WO1998011443A1 - Detecteur pour capter de façon capacitive une acceleration - Google Patents

Detecteur pour capter de façon capacitive une acceleration Download PDF

Info

Publication number
WO1998011443A1
WO1998011443A1 PCT/DE1997/001898 DE9701898W WO9811443A1 WO 1998011443 A1 WO1998011443 A1 WO 1998011443A1 DE 9701898 W DE9701898 W DE 9701898W WO 9811443 A1 WO9811443 A1 WO 9811443A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
sensor according
fingers
acceleration
electrode
Prior art date
Application number
PCT/DE1997/001898
Other languages
German (de)
English (en)
Inventor
Karsten Funk
Bernd Maihöfer
Franz LÄRMER
Bernhard Elsner
Wilhelm Frey
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO1998011443A1 publication Critical patent/WO1998011443A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0808Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate
    • G01P2015/0811Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass
    • G01P2015/0814Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass for translational movement of the mass, e.g. shuttle type

Definitions

  • the invention relates to a sensor for capacitively recording an acceleration with an interdigital capacitor which comprises two electrodes having a plurality of elongated fingers, the fingers of the two electrodes at least partially intermeshing and one of the two electrodes being displaceable with a deflectable one seismic mass is coupled.
  • Acceleration sensors are known from the prior art, which perform a capacitive recording of an acceleration with the aid of interdigital capacitors.
  • An interdigital capacitor is a capacitor which comprises two electrodes, each of which has a large number of fingers. At least the fingers grip partially into one another and thus form partial capacitances with the adjacent fingers of the counter electrode. The sum of these partial capacities then corresponds to the total capacitance of the interdigital capacitor.
  • the partial capacitance in these capacitors depends on the degree of interlocking of the fingers and the distance to the neighboring fingers.
  • This arrangement of the electrodes has the disadvantage that the change in capacitance is not proportional to the deflection and thus to the acceleration present.
  • the sensor with the features of claim 1 has the advantage that the change in capacitance of the capacitors is directly proportional to the deflection and thus to the acceleration. In addition, the occurrence of sticking of two fingers decrease significantly. Characterized in that the fingers of the displaceable electrode move parallel to the fingers of the other electrode, their distance transverse to the deflection direction remains essentially constant and the overlap (1) changes, the displaceable electrode can be amplified so that a movement perpendicular to it is no longer possible. This means that no more sticking occurs because the fingers are always at a defined distance from neighboring fingers.
  • the seismic mass coupled to the displaceable electrode is preferably suspended from four spring bars. This allows a high degree of stiffness to be achieved with respect to movements that are transverse to the direction of detection.
  • the seismic mass is divided into two parts, one part being assigned to one electrode, but the two mass parts remaining connected to one another. This makes it possible to compensate for material stresses that occur.
  • FIG. 1 shows a first exemplary embodiment of a broom acceleration sensor
  • FIG. 2 shows a second exemplary embodiment of an acceleration sensor
  • FIG. 3 shows a third exemplary embodiment of an acceleration sensor
  • Figure 4 shows a fourth exemplary embodiment of an acceleration sensor.
  • an acceleration sensor 1 is shown, which is suitable for capacitive recording of the acceleration. It is designed in a surface micromechanical technology and is increasingly used in automotive engineering in active and passive restraint systems and in vehicle dynamics control.
  • the acceleration sensor 1 comprises two capacitor units 3, 5, each of which is designed as an interdigital capacitor.
  • the two interdigital capacitors 3, 5 each comprise two electrodes 7, 9, on each of which a plurality of elongated fingers 11 are provided.
  • the electrodes 7, 9 thus have a comb structure.
  • FIG. 1 clearly shows that the individual fingers 11 of electrodes 7, 9 located opposite one another at least partially mesh. Thus, one finger of the electrodes 9 is immersed in a space between two fingers 11 of an electrode 7.
  • a capacitor is formed between a finger of the electrode 9 and an adjacent finger of the electrode 7.
  • the capacitance of this capacitor depends on the one hand on the height of the structure and on the distance c between the two fingers and on the other hand on a finger length 1 which the finger 11 dips into the space.
  • the two electrodes 9 are coupled to a seismic mass 13 which has stiffening extensions 15 running at both ends parallel to the fingers 11, on the ends of which spring rods 17 are in turn attached.
  • Two spring bars 17.1, 17.2 and 17.3, 17.4 are attached to an anchor 19, which is provided in the center of the electrode 9 and the opposite extensions 15.1, 15.2.
  • the unit consisting of electrodes 9, seismic mass 13 and extensions 15 is thus resiliently mounted on the spring bars 17 and can be deflected in the x direction.
  • the electrodes 7 are fixed in their position by means of anchoring means 21 which are likewise arranged in the center. If an acceleration directed in the x direction now acts on the sensor 1, the seismic mass 13 together with the electrodes 9 is deflected in the x direction due to its inertia.
  • the immersion depth 1 decreases in the exemplary embodiment shown Condenser unit 3, while the immersion depth e 1 in the condenser unit 5 increases.
  • the distance d between the fingers remains constant. This results in an overall change in capacitance that is proportional to the acceleration, since there is only a linear dependence on the immersion depth 1.
  • the extensions 15 are dimensioned and designed such that they cause stiffening.
  • the sensitivity to "out of plane” accelerations can be set by a factor of 100 smaller than that of the acceleration to be evaluated by an aspect ratio of the spring rod height to the spring rod width of approximately 5: 1. Such "out of plane” accelerations therefore have no negative influence on the measurement result.
  • fixed stops can be provided which are electrically at the same potential with the seismic mass and the electrodes 9.
  • FIG. 1 also shows that the spring bars 17 and the electrodes 7 on the anchors 19 and 21 are not directly connected to one another, but rather via narrow connecting pieces 23. These connecting pieces 23 and 25 serve to decouple mechanical ones Tensions. In addition, the positioning of the anchors is optimized with regard to the stresses caused by different thermal expansion coefficients of the materials used.
  • FIG. 2 shows a second exemplary embodiment of an acceleration sensor 1, the mode of operation of which corresponds to that of the first sensor according to FIG. 1. A repeated description of the parts identified by the same reference numerals is therefore omitted.
  • the difference from the first embodiment is, among other things, that the unit consisting of seismic mass 13 and electrode 9 has been separated.
  • the two fixed electrodes 7 are now inside, while the displaceable electrodes 9 are arranged outside.
  • the two external electrodes 9 and the seismic masses 13 are coupled via corresponding connection extensions 15.
  • FIG. 3 A modification of the embodiment shown in FIG. 2 can be seen in FIG. 3.
  • the spring bars 17 are no longer attached to the two ends of the electrodes, but to a fastening part 27 provided in the center.
  • the other ends of the spring bars 17 are fastened to a fastening web 29 which is coupled to centrally located anchors 19.
  • FIG. 3 Another embodiment of the acceleration sensor 1 is shown in FIG.
  • the two seismic masses 13 with the electrodes 9 are arranged between the two fixed electrodes 7.
  • the four spring rods 17 run between the two seismic masses 13 and are attached at one end to a common anchor 21 and at the other ends to connecting webs 15 which connect the two seismic masses 13.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pressure Sensors (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

L'invention concerne un détecteur pour capter de façon capacitive une accélération, comprenant au moins deux condensateurs interdigités (3, 5), chaque paire de condensateurs ayant des électrodes (7, 9) présentant une pluralité de doigts allongés (11), ces doigts (11) s'engrenant mutuellement au moins partiellement et l'une (9) des électrodes étant déplaçable, ainsi qu'une masse sismique (13) capable de déviation, accouplée à l'électrode déplaçable (9). L'invention est caractérisée en ce que les électrodes (7, 9) sont disposées de façon que les doigts (11) se déplacent parallèlement entre eux, lors d'une déviation d'une électrode (9), leur distance (d) perpendiculairement au sens de déviation, demeurant sensiblement constante tandis que le recouvrement (l) varie, et en ce que les deux condensateurs interdigités sont agencés mutuellement de telle façon que, lors d'une accélération, la valeur de la capacité de l'un des condensateurs augmente et celle de l'autre condensateur diminue.
PCT/DE1997/001898 1996-09-13 1997-08-30 Detecteur pour capter de façon capacitive une acceleration WO1998011443A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19637265.8 1996-09-13
DE1996137265 DE19637265A1 (de) 1996-09-13 1996-09-13 Sensor zur kapazitiven Aufnahme einer Beschleunigung

Publications (1)

Publication Number Publication Date
WO1998011443A1 true WO1998011443A1 (fr) 1998-03-19

Family

ID=7805491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1997/001898 WO1998011443A1 (fr) 1996-09-13 1997-08-30 Detecteur pour capter de façon capacitive une acceleration

Country Status (2)

Country Link
DE (1) DE19637265A1 (fr)
WO (1) WO1998011443A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104241735A (zh) * 2013-06-20 2014-12-24 成都国腾电子技术股份有限公司 一种基于微机械电子技术的微波移相器

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10019408C2 (de) 2000-04-19 2003-11-13 Bosch Gmbh Robert Feldeffekttransistor, insbesondere zur Verwendung als Sensorelement oder Beschleunigungssensor, und Verfahren zu dessen Herstellung
DE10111149B4 (de) * 2001-03-08 2011-01-05 Eads Deutschland Gmbh Mikromechanischer kapazitiver Beschleunigungssensor
EP1243930A1 (fr) 2001-03-08 2002-09-25 EADS Deutschland Gmbh Accéléromètre micromécanique capacitif
DE10117630B4 (de) * 2001-04-09 2005-12-29 Eads Deutschland Gmbh Mikromechanischer kapazitiver Beschleunigungssensor
US6910379B2 (en) * 2003-10-29 2005-06-28 Honeywell International, Inc. Out-of-plane compensation suspension for an accelerometer
DE102005063641B3 (de) 2005-06-22 2019-01-24 Heraeus Sensor Technology Gmbh Rußsensor
US8342022B2 (en) 2006-03-10 2013-01-01 Conti Temic Microelectronic Gmbh Micromechanical rotational speed sensor
DE102015216465A1 (de) 2015-08-28 2017-03-02 Robert Bosch Gmbh Sensor und Verfahren zur Erfassung von zwei physikalischen Größen

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5025346A (en) * 1989-02-17 1991-06-18 Regents Of The University Of California Laterally driven resonant microstructures
EP0547742A1 (fr) * 1991-12-19 1993-06-23 Motorola, Inc. Accéléromètre à trois axes
US5359893A (en) * 1991-12-19 1994-11-01 Motorola, Inc. Multi-axes gyroscope
US5447067A (en) * 1993-03-30 1995-09-05 Siemens Aktiengesellschaft Acceleration sensor and method for manufacturing same
WO1995034798A1 (fr) * 1994-06-16 1995-12-21 Robert Bosch Gmbh Accelerometre
US5496436A (en) * 1992-04-07 1996-03-05 The Charles Stark Draper Laboratory, Inc. Comb drive micromechanical tuning fork gyro fabrication method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4431327C2 (de) * 1994-09-02 1999-06-10 Fraunhofer Ges Forschung Mikromechanischer Beschleunigungssensor
DE4432837B4 (de) * 1994-09-15 2004-05-13 Robert Bosch Gmbh Beschleunigungssensor und Meßverfahren

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5025346A (en) * 1989-02-17 1991-06-18 Regents Of The University Of California Laterally driven resonant microstructures
EP0547742A1 (fr) * 1991-12-19 1993-06-23 Motorola, Inc. Accéléromètre à trois axes
US5359893A (en) * 1991-12-19 1994-11-01 Motorola, Inc. Multi-axes gyroscope
US5496436A (en) * 1992-04-07 1996-03-05 The Charles Stark Draper Laboratory, Inc. Comb drive micromechanical tuning fork gyro fabrication method
US5447067A (en) * 1993-03-30 1995-09-05 Siemens Aktiengesellschaft Acceleration sensor and method for manufacturing same
WO1995034798A1 (fr) * 1994-06-16 1995-12-21 Robert Bosch Gmbh Accelerometre

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104241735A (zh) * 2013-06-20 2014-12-24 成都国腾电子技术股份有限公司 一种基于微机械电子技术的微波移相器
CN104241735B (zh) * 2013-06-20 2017-05-10 成都振芯科技股份有限公司 一种基于微机械电子技术的微波移相器

Also Published As

Publication number Publication date
DE19637265A1 (de) 1998-03-26

Similar Documents

Publication Publication Date Title
EP2102666B1 (fr) Detecteur d'acceleration avec electrodes a dents
EP2389561B1 (fr) Capteur de vitesse de rotation
DE10122928B4 (de) Kapazitiver elektrostatischer Beschleunigungssensor, Verwendung des kapazitivenelektrostatischen Beschleunigungssensors in einem Winkelbeschleunigungssensor und in einem elektrostatischen Auslöser
EP0981755B1 (fr) Capteur d'acceleration
DE102005005554B4 (de) Verfahren zur Überprüfung eines Halbleitersensors für eine dynamische Grösse
DE112009003522T5 (de) Beschleunigungssensor
DE102008040855A1 (de) Dreiachsiger Beschleunigungssensor
DE102011076008B4 (de) Kraftaufnehmer, insbesondere Wägezelle
EP0924518B1 (fr) Appareil pour la mesure de caractéristiques d'un produit textile
DE10135437B4 (de) Sensor für dynamische Grössen, der bewegliche und feste Elektroden mit hoher Steifigkeit aufweist
DE102018009244B4 (de) Krafterfassungsstruktur mit Wegerfassung und Kraftsensor mit Wegerfassung
CH673897A5 (fr)
DE102004043259B4 (de) Dynamischer Halbleitersensor mit variablem Kondensator auf laminiertem Substrat
DE102008041327A1 (de) Dreiachsiger Beschleunigungssensor
DE19520004C2 (de) Beschleunigungssensor
DE102006031068A1 (de) Faseroptischer seismischer Sensor
WO1998011443A1 (fr) Detecteur pour capter de façon capacitive une acceleration
DE3225215C2 (fr)
DE4431232C2 (de) Integrierbares Feder-Masse-System
DE10134558A1 (de) Halbleitersensor für dynamische Größen
EP1529217B1 (fr) Composant micromecanique
DE10350536B3 (de) Verfahren zur Verringerung des Einflusses des Substratpotentials auf das Ausgangssignal eines mikromechanischen Sensors
DE102006051329A1 (de) Z-Beschleunigungssensor mit verringerter Störempfindlichkeit
DE4226430C2 (de) Kapazitiver Beschleunigungssensor
DE102020214019A1 (de) Mikromechanisches Sensorelement

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1998513125

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase