WO1998009725A1 - Katalysator und verfahren zu seiner herstellung - Google Patents

Katalysator und verfahren zu seiner herstellung Download PDF

Info

Publication number
WO1998009725A1
WO1998009725A1 PCT/EP1997/004842 EP9704842W WO9809725A1 WO 1998009725 A1 WO1998009725 A1 WO 1998009725A1 EP 9704842 W EP9704842 W EP 9704842W WO 9809725 A1 WO9809725 A1 WO 9809725A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
catalytically active
catalyst
active metal
graphite
Prior art date
Application number
PCT/EP1997/004842
Other languages
English (en)
French (fr)
Inventor
Robert SCHLÖGL
Michael Wohlers
Thilo Belz
Thomas Braun
Original Assignee
MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. filed Critical MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V.
Priority to DK97944838T priority Critical patent/DK0925111T3/da
Priority to AT97944838T priority patent/ATE202951T1/de
Priority to DE59704030T priority patent/DE59704030D1/de
Priority to JP10512252A priority patent/JP2000517242A/ja
Priority to EP97944838A priority patent/EP0925111B1/de
Publication of WO1998009725A1 publication Critical patent/WO1998009725A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B31/00Reduction in general
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition

Definitions

  • the invention relates to a catalyst which consists of at least one catalytically active metal in a low-valent state on a carrier material consisting essentially of carbon, and in processes for its production and its use.
  • Carbon-based support systems are particularly advantageous for many applications of catalytically active metals on support systems.
  • graphite-based material is used as the carrier, there is a disadvantage of the same in its flat layer structure, which has only a slight attractive interaction with the corresponding metals, so that the corresponding metal tends to agglomerate, especially under reaction conditions, especially at elevated temperature.
  • metal-fullerene intercalation compounds as catalysts. These have the advantage that they are defined compounds that combine high resistance due to good binding of the catalytically active metals with exact reproducibility. This is largely due to the fact that direct covalent bonds are formed between carbon atoms of the fullerene molecule and a metal atom.
  • a disadvantage of the metal-fullerene intercalation compounds as catalysts is the high price of the support material.
  • a further increase in the catalytic activity, based in each case on the content of catalytically active metal or metal compound would be desirable by improving the accessibility of the metal to the components of the catalyzed reaction.
  • the invention is therefore based on the object of eliminating the above disadvantages in a catalyst with a carbon-based support.
  • a catalyst consisting of at least one catalytically active metal in a low-valent state on a carrier material consisting essentially of carbon, which is characterized in that the carrier material consists of carbon which is in the amorphous state with curved surfaces of the molecular levels that contain non-six-membered carbon rings, and the catalytically active metal is covalently bonded to the carbon support material.
  • the invention is based on the surprising finding that carrier materials consisting essentially of carbon, which are amorphous and have curved surfaces of the molecular planes which contain not only six-membered but also non-six-membered carbon rings, are suitable as carrier materials for catalytically active metals, and in particular in this connection good properties that lead to superior catalysts. This is believed to be due to the presence of curved sp 2 hybridized carbon layers. This layer curvature is not a simple "rolling” or "bending” of otherwise intact graphite layers, but the curvature results from the incorporation of non-six-membered rings in the sp 2 - hybridized carbon layers.
  • the curvature of the carbon layers produced in this way has significant deviations from the geometric and electronic structure of a planar, graphitic sp 2 -hybridized carbon layer connected. In addition to a considerable gain in potential energy (voltage energy), there is no complete delocalization of the existing ⁇ electrons within these curved regions, so that the curved carbon layers can be understood as conjugated double bond systems.
  • the carbon support materials contained in the catalysts according to the invention are therefore able, analogously to electron-deficient olefins, to form chemical bonds to transition metals in low formal oxidation states. These are direct chemical bonds between the metal and the carbon carrier, which are not carrier-like as in the known conventional carbon, e.g. Activated carbon, which anchor metal atoms mainly through interactions with terminal heteroato functionalities, mainly oxygen.
  • the carbon materials contained in the catalysts according to the invention consist of a network of rings of six into which further rings, in particular those of five carbon atoms, are incorporated. These curved surfaces can be concave or convex.
  • This structure which is essential for the carrier material in the context of the invention, can be determined by physical methods, in particular X-ray absorption spectroscopy (XAS), as described in H. Werner et al. , Che. Phys. Letters 194 (1992), 62-66.
  • XAS X-ray absorption spectroscopy
  • these curved areas can be characterized by their special chemical reactivity; corresponding reaction products were characterized by infrared spectroscopy after partial oxidation of these carbon materials (M. Wohlers, A. Bauer, R. Schlögl, Microchim.
  • the ability for covalent bonding in the context of the catalysts according to the invention is exhibited by metal particles which contain approximately 10 to 1000 atoms.
  • the bond strength drops and, with increasing size of the metal particles, finally reaches values which, based on the size of the metal particles, are no longer significantly higher than the bond strengths of conventional carbon carriers.
  • the support materials contained in the catalyst according to the invention differ from fullerene in that the reactive double bonds present in the bent structural elements are an integral part of the non-molecular carbon material, while fullerenes consist of defined single molecules.
  • the carrier materials suitable according to the invention include the so-called "onion carbon". It has onion-like structures with diameters of 100 ⁇ or more, which are firmly embedded in the surrounding carbon material, while the fullerenes have a diameter of about 10 angstroms and are molecular.
  • the carrier material can be produced by evaporating pure graphite in an inert atmosphere and quenching the steam and subsequent solvent extraction of any fullerenes formed.
  • the superior catalytic properties of the catalysts of the invention are attributed to the fact that everything catalytically active metal is fixed on the surface and is therefore very easily accessible to the components of the reactions to be catalyzed, while in the transition metal fullerene compounds a not insignificant part of the catalytically active metal is present inside the respective macroscopic particles of the transition metal fullerene compounds and therefore is no longer accessible to the components of the reaction to be catalyzed.
  • the superior resistance to graphite-based catalysts is attributed to the covalent bond of the metal.
  • low-valent metals are understood to mean the zero-valued, one- and two-valued states.
  • the metals are preferably used in zero-valent form with the known stabilizing ligands such as carbonyls, isonitriles, phosphines, phosphites, acenes, polyalkenes, heteroalkenes, alkynes and cyclically conjugated systems such as benzene or cyclopentadienyl anions.
  • Suitable zero-valent catalytically active metal complexes are, for example, triruthenium dodecacarbonyl, platinum dibenzylideneacetone, palladium dibenzylideneacetone, palladium tetrakistriethylphosphine, nickel tetracarbonyl, iron pentacarbonyl, di-iron nonacarbonyl, trieisen dend or known processes, some of which are known, for example, by conventional methods, such as those which can be done by hand, such as conventional processes, such as those known in the art, which can be done by hand, for example by conventional methods such as those known in the art in the handbook of preparative inorganic chemistry, volume 3, F. Encke Verlag, Stuttgart.
  • Suitable mono- and divalent compounds are those which can be reduced to the zero-valent state under reaction conditions, if appropriate with the addition of a reagent acting as a reducing agent, such as molecular hydrogen, carbon onoxide or sodium borohydride.
  • Preferred catalytically active metals are those from groups Ib, Vllb, VHIb of the periodic system, the low-valent compounds forming rare earth metals, titanium and vanadium.
  • Particularly preferred metals for the catalysts according to the invention are in particular platinum, ruthenium, palladium and Iron.
  • Other suitable metals are, for example, nickel, cobalt, manganese, osmium, iridium and rhenium, as well as titanium and vanadium insofar as they can be brought into the low-valent state.
  • a particularly interesting aspect of the invention lies in the achievable qualitative changes in the catalytic properties of the bound metals. It could be shown that the metal particles contained in the systems described according to the invention differ significantly in terms of their structural properties from those of comparable metal / graphite systems. These structural differences are attributed to qualitatively different, attractive interactions of the metal particles with the respective carbon carriers. The observed structural differences of the metal particles are, however, not exclusively of a geometric nature, but it is assumed that the electronic structure of the metal particles also has differences. Ultimately, this means that the active centers on the metal surface that are decisive for the heterogeneous catalytic reactions have different properties. For example, in the case of carbon monoxide hydrogenation, a selectivity shift to higher molecular weight products, which are primarily sought in this process, is achieved when the catalysts according to the invention are used.
  • a general advantage of the catalysts according to the invention is that they are stable even at higher temperatures. In addition, in many cases they also show better catalytic properties, quantitatively under otherwise comparable conditions, and in other cases also qualitatively different types.
  • Another object of the invention is a process for the preparation of the new catalysts.
  • Process for the preparation of the new catalysts is that graphite in the electric arc between at least two graphite electrodes are evaporated in a vacuum apparatus under a non-oxidizing atmosphere, either a) working in a vacuum apparatus with cooled walls with direct or alternating current under a pressure of 100 Pa or less and the product deposited on the cooled walls being recovered, or b) with Direct current works at a pressure of 1 Pa to 100 kPa and arc lengths of 0.1 to 20 mm and the product grown on the electrode connected to the negative pole of the power supply wins and c) with alternating current at a pressure of 1 Pa to 100 Pa and arc lengths works from 0.1 to 20 mm and the product grown on the carbon electrodes wins and d) reacts the product of a), b) or c) with a thermolabile low-value compound or complex of a catalytically active metal.
  • the graphite used should be as pure as possible.
  • Noble gas is preferred as the atmosphere, in particular helium, argon or a mixture of helium and argon.
  • Other useful gases are e.g. Hydrogen, nitrogen or ammonia.
  • the walls of the vacuum apparatus are expediently cooled with water.
  • other cooling methods or coolants can be used in the same way.
  • two graphite electrodes are preferably used in the production of the carrier material, since commercially available devices are generally set up for this. Within the scope of the invention, however, more than two graphite electrodes can also be used with a correspondingly modified arc apparatus.
  • the reaction of the carrier material with the metal compound is preferably carried out in a suspension of the carrier carbon in a solvent for the metal compound in the absence of air. It is convenient to work at an elevated temperature, preferably at the reflux temperature of the solvent. The reaction under these conditions is generally carried out between 1 and 50 hours, preferably 15 to 30 hours. If fullerenes are present in the carrier material, they are removed beforehand, preferably by extraction with one of the organic solvents suitable for this.
  • the general temperature range for the reaction of the carrier material with the metal lies between the freezing point of the solvent and its boiling point.
  • the boiling temperature of the solvent can be increased in a known manner, pressures up to 100 MPa, preferably up to about 10 MPa, being able to be used.
  • Suitable solvents are aromatics, halogenated aromatics, organochlorine compounds and heterocycles such as benzene, toluene, xylene, ethylbenzene, chlorobenzene, dichlorobenzene, carbon tetrachloride, chloroform, dichloromethane and tetrahydrofuran.
  • Catalysts according to the invention are generally suitable for reactions which take place under transition metal catalysis.
  • the use for carbon onoxide hydrogenation is preferred.
  • Further reactions for which the catalysts according to the invention are particularly suitable are, for example, liquid phase hydrogenations of organic molecules, which are preferably carried out in the temperature range between the solidification point of the compound to be hydrogenated or of the solvent used and 150 ° C.
  • Such liquid phase hydrogenations are suitable, for example, for the hydrogenation of olefins, ketones, aromatic nitro compounds and substances with comparable reactivity.
  • These hydrogenations can be carried out both in bulk (if the compound to be reduced is liquid under the hydrogenation conditions) and in solution.
  • Suitable solvents for this are, for example, tetrahydrofuran, methylene chloride or toluene.
  • the heterogeneous hydrogenation of carbon monoxide was carried out in a fixed bed flow reactor at atmospheric pressure in the temperature range from 200 to 300.degree.
  • a 2 cm high bed consisting of 100 mg of catalyst obtained according to al) and the corresponding amount of inert glass spheres was used as the contact.
  • the purified starting gases were used in an H 2 : CO ratio of 3: 1 with a total flow of 20 ml / min.
  • the product gases were determined using a gas chromatograph coupled to the synthesis apparatus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Ein Katalysator, der z.B. für Hydrierungen geeignet ist, besteht aus mindestens einem katalytisch aktiven Metall in niedervalentem Zustand auf einem im wesentlichen aus Kohlenstoff bestehenden Trägermaterial, wobei das Trägermaterial aus Kohlenstoff besteht, der in amorphem Zustand mit gekrümmten Oberflächen der molekularen Ebenen, die nicht-sechsgliedrige Kohlenstoff-Ringe enthalten, vorliegt und das katalytisch aktive Metall kovalent an das Kohlenstoff-Trägermaterial gebunden ist. Zu seiner Herstellung verdampft man Graphit im elektrischen Lichtbogen zwischen mindestens zwei Graphitelektroden in einer Vakuumapparatur unter nichtoxidierender Atmosphäre, wobei man a) in einer Vakuumapparatur mit gekühlten Wänden mit Gleich- oder Wechselstrom unter einem Druck von 100 Pa oder weniger arbeitet und das an den gekühlten Wänden abgeschiedene Produkt gewinnt, oder b) mit Gleichstrom bei einem Druck von 1 Pa bis 100 kPa und Bogenlängen von 0,1 bis 20 mm arbeitet und das auf der mit dem Minuspol der Stromversorgung verbundenen Elektrode aufgewachsene Produkt gewinnt, und c) mit Wechselstrom bei einem Druck von 1 Pa bis 100 Pa und Bogenlängen von 0,1 bis 20 mm arbeitet und das auf den Kohlenstoffelektroden aufgewachsene Produkt gewinnt, und d) das Produkt von a), b) oder c) mit einer thermolabilen niederwertigen Verbindung oder Komplex eines katalytisch aktiven Metalls umsetzt.

Description

Katalysator und Verfahren zu seiner Herstellung
Beschreibung
Die Erfindung betrifft einen Katalysator, der aus mindestens einem katalytisch aktivem Metall in niedervalentem Zustand auf einem im wesentlichen aus Kohlenstoff bestehenden Trägermaterial besteht, sowie in Verfahren zu dessen Herstellung und dessen Verwendung.
Für viele Anwendungen von katalytisch wirksamen Metallen auf Trägersystemen sind Trägersysteme auf Kohlenstoffbasis besonders vorteilhaft. Soweit dabei als Träger Material auf Graphitbasis verwendet werden, besteht ein Nachteil derselben jedoch in dessen ebenem Schichtenaufbau, der eine nur geringe attraktive Wechselwirkung mit den entsprechenden Metallen aufweist, so daß besonders unter Reaktionsbedingungen speziell bei erhöhter Temperatur das entsprechende Metall zur Agglome- ration neigt. Dies bedingt unmittelbar eine Verringerung der katalytisch wirksamen Metalloberflächen, welche wiederum ein Absinken der katalytischen Aktivität des Katalysatorsystems nach sich zieht und damit insbesondere bei wertvollen Metallen eine ungenügende Ausnutzung der an sich vorhandenen Katalyse- kapazität zur Folge hat.
In der DE 43 24 693.1 der gleichen Erfinder wird bereits vorgeschlagen, diesen Nachteil dadurch zu beseitigen, daß man als Katalysatoren Metall -Fulleren-Interkalationsverbindungen ver- wendet. Diese haben den Vorteil, daß es sich um definierte Verbindungen handelt, die hohe Beständigkeit aufgrund guter Bindung der katalytisch aktiven Metalle mit exakter Reproduzierbarkeit verbinden. Dies liegt zu einem wesentlichen Anteil darin begründet, daß direkte kovalente Bindungen zwischen Koh- lenstoffatomen des Fullerenmoleküls und einem Metallatom gebildet werden. Ein Nachteil der Metall-Fulleren-Interkalationεverbindungen als Katalysatoren liegt im hohen Preis des Trägermaterials . Zudem wäre eine nochmalige Steigerung der katalytischen Wirksamkeit, jeweils bezogen auf den Gehalt an katalytisch aktivem Metall bzw. Metallverbindung erwünscht durch Verbesserung der Zugänglichkeit des Metalls für die Komponenten der katalysierten Reaktion. Der Erfindung liegt daher die Aufgabe zugrunde, die vorstehenden Nachteile bei einem Katalysator mit einem Träger auf Kohlenstoffbasis zu beseitigen.
Gelöst wird diese Aufgabe erfindungsgemäß durch einen Katalysator, bestehend aus mindestens einem katalytisch aktiven Metall in niedervalentem Zustand auf einem im wesentlichen aus Kohlenstoff bestehenden Trägermaterial, der dadurch geken - zeichnet ist, daß das Trägermaterial aus Kohlenstoff besteht, der in amorphem Zustand mit gekrümmten Oberflächen der molekularen Ebenen, die nicht-sechsgliedrige Kohlenstoff-Ringe enthalten, vorliegt und das katalytisch aktive Metall kovalent an das Kohlenstoff-Trägermaterial gebunden ist.
Der Erfindung liegt die überraschende Feststellung zugrunde, daß im wesentlichen aus Kohlenstoff bestehende Trägermaterialien, die amorph vorliegen und gekrümmte Oberflächen der molekularen Ebenen aufweisen, die nicht nur sechsgliedrige sondern auch nicht-sechsgliedrige Kohlenstoffringe enthalten, sich als Trägermaterial für katalytisch aktive Metalle eignen und hierbei besonders gute Eigenschaften, die zu überlegenen Katalysatoren führen, bewirken. Es wird angenommen, daß dies auf dem Vorhandensein gekrümmter sp2-hybridisierter Kohlenstoffschich- ten beruht. Bei dieser Schichtenkrümmung handelt es sich nicht um ein einfaches "Rollen" oder "Biegen" von ansonsten intakten Graphitschichten, sondern die Krümmung resultiert aus dem Einbau von nicht -sechsgliedrigen Ringen in die sp2- hybridisierten Kohlenstoffschichten. Die so erzeugte Krümmung der Kohlenstoffschichten ist mit signifikanten Abweichungen von der geometrischen und elektronischen Struktur einer planaren, graphitischen sp2-hybridisierten KohlenstoffSchicht verbunden. Neben einem erheblichen Zugewinn an potentieller Energie (Spannungsenergie) erfolgt innerhalb dieser gekrümmten Bereiche keine vollständige Delokalisation der vorhandenen π- Elektronen, so daß die gekrümmten Kohlenstoffschichten ge- wissermaßen als konjugierte Doppelbindungssysteme aufgefaßt werden können.
Die in den erfindungsgemäßen Katalysatoren enthaltenen Kohlenstoffträgermaterialien sind daher in Analogie zu elektronen- armen Olefinen in der Lage, chemische Bindungen zu Übergangsmetallen in niedrigen formalen Oxidationsstufen auszubilden. Es handelt sich hierbei um direkte chemische Bindungen zwischen Metall und Kohlenstoffträger, die nicht wie bei den bekannten konventionellen Kohlensto fträgem, wie z.B. Aktiv- kohle, die Metallatome hauptsächlich über Wechselwirkungen mit terminalen Heteroato funktionalitäten, hauptsächlich Sauerstoff, verankern.
Die in den erfindungsgemäßen Katalysatoren enthaltenen Kohlen- Stoffmaterialien bestehen aus einem Geflecht von 6er-Ringen, in die weitere Ringe, insbesondere solche aus fünf Kohlenstoffatomen, eingebaut sind. Diese gekrümmten Oberflächen können konkav oder konvex ausgebildet sein. Diese für das Trägermaterial im Rahmen der Erfindung essentielle Struktur kann durch physikalische Methoden, insbesondere Röntgenstrahlen- Absorptionsspektroskopie (XAS) bestimmt werden, wie in H. Werner et al . , Che . Phys . Letters 194 (1992), 62-66 beschrieben. Weiterhin lassen sich diese gekrümmten Bereiche durch ihre spezielle chemische Reaktivität charakterisieren, ent- sprechende Reaktionsprodukte wurden infrarotspektroskopisch nach partieller Oxidation dieser Kohlenstoffmaterialien charakterisiert (M. Wohlers, A. Bauer, R. Schlögl, Microchim. Acta, eingereicht 1995, im Druck) . Ein Beispiel für die im Rahmen der Erfindung geeigneten Materialien ist der sogenannte "Krätschmerruß" . Hierbei handelt es sich um ein Produkt, das bei der Fullerenherstellung nach Krätschmer nach Abtrennung der Fullerene übrig bleibt. Wie weiter unten noch näher be- schrieben, kann das Trägermaterial auch nach anderen Methoden, außer der von Krätschmer beschriebenen, erhalten werden.
Die Fähigkeit zur kovalenten Bindung im Rahmen der erfindungs- gemäßen Katalysatoren weisen Metallpartikel auf, die ca. 10 bis 1000 Atome enthalten. Bei größeren Metallpartikeln sinkt die Bindefestigkeit ab und erreicht bei zunehmender Größe der Metallpartikel schließlich Werte, die, auf die Größe der Metallpartikel bezogen, nicht mehr wesentlich über den Bindungs- festigkeiten konventioneller Kohlenstoffträger liegen.
Von Fulleren unterscheiden sich die im erfindungsgemäßen Katalysator enthaltenen Trägermaterialien dadurch, daß die in den gebogenen Strukturelementen vorhandenen reaktiven Doppelbin- düngen integraler Bestandteil des nicht-molekularen Kohlen- stoff aterials sind, während Fullerene aus definierten Einzel- m lekülen bestehen. So gehört beispielsweise zu den erfindungsgemäß geeigneten Trägermaterialien der sogenannte "Zwiebelkohlenstoff" . Er weist zwiebelartige Strukturen auf mit Durchmessern von 100 Ä oder mehr, welche fest in das umgebende Kohlenstoffmaterial eingebetten sind, während die Fullerene einen Durchmesser von etwa 10 Angström aufweisen und molekular sind.
Zur Herstellung der im erfindungsgemäßen Katalysator enthaltenen Trägermaterialien lassen sich neben dem schon erwähnten Verfahren von Krätschmer und anschließender Abtrennung der Fullerene daraus, insbesondere die Hochfrequenzverdampfung von Graphit, die Laserverdampfung von Graphit sowie die Pyrolyse von Kohlenwasserstoffen unter geeigneten Bedingungen anführen. Insbesondere läßt sich das Trägermaterial durch Verdampfung von reinem Graphit in inerter Atmosphäre und Abschreckung des Dampfes und nachfolgende Lösungsmittelextraktion etwa gebildeter Fullerene herstellen.
Die überlegenen katalytischen Eigenschaften der erfindungsgemäßen Katalysatoren werden darauf zurückgeführt, daß alles katalytisch aktive Metall an der Oberfläche fixiert vorliegt und daher für die Komponenten der zu katalysierenden Reaktionen sehr leicht zugänglich ist, während bei den Übergangsmetall -Fullerenverbindungen ein nicht zu vernachlässigender Teil des katalytisch aktiven Metalls im Inneren der jeweiligen makroskopischen Partikel der Übergangsmetall -Fullerenverbindungen vorliegt und daher für die Komponenten der zu katalysierenden Reaktion nich" mehr zugänglich ist. Die überlegene Beständigkeit gegenüber auf Graphitbasis aufgebauten Katalysa- toren wird der kovalenten Bindung des Metalls zugeschrieben.
Unter niedervalenten Metallen werden im Rahmen der vorliegenden Erfindung die nullwertigen, eins- und zweiwertigen Zustände verstanden. Die Metalle werden bevorzugt in nullwerti- ger Form eingesetzt mit den bekannten stabilisierenden Liganden wie z.B. Carbonyle, Isonitrile, Phosphine, Phosphite, A kene, Polyalkene, Heteroalkene, Alkine, sowie cyclisch konjugierte Systeme wie z.B. Benzol oder Cyclopentadienyl- Anionen. Beispiele für geeignete nullwertige katalytisch akti- ve Metallkomplexe sind z.B. Trirutheniumdodecacarbonyl , Pla- tindibenzylidenaceton, Palladiumdibenzylidenaceton, Palladium- tetrakistriethylphosphin, Nickeltetracarbonyl , Eisenpentacar- bonyl , Di-Eisennonacarbonyl , Trieisendodecacarbonyl u.a. Diese Verbindungen sind teilweise handelsüblich oder lassen sich nach bekannten Verfahren, wie sie beispielsweise im Handbuch der präparativen anorganischen Chemie, Band 3, F. Encke Verlag, Stuttgart, beschrieben sind, erhalten. Geeignete ein- und zweiwertige Verbindungen sind solche, die unter Reaktionsbedingungen, gegebenenfalls unter Zusatz eines als Reduktions- mittel wirkenden Reagenzes wie beispielsweise molekularer Wasserstoff, Kohlen onoxid oder Natriumborhydrid, in den nullwertigen Zustand reduziert werden können. Als katalytisch aktive Metalle werden vorzugsweise solchen aus den Gruppen Ib, Vllb, VHIb des periodischen Systems, den niedervalente Ver- bindungen bildenden SE-Metalle, Titan und Vanadium bevorzugt. Besonders bevorzugte Metalle für die erfindungsgemäßen Katalysatoren sind insbesondere Platin, Ruthenium, Palladium und Eisen. Weitere geeignete Metalle sind z.B. Nickel, Kobalt, Mangan, Osmium, Iridium und Rhenium, desgleichen Titan und Vanadium soweit sie in den niedervalenten Zustand gebracht werden können .
Ein besonders interessanter Aspekt der Erfindung liegt in den erzielbaren qualitativen Änderungen der katalytischen Eigenschaften der gebundenen Metalle. Es konnte gezeigt werden, daß die in den erfindungsgemäß beschriebenen Systemen enthaltenen Metallpartikel sich in bezug auf ihre strukturellen Eigenschaften deutlich von denen vergleichbarer Metall/Graphit - Systeme unterscheiden. Diese strukturellen Unterschiede werden auf qualitativ unterschiedliche attraktive Wechselwirkungen der Metallpartikel mit den jeweiligen Kohlenstoffträgem zu- rückgeführt. Die beobachteten strukturellen Unterschiede der Metallpartikel sind allerdings nicht ausschließlich geometrischer Natur, sondern es wird angenommen, daß auch die elektronische Struktur der Metallpartikel Unterschiede aufweist. Letztendlich führt dies dazu, daß die für die heterogenkataly- tischen Umsetzungen entscheidenden aktiven Zentren an der Metalloberfläche unterschiedliche Eigenschaften aufweisen. So wird typischerweise bei der Kohlenmonoxidhydrierung eine Selektivitätsverschiebung zu höhermolekularen Produkten, die in erster Linie bei diesem Verfahren angestrebt werden, bei Ein- satz der erfindungsgemäßen Katalysatoren erzielt.
Gegenüber Katalysatoren mit Graphit als Träger, besteht ein genereller Vorteil der erfindungsgemäßen Katalysatoren darin, daß sie noch bei höheren Temperaturen stabil sind. Hinzu kommt, daß sie in vielen Fällen auch quantitativ unter sonst vergleichbaren Bedingungen bessere und in anderen Fällen auch qualitativ andersartige katalytische Eigenschaften zeigen.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung der neuen Katalysatoren. Das erfindungsgemäße
Verfahren zur Herstellung der neuen Katalysatoren besteht darin, daß man Graphit im elektrischen Lichtbogen zwischen mindestens zwei Graphitelektroden in einer Vakuumapparatur unter nichtoxidierender Atmosphäre verdampft, wobei man entweder a) in einer Vakuumapparatur mit gekühlten Wänden mit Gleich- oder Wechselstrom unter einem Druck von 100 Pa oder weniger arbeitet und das an den gekühlten Wänden abgeschiedene Produkt gewinnt , oder b) mit Gleichstrom bei einem Druck von 1 Pa bis 100 kPa und Bogenlängen von 0,1 bis 20 mm arbeitet und das auf der mit dem Minuspol der Stromversorgung verbundenen Elektrode aufgewachsene Produkt gewinnt und c) mit Wechselstrom bei einem Druck von 1 Pa bis 100 Pa und Bogenlängen von 0,1 bis 20 mm arbeitet und das auf den Kohlenstoffelektroden aufgewachsene Produkt gewinnt und d) das Produkt von a) , b) oder c) mit einer thermolabilen niederwertigen Verbindung oder Komplex eines katalytisch aktiven Metalls umsetzt.
Der verwendete Graphit sollte möglichst rein sein. Als Atmo- Sphäre wird Edelgas bevorzugt, insbesondere Helium, Argon oder eine Mischung von Helium und Argon. Andere brauchbare Gase sind z.B. Wasserstoff, Stickstoff oder Ammoniak.
Wird die Herstellung des Trägermaterials gemäß der oben be- schriebenen Variante a) durchgeführt, so wird zweckmäßig die Kühlung der Wände der Vakuumapparatur mit Wasser vorgenommen. Andere Kühlungsmethoden oder Kühlmittel können jedoch in gleicher Weise angewendet werden. Ferner wird bei der Herstellung des Trägermaterials vorzugsweise mit zwei Graphitelektroden gearbeitet, da handelsüblich erhältliche Vorrichtungen in der Regel hierfür eingerichtet sind. Im Rahmen der Erfindung können jedoch auch mehr als zwei Graphitelektroden eingesetzt werden bei entsprechend abgewandelter Lichtbogenapparatur.
Wie oben bereits erwähnt, kann als Trägermaterial auch ein nach dem Verfahren von Krätschmer (W. Krätschmer et al . , Chemical Physics Letters, Vol. 170 (1990), Seite 167 bis 170) hergestelltes und danach durch Extraktion von gebildeten Fullerenen befreites Material eingesetzt werden.
Die Umsetzung des Trägermaterials mit der Metallverbindung wird vorzugsweise in einer Suspension des Trägermaterialkohlenstoffs in einem Lösungsmittel für die Metallverbindung unter Luftausschluß durchgeführt. Dabei wird zweckmäßig bei erhöhter Temperatur gearbeitet, vorzugsweise bei Rückflußtemperatur des Lösungsmittels. Die Umsetzung unter diesen Bedin- gungen wird im allgemeinen zwischen 1 und 50 Stunden, vorzugsweise 15 bis 30 Stunden durchgeführt. Sollten Fullerene im Trägermaterial enthalten sein, werden sie vorher entfernt, vorzugsweise durch Extraktion mit einem der hierfür geeigneten organischen Lösungsmittel.
Der allgemeine Temperaturbereich für die Umsetzung des Träger- a-terials mit dem Metall liegt zwischen dem Erstarrungspunkt des Lösungsmittels und seinem Siedepunkt. Durch Druckanwendung kann die Siedetemperatur des Lösungsmittels in bekannter Weise erhöht werden, wobei Drücke bis 100 MPa, vorzugsweise bis etwa 10 MPa zur Anwendung kommen können.
Geeignete Lösungsmittel sind Aromaten, halogenierte Aromaten, chlororganische Verbindungen und Heterocyclen wie Benzol, Toluol, Xylol, Ethylbenzol, Chlorbenzol, Dichlorbenzol , Tetrachlorkohlenstoff, Chloroform, Dichlormethan und Tetrahydrofu- ran.
Erfindungsgemäße Katalysatoren eignen sich generell für Umset- zungen, die unter Übergangsmetallkatalyse ablaufen. Bevorzugt wird der Einsatz zur Kohlen onoxidhydrierung. Weitere Umsetzungen, für die sich die erfindungsgemäßen Katalysatoren besonders eignen, sind z.B. Flüssigphasenhydrierungen organischer Moleküle, welche vorzugsweise im Temperaturbereich zwi- sehen Erstarrungspunkt der zu hydrierenden Verbindung oder des verwendeten Lösungsmittels und 150 °C durchgeführt werden. Derartige Flüssigphasenhydrierungen eignen sich beispielsweise für die Hydrierung von Olefinen, Ketonen, aromatischen Nitro- verbindungen und Substanzen mit vergleichbarer Reaktivität. Diese Hydrierungen können sowohl in Substanz (falls die zu reduzierende Verbindung unter den Hydrierungsbedingungen flüssig ist) als auch in Lösung durchgeführt werden. Hierfür geeignete Lösungsmittel sind z.B. Tetrahydrofuran, Methylenchlorid oder Toluol .
Das folgende Beispiel erläutert die Erfindung anhand der Koh- lenmonoxidhydrierung mit einem Ruthenium-haltigen Katalysator gemäß Erfindung in Verbindung mit der Zeichnung weiter. In dieser zeigt
Figur 1
CO-Umsatz und Produktselektivität von Ruthenium-haltigem er- fi-ndungsgemäßem Katalysator und Ruthenium-AFS-Graphit . Im unteren Teil der Abbildung wird der gaschromatographisch ermittelte CO-Umsatz der Katalysatoren bei verschiedenen Tempe- raturen verglichen; dieser ist ein Maß für die heterogenkata- lytische Aktivität der Systeme. Im oberen Teil wird analog die Methan-Selektivität der beiden Systeme verglichen. Die Methan- Selektivität ist gegeben durch den prozentualen Anteil von Methan in dem resultierenden Kohlenwasserstoffgemisch, welches u.a. Ethan, Ethen und weitere Aliphate bis hin zu Oktan enthält. In diesem Teil von Fig. 1 wird deutlich, daß der erfindungsgemäße Katalysator bei niedrigen Temperaturen einen höheren Anteil höherer Kohlenwasserstoffe produziert als der korrespondierende Ru-Graphit Katalysator. Fig. 1 zeigt damit die bessere Produktselektivität der erfindungsgemäßen Katalysatoren.
Figur 2
Hier wird analog zu Fig. 1 ein Vergleich der katalytischen Aktivitäten und der Produktselektivitäten von Ru-Kathodenpils gemäß Erfindung und Ru-AFS-Graphit angestellt. Man erkennt aus dieser Abbildung, daß der Kathodenpils bei nahezu identischer Produktselektivität speziell bei hohen Temperaturen eine signifikant höhere katalytische Aktivität aufweist als das Referenzsystem auf Graphitbasis. Die Verringerung der kataly- tischen Aktivität des Graphitsystems konnte auf eine Agglome- ration der Metallpartikel zurückgeführt werden, die eine Verringerung der katalytisch aktiven Metalloberfläche zur Folge hat.
Fig. 2 zeigt damit eine bessere thermische Stabilität unter Reaktionsbedingungen der Katalysatoren gemäß Erfindung.
Beispiel
a . Herstellung des Rutheniumkatalysators
1. Graphit wurde im elektrischen Lichtbogen zwischen zwei Graphitelektroden, die mit Wechselstrom betrieben wurden, in einer wassergekühlten Vakuumapparatur unter Heliumatmosphäre bei einem Druck von 100 Pa verdampft. Das gewünschte Produkt sammelt sich an den wassergekühlten Wänden der Apparatur. Es wird nach Beendigung der Verdampfung und Abkühlung der Apparatur entnommen und in Toluol suspendiert . Dieser Suspension wurde Trirutheniumdodecacarbonyl Ru3(CO)12 bei Raumtemperatur zugesetzt und gelöst. Die erhaltene Suspension wurde langsam zum Sieden erhitzt und 1 Tag am Rückfluß gehalten. Dann wurde der unlösliche Katalysator vom Lösungsmittel abgetrennt, mit dem Lösungsmittel gewaschen und im Vakuum bei Raumtemperatur getrocknet. Der erhaltene Katalysator wurde ohne weitere Vorbehandlung in der Katalyse eingesetzt.
2. Graphit wurde im elektrischen Lichtbogen zwischen zwei Graphitelektroden, die mit Gleichstrom betrieben wurden, in einer Vakuumapparatur unter Heliumccmosphäre bei einem Druck von 0,6 kPa und einer Bogenlänge von 1 mm verdampft. Das auf der mit dem Minuspol der Stromversorgung verbundenen Graphit - elektrode aufgewachsene Produkt wurde wie unter 1. beschrieben gewonnen, vermählen und zum Rutheniumkatalysator umgesetzt. b. Kohlenmonoxidhydrierung
Die heterogene Hydrierung von Kohlenmonoxid wurde in einem Festbettdurchflußreaktor bei Atmosphärendruck im Te peraturbe- s reich von 200 bis 300°C durchgeführt. Als Kontakt wurde eine 2 cm hohe Schüttung, bestehend aus 100 mg nach a.l.) erhaltenem Katalysator und der entsprechenden Menge inerter Glaskugeln verwendet. Die nachgereinigten Eduktgase wurden in einem H2:CO- Verhältnis von 3:1 bei einem Gesamtdurchfluß von 20 ml/min o eingesetzt. Die Produktgase wurden mit einem an die Syntheseapparatur-gekoppelten Gaschromatographen bestimmt.
Parallel hierzu wurden unter sonst gleichen Bedingungen Ru- theniumkatalysatoren verwendet, die an Graphit gebunden vorla- gen. Die erzielten Ergebnisse sind in der beigefügten Zeichnung dargestellt.

Claims

Patentansprüche
1. Katalysator, bestehend aus mindestens einem katalytisch s aktiven Metall in niedervalentem Zustand auf einem im wesentlichen aus Kohlenstoff bestehenden Trägermaterial, d a d u r c h g e k e n n z e i c h n e t , daß das Trägermaterial aus Kohlenstoff besteht, der in amorphem Zustand mit gekrümmten Oberflächen der molekula- o ren Ebenen die nicht-sechsgliedrige Kohlenstoff -Ringe enthalten, vorliegt und das katalytisch aktive Metall kovalent an das Kohlenstoff-Trägermaterial gebunden ist.
2. Katalysator nach Anspruch 1, s d a d u r c h g e k e n n z e i c h n e t , daß das Metall in Form von Atomen, Clustern oder Partikeln mit 10 bis 1000 Atome gebunden ist.
3. Katalysator nach Anspruch 1 oder 2, 0 d a d u r c h g e k e n n z e i c h n e t , daß das Trägermaterial aus dem nach Abtrennung der Fullerene erhaltenen Rückstand von Fullerenruß besteht.
4. Katalysator nach Anspruch 3, d a d u r c h g e k e n n z e i c h n e t , daß das Trägermaterial aus dem nach Lösungsmittelextrak- tion der Fullerene erhaltenen Rückstand der Fullerenher- stellung durch Verdampfung von reinem Graphit in inerter Atmosphäre und Abschreckung des Dampfes besteht .
5. Katalysator nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß das katalytisch aktive Metall ausgewählt ist aus den Gruppen Ib, Vllb, Vlllb, den niedervalente Verbindungen 5 bildenden Seltenerdmetallen, Titan und Vanadium.
6. Verfahren zur Herstellung eines Katalysators nach einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t , daß man Graphit im elektrischen Lichtbogen zwischen min- destens zwei Graphitelektroden in einer Vakuumapparatur unter nichtoxidierender Atmosphäre verdampft, wobei man a) in einer Vakuumapparatur mit gekühlten Wänden mit Gleich- oder Wechselstrom unter einem Druck von 100 Pa oder weniger arbeitet und das an den gekühlten Wänden abgeschiedene Produkt gewinnt, oder b) mit Gleichstrom bei einem Druck von 1 Pa bis 100 kPa und Bogenlängen von 0,1 bis 20 mm arbeitet und daß auf der mit dem Minuspol der Stromversorgung verbundenen Elektrode aufgewachsene Produkt gewinnt und c) mit Wechselstrom bei einem Druck von 1 Pa bis 100 Pa und Bogenlängen von 0,1 bis 20 mm arbeitet und das auf den Kohlenstoffelektroden aufgewachsene Produkt gewinnt und d) das Produkt von a) , b) oder c) mit einer thermolabi- len niederwertigen Verbindung oder Komplex eines katalytisch aktiven Metalls umsetzt.
7. Verfahren nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t , daß man die Umsetzung mit der Metallverbindung in Stufe c) in einer Suspension des Trägermaterialkohlenstoffs in einem Lösungsmittel für die Metallverbindung unter Luftausschluß durchführt.
8. Verfahren nach Anspruch 7, d a d u r c h g e k e n n z e i c h n e t , daß man die Umsetzung bei Rückflußtemperatur des Lösungsmittels durchführt.
9. Verfahren nach einem der Ansprüche 6 bis 8, d a d u r c h g e k e n n z e i c h n e t , daß man die Wände der Vakuumapparatur in Stufe a) mit Wasser kühlt.
10. Verfahren nach einem der Ansprüche 6 bis 9, d a d u r c h g e k e n n z e i c h n e t , daß man unter Helium- oder Argonatmosphäre arbeitet.
11. Verwendung eines Katalysators nach einem der Ansprüche 1 bis 5 für die Kohlenmonoxidhydrierung.
12. Verwendung eines Katalysators nach einem der Ansprüche 1 bis 5 für die Flüεεigphasenhydrierung organischer Moleküle.
PCT/EP1997/004842 1996-09-06 1997-09-05 Katalysator und verfahren zu seiner herstellung WO1998009725A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DK97944838T DK0925111T3 (da) 1996-09-06 1997-09-05 Katalysator og fremgangsmåde til fremstilling deraf
AT97944838T ATE202951T1 (de) 1996-09-06 1997-09-05 Katalysator und verfahren zu seiner herstellung
DE59704030T DE59704030D1 (de) 1996-09-06 1997-09-05 Katalysator und verfahren zu seiner herstellung
JP10512252A JP2000517242A (ja) 1996-09-06 1997-09-05 触媒およびその製造方法
EP97944838A EP0925111B1 (de) 1996-09-06 1997-09-05 Katalysator und verfahren zu seiner herstellung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19636269.5 1996-09-06
DE19636269A DE19636269C2 (de) 1996-09-06 1996-09-06 Katalysator und Verfahren zu seiner Herstellung

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09147760 A-371-Of-International 1999-05-04
US53574800A Continuation-In-Part 1996-09-06 2000-03-27

Publications (1)

Publication Number Publication Date
WO1998009725A1 true WO1998009725A1 (de) 1998-03-12

Family

ID=7804861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/004842 WO1998009725A1 (de) 1996-09-06 1997-09-05 Katalysator und verfahren zu seiner herstellung

Country Status (6)

Country Link
EP (1) EP0925111B1 (de)
JP (1) JP2000517242A (de)
AT (1) ATE202951T1 (de)
DE (2) DE19636269C2 (de)
DK (1) DK0925111T3 (de)
WO (1) WO1998009725A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100496716C (zh) * 2007-08-08 2009-06-10 南京大学 Ag/C60催化剂、其合成方法及其在卤代硝基芳烃和硝基芳香醛的硝基催化加氢反应中的应用
CN114130386A (zh) * 2021-11-26 2022-03-04 合肥智慧环境研究院 一种富勒烯内嵌锰铈合金催化剂及其制备方法和应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5662044B2 (ja) * 2010-03-31 2015-01-28 大阪瓦斯株式会社 触媒の活性化の程度を判定する方法
CN114602447A (zh) * 2022-03-28 2022-06-10 杭州师范大学 富勒醇/金纳米颗粒复合光催化剂的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2217701A (en) * 1988-04-19 1989-11-01 Vnii Tekhn Ugleroda Porous carbonaceous material useful in catalyst manufacture
DE4324693A1 (de) * 1993-07-23 1995-01-26 Hoechst Ag Metall-Fulleren-Interkalationsverbindungen, Verfahren zur Herstellung und Anwendung als Katalysatoren
WO1995010481A1 (en) * 1993-10-13 1995-04-20 E.I. Du Pont De Nemours And Company Carbon nanotubes and nested fullerenes supporting transition metals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2217701A (en) * 1988-04-19 1989-11-01 Vnii Tekhn Ugleroda Porous carbonaceous material useful in catalyst manufacture
DE4324693A1 (de) * 1993-07-23 1995-01-26 Hoechst Ag Metall-Fulleren-Interkalationsverbindungen, Verfahren zur Herstellung und Anwendung als Katalysatoren
WO1995010481A1 (en) * 1993-10-13 1995-04-20 E.I. Du Pont De Nemours And Company Carbon nanotubes and nested fullerenes supporting transition metals

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100496716C (zh) * 2007-08-08 2009-06-10 南京大学 Ag/C60催化剂、其合成方法及其在卤代硝基芳烃和硝基芳香醛的硝基催化加氢反应中的应用
CN114130386A (zh) * 2021-11-26 2022-03-04 合肥智慧环境研究院 一种富勒烯内嵌锰铈合金催化剂及其制备方法和应用
CN114130386B (zh) * 2021-11-26 2024-02-20 合肥智慧环境研究院 一种富勒烯内嵌锰铈合金催化剂及其制备方法和应用

Also Published As

Publication number Publication date
DE19636269C2 (de) 1999-12-30
EP0925111B1 (de) 2001-07-11
DE19636269A1 (de) 1998-03-12
DE59704030D1 (de) 2001-08-16
EP0925111A1 (de) 1999-06-30
JP2000517242A (ja) 2000-12-26
ATE202951T1 (de) 2001-07-15
DK0925111T3 (da) 2001-09-24

Similar Documents

Publication Publication Date Title
EP1401574B1 (de) Platinfreies chelat-katalysatormaterial für die selektive sauerstoffreduktion und verfahren zu seiner herstellung
EP2010701B1 (de) Verfahren zur herstellung von kohlenstoffnanoröhrchen in einer wirbelschicht
DE2926614A1 (de) Verfahren zum herstellen einer feinverteilten legierung aus edelmetall und vanadium, daraus hergestellter katalysator und aus diesem hergestellte katode
WO2007014678A1 (de) Hochporöse schichten aus mof-materialien und verfahren zur herstellung derartiger schichten
DE19848032A1 (de) Pt/Rh/Fe-Legierungskatalysator für Brennstoffzellen und Verfahren zu dessen Herstellung
EP1901995A2 (de) Kohlenstoff-nanopartikel, deren herstellung und deren verwendung
WO2010026046A1 (de) Verfahren zur kontinuierlichen herstellung eines katalysators
US6800584B2 (en) Gold catalysts supported on graphitic carbon nanostructures
DE102018115956A1 (de) VERFAHREN ZUM HERSTELLEN VON KOHLENSTOFF-NANORÖHRCHEN IN FLIEßBETTREAKTOREN
DE112010005552T5 (de) Trägerkatalysator
DE102019203866A1 (de) Neuartige Stickstoff-dotierte Kupfer-Nanokatalysatoren für Kohlendioxid-Reduktionsreaktion
EP1560647B1 (de) Verfahren zur regenerierung eines hydrierkatalysators
WO2014195415A1 (de) Verfahren zur herstellung mehrwandiger kohlenstoffnanoröhrchen, mehrwandiges kohlenstoffnanoröhrchen und kohlenstoffnanoröhrchenpulver
EP0635515B1 (de) Metall-Fulleren-Interkalationsverbindungen, Verfahren zur Herstellung und Anwendung als Katalysatoren
DE60216174T2 (de) Kohlenstofffasern mit katalytischem Metall
EP0925111B1 (de) Katalysator und verfahren zu seiner herstellung
WO2018001930A1 (de) Verfahren zur herstellung eines geträgerten katalysatormaterials für eine brennstoffzelle
US6653509B2 (en) Method for the liquid-phase hydrogenation of organic materials
DE2108457B2 (de) Verfahren zur herstellung von pulverfoermigem wolframhaltigem elektrodenmaterial fuer elektrochemische zellen
DE10035841A1 (de) Alkanol-resistentes Katalysatormaterial für die elektrochemische, selektive Sauerstoffreduktion, Verfahren zu seiner Herstellung und Anwendungen
DE10043891A1 (de) Verfahren zur Herstellung von Kohlenstoff-Nanoröhren
DE3341560A1 (de) Verfahren zur herstellung von organometallischen katalysatoren
EP0066287A2 (de) Übergangsmetall-Komplexverbindungen und Verfahren zu ihrer Herstellung
WO2007110176A1 (de) Verfahren zur herstellung kolloidaler nanokatalysatoren
DE10137248A1 (de) Neuartige Katalysatoren zur Darstellung von Essigsäure und Verfahren ihrer Herstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 1998 512252

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1997944838

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09147760

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1997944838

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1997944838

Country of ref document: EP