 8 ) を複数設(図示例は 2系統) したものを 示し、 洗浄器 1の稼動を高め得る。 両系統の液送は三方弁バルブ 2 3 , 2 4で切換えされ、 気送は三方弁バルブ 2 5夫々持ち出しのバルブ 2 6 , 2 6によって連絡 ·遮断がなされる。 これを用いて、 溶媒を C 0 2 と した操作態様例を以下説明する。
本発明装置全体を空調コントロール装置 2 7で人が作業しやすい温度
2 0 °Cに保たれた室 2 8内に配置した。 温度調節器 7によりボンべ 6を
3 0 °Cにコントロールした。 洗浄器 1内の圧縮液体 5は界面活性剤や被 洗浄物のために 2 0 °C位に低下した。 耐圧回収容器 1 4では温度調節器 1 5で 3 (TCに再加温した。 これで上澄液はほとんどが気化した。 一系 統の気化時間は 4ガロンで 4 0分程であったので 2系統で 2 0分に短縮 する。 高密度液化ガス供給シリンダー 1 8では温度調節器 2 0で 0 °Cに 冷却し E縮液体 5を充満させた。
一方、 洗浄器 1における被洗浄物の挿入から洗浄まで 1 0分位要する 力 \ 2系統にする事で、 次の洗浄の待機時間がほとんど無い、 高稼動率 が実現できた。
次いで、 さらなる洗浄機能向上タイプを第 4〜 6図にて説明する。 耐圧洗浄器 1 0 1は被洗浄物を収納する洗浄カゴ 1 0 2を複数 (効果 的洗浄に必要) のノズル 1 0 3の直下の空中に支持する。 ノズル 1 0 3 は首振り可能が好ましい。 ノズル 1 0 3からジエツ 卜噴流で洗浄カゴ 1 0 2内の被洗浄物に投射されて前洗浄がなされる。 ジェット噴流の投射 の衝撃エネルギ一は汚染物質を強制剝離するのに有効である。
また、 第 6図 cに詳示の如く、 洗浄カゴ 1 0 2直下の器 1 0 1底に回 転翼 1 0 5を設けると共に器 1 0 1側壁に該回転翼 1 0 5を指向した音 波発生装置 1 0 6を配して、 超音波エネルギーとその投射で回転する回 転翼 1 0 5とのキヤビテーショ ン, 強制攪拌動の相乗作用で強力攪拌を 可能とする。 叙上のキヤビデーシヨンは、 その急激な減圧によりバクテリアや細菌 を破壊 ·死滅させるのに有効となる。 耐圧洗净器 1 0 1よりも低い位置 に配管 1 2 2を介して洗浄液体 1 0 7 ' を受け入れる耐圧回収容器 1 0 8が配される。 受け入れはレベル差落下、 蒸気圧差 (後述の温度調節器 1 0 9による相対的温度差設定) 等によりすみやかになされる。 当該容 器 1 0 8は温度調節器 1 0 9を内蔵し、 かつ、 器底より着脱自在に組付 く ドレンボンべ 1 1 0を垂下する。
耐 EE回収容器 1 0 8は耐圧洗浄器 1 0 1の分室役割を果たす。 すなわ ち、 上述の前洗浄時連通して落下する汚れ (塊状のものを含む) をたつ ぶりと含んだ洗浄液体 1 0 7 ' を直ちに受け入れて耐圧洗浄器 1 0 1内 に止まらせない (第 6図 a ) 。 よって、 該連通を断ってなされる耐圧洗 浄器 1 0 1内に圧縮液体 I 0 7を充満させてなされる前述の本洗浄では 前洗浄での汚れを含むことなくなされるので洗浄効率の向上が図れる ( 第 6図 b ) 。 これによつて、 所謂再付着は解消する。 たつぶりと汚れ成 分を収容したドレンボンべ 1 1 0を取りはずし所定場所で空にして再装 着することで迅速、 無限の汚れ系外排出が可能である。
叙上の本洗浄には、 さらに溶媒全体が沸き立つキヤビテーシヨンが作 用する。 すなわち、 耐圧洗浄器 1 0 1の上 に、 温度調節手段 1 1 1を 備えた膨張用低圧室 1 1 2が気相連通管 1 1 3, 液相供給管 1 1 4を介 して接続されていて、 該気相連通管 1 1 3の連通で本洗浄中の圧縮液体 1 0 7に超音波投射と異なり膨張に伴なう液全般に渡るキヤビテ一ショ ンを作用させる。 このキヤビテーシヨンは、 該温度調節手段 1 1 1の冷 却による液化促進と該液相供給管 1 1 4の連通とにより溶媒リサイクル によって、 永続化される。 溶解力に優れる溶媒の理想的な激しい流動が ここに実現する。
なを、 高密度液化ガス単体のみでは難溶で洗浄できない汚れ成分を有 する場合、 汚れ成分に応じて親油、 親水あるいは両親媒性界面活性剤を 予じめ溶媒に添加しておくと、 上記の流動溶媒のもとでは、 当該界面活 性剤は難溶な汚れ成分を所謂ミセル化現象でもつて溶かし、 そのうえバ リア効果で再付着が生じ難い。
第 4図と第 5図は異なる態様を示し、 第 4図は溶媒搬送手段に一切の 高圧発生装置を用いずに済ませた閉じられた再循環システムに上記の洗 浄機構を組み込んだ場合を示す。
すなわち、 耐圧洗浄器 1 0 1に高圧配管 1 1 5 . 該ノズル 1 0 3を介 して圧縮液体 1 0 7を送り込む高密度液化ガス等を充塡の溶媒原料ボン ベ 1 1 6は、 温度制御可能に温度調節器 1 1 7を装備のボックス 1 1 8 内に収容され、 該耐圧洗浄器 1 0 1より高い位置に設置されていて、 レ ベル差落下作用のもと圧縮液体 1 0 7を送り込むものとしている (温度 調節器 1 1 7によるボンべ 1 1 6が対耐圧洗浄器 1 0 1よりも高温設定 での蒸気圧差で移送は確実にされるうえに、 両容器上部間連絡の高圧配 管 1 1 9の気相連通によりバックアップされる) 。 当該配管 1 1 5は、 途中該液相供給管 i 1 4が接続されていて、 三方弁 1 3 0でボンべ 1 1 6若しくは低圧室 1 1 2からの液送に切換えられる。 該配管 1 1 5のノ ズル 1 0 3手前にェントレーナ容器 1 2 0が V接* 続されている。 該ェント レーナ容器 1 2 0には、 高密度液化ガス単体のみでは難溶で洗浄できな い汚れ成分を有する場合、 汚れ成分に応じて親油、 親水あるいは両親媒 性界面活性剤 1 2 1等が予じめ収容され、 オリフィス作用でもって配管 1 1 5内の圧縮液体 1 0 7中に吸弓 I添加される。 耐圧洗浄容器 1 0 1 と 耐圧回収容器 1 0 8との間には上述と同様のバックアップのための気相 連通用の配管 1 2 3が連絡されている。 耐圧回収容器 I 0 8の気相は更 に耐圧洗浄容器 1 0 1より高い位置に設置の閉じられた再循環システム の貯蔵手段としての高密度液化ガス供給シリンダ一 1 2 4上部と配管 1 2 5を介して連絡していて、 耐圧回収容器 1 0 8の温度調節器 1 0 9で 加温気化された溶媒は蒸気圧差をもって上位のシリンダ一 1 2 4に搬送 されるものとなっている。 一方、 気相の密度は低く溶解力も小さいため 比重の重い汚染物質ゃェントレーナは下の液相に濃縮されて沈澱する。 この濃縮部をドレンボンべ 1 1 0に落下させて系外に排出して汚れ成分 の分離をなす。
よって、 この耐圧回収容器 1 0 8と高密度液化ガス供給シリンダー 1 2 4とからなる分離回収機構は、 汚れ成分の除去と溶媒の回収搬送を何 ら高圧発生装置を要せずに達成する。
シリンダー 1 2 4は温度調節器 1 2 6を内蔵していて、 これをもって 上記気化溶媒を冷却液化する。 シリンダ一 1 2 4下部の配管 1 2 7は耐 圧洗浄器 1 0 1のノズル 1 0 3に連絡すべく該配管 1 1 5に接続してい る。 このレベル差落下搬送を補完すべく気相間連絡管 1 2 8が架配され ている。 尚、 この際、 該温度調節器 1 2 6の加温による温度差設定でも つて落下を補完する。 ここに温度調節手段のみで溶媒の循環が可能な再 循環システムが提供される。
しかして、 優れた洗浄を享受すると共に、 閉じられた再循環システム 内のみでなく、 これに接镜の溶媒原料ボンべ^、らの溶媒の搬送の全てが レベル差、 蒸気圧差、 気相連通の耐圧要求を受ける必要のない機器を介 して達成され、 出費項目の低減化が著しい。
第 5図は、 ボンべ 1 1 6から耐圧洗浄容器 1 0 1への溶媒搬送を高圧 発生装置に頼るとした閉じられた再循環システムに上記の洗浄機構を組 み込んだ場合を示し、 第 4図と同一構成部は同一符号で示す。 この場合 ボンべ 1 1 6は別段耐圧洗浄器 1 0 1よりも上位に設置される必要はな く、 高圧配管 1 1 5の途中に加圧ポンプ 1 2 9が介配されている。 両者 間の気相間連絡は省略される。 同じく耐圧洗浄器 1 0 1と耐圧回収容器 1 0 8との間の気相連絡も省略されている。 シリンダー 1 2 4下部の配 管 1 2 7は、 該高圧配管 1 1 5の途中該加圧ポンプ 1 2 9手前にて接続 され、 シリンダー 1 2 4と耐圧洗浄器 1 0 1 との間の気相連絡は省略さ れている。
図中 1 0 4はシリンダー 1 2 4出口側に配設のフィルターを示す。 しかして、 耐圧洗浄器、 低圧室、 耐圧回収器、 高密度液化ガス供給シリ ンダ一等の洗浄機構、 分離回収機構は、 強力な洗浄力と効率的な汚染物 系外排除と高圧発生装置を用いずに済ませた溶媒回収を実現し、 安価で 効率的な洗浄装置を提供する。 産業上の利用可能性
以上のように本発明にかかる高密度液化ガスを使用の洗浄手段は、 高 レ、洗浄力を有するので、 従来の湿式洗浄では不可能であつた超精密洗浄 を必要とする半導体等、 パーチクル ' レベルの汚れ成分や、 超微細なレ ジスト ·サブミクロンの汚れ成分をも洗浄可能となった。
従来の一般工業洗浄では、 金属加工に伴う前後の、 前処理洗浄 ·本洗 浄 ·仕上げ洗浄 ·乾燥仕上げ等、 数工程のバッチ処理が必要で 2 0分〜 4 0分の洗浄時間が掛かっている、 本発明の洗浄手段は、 それら複数の 工程を 1バッチ処理が可能となった結果 2分〜 5分で洗浄処理できる画 期的なコストダウンをも併せ持つ、 又、 金属の洗浄以外に織維材質の洗 浄手段も可能であり、 従来のドライクリーニング溶液に替わり公害のな い繊維洗浄も可能となった。

Claims

請求の範囲
1. 耐圧洗浄器内に収容の半導体等の被洗浄物に対して、 器外から洗浄 溶媒である臨界点近傍の高密度液化ガスを注入接触させて、 被洗浄物に 付着する汚れ成分を高密度液化ガスに溶解させ、 次いで当該汚れ成分溶 存の高密度液化ガスを回収容器、 分離槽に移送のうえ減圧して密度を減 少させ溶解している汚れ成分を析出、 分離させ、 さらに汚れ成分を除去 して回収された洗净溶媒は再度高密度液化ガスに戻して貯蔵し、 再利用 に供するとする閉じられた再循環システムにおいて、 溶媒としては臨界 点近傍の亜臨界, 超臨界の両域に存在するところの高密度液化ガスを採 用し、 当該高密度液化ガスが持つ臨界点近傍ほど加温気化、 冷却液化の 所要エネルギーは小さくて済む特質を利用して、 溶媒の搬送を、 この気 化、 液化状態での蒸気圧差による圧送と蒸気圧差を基にしたレベル差設 定の重力落下搬送で高圧発生装置を用いずに全て達成するものとし、 耐 圧洗净器にあっては高密度液化ガスは被洗浄物に対して噴射されて、 汚 れ成分を前洗浄すると共に直ちに器外に移送して汚れ成分の再付着を阻 止し、 さらには超音波エネルギーによる強制攪拌と溶媒全体に作用する 膨張によるキヤビテ一シヨン、 ミセル形成^よる事で多様な洗浄物に対 して、 完璧な洗浄をなし得るとした洗浄 ·溶媒循環方法。
2. 被洗浄物を収納する洗浄カゴ (2) を器内空中に支持し当該被洗浄 物へ圧縮液体 (5) を直射噴霧する複数のノズル (3) と器上部に接続 の低圧室 (1 0) とを備え、 器底に回転翼 (1 1 ) と器側壁に当該回転 翼 ( 1 1 ) に指向した音波発生装置 ( 1 2) とからなる攪拌装置を設け た耐圧洗浄器 ( 1 ) と、 該耐圧洗浄器 ( 1 ) よりも低い位置に設置の温 度調節手段を備えると共に着脱自在に組付く ドレンボンべ ( 1 6) を垂 下設の洗净処理後の洗浄液体を受け入れるための耐圧洗浄器 ( 1 ) の分 室としての耐圧回収容器 ( 1 4) と、
該耐圧洗浄器 ( 1 ) よりも高い位置に設置の温度調節手段を備えると共 に該酎圧回収容器 ( 1 4) 上部ガスを受け入れるために耐圧回収容器 ( 1 4) との間の上部間を連絡の貯蔵手段としての高密度液化ガス供給シ リンダ一 ( 1 8) と、
該高密度液化ガス供給シリ ンダー ( 1 8) と耐圧洗浄器 ( 1 ) との間の 液送管途中に接続のェントレーナ容器 ( 1 3) とから閉じられた再瞬間 システムが構成され、
これ等各圧縮液体送受容器間の上部間を互いの上部ガスが連通し得るよ う連絡して成るとしたことを特徴とする高密度液化ガスを使用の洗浄装
3. 耐圧洗浄器に対し耐圧回収容器、 高密度液化ガス供給シリ ンダーか ら成るリサイクル系を切換え自在に複数設けたことを特徴とする請求の 範囲 2記載の高密度液化ガスを使用の洗浄装置。
4. 溶媒原料ボンべ (6) を耐圧洗浄器 ( 1 ) よりも高い位置に設置す ると共に温度調節手段を備え、 かつ、 耐圧洗浄器 ( 1 ) との上部間を互 いの上部ガスを連通し得るように連絡した請求の範囲 2又は 3記載の高 密度液化ガスを使用の洗浄装置。
5. 被洗浄物を収納する洗浄カゴ (3) を器內空中に支持し当該被洗浄 物へ圧縮液体 (5) を直射噴霧する複数のノズル (3) と器上部に接続 の低圧室 ( 1 0) とを備え、 器底に回転翼 ( 1 1 ) と器側壁に当該回転 翼に指向した音波発生装置 ( 1 2) とからなる攪拌装置を設けた耐圧洗 浄器 ( 1 ) の下位に、 温度調節手段を備えると共に着脱自在に組付く ド レンボンべ ( 1 6) を垂下設した洗浄処理後の洗浄液体を受け入れるた めの分室としての耐圧回収容器 ( 1 4) を付属させた再付着阻止機能を 有する洗浄機構。
6 . 温度調節手段を備えると共に着脱自在に組付く ドレンボンべ ( 1 6 ) を垂下設の耐圧回収容器 ( 1 4 ) と、 耐 EE洗净器 ( 1 ) よりも高い位 置に設置の温度調節手段を備えると共に耐圧回収容器 ( 1 4 ) 上部ガス を受け入れるために耐圧回収容器 ( 1 4 ) との間の上部間を連絡の高密 度液化ガス供給シリンダー ( 1 8 ) とから成る汚れ成分分離、 溶媒回収 のために高圧発生装置を不要とした分離回収機構。
7 . 高密度液化ガス単体のみでは難溶で洗浄できない汚れ成分を有する 場合、 汚れ成分に応じて親油, 親水あるいは両親媒性界面活性剤をェン トレーナ容器を介して溶媒中に添加して、 その所謂ミセル化現象による 洗浄力向上と再付着防止機能を、 ノズルの衝撃エネルギーの強制剝離, バブリングによるキヤビテ一シヨン, 超音波による攪拌と共に合目的に 複合化させるとした請求の範囲 2, 3又は 4記載の高密度液化ガスを使 用の洗浄装置の取り扱い方法。
8 . 耐圧洗浄器内に収容の半導体等の被洗浄物に対して、 超臨界供給手 段により器外から超臨界流体を注入接触させて、 被洗浄物に付着する水 分、 有機物等の汚染物を超臨界流体に溶解移転させ、 次いで当該汚染物 溶存の超臨界流体を分離槽に移送のうえ減圧して密度を小化させ溶解し ている汚染物を析出させて、 さらに、 汚染 除かれた純粋な超臨界流 体を元の密度に戻して貯蔵し、 再利用に供するとする閉じられた再循環 システムにおいて、
溶媒としては臨界点近傍の亜臨界, 超臨界の両域に 20 存在するとこ ろの高密度液化ガスを採用し、 当該高密度液化ガスが持つ臨界点近傍ほ ど加温気化、 冷却液化の所要エネルギーは小さくて済む特質を利用して 、 溶媒の搬送を、 この気化、 液化状態での蒸気圧差による圧送と蒸気圧 差を背にしたレベル差設定の重力落下搬送で高圧発生装置を用いずに全 て達成するものとし、 耐圧洗净器にあっては高密度液化ガスは被洗浄物 に対して噴射されて塊状汚染物を前洗浄すると共に直ちに器外に移し得 て汚染物の再付着を阻止し、 さらには強制攪拌と溶媒の循環が確保され 永続化された溶媒全体に作用する膨張によるキヤビテ一シヨンとで完璧 な洗浄をなし得るとした洗浄 ·溶媒循環方法。
9. 被洗浄物を収納する洗浄カゴ ( 1 02) を器内空中に支持し当該被 洗浄物へ圧縮液体を直射噴霧する複数のノズル ( 1 02) を備え、 器底 に回転翼 ( 1 0 5) と器側壁に当該回転翼 ( 1 0 5) に指向した音波発 生装置 ( 1 0 6) とからなる攪拌装置を設けた耐圧洗浄器 ( 1 0 1 ) と 該耐圧洗浄器 ( 1 0 1 ) よりも低い位置に設置の温度調節手段を備える と共に着脱き在に組付く ドレンボンべ ( 1 1 0) を垂下設の洗浄処理後 の洗浄液体を受け入れるための耐圧洗净器 ( 1 0 1 ) の分室としての耐 圧回収容器 ( 1 0 8) と、
該耐圧洗浄器 ( 1 0 1 ) よりも高い位置に設置の温度調節手段を備え耐 圧洗浄器 (1 0 1 ) と気相間連絡すると共に耐圧洗浄器 ( 1 0 1 ) に液 相をリサイクル供給するようにした膨張用低圧室 ( 1 1 2) とから成る ことを特徴とする超臨界流体洗浄装置における洗浄機構。
1 0. 請求の範囲 9記載の洗浄機構と、
該耐 E洗浄器 ( 1 0 1 ) よりも高い位置に設置の温度調節手段を備える と共に該耐圧回収容器 ( 1 0 8) 上部ガスを受け入れるために耐圧回収 容器 ( 1 0 8) との間の上部間を連絡の貯蔵手段としての高密度液化ガ ス供給シリンダー ( 1 24) と、
該高密度液化ガス供給シリンダー ( 1 24) と耐圧洗浄器 ( 1 0 1 ) と の間の液送管途中に接続のェントレーナ容器 ( 1 20) とから閉じられ た再循環システムを構成し、
耐圧洗浄器 ( 1 0 1 ) と耐圧回収容器 ( 1 0 2) 間、 高密度液化ガスシ リンダー ( 1 24) と耐圧洗浄器 ( 1 0 1 ) 間の上部間を互いの上部ガ スが連通し得るよう連絡し、 溶媒原料ボンべ ( 1 1 6) を耐圧洗浄器 ( 1 0 1 ) よりも高い位置に設置すると共に温度調節手段を備え、 かつ、 耐圧洗浄器との上部間を互いの上部ガスが連通し得るように連絡して成 る超臨界流体洗浄装置。
1 1. 請求の範囲 9記載の洗浄機構と、
該耐圧洗浄器 ( 1 0 1 ) よりも高い位置に設置の温度調節手段を備える と共に該耐圧回収容器 ( 1 0 8) 上部ガスを受け入れるために耐圧回収 容器 ( 1 0 8) との間の上部間を連絡の貯蔵手段としての高密度液化ガ ス供給シリンダ一 ( 1 24) と、
該高密度液化ガス供給シリンダ一 ( 1 2 4) と耐圧洗浄器 ( 1 0 1 ) と の間の液送管途中に接続のェントレ一ナ容器 ( 1 2 0) とから閉じられ た再循環システムを構成し、 溶媒原料ボンべ ( 1 1 6) から耐圧洗浄器 ( 1 0 1 ) への溶媒搬送を加圧ポンプ ( 1 2 9) 介配によるとした超臨 界流体洗浄装置。
1 2. 高密度液化ガス単体のみでは難溶で洗净できない汚れ成分を有す る場合、 汚れ成分に応じて親油, 親水あるいは両親媒性界面活性剤をェ ントレーナ容器を介して溶媒中に添加して、 その所謂ミセル化現象によ る洗浄力向上と再付着防止機能を活用するとした請求の範囲 9記載の洗 浄機構の取り扱い方法。
PCT/JP1997/003409 1996-09-25 1997-09-25 Systeme de lavage utilisant un gaz liquefie de haute densite WO1998013149A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP97941235A EP0893166A4 (en) 1996-09-25 1997-09-25 WASHING SYSTEM USING LIQUID, HIGH DENSITY GAS
US09/043,413 US6092538A (en) 1996-09-25 1997-09-25 Method for using high density compressed liquefied gases in cleaning applications
KR1019980702074A KR100342720B1 (ko) 1996-09-25 1997-09-25 고밀도액화가스를사용하는세정수단

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP08252962A JP3074290B2 (ja) 1996-09-25 1996-09-25 高密度液化ガスを使用の洗浄装置
JP8/252962 1996-09-25
JP8322719A JP3066400B2 (ja) 1996-12-03 1996-12-03 超臨界流体洗浄装置における洗浄機構
JP8/322719 1996-12-03
CA002232768A CA2232768C (en) 1996-09-25 1998-03-20 Method for using high density compressed liquefied gases in cleaning applications
NO19981308A NO316665B1 (no) 1996-09-25 1998-03-23 Fremgangsmate for rengjoring og resirkulering av opplosningsmiddel i et lukket resirkuleringssystem samt rengjoringsutstyr hvor det anvendes en komprimert flytende gass med hoy tetthet
CN98108789A CN1107554C (zh) 1996-09-25 1998-03-27 利用高密度压缩液化气的清洗机构、清洗设备及清洗方法

Publications (1)

Publication Number Publication Date
WO1998013149A1 true WO1998013149A1 (fr) 1998-04-02

Family

ID=31982608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/003409 WO1998013149A1 (fr) 1996-09-25 1997-09-25 Systeme de lavage utilisant un gaz liquefie de haute densite

Country Status (6)

Country Link
US (1) US6092538A (ja)
EP (1) EP0893166A4 (ja)
CN (1) CN1107554C (ja)
CA (1) CA2232768C (ja)
NO (1) NO316665B1 (ja)
WO (1) WO1998013149A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7080651B2 (en) 2001-05-17 2006-07-25 Dainippon Screen Mfg. Co., Ltd. High pressure processing apparatus and method
CN108940991A (zh) * 2018-07-05 2018-12-07 天津市盛佳怡电子有限公司 风电叶片清洗装置

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7044143B2 (en) * 1999-05-14 2006-05-16 Micell Technologies, Inc. Detergent injection systems and methods for carbon dioxide microelectronic substrate processing systems
US6602349B2 (en) 1999-08-05 2003-08-05 S.C. Fluids, Inc. Supercritical fluid cleaning process for precision surfaces
US6314601B1 (en) * 1999-09-24 2001-11-13 Mcclain James B. System for the control of a carbon dioxide cleaning apparatus
US6576066B1 (en) * 1999-12-06 2003-06-10 Nippon Telegraph And Telephone Corporation Supercritical drying method and supercritical drying apparatus
EP1255621B1 (de) * 2000-02-18 2005-08-31 Eco2 SA Autoklav zur präzisionsreinigung von stücken und verwendung des autoklavs
JP2004510321A (ja) * 2000-05-18 2004-04-02 エス.シー.フルーイズ,インコーポレイテッド 精密な表面のための超臨界流体洗浄プロセス
FR2815559B1 (fr) * 2000-10-20 2002-11-29 Commissariat Energie Atomique Procede, dispositif et installation de nettoyage de pieces contaminees, par un fluide dense sous presssion
AU2002251717A1 (en) * 2000-10-23 2002-08-12 James Tyson Improved sound-based vessel cleaner inspection
US6782900B2 (en) * 2001-09-13 2004-08-31 Micell Technologies, Inc. Methods and apparatus for cleaning and/or treating a substrate using CO2
US6763840B2 (en) * 2001-09-14 2004-07-20 Micell Technologies, Inc. Method and apparatus for cleaning substrates using liquid carbon dioxide
US6848458B1 (en) * 2002-02-05 2005-02-01 Novellus Systems, Inc. Apparatus and methods for processing semiconductor substrates using supercritical fluids
US20080264443A1 (en) * 2002-02-05 2008-10-30 Novellus Systems, Inc. Apparatus and methods for increasing the rate of solute concentration evolution in a supercritical process chamber
CN101147908A (zh) * 2002-05-20 2008-03-26 松下电器产业株式会社 清洗方法
US7282099B2 (en) * 2002-09-24 2007-10-16 Air Products And Chemicals, Inc. Dense phase processing fluids for microelectronic component manufacture
US20080004194A1 (en) * 2002-09-24 2008-01-03 Air Products And Chemicals, Inc. Processing of semiconductor components with dense processing fluids
US7267727B2 (en) * 2002-09-24 2007-09-11 Air Products And Chemicals, Inc. Processing of semiconductor components with dense processing fluids and ultrasonic energy
US20080000505A1 (en) * 2002-09-24 2008-01-03 Air Products And Chemicals, Inc. Processing of semiconductor components with dense processing fluids
US6880560B2 (en) * 2002-11-18 2005-04-19 Techsonic Substrate processing apparatus for processing substrates using dense phase gas and sonic waves
US8316866B2 (en) * 2003-06-27 2012-11-27 Lam Research Corporation Method and apparatus for cleaning a semiconductor substrate
US7737097B2 (en) * 2003-06-27 2010-06-15 Lam Research Corporation Method for removing contamination from a substrate and for making a cleaning solution
US7799141B2 (en) * 2003-06-27 2010-09-21 Lam Research Corporation Method and system for using a two-phases substrate cleaning compound
US20040261823A1 (en) * 2003-06-27 2004-12-30 Lam Research Corporation Method and apparatus for removing a target layer from a substrate using reactive gases
US7913703B1 (en) 2003-06-27 2011-03-29 Lam Research Corporation Method and apparatus for uniformly applying a multi-phase cleaning solution to a substrate
US7648584B2 (en) * 2003-06-27 2010-01-19 Lam Research Corporation Method and apparatus for removing contamination from substrate
US8522801B2 (en) * 2003-06-27 2013-09-03 Lam Research Corporation Method and apparatus for cleaning a semiconductor substrate
US8323420B2 (en) 2005-06-30 2012-12-04 Lam Research Corporation Method for removing material from semiconductor wafer and apparatus for performing the same
US7568490B2 (en) * 2003-12-23 2009-08-04 Lam Research Corporation Method and apparatus for cleaning semiconductor wafers using compressed and/or pressurized foams, bubbles, and/or liquids
US7862662B2 (en) * 2005-12-30 2011-01-04 Lam Research Corporation Method and material for cleaning a substrate
US8043441B2 (en) * 2005-06-15 2011-10-25 Lam Research Corporation Method and apparatus for cleaning a substrate using non-Newtonian fluids
US7416370B2 (en) * 2005-06-15 2008-08-26 Lam Research Corporation Method and apparatus for transporting a substrate using non-Newtonian fluid
US8522799B2 (en) * 2005-12-30 2013-09-03 Lam Research Corporation Apparatus and system for cleaning a substrate
US20050183740A1 (en) * 2004-02-19 2005-08-25 Fulton John L. Process and apparatus for removing residues from semiconductor substrates
EP2428557A1 (en) * 2005-12-30 2012-03-14 LAM Research Corporation Cleaning solution
US7743783B2 (en) * 2006-04-04 2010-06-29 Air Liquide Electronics U.S. Lp Method and apparatus for recycling process fluids
US7250087B1 (en) 2006-05-16 2007-07-31 James Tyson Clogged nozzle detection
US20080148595A1 (en) * 2006-12-20 2008-06-26 Lam Research Corporation Method and apparatus for drying substrates using a surface tensions reducing gas
US7897213B2 (en) * 2007-02-08 2011-03-01 Lam Research Corporation Methods for contained chemical surface treatment
US8226775B2 (en) 2007-12-14 2012-07-24 Lam Research Corporation Methods for particle removal by single-phase and two-phase media
CN101628288B (zh) * 2008-07-17 2012-03-21 富葵精密组件(深圳)有限公司 清洗装置及清洗系统
CN101780459B (zh) * 2010-03-12 2011-10-26 西安热工研究院有限公司 一种滤元离线化学清洗装置
CN103801526A (zh) * 2012-11-07 2014-05-21 爱阔特(上海)清洗设备制造有限公司 蒸汽清洗设备及其清洗方法
DE102015211318A1 (de) * 2015-06-19 2016-12-22 Krones Ag Verfahren zum Reinigen von Behältern und/oder Behältergebinden und Reinigungsvorrichtung
CN108356835A (zh) * 2018-03-20 2018-08-03 张莉笛 一种智能加工机器人

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59502137A (ja) * 1982-12-06 1984-12-27 ヒユ−ズ・エアクラフト・カンパニ− 超臨界ガスによる物品の清浄化方法
JPS63179530A (ja) * 1987-01-21 1988-07-23 Hitachi Ltd 超臨界ガス又は液化ガスによる基板の洗浄方法およびその装置
JPH05226311A (ja) * 1992-02-14 1993-09-03 Babcock Hitachi Kk 洗浄装置
JPH0751645A (ja) * 1993-04-12 1995-02-28 Hughes Aircraft Co 圧縮され凝縮されたケースを使用したメガソニック洗浄システム
JPH07284739A (ja) * 1994-04-15 1995-10-31 Sharp Corp 洗浄方法および洗浄装置
JPH08290128A (ja) * 1995-04-20 1996-11-05 Shiyuuzu Rifuretsushiyaa Kaihatsu Kyodo Kumiai 超臨界および亜臨界流体を用いた洗浄方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5013366A (en) * 1988-12-07 1991-05-07 Hughes Aircraft Company Cleaning process using phase shifting of dense phase gases
US5213619A (en) * 1989-11-30 1993-05-25 Jackson David P Processes for cleaning, sterilizing, and implanting materials using high energy dense fluids
US5306350A (en) * 1990-12-21 1994-04-26 Union Carbide Chemicals & Plastics Technology Corporation Methods for cleaning apparatus using compressed fluids
US5267455A (en) * 1992-07-13 1993-12-07 The Clorox Company Liquid/supercritical carbon dioxide dry cleaning system
US5344493A (en) * 1992-07-20 1994-09-06 Jackson David P Cleaning process using microwave energy and centrifugation in combination with dense fluids
US5339844A (en) * 1992-08-10 1994-08-23 Hughes Aircraft Company Low cost equipment for cleaning using liquefiable gases
JP2884948B2 (ja) * 1992-10-02 1999-04-19 日本電気株式会社 半導体基板の処理方法
US5355901A (en) * 1992-10-27 1994-10-18 Autoclave Engineers, Ltd. Apparatus for supercritical cleaning
US5676705A (en) * 1995-03-06 1997-10-14 Lever Brothers Company, Division Of Conopco, Inc. Method of dry cleaning fabrics using densified carbon dioxide
DE19509573C2 (de) * 1995-03-16 1998-07-16 Linde Ag Reinigung mit flüssigem Kohlendioxid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59502137A (ja) * 1982-12-06 1984-12-27 ヒユ−ズ・エアクラフト・カンパニ− 超臨界ガスによる物品の清浄化方法
JPS63179530A (ja) * 1987-01-21 1988-07-23 Hitachi Ltd 超臨界ガス又は液化ガスによる基板の洗浄方法およびその装置
JPH05226311A (ja) * 1992-02-14 1993-09-03 Babcock Hitachi Kk 洗浄装置
JPH0751645A (ja) * 1993-04-12 1995-02-28 Hughes Aircraft Co 圧縮され凝縮されたケースを使用したメガソニック洗浄システム
JPH07284739A (ja) * 1994-04-15 1995-10-31 Sharp Corp 洗浄方法および洗浄装置
JPH08290128A (ja) * 1995-04-20 1996-11-05 Shiyuuzu Rifuretsushiyaa Kaihatsu Kyodo Kumiai 超臨界および亜臨界流体を用いた洗浄方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0893166A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7080651B2 (en) 2001-05-17 2006-07-25 Dainippon Screen Mfg. Co., Ltd. High pressure processing apparatus and method
CN108940991A (zh) * 2018-07-05 2018-12-07 天津市盛佳怡电子有限公司 风电叶片清洗装置

Also Published As

Publication number Publication date
CN1230471A (zh) 1999-10-06
CA2232768A1 (en) 1999-09-20
EP0893166A1 (en) 1999-01-27
CA2232768C (en) 2004-09-28
NO981308L (no) 1999-09-24
EP0893166A4 (en) 2004-11-10
NO981308D0 (no) 1998-03-23
CN1107554C (zh) 2003-05-07
NO316665B1 (no) 2004-03-29
US6092538A (en) 2000-07-25

Similar Documents

Publication Publication Date Title
WO1998013149A1 (fr) Systeme de lavage utilisant un gaz liquefie de haute densite
US5651276A (en) Dry-cleaning of garments using gas-jet agitation
JP2922791B2 (ja) 液化ガスを使用した安価な洗浄装置
US6924257B2 (en) Device and method for generating a liquid detergent concentrate from a solid detergent and a method for washing a vehicle
JPH07508904A (ja) 液体/臨界超過二酸化炭素ドライクリーニング装置
CA2096462A1 (en) Continuous operation supercritical fluid treatment process and system
JP2002018372A (ja) 洗浄方法及び洗浄装置
US4106950A (en) Tank wagon cleaning method
WO1995028235A1 (fr) Procede de lavage et dispositif de lavage
US5603826A (en) Return pump system for use with clean-in-place system for use with vessels
JP3066400B2 (ja) 超臨界流体洗浄装置における洗浄機構
KR100342720B1 (ko) 고밀도액화가스를사용하는세정수단
JP3074290B2 (ja) 高密度液化ガスを使用の洗浄装置
TW554116B (en) Gas jet removal of particulated soil from fabric
JP5423555B2 (ja) 洗浄乾燥方法および洗浄乾燥装置
JP2000308862A (ja) 超臨界又は亜臨界流体を用いた洗浄方法及びその装置
JP2832190B2 (ja) 超臨界および亜臨界流体を用いた洗浄方法
JPH07328567A (ja) 洗浄方法および洗浄装置
EP3752705B1 (en) Method and apparatus for separating drill cuttings from drill mud
JP2002169304A (ja) 剥離装置及びレジスト膜の剥離方法
JP2006075785A (ja) 超音波洗浄方法及びその装置
JP3693306B2 (ja) 使用済みポリスチレンの回収方法及びその装置
WO2004082858A1 (en) Parts cleaning
JP2009273483A (ja) 洗浄装置
JP2001145801A (ja) 蒸発濃縮装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1997941235

Country of ref document: EP

Ref document number: 1019980702074

Country of ref document: KR

AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT

ENP Entry into the national phase

Ref document number: 1998 43413

Country of ref document: US

Date of ref document: 19980611

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09043413

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997941235

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980702074

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019980702074

Country of ref document: KR