WO1998003977A1 - Non-volatile semiconductor memory cell utilizing asymmetrical charge trapping - Google Patents
Non-volatile semiconductor memory cell utilizing asymmetrical charge trapping Download PDFInfo
- Publication number
- WO1998003977A1 WO1998003977A1 PCT/IL1997/000211 IL9700211W WO9803977A1 WO 1998003977 A1 WO1998003977 A1 WO 1998003977A1 IL 9700211 W IL9700211 W IL 9700211W WO 9803977 A1 WO9803977 A1 WO 9803977A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gate
- voltage
- source
- drain
- reading
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 60
- 230000015654 memory Effects 0.000 claims abstract description 59
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 30
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 30
- 238000000034 method Methods 0.000 claims abstract description 26
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 14
- 229920005591 polysilicon Polymers 0.000 claims abstract description 13
- 239000000758 substrate Substances 0.000 claims description 37
- 239000000463 material Substances 0.000 claims description 19
- 239000002784 hot electron Substances 0.000 claims description 14
- 238000002347 injection Methods 0.000 claims description 10
- 239000007924 injection Substances 0.000 claims description 10
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 8
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 8
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 230000006870 function Effects 0.000 abstract description 15
- 239000000615 nonconductor Substances 0.000 abstract description 4
- 239000003989 dielectric material Substances 0.000 abstract description 3
- RJCRUVXAWQRZKQ-UHFFFAOYSA-N oxosilicon;silicon Chemical compound [Si].[Si]=O RJCRUVXAWQRZKQ-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052814 silicon oxide Inorganic materials 0.000 abstract description 2
- 150000004767 nitrides Chemical class 0.000 description 18
- 230000005684 electric field Effects 0.000 description 15
- 230000008901 benefit Effects 0.000 description 11
- 230000009467 reduction Effects 0.000 description 8
- 238000007667 floating Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000013461 design Methods 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 238000005036 potential barrier Methods 0.000 description 3
- 238000010893 electron trap Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000008672 reprogramming Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000000370 acceptor Substances 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- PWPJGUXAGUPAHP-UHFFFAOYSA-N lufenuron Chemical compound C1=C(Cl)C(OC(F)(F)C(C(F)(F)F)F)=CC(Cl)=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F PWPJGUXAGUPAHP-UHFFFAOYSA-N 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012956 testing procedure Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/792—Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/56—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
- G11C11/5671—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge trapping in an insulator
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/04—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
- G11C16/0466—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells with charge storage in an insulating layer, e.g. metal-nitride-oxide-silicon [MNOS], silicon-oxide-nitride-oxide-silicon [SONOS]
- G11C16/0475—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells with charge storage in an insulating layer, e.g. metal-nitride-oxide-silicon [MNOS], silicon-oxide-nitride-oxide-silicon [SONOS] comprising two or more independent storage sites which store independent data
Definitions
- the present invention relates generally to semiconductor memory devices and more particularly to a programmable read only memory (PROM) cell having charge trapping dielectric material in the gate.
- PROM programmable read only memory
- Non-volatile semiconductor memory includes read only memory (ROM), PROM, erasable programmable read only memory (EPROM), electrically erasable programmable read only memory (EEPROM) and flash EEPROM.
- ROM read only memory
- PROM PROM
- EPROM erasable programmable read only memory
- EEPROM electrically erasable programmable read only memory
- flash EEPROM flash EEPROM
- ROM devices suffer from the disadvantage of not being electrically programmable memory devices.
- the programming of a ROM occurs during one of the steps of manufacture using special masks containing the data to be stored. Thus, the entire contents of a ROM must be determined before manufacture.
- the time delay before the finished product is available could be six weeks or more.
- the advantage, however, of using ROM for data storage is the low cost per device. However, the penalty is the inability to change the data once the masks are committed to. If mistakes in the data programming are found they are typically very costly to correct. Any inventory that exists having incorrect data programming is instantly obsolete and probably cannot be used.
- EPROM semiconductor devices eliminates the necessity of mask programming the data but the complexity of the process increases drastically.
- die size is larger due to the addition of programming circuitry and there are more processing and testing steps involved in the manufacture of these types of memory devices.
- An advantage of EPROMs are that they are electrically programmed, but for erasing, EPROMs require exposure to ultraviolet (UV) light. These devices are constructed with windows transparent to UV light to allow the die to be exposed for erasing, which must be performed before the device can be programmed.
- UV ultraviolet
- a major drawback to these devices is that they lack the ability to be electrically erased.
- Flash EEPROMs are similar to EEPROM in that memory cells can be programmed (i.e., written) and erased electrically but with the additional ability of erasing all memory cells at once, hence the term flash EEPROM.
- the disadvantage of flash EEPROM is that it is very difficult and expensive to manufacture and produce.
- a single transistor ONO EEPROM device is disclosed in the technical article entitled "A True Single-Transistor Oxide-Nitride-Oxide EEPROM Device," T.Y. Chan, K.K. Young and Chenming Hu, IEEE Electron Device Letters, March 1987.
- the memory cell is programmed by hot electron injection and the injected charges are stored in the oxide-nitride-oxide (ONO) layer of the device.
- the present invention discloses an apparatus for and method of programming and reading a programmable read only memory (PROM) having a trapping dielectric sandwiched between two silicon dioxide layers that greatly reduces the programming time of conventional PROM devices.
- the trapping dielectric are silicon oxide-silicon nitride-silicon oxide (ONO) and silicon dioxide with buried polysilicon islands.
- a nonconducting dielectric layer functions as an electrical charge trapping medium. This charge trapping layer is sandwiched between two layers of silicon dioxide acting as an electrical insulator.
- ⁇ conducting gate layer is placed over the upper silicon dioxide layer.
- the memory device is programmed in the conventional manner, using hot electron programming, by applying programming voltages to the gate and the drain while the source is grounded.
- Hot electrons are accelerated sufficiently to be injected into the region of the trapping dielectric layer near the drain.
- the device is read in the opposite direction from which it was written, meaning voltages are applied to the gate and the source while the drain is grounded. For the same applied gate voltage, reading in the reverse direction greatly reduces the potential across the trapped charge region. This permits much shorter programming times by amplifying the effect of the charge trapped in the localized trapping region.
- a programmable read only memory (PROM) device comprising a semiconducting substrate, a source, the source comprising a region of the semiconducting substrate doped so as to be conductive, a drain, the drain comprising a region of the semiconducting substrate doped so as to be conductive, a first insulating layer overlaying and covering a portion of the semiconducting substrate located between the source and the drain defined as the channel region, a nonconducting charge trapping layer formed on and overlaying the first insulating layer, a second insulating layer formed on and overlaying the nonconducting charge trapping layer, a gate, the gate comprising a conductive layer formed on and overlaying the second insulating layer, and wherein the memory device is read in the opposite direction from which it was programmed.
- PROM programmable read only memory
- a lower limit for the voltage applied to the gate during reading is the voltage at which sufficient inversion is generated whereby the unprogrammed state can be sensed
- an upper limit for the voltage applied to the gate during reading is the voltage at which the voltage in a channel, formed between the source and the drain within the semiconducting substrate, across a region of trapped charge formed during programming, is just below the voltage applied to the source during reading.
- programming comprises applying programming voltages to the drain and the gate, grounding the source and measuring the resulting channel current
- reading comprises applying reading voltages to the source and the gate, grounding the drain and measuring the resulting channel current
- the first and second insulating layers comprise silicon dioxide and the charge trapping layer comprises silicon nitride.
- the charge trapping layer comprises silicon dioxide with buried polysilicon islands.
- the semiconducting substrate comprises P-type semiconductor material and the source and the drain comprise N+ semiconductor material.
- a programmable read only memory (PROM) device comprising a semiconducting substrate, a source, the source comprising a region of the semiconducting substrate doped so as to be conductive, a drain, the drain comprising a region of the semiconducting substrate doped so as to be conductive, a channel being formed in the space between the source and the drain within the semiconducting substrate, a first insulating layer overlaying and covering a portion of the semiconducting substrate located between the source and the drain defined as the channel region, a nonconducting charge trapping layer formed on and overlaying the first insulating layer, a second insulating layer formed on and overlaying the nonconducting charge trapping layer, a gate, the gate comprising a conductive layer formed on and overlaying the second insulating layer, wherein the memory device is read in the opposite direction from which it was programmed, and wherein a lower limit for the voltage applied to the gate during reading
- programming comprises applying programming voltages to the drain and the gate, grounding the source and measuring the resulting channel current
- reading comprises applying reading voltage to the source and the gate, grounding the drain and measuring the resulting channel current.
- a method of programming and reading a programmable read only memory (PROM) cell the PROM cell having a source, drain and gate and utilizing a charge trapping material sandwiched between a first and second silicon dioxide layer within the gate, the method comprising the steps of programming in the forward direction which includes: injecting electrical charge into the charge trapping material within the gate utilizing hot electron injection for a sufficient time duration such that electrical charge becomes trapped asymmetrically in the charge trapping material, the electrical charge being injected until the threshold voltage of the gate reaches a predetermined level when the PROM cell is read in the reverse direction from which it was programmed, the asymmetrical charge injection generated by applying suitable programming voltages to the drain and the gate and grounding the source, and reading in the
- a lower limit for the voltage applied to the gate during reading in the reverse direction is the voltage at which sufficient inversion is generated whereby the unprogrammed state can be sensed
- an upper limit for the voltage applied to the gate during reading in the reverse direction is the voltage at which the voltage in a channel, formed between the source and the drain within the semiconducting substrate, across a region of trapped charge formed during programming, is just below the voltage applied to the source during reading in the reverse direction.
- a method of programming and reading a programmable read only memory (PROM) cell the PROM cell having a semiconducting substrate, threshold voltage, first junction, second junction and gate and utilizing a charge trapping material sandwiched between a first and second silicon dioxide layer within the gate, the method comprising the steps of programming in the forward direction which includes: applying a first programming voltage to the gate, applying a second programming voltage to the second junction, coupled the first junction to a ground, injecting electrical charge into the charge trapping material within the gate utilizing hot electron injection for a sufficient time duration such that electrical charge becomes trapped asymmetrically in the charge trapping layer in close vicinity to the second junction, injecting electrical charge into the charge trapping material until the threshold voltage of the gate reaches a predetermined level when the PROM cell is read in the reverse direction from which it was programmed, reading in the reverse direction which includes: applying a first read voltage to the gate, applying a second read voltage to the first junction, coupling the
- a method of programming and reading a programmable read only memory (PROM) cell comprising the steps of: programming in a first direction, and reading in a second direction opposite that of the first direction.
- PROM programmable read only memory
- Fig. 1 illustrates a sectional view of a PROM cell of the prior art utilizing Oxide-Nitride-Oxide (ONO) as the gate dielectric;
- Fig. 2 illustrates a sectional view of a PROM cell constructed in accordance with a preferred embodiment of the present invention utilizing ONO as the gate dielectric;
- Fig. 3 is a chart illustrating the threshold voltage of a PROM cell of the present invention as a function of programming time for reading in the forward and backward directions;
- Fig. 4 illustrates a sectional view of a PROM cell constructed in accordance with a preferred embodiment of the present invention utilizing a silicon rich silicon dioxide with buried polysilicon islands as the gate dielectric;
- Fig. 5A illustrates a sectional view of a PROM cell of the prior art showing the area of charge trapping under the gate
- Fig. 5B illustrates a sectional view of a PROM cell constructed in accordance with a preferred embodiment of the present invention showing the area of charge trapping under the gate;
- Fig. 6 is a chart illustrating the leakage current through the region of trapped charge as a function of the voltage across the charge trapping region while reading in the backward direction;
- Fig. 7 is a chart illustrating the gate voltage required to sustain a given voltage in the channel V x next to the region of trapped charge while reading in the backward direction;
- Fig. 8A illustrates a sectional view of a PROM cell of the prior art showing the area of charge trapping under the gate after being programmed for a period of time;
- Fig. 8B illustrates a sectional view of a PROM cell constructed in accordance with a preferred embodiment of the present invention showing the area of charge trapping under the gate after being programmed for a sufficient time to achieve the same threshold voltage of the cell illustrated in Figure 8 A.
- the present invention can best be understood with an understanding of how present day charge trapping dielectric PROM memory cells are constructed, programmed and read.
- a short introduction is presented describing prior art ONO EEPROM memory cells, a type of trapping dielectric PROM cell, and the conventional method used to program and read them.
- Illustrated in Figure 1 is a cross section of a conventional ONO EEPROM memory cell as disclosed in the technical article entitled "A True Single-Transistor Oxide-Nitride-Oxide EEPROM Device," T.Y. Chan, K.K. Young and Chenming Hu, IEEE Electron Device Letters, March 1987.
- the memory cell generally referenced 41 , comprises a P-type silicon substrate 30, two N+ junctions 32, 34, a nonconducting nitride layer 38 sandwiched between two oxide layers 36, 40 and a polycrystalline conducting layer 42.
- the trapped electrons cannot spread through the nitride layer because of the low conductivity of the nitride layer and the lateral electric field. Thus, the trapped charge remains in a localized trapping region typically located close to the drain.
- the charge that gets injected into the gate is distributed equally across the entire gate.
- the threshold of the entire gate starts to increase as more and more charge is injected into the gate.
- the threshold voltage increases because the electrons that become stored in the gate screen the gate voltage from the channel.
- the conventional technique of reading both prior art conductive floating gate and nonconductive localized trapping gate EEPROM or flash EEPROM memory is to apply read voltages to the gate and drain and ground the source. This is similar to the method of programming with the difference being that lower level voltages are applied during read than during programming. Since the floating gate is conductive, the trapped charge is distributed evenly throughout the entire floating conductor. In a programmed device, the threshold is therefore high for the entire channel and the process of reading becomes symmetrical. It makes no difference whether voltage is applied to the drain and the source is grounded or vice versa.
- a similar process is also used to read prior art nonconductive localized gate PROM devices. The process of programming typically includes writing followed by reading. This is true for all EPROM and EEPROM memory devices.
- a short programming pulse is applied to the device followed by a read.
- the read is actually used to effectively measure the gate threshold voltage.
- the gate threshold voltage is measured by applying a voltage to the drain and the gate, with the voltage on the gate being increased from zero while the channel current flowing from drain to source is measured.
- the gate voltage that provides 1 ⁇ A of channel current is termed the threshold voltage.
- programming pulses i.e., write pulses
- read cycles wherein the read is performed in the same direction that the programming pulse is applied. This is termed symmetrical programming and reading.
- Programming stops when the gate threshold voltage has reached a certain predetermined point (i.e., the channel current is reduced to a sufficiently low level). This point is chosen to ensure that a '0' bit can be distinguished from a ' 1 ' bit and that a certain data retention time has been achieved.
- the PROM memory cell, generally referenced 10, of the present invention is illustrated in Figure 2.
- a P-type substrate 12 has two buried N+ junctions, one being the source 14 and the other being the drain 16.
- silicon dioxide layer 18 On top of the silicon dioxide layer 18 is a silicon nitride layer 20 preferably approximately 100 angstroms thick. This silicon nitride layer forms the memory retention layer functioning to trap the hot electrons as they are injected into the nitride layer.
- Another layer of silicon dioxide 22 is formed over the silicon nitride layer and is preferably between approximately 80-100 angstroms thick.
- the silicon dioxide layer 22 functions to electrically isolate a conductive gate 24 formed over the silicon dioxide layer 22.
- the layer forming the gate 24 can be constructed from polycrystalline silicon, commonly known as polysilicon.
- the key aspect of the present invention lies in the manner in which the PROM memory cell 10 is programmed and read. Rather than performing symmetrical programming and reading, the PROM memory cell of the present invention is programmed and read asymmetrically. This means that programming and reading occur in opposite directions.
- the arrows labeled PROGRAM and READ in Figure 2 point in opposite directions to signify this asymmetry. Thus, programming is performed in what is termed the forward direction and reading is performed in what is termed the opposite or backward direction.
- the PROM memory cell 10 is programmed similarly to the prior art PROM memory cell of Figure 1. Voltages are applied to the gate and drain creating vertical and lateral electrical fields which accelerate the electrons along the length of the channel. As the electrons move along the channel some of them gain sufficient energy to jump over the potential barrier of the bottom silicon dioxide layer 18 and become trapped in the silicon nitride layer 20. The electron trapping occurs in a region near the drain indicated by the dashed circle in Figure 2. Electrons are trapped near the drain region because the electric fields are the strongest there, thus the electrons have a maximum probability of being sufficiently energized to jump the potential barrier and become trapped in the nitride layer. The threshold voltage of the portion of the gate over the trapped charge increases as more and electrons are injected into the nitride layer.
- Reading in the same direction as programming means the device is programmed and read in the same forward direction.
- voltages having levels lower than that during programming are applied to the gate and drain and the channel current is sensed.
- the channel current should be very low and if the device is not programmed (i.e., a ' 1 ') there should be significant channel current generated.
- the difference in the channel current between the '0' and ' 1 ' states should be maximized in order to distinguish between the '0' and ' l ' states.
- Illustrated in Figure 3 is a graph showing the rise in gate threshold voltage as a function of programming time for reading in the forward direction (curve labeled READ FORWARD) and for reading in the backward direction (curve labeled READ BACKWARD).
- Apparent from the graph in Figure 3 is the several orders of magnitude reduction in programming time achieved when reading in the backward or reverse direction versus reading in the forward direction. As will be described in more detail below, this dramatic reduction in programming time is due to amplification of the effect of the trapped charge injected into the nitride layer brought about by reading the memory cell device in the opposite direction from which it was programmed.
- Charge trapping dielectric materials other then nitride may also be suitable for use as an asymmetric charge trapping medium.
- One such material is silicon dioxide with buried polysilicon islands.
- the silicon dioxide with polysilicon islands is sandwiched between two layers of oxide in similar fashion to the construction of the ONO memory cell.
- a sectional view of a PROM cell constructed in accordance with a preferred embodiment of the present invention utilizing a silicon rich silicon dioxide with buried polysilicon islands as the gate dielectric is illustrated in Figure 4.
- a P-type substrate 62 has buried N+ source 58 and drain 60 regions.
- the silicon dioxide with buried polysilicon islands layer 54 is sandwiched between two layers of oxide 52, 56. Covering oxide layer 52 is polysilicon gate 50.
- the operation of the memory cell of Figure 4 is similar to that of the memory cell illustrated in Figure 2 with programming and reading occurring in opposite directions.
- Figure 5A illustrates a sectional view of an PROM cell of the prior art showing the area of charge trapping under the gate
- Figure 5B illustrates a sectional view of a PROM cell constructed in accordance with a preferred embodiment of the present invention showing the area of charge trapping under the gate.
- the device If the device is now read in the conventional forward direction (i.e., voltages are applied to the gate and drain as indicated by the arrow in Figure 5 A), electrons move off the source and begin traveling toward the drain. In order to program a '0', there can be little or no channel current through the device when it is read. Thus, only if a sufficient portion of the channel is turned off, can the electron current be stopped. If the channel cannot be completely turned off, the electrons will reach the drain. Whether the electrons reach the drain will be determined by, among other things, the length of the trapped area. If the memory cell is programmed for a sufficiently long period, eventually, the channel stops conducting when read in the forward direction. If the trapped or programmed area is not long enough, electrons can punch through to the drain.
- the length of the trapped area If the memory cell is programmed for a sufficiently long period, eventually, the channel stops conducting when read in the forward direction. If the trapped or programmed area is not long enough, electrons can punch through to the drain.
- a voltage is applied to the drain and the gate, for example 2 V and 3 V, respectively, and the source is grounded.
- Full inversion occurs in the channel under the area of the nitride that does not have trapped charge.
- a vertical electric field exists in the channel that spans the length of the channel up to the region of trapped charge.
- electrons travel in a linear fashion up to the edge of the inversion region. This is indicated by the line shown in the channel region in Figure 5A that extends from the source to the edge of the region of trapped charge. Due the fact that the device in inversion (i.e., the channel is in a conductive state), the potential in the inversion layer is pinned to ground potential because the source is grounded.
- the voltage in the channel near the trapped charge is approximately zero.
- the voltage across the region of trapped charge is close to the full drain potential of 2 V. Even in the event that there is some punch through across the trapped region, the resulting channel current and IR drop are negligible and the majority of the drain potential is still present across the region of trapped charge.
- the diagonal line under the channel in Figures 2 and 5A indicate the reduction in the number of electrons in the channel as a function of channel distance.
- the channel region under the trapped charge is off due to the high threshold voltage.
- the region inside the dashed circle in Figure 2 and the region 66 in Figure 5A is a depletion region because the device is in saturation (a device will be in saturation when V DS , the voltage from drain to source, is higher than V DSAT , the saturation voltage). Due to the voltage on the drain, a lateral electric field exists in this region. As a result of this lateral electric field, any electron arriving at the edge of the depletion region will be swept through and pulled to the drain. As described earlier, this phenomena is called punch through.
- Punch through occurs if the lateral electric field is strong enough to draw electrons through to the drain, regardless of the threshold level.
- the prior art memory devices require a much longer time programming time because they employ reading in the forward direction. As the memory device is programmed for a longer and longer time, more and more electrons are injected into the nitride, increasing the length of the programmed portion of the channel. The device must be programmed for an amount of time that gives a trapped charge region of sufficient length to eliminate the punch through of electrons. When this occurs, the lateral electric field is too weak for electrons to punch through to the drain.
- Reading in the backward direction means reading in a direction opposite than that of programming. In other words, voltage is applied to the source and the gate and the drain is grounded.
- the memory device of Figure 5B is programmed in the forward direction by injecting hot electrons into the nitride layer. Since the nitride is a nonconductor, the trapped charge remains localized to the region near the drain. The region of trapped charge is indicated by the cross hatched area 68 in Figure 5B.
- the threshold voltage rises, for example, to approximately 4 V only in the portion of the gate over the trapped charge.
- the threshold voltage of the remainder of the gate remains at, for example, approximately 1 V.
- a voltage is applied to the source and the gate, for example 2 V and 3 V, respectively, and the drain is grounded.
- a major difference between reading in the forward and the backward direction is that when reading in the reverse direction, the gate voltage required to put the memory device into inversion increases significantly. For the same applied gate voltage of 3 V, for example, there will be no inversion but rather the memory device will be in depletion. The reason for this is that a higher gate voltage is needed to generate a sufficient electric field to overcome the charge due to the mobile charge in the inversion layer and the fixed charge in the depletion region. In the case of reading in the reverse direction, in order to sustain a higher voltage in the channel, a much wider depletion region must also be sustained.
- a wider depletion region translates to more fixed charge that must be compensated for before there can be inversion.
- a gate voltage of at least 4 V is required. This is in contrast to the prior art memory device where the source was grounded. It took a lower gate voltage to create inversion in that case.
- a much higher gate voltage is required to pin the voltage in the channel to a higher voltage, i.e., the 2 V that is applied to the source terminal rather than ground.
- the significance of the present invention is that for the same potential across the drain and the source, the voltage across the trapped charge region is significantly reduced which directly results in less punch through and much more efficient programming.
- the voltage V x is defined as the voltage in the channel at a distance X from the source.
- the voltage V x that exists in the channel of the memory device of the present invention will not be 2 V because the device is in depletion rather than inversion. On the other end, it must be larger than 0 because a gate voltage of only 1.5 V is able to sustain approximately 0.4 V in the channel.
- the actual voltage in the channel varies across the channel length because of the lateral electric field set up between the source and the drain.
- the threshold voltage varies as a function of the voltage in the channel.
- the channel will be in saturation as long as the gate voltage V G is higher than the threshold voltage V ⁇ and the voltage V x at any point in the channel is given by
- V ⁇ Vx Vn, + ⁇ iVr(Vx)
- the threshold voltage in the channel is equal to the threshold voltage with the source at zero potential V ⁇ o plus a delta threshold voltage ⁇ V T which is itself a function of the voltage in the channel.
- the leakage current through the region of trapped charge plotted as a function of the voltage across the charge trapping region, V ⁇ c , while reading in the backward direction, is shown in Figure 6. From the graph, one can see that the approximate leakage current, I L , through the channel when V ⁇ r is 2 V is 10 "5 A. In the case of the prior art memory cell, the voltage across the region of trapped charge is approximately 2 V. In contrast, the voltage V x in the channel of the memory device of the present invention near the region of trapped charge is not 2 V but something less, 1 V for example. The leakage current I L corresponding to 1 V across the trapped charge region is approximately 10 "7 A, a whole two orders of magnitude smaller.
- V x spanning the distance from the drain to the edge of the charge trapping area while reading in the backward direction is shown in Figure 7.
- the gate voltage V G that is required to sustain a particular V x in the channel is a function of the number of acceptors N ⁇ in the substrate and the thickness of the oxide T ox and is represented by the dotted line.
- the solid line represents the threshold voltage in the channel that exists when the voltage in the channel is zero. In this case, the threshold voltage is linear across the entire channel. However, once there is a voltage in the channel, the threshold voltage is not constant across the channel. As shown in the graph, the threshold voltage increases nonlinearly as the voltage in the channel increases.
- the relationship between the incremental increase in threshold voltage as a function of channel voltage is well known in the art, discussion of which can be found in Chapter 2 of The Design and Analysis of VLSI Circuits by L.A. Glasser and D.W. Dobberpuhl.
- Reading the graph in Figure 7 one can see that to achieve 2 V in the channel (i.e., the same conditions as the prior art memory device with 3 V applied to the gate) approximately 4 V must be applied to the gate.
- 3 V is applied to the gate and the device is read in the reverse direction, only approximately 1.2 V is generated in the channel. This is in direct contrast to the prior art reading in the forward direction wherein the potential across the trapped charge region was almost the full potential applied to the drain (i.e., 2 V).
- the effect of the reading the memory device in the backward (i.e., reverse) direction is to amplify the effect of the charge that is injected into the region of trapped charge (i.e., the programmed region or the localized trapping region).
- the region of trapped charge i.e., the programmed region or the localized trapping region.
- device 10 exhibits a leakage current I L approximately two orders of magnitude less than that of a prior art memory cell.
- the major benefit is that the programming time can be reduced because the leakage current is significantly less when reading in the reverse direction.
- the size of the trapping region does not have to be as long as with prior art memory cells which translates through an exponential function to shorter programming times.
- a key advantage of reading in the opposite direction from programming is that the effect of the lateral electric field next to the charge trapping region is minimized.
- the gate voltage can be reduced to further minimize the potential in the channel.
- the gate voltage can be set to achieve the desired voltage in the channel. This was described previously with reference to Figure 7. Reducing the gate voltage while reading in the backward direction minimizes the transfer of high voltage to the trapped charge region.
- the area of charge trapping necessary to program memory cell 41 of the prior art is illustrated in Figure 8A and the area of charge trapping necessary to program memory cell 10 of the present invention is illustrated in Figure 8B.
- the trapping region 68 of device 10 is shown much smaller than trapping region 66 of the prior art device. As described earlier, reading in the reverse direction permits a shorter charge trapping region. This results in much more efficient programming by reducing, through an exponential function, the programming time of the device. Thus, short programming times are achieved by taking advantage of the asymmetric characteristics of the trapping dielectric PROM memory cell.
- the voltage in the channel can be varied by either of two ways. The first is by adjusting the voltage on the gate. A higher gate voltage translates to a higher voltage in the channel. The second way is by adjusting the boron implant level in the silicon substrate. These two methods allow the MOS designer to tailor the voltage in the channel to achieve desired performance margins. Optimization Parameters
- the first parameter is the channel length.
- a longer channel length, for a given programming time when reading in the reverse direction, increases the distance between the drain and the trapped charge (effectively, the source and drain designations are flipped). This lowers the level of the lateral electric field even lower.
- the second parameter is the gate voltage which can be set to minimize the voltage potential in the channel that exists across the region of trapped charge. This further results in a reduction of the lateral electric field in the channel near the region of trapped charge.
- the voltage in the channel can be 'dialed in' by varying the voltage on the gate. This gives semiconductor circuit designers control over the voltage that is present across the region of trapped charge. If the gate voltage is made too low then reading a T, i.e., the unprogrammed state, becomes problematic. The gate voltage for reading a T must be still high enough to generate inversion in order to produce sufficient read current for the sense amplifiers. Thus, a lower limit for the gate voltage is approximately 1 V above the threshold voltage.
- an upper limit on the gate voltage is the voltage at which the voltage in the channel across the region of trapped charge is- just below the voltage potential applied to the source terminal during reading in the reverse direction. A too high gate voltage will cause inversion in the channel and the benefits of the present invention are lost. Thus, it is not recommended to apply a gate voltage that generates such a high voltage in the channel across the charge trapping region because it defeats the benefits of having a lower potential across this region with the accompanying reduction in leakage current and shortened programming time.
- the gate voltage used for reading is approximately 3 V which represents an optimized tradeoff between programming time and leakage current.
- the third optimization method is to vary the boron doping of the channel region under the gate.
- An increase in the doping concentration results in a lower voltage generated in the channel. This is due to the reduction in the width of the depletion region formed.
- a higher doping concentration permits a higher gate voltage to be applied for the same voltage across the charge trapping region.
- an increase in the N A doping concentration for the same length trapping region will improve the punch through behavior of the device.
- the width of the depletion region under the gate can be varied.
- An increase in the doping concentration results in a reduction in the width of the depletion region for the same applied gate voltage. The reduction in the width of the depletion occurs because there is now more fixed charge in the substrate.
- varying the doping concentration can be used to limit the length of the pinchoff region under the gate.
- the doping concentration can be used to increase or decrease the initial threshold voltage of the device.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10506749A JP2000514946A (en) | 1996-07-23 | 1997-06-24 | Nonvolatile semiconductor memory cell using asymmetric charge trapping |
EP97927356A EP0914658A4 (en) | 1996-07-23 | 1997-06-24 | Non-volatile semiconductor memory cell utilizing asymmetrical charge trapping |
AU31883/97A AU3188397A (en) | 1996-07-23 | 1997-06-24 | Non-volatile semiconductor memory cell utilizing asymmetrical charge trapping |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/681,430 US5768192A (en) | 1996-07-23 | 1996-07-23 | Non-volatile semiconductor memory cell utilizing asymmetrical charge trapping |
US08/681,430 | 1996-07-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1998003977A1 true WO1998003977A1 (en) | 1998-01-29 |
Family
ID=24735252
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IL1997/000211 WO1998003977A1 (en) | 1996-07-23 | 1997-06-24 | Non-volatile semiconductor memory cell utilizing asymmetrical charge trapping |
Country Status (7)
Country | Link |
---|---|
US (1) | US5768192A (en) |
EP (1) | EP0914658A4 (en) |
JP (1) | JP2000514946A (en) |
KR (1) | KR100433994B1 (en) |
AU (1) | AU3188397A (en) |
TW (1) | TW359041B (en) |
WO (1) | WO1998003977A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1235229A2 (en) * | 2001-02-26 | 2002-08-28 | Fujitsu Limited | Method of read operation of nonvolatile semiconductor memory and nonvolatile semiconductor memory |
JP2004503040A (en) * | 2000-05-04 | 2004-01-29 | サイファン・セミコンダクターズ・リミテッド | Programming non-volatile memory cells |
US7145001B1 (en) | 1999-10-27 | 2006-12-05 | Cognis Deutschland Gmbh & Co. Kg | Method for producing solid sugar surfactants |
US7145807B2 (en) | 2004-03-05 | 2006-12-05 | Infineon Technologies Ag | Method for operating an electrical writable and erasable memory cell and a memory device for electrical memories |
US7800948B2 (en) | 2005-11-02 | 2010-09-21 | Sharp Kabushiki Kaisha | Nonvolatile semiconductor memory device |
EP2234115A1 (en) | 2009-03-27 | 2010-09-29 | Commissariat à l'Énergie Atomique et aux Énergies Alternatives | Method for manufacturing a memory device with conductive nanoparticles |
US7834392B2 (en) | 2001-10-31 | 2010-11-16 | Sandisk Corporation | Multi-state non-volatile integrated circuit memory systems that employ dielectric storage elements |
US7943982B2 (en) | 2005-05-30 | 2011-05-17 | Spansion Llc | Semiconductor device having laminated electronic conductor on bit line |
JP2013524397A (en) * | 2010-03-30 | 2013-06-17 | シリコン ストーリッジ テクノロージー インコーポレイテッド | Nonvolatile memory sensing system and method including selective / differential threshold voltage capability |
CN103199115A (en) * | 2012-01-05 | 2013-07-10 | 国际商业机器公司 | Nanowire floating gate transistor |
Families Citing this family (771)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3397427B2 (en) * | 1994-02-02 | 2003-04-14 | 株式会社東芝 | Semiconductor storage device |
DE19652547C2 (en) * | 1996-12-17 | 2002-04-25 | Infineon Technologies Ag | Memory cell arrangement with a trench structure and a gate dielectric, which contains a material with charge carrier adhesion points, and method for the production thereof |
US6297096B1 (en) * | 1997-06-11 | 2001-10-02 | Saifun Semiconductors Ltd. | NROM fabrication method |
IL125604A (en) * | 1997-07-30 | 2004-03-28 | Saifun Semiconductors Ltd | Non-volatile electrically erasable and programmble semiconductor memory cell utilizing asymmetrical charge |
US6768165B1 (en) * | 1997-08-01 | 2004-07-27 | Saifun Semiconductors Ltd. | Two bit non-volatile electrically erasable and programmable semiconductor memory cell utilizing asymmetrical charge trapping |
US6232643B1 (en) | 1997-11-13 | 2001-05-15 | Micron Technology, Inc. | Memory using insulator traps |
JPH11214640A (en) * | 1998-01-28 | 1999-08-06 | Hitachi Ltd | Semiconductor memory element, semiconductor memory and control method thereof |
US6030871A (en) | 1998-05-05 | 2000-02-29 | Saifun Semiconductors Ltd. | Process for producing two bit ROM cell utilizing angled implant |
US6215148B1 (en) | 1998-05-20 | 2001-04-10 | Saifun Semiconductors Ltd. | NROM cell with improved programming, erasing and cycling |
US6348711B1 (en) | 1998-05-20 | 2002-02-19 | Saifun Semiconductors Ltd. | NROM cell with self-aligned programming and erasure areas |
JP3654630B2 (en) | 1998-12-04 | 2005-06-02 | インフィネオン テクノロジース エスシー300 ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト | Method and apparatus for optically controlling the manufacturing process of microstructured surfaces in semiconductor manufacturing |
US6346442B1 (en) | 1999-02-04 | 2002-02-12 | Tower Semiconductor Ltd. | Methods for fabricating a semiconductor chip having CMOS devices and a fieldless array |
US6081456A (en) * | 1999-02-04 | 2000-06-27 | Tower Semiconductor Ltd. | Bit line control circuit for a memory array using 2-bit non-volatile memory cells |
US6134156A (en) * | 1999-02-04 | 2000-10-17 | Saifun Semiconductors Ltd. | Method for initiating a retrieval procedure in virtual ground arrays |
US6181597B1 (en) | 1999-02-04 | 2001-01-30 | Tower Semiconductor Ltd. | EEPROM array using 2-bit non-volatile memory cells with serial read operations |
US6256231B1 (en) | 1999-02-04 | 2001-07-03 | Tower Semiconductor Ltd. | EEPROM array using 2-bit non-volatile memory cells and method of implementing same |
US6157570A (en) * | 1999-02-04 | 2000-12-05 | Tower Semiconductor Ltd. | Program/erase endurance of EEPROM memory cells |
US6108240A (en) * | 1999-02-04 | 2000-08-22 | Tower Semiconductor Ltd. | Implementation of EEPROM using intermediate gate voltage to avoid disturb conditions |
US6044022A (en) * | 1999-02-26 | 2000-03-28 | Tower Semiconductor Ltd. | Programmable configuration for EEPROMS including 2-bit non-volatile memory cell arrays |
US6174758B1 (en) | 1999-03-03 | 2001-01-16 | Tower Semiconductor Ltd. | Semiconductor chip having fieldless array with salicide gates and methods for making same |
JP3973819B2 (en) | 1999-03-08 | 2007-09-12 | 株式会社東芝 | Semiconductor memory device and manufacturing method thereof |
US6295595B1 (en) | 1999-04-21 | 2001-09-25 | Tower Semiconductor Ltd. | Method and structure for accessing a reduced address space of a defective memory |
KR100544175B1 (en) * | 1999-05-08 | 2006-01-23 | 삼성전자주식회사 | Recording medium storing linking type information and method for processing defective area |
US6208557B1 (en) | 1999-05-21 | 2001-03-27 | National Semiconductor Corporation | EPROM and flash memory cells with source-side injection and a gate dielectric that traps hot electrons during programming |
US6218695B1 (en) | 1999-06-28 | 2001-04-17 | Tower Semiconductor Ltd. | Area efficient column select circuitry for 2-bit non-volatile memory cells |
US6388293B1 (en) | 1999-10-12 | 2002-05-14 | Halo Lsi Design & Device Technology, Inc. | Nonvolatile memory cell, operating method of the same and nonvolatile memory array |
US6255166B1 (en) | 1999-08-05 | 2001-07-03 | Aalo Lsi Design & Device Technology, Inc. | Nonvolatile memory cell, method of programming the same and nonvolatile memory array |
US6521958B1 (en) * | 1999-08-26 | 2003-02-18 | Micron Technology, Inc. | MOSFET technology for programmable address decode and correction |
US6204529B1 (en) | 1999-08-27 | 2001-03-20 | Hsing Lan Lung | 8 bit per cell non-volatile semiconductor memory structure utilizing trench technology and dielectric floating gate |
AU6940900A (en) * | 1999-08-27 | 2001-03-26 | Macronix America, Inc. | Easy shrinkable novel non-volatile semiconductor memory cell utilizing split dielectric floating gate and method for making same |
JP3958899B2 (en) * | 1999-09-03 | 2007-08-15 | スパンション エルエルシー | Semiconductor memory device and manufacturing method thereof |
JP4058219B2 (en) | 1999-09-17 | 2008-03-05 | 株式会社ルネサステクノロジ | Semiconductor integrated circuit |
US7012296B2 (en) * | 1999-09-17 | 2006-03-14 | Renesas Technology Corp. | Semiconductor integrated circuit |
US7190023B2 (en) * | 1999-09-17 | 2007-03-13 | Renesas Technology Corp. | Semiconductor integrated circuit having discrete trap type memory cells |
JP2001148434A (en) * | 1999-10-12 | 2001-05-29 | New Heiro:Kk | Non-volatile memory cell and its usage, manufacturing method, and non-volatile memory array |
US6122201A (en) * | 1999-10-20 | 2000-09-19 | Taiwan Semiconductor Manufacturing Company | Clipped sine wave channel erase method to reduce oxide trapping charge generation rate of flash EEPROM |
JP3430084B2 (en) | 1999-10-22 | 2003-07-28 | 富士通株式会社 | Manufacturing method of nonvolatile semiconductor memory device |
US6240020B1 (en) | 1999-10-25 | 2001-05-29 | Advanced Micro Devices | Method of bitline shielding in conjunction with a precharging scheme for nand-based flash memory devices |
US6175523B1 (en) | 1999-10-25 | 2001-01-16 | Advanced Micro Devices, Inc | Precharging mechanism and method for NAND-based flash memory devices |
US6429063B1 (en) | 1999-10-26 | 2002-08-06 | Saifun Semiconductors Ltd. | NROM cell with generally decoupled primary and secondary injection |
JP4697993B2 (en) | 1999-11-25 | 2011-06-08 | スパンション エルエルシー | Control method for nonvolatile semiconductor memory device |
US6329691B1 (en) | 1999-12-13 | 2001-12-11 | Tower Semiconductor Ltd. | Device for protection of sensitive gate dielectrics of advanced non-volatile memory devices from damage due to plasma charging |
US6329687B1 (en) | 2000-01-27 | 2001-12-11 | Advanced Micro Devices, Inc. | Two bit flash cell with two floating gate regions |
US6222768B1 (en) | 2000-01-28 | 2001-04-24 | Advanced Micro Devices, Inc. | Auto adjusting window placement scheme for an NROM virtual ground array |
US6201737B1 (en) | 2000-01-28 | 2001-03-13 | Advanced Micro Devices, Inc. | Apparatus and method to characterize the threshold distribution in an NROM virtual ground array |
US6272043B1 (en) | 2000-01-28 | 2001-08-07 | Advanced Micro Devices, Inc. | Apparatus and method of direct current sensing from source side in a virtual ground array |
DE10004392A1 (en) * | 2000-02-02 | 2001-08-16 | Infineon Technologies Ag | Field effect transistor and method for producing a field effect transistor injected with charge carriers |
US6215702B1 (en) | 2000-02-16 | 2001-04-10 | Advanced Micro Devices, Inc. | Method of maintaining constant erasing speeds for non-volatile memory cells |
US6243300B1 (en) | 2000-02-16 | 2001-06-05 | Advanced Micro Devices, Inc. | Substrate hole injection for neutralizing spillover charge generated during programming of a non-volatile memory cell |
US6266281B1 (en) | 2000-02-16 | 2001-07-24 | Advanced Micro Devices, Inc. | Method of erasing non-volatile memory cells |
US6438031B1 (en) | 2000-02-16 | 2002-08-20 | Advanced Micro Devices, Inc. | Method of programming a non-volatile memory cell using a substrate bias |
US6381179B1 (en) | 2000-02-24 | 2002-04-30 | Advanced Micro Devices, Inc. | Using a negative gate erase to increase the cycling endurance of a non-volatile memory cell with an oxide-nitride-oxide (ONO) structure |
US6356482B1 (en) | 2000-02-24 | 2002-03-12 | Advanced Micro Devices, Inc. | Using negative gate erase voltage to simultaneously erase two bits from a non-volatile memory cell with an oxide-nitride-oxide (ONO) gate structure |
US6549466B1 (en) | 2000-02-24 | 2003-04-15 | Advanced Micro Devices, Inc. | Using a negative gate erase voltage applied in steps of decreasing amounts to reduce erase time for a non-volatile memory cell with an oxide-nitride-oxide (ONO) structure |
US6662263B1 (en) | 2000-03-03 | 2003-12-09 | Multi Level Memory Technology | Sectorless flash memory architecture |
US6458702B1 (en) | 2000-03-09 | 2002-10-01 | Tower Semiconductor Ltd. | Methods for making semiconductor chip having both self aligned silicide regions and non-self aligned silicide regions |
US6686276B2 (en) | 2000-03-09 | 2004-02-03 | Tower Semiconductor Ltd. | Semiconductor chip having both polycide and salicide gates and methods for making same |
US6888750B2 (en) * | 2000-04-28 | 2005-05-03 | Matrix Semiconductor, Inc. | Nonvolatile memory on SOI and compound semiconductor substrates and method of fabrication |
US6490204B2 (en) | 2000-05-04 | 2002-12-03 | Saifun Semiconductors Ltd. | Programming and erasing methods for a reference cell of an NROM array |
US6538270B1 (en) * | 2000-05-16 | 2003-03-25 | Advanced Micro Devices, Inc. | Staggered bitline strapping of a non-volatile memory cell |
US6269023B1 (en) * | 2000-05-19 | 2001-07-31 | Advanced Micro Devices, Inc. | Method of programming a non-volatile memory cell using a current limiter |
US6618290B1 (en) * | 2000-06-23 | 2003-09-09 | Advanced Micro Devices, Inc. | Method of programming a non-volatile memory cell using a baking process |
US6456531B1 (en) | 2000-06-23 | 2002-09-24 | Advanced Micro Devices, Inc. | Method of drain avalanche programming of a non-volatile memory cell |
US6456536B1 (en) * | 2000-06-23 | 2002-09-24 | Advanced Micro Devices, Inc. | Method of programming a non-volatile memory cell using a substrate bias |
US6528845B1 (en) | 2000-07-14 | 2003-03-04 | Lucent Technologies Inc. | Non-volatile semiconductor memory cell utilizing trapped charge generated by channel-initiated secondary electron injection |
DE10036911C2 (en) | 2000-07-28 | 2002-06-06 | Infineon Technologies Ag | Method for producing a multi-bit memory cell |
BR0113164A (en) | 2000-08-11 | 2003-06-24 | Infineon Technologies Ag | Memory cell, memory cell layout and production process |
CN101179079B (en) | 2000-08-14 | 2010-11-03 | 矩阵半导体公司 | Rail stack array of charge storage devices and method of making same |
US6459618B1 (en) * | 2000-08-25 | 2002-10-01 | Advanced Micro Devices, Inc. | Method of programming a non-volatile memory cell using a drain bias |
US6477083B1 (en) | 2000-10-11 | 2002-11-05 | Advanced Micro Devices, Inc. | Select transistor architecture for a virtual ground non-volatile memory cell array |
US6750157B1 (en) | 2000-10-12 | 2004-06-15 | Advanced Micro Devices, Inc. | Nonvolatile memory cell with a nitridated oxide layer |
US6583479B1 (en) | 2000-10-16 | 2003-06-24 | Advanced Micro Devices, Inc. | Sidewall NROM and method of manufacture thereof for non-volatile memory cells |
DE10051483A1 (en) * | 2000-10-17 | 2002-05-02 | Infineon Technologies Ag | Non-volatile semiconductor memory cell arrangement and method for the production thereof |
US6444521B1 (en) * | 2000-11-09 | 2002-09-03 | Macronix International Co., Ltd. | Method to improve nitride floating gate charge trapping for NROM flash memory device |
US6911254B2 (en) * | 2000-11-14 | 2005-06-28 | Solutia, Inc. | Infrared absorbing compositions and laminates |
US6465306B1 (en) | 2000-11-28 | 2002-10-15 | Advanced Micro Devices, Inc. | Simultaneous formation of charge storage and bitline to wordline isolation |
US6468865B1 (en) | 2000-11-28 | 2002-10-22 | Advanced Micro Devices, Inc. | Method of simultaneous formation of bitline isolation and periphery oxide |
JP4058232B2 (en) * | 2000-11-29 | 2008-03-05 | 株式会社ルネサステクノロジ | Semiconductor device and IC card |
JP2002190535A (en) | 2000-12-21 | 2002-07-05 | Mitsubishi Electric Corp | Semiconductor device and its fabricating method |
US6614692B2 (en) * | 2001-01-18 | 2003-09-02 | Saifun Semiconductors Ltd. | EEPROM array and method for operation thereof |
US6466476B1 (en) | 2001-01-18 | 2002-10-15 | Multi Level Memory Technology | Data coding for multi-bit-per-cell memories having variable numbers of bits per memory cell |
US6834263B2 (en) * | 2001-01-19 | 2004-12-21 | Macronix International Co., Ltd. | NROM structure |
US6445030B1 (en) | 2001-01-30 | 2002-09-03 | Advanced Micro Devices, Inc. | Flash memory erase speed by fluorine implant or fluorination |
TW476144B (en) * | 2001-02-02 | 2002-02-11 | Macronix Int Co Ltd | Non-volatile memory |
JP2002231918A (en) * | 2001-02-06 | 2002-08-16 | Olympus Optical Co Ltd | Solid-state image pickup device and its manufacturing method |
US6674667B2 (en) | 2001-02-13 | 2004-01-06 | Micron Technology, Inc. | Programmable fuse and antifuse and method therefor |
US6738289B2 (en) * | 2001-02-26 | 2004-05-18 | Sandisk Corporation | Non-volatile memory with improved programming and method therefor |
DE10110150A1 (en) | 2001-03-02 | 2002-09-19 | Infineon Technologies Ag | Method for producing metallic bit lines for memory cell arrays, method for producing memory cell arrays and memory cell array |
US6584017B2 (en) | 2001-04-05 | 2003-06-24 | Saifun Semiconductors Ltd. | Method for programming a reference cell |
US6448750B1 (en) | 2001-04-05 | 2002-09-10 | Saifun Semiconductor Ltd. | Voltage regulator for non-volatile memory with large power supply rejection ration and minimal current drain |
US6577514B2 (en) | 2001-04-05 | 2003-06-10 | Saifun Semiconductors Ltd. | Charge pump with constant boosted output voltage |
KR100389130B1 (en) * | 2001-04-25 | 2003-06-25 | 삼성전자주식회사 | Non-Volatile Memory Device with 2 transistors for 2-bit operation |
US6522585B2 (en) | 2001-05-25 | 2003-02-18 | Sandisk Corporation | Dual-cell soft programming for virtual-ground memory arrays |
TW556326B (en) * | 2001-05-30 | 2003-10-01 | Infineon Technologies Ag | A method for providing bitline contacts in a memory cell array and a memory cell array having bitline contacts |
US6577161B2 (en) | 2001-06-01 | 2003-06-10 | Macronix International Co., Ltd. | One cell programmable switch using non-volatile cell with unidirectional and bidirectional states |
US6531887B2 (en) | 2001-06-01 | 2003-03-11 | Macronix International Co., Ltd. | One cell programmable switch using non-volatile cell |
US6545504B2 (en) * | 2001-06-01 | 2003-04-08 | Macronix International Co., Ltd. | Four state programmable interconnect device for bus line and I/O pad |
US6593666B1 (en) * | 2001-06-20 | 2003-07-15 | Ambient Systems, Inc. | Energy conversion systems using nanometer scale assemblies and methods for using same |
DE10129958B4 (en) | 2001-06-21 | 2006-07-13 | Infineon Technologies Ag | Memory cell arrangement and manufacturing method |
US6436768B1 (en) | 2001-06-27 | 2002-08-20 | Advanced Micro Devices, Inc. | Source drain implant during ONO formation for improved isolation of SONOS devices |
US7253467B2 (en) | 2001-06-28 | 2007-08-07 | Samsung Electronics Co., Ltd. | Non-volatile semiconductor memory devices |
US7473959B2 (en) * | 2001-06-28 | 2009-01-06 | Samsung Electronics Co., Ltd. | Non-volatile semiconductor memory devices and methods of fabricating the same |
JP4901048B2 (en) * | 2001-06-28 | 2012-03-21 | 三星電子株式会社 | Floating trap type non-volatile memory device |
US8253183B2 (en) | 2001-06-28 | 2012-08-28 | Samsung Electronics Co., Ltd. | Charge trapping nonvolatile memory devices with a high-K blocking insulation layer |
US20060180851A1 (en) * | 2001-06-28 | 2006-08-17 | Samsung Electronics Co., Ltd. | Non-volatile memory devices and methods of operating the same |
US6670240B2 (en) * | 2001-08-13 | 2003-12-30 | Halo Lsi, Inc. | Twin NAND device structure, array operations and fabrication method |
US6841813B2 (en) * | 2001-08-13 | 2005-01-11 | Matrix Semiconductor, Inc. | TFT mask ROM and method for making same |
US6593624B2 (en) | 2001-09-25 | 2003-07-15 | Matrix Semiconductor, Inc. | Thin film transistors with vertically offset drain regions |
US6456557B1 (en) | 2001-08-28 | 2002-09-24 | Tower Semiconductor Ltd | Voltage regulator for memory device |
US7132711B2 (en) * | 2001-08-30 | 2006-11-07 | Micron Technology, Inc. | Programmable array logic or memory with p-channel devices and asymmetrical tunnel barriers |
US6778441B2 (en) * | 2001-08-30 | 2004-08-17 | Micron Technology, Inc. | Integrated circuit memory device and method |
US7068544B2 (en) | 2001-08-30 | 2006-06-27 | Micron Technology, Inc. | Flash memory with low tunnel barrier interpoly insulators |
US7476925B2 (en) * | 2001-08-30 | 2009-01-13 | Micron Technology, Inc. | Atomic layer deposition of metal oxide and/or low asymmetrical tunnel barrier interploy insulators |
US7087954B2 (en) * | 2001-08-30 | 2006-08-08 | Micron Technology, Inc. | In service programmable logic arrays with low tunnel barrier interpoly insulators |
US6963103B2 (en) * | 2001-08-30 | 2005-11-08 | Micron Technology, Inc. | SRAM cells with repressed floating gate memory, low tunnel barrier interpoly insulators |
US7177197B2 (en) * | 2001-09-17 | 2007-02-13 | Sandisk Corporation | Latched programming of memory and method |
JPWO2003028112A1 (en) * | 2001-09-20 | 2005-01-13 | 株式会社ルネサステクノロジ | Semiconductor integrated circuit device and manufacturing method thereof |
US6645801B1 (en) | 2001-10-01 | 2003-11-11 | Advanced Micro Devices, Inc. | Salicided gate for virtual ground arrays |
US6566194B1 (en) | 2001-10-01 | 2003-05-20 | Advanced Micro Devices, Inc. | Salicided gate for virtual ground arrays |
US6630384B1 (en) | 2001-10-05 | 2003-10-07 | Advanced Micro Devices, Inc. | Method of fabricating double densed core gates in sonos flash memory |
US6791396B2 (en) | 2001-10-24 | 2004-09-14 | Saifun Semiconductors Ltd. | Stack element circuit |
US6643181B2 (en) | 2001-10-24 | 2003-11-04 | Saifun Semiconductors Ltd. | Method for erasing a memory cell |
US6897522B2 (en) | 2001-10-31 | 2005-05-24 | Sandisk Corporation | Multi-state non-volatile integrated circuit memory systems that employ dielectric storage elements |
US7098107B2 (en) * | 2001-11-19 | 2006-08-29 | Saifun Semiconductor Ltd. | Protective layer in memory device and method therefor |
JP2003152117A (en) | 2001-11-19 | 2003-05-23 | Mitsubishi Electric Corp | Nonvolatile semiconductor memory |
US6583007B1 (en) | 2001-12-20 | 2003-06-24 | Saifun Semiconductors Ltd. | Reducing secondary injection effects |
US6885585B2 (en) * | 2001-12-20 | 2005-04-26 | Saifun Semiconductors Ltd. | NROM NOR array |
US7001807B1 (en) | 2001-12-20 | 2006-02-21 | Advanced Micro Devices, Inc. | Fully isolated dielectric memory cell structure for a dual bit nitride storage device and process for making same |
US6953730B2 (en) | 2001-12-20 | 2005-10-11 | Micron Technology, Inc. | Low-temperature grown high quality ultra-thin CoTiO3 gate dielectrics |
US6639271B1 (en) * | 2001-12-20 | 2003-10-28 | Advanced Micro Devices, Inc. | Fully isolated dielectric memory cell structure for a dual bit nitride storage device and process for making same |
US6850441B2 (en) * | 2002-01-18 | 2005-02-01 | Sandisk Corporation | Noise reduction technique for transistors and small devices utilizing an episodic agitation |
US6621739B2 (en) | 2002-01-18 | 2003-09-16 | Sandisk Corporation | Reducing the effects of noise in non-volatile memories through multiple reads |
JP2003224213A (en) * | 2002-01-30 | 2003-08-08 | Mitsubishi Electric Corp | Nonvolatile semiconductor memory |
US6839826B2 (en) * | 2002-02-06 | 2005-01-04 | Sandisk Corporation | Memory device with pointer structure to map logical to physical addresses |
JP2003243670A (en) * | 2002-02-13 | 2003-08-29 | Mitsubishi Electric Corp | Semiconductor device |
US6644111B2 (en) * | 2002-02-15 | 2003-11-11 | The United States Of America As Represented By The Secretary Of The Army | Apparatus and method for measuring exit velocity of a gun round |
US6871257B2 (en) | 2002-02-22 | 2005-03-22 | Sandisk Corporation | Pipelined parallel programming operation in a non-volatile memory system |
JP2003258128A (en) | 2002-02-27 | 2003-09-12 | Nec Electronics Corp | Non-volatile semiconductor memory device, manufacturing method and operating method of the same |
DE10211359A1 (en) * | 2002-03-14 | 2003-10-02 | Infineon Technologies Ag | Determination arrangement, method for determining electrical charge carriers and use of an ONO field-effect transistor for determining an electrical charge |
JP3745297B2 (en) * | 2002-03-27 | 2006-02-15 | Necエレクトロニクス株式会社 | Method for manufacturing nonvolatile semiconductor memory device |
US7031196B2 (en) * | 2002-03-29 | 2006-04-18 | Macronix International Co., Ltd. | Nonvolatile semiconductor memory and operating method of the memory |
US6690601B2 (en) | 2002-03-29 | 2004-02-10 | Macronix International Co., Ltd. | Nonvolatile semiconductor memory cell with electron-trapping erase state and methods for operating the same |
US7057938B2 (en) * | 2002-03-29 | 2006-06-06 | Macronix International Co., Ltd. | Nonvolatile memory cell and operating method |
US6614694B1 (en) | 2002-04-02 | 2003-09-02 | Macronix International Co., Ltd. | Erase scheme for non-volatile memory |
US6801453B2 (en) * | 2002-04-02 | 2004-10-05 | Macronix International Co., Ltd. | Method and apparatus of a read scheme for non-volatile memory |
JP2003297957A (en) * | 2002-04-05 | 2003-10-17 | Mitsubishi Electric Corp | Semiconductor device and manufacturing method of semiconductor device |
KR100432889B1 (en) * | 2002-04-12 | 2004-05-22 | 삼성전자주식회사 | 2 bit programable non-valotile memory device and method of operating and fabricating the same |
JP2003309194A (en) | 2002-04-18 | 2003-10-31 | Nec Electronics Corp | Semiconductor storage device and its manufacturing method |
JP4647175B2 (en) | 2002-04-18 | 2011-03-09 | ルネサスエレクトロニクス株式会社 | Semiconductor integrated circuit device |
JP3983094B2 (en) | 2002-04-25 | 2007-09-26 | Necエレクトロニクス株式会社 | Method for manufacturing nonvolatile semiconductor memory device |
US6914820B1 (en) | 2002-05-06 | 2005-07-05 | Multi Level Memory Technology | Erasing storage nodes in a bi-directional nonvolatile memory cell |
US7221591B1 (en) * | 2002-05-06 | 2007-05-22 | Samsung Electronics Co., Ltd. | Fabricating bi-directional nonvolatile memory cells |
US6747896B2 (en) | 2002-05-06 | 2004-06-08 | Multi Level Memory Technology | Bi-directional floating gate nonvolatile memory |
JP2003346484A (en) * | 2002-05-23 | 2003-12-05 | Mitsubishi Electric Corp | Nonvolatile semiconductor storage device |
US6703298B2 (en) | 2002-05-23 | 2004-03-09 | Tower Semiconductor Ltd. | Self-aligned process for fabricating memory cells with two isolated floating gates |
JP2003346489A (en) | 2002-05-24 | 2003-12-05 | Mitsubishi Electric Corp | Semiconductor storage device |
JP4104133B2 (en) * | 2002-05-31 | 2008-06-18 | スパンション エルエルシー | Nonvolatile semiconductor memory device and manufacturing method thereof |
US7042045B2 (en) * | 2002-06-04 | 2006-05-09 | Samsung Electronics Co., Ltd. | Non-volatile memory cell having a silicon-oxide nitride-oxide-silicon gate structure |
DE10226964A1 (en) * | 2002-06-17 | 2004-01-08 | Infineon Technologies Ag | Method for manufacturing an NROM memory cell arrangement |
US6888739B2 (en) * | 2002-06-21 | 2005-05-03 | Micron Technology Inc. | Nanocrystal write once read only memory for archival storage |
US7193893B2 (en) * | 2002-06-21 | 2007-03-20 | Micron Technology, Inc. | Write once read only memory employing floating gates |
US6996009B2 (en) | 2002-06-21 | 2006-02-07 | Micron Technology, Inc. | NOR flash memory cell with high storage density |
US6970370B2 (en) * | 2002-06-21 | 2005-11-29 | Micron Technology, Inc. | Ferroelectric write once read only memory for archival storage |
JP4678760B2 (en) * | 2002-06-21 | 2011-04-27 | マイクロン テクノロジー, インク. | Array of memory cells, memory array, memory device, and method of forming a memory array having multi-state cells |
US6804136B2 (en) * | 2002-06-21 | 2004-10-12 | Micron Technology, Inc. | Write once read only memory employing charge trapping in insulators |
US7154140B2 (en) * | 2002-06-21 | 2006-12-26 | Micron Technology, Inc. | Write once read only memory with large work function floating gates |
US6853587B2 (en) * | 2002-06-21 | 2005-02-08 | Micron Technology, Inc. | Vertical NROM having a storage density of 1 bit per 1F2 |
JP4412903B2 (en) * | 2002-06-24 | 2010-02-10 | 株式会社ルネサステクノロジ | Semiconductor device |
DE10229065A1 (en) * | 2002-06-28 | 2004-01-29 | Infineon Technologies Ag | Method for producing an NROM memory cell array |
JP2004039965A (en) * | 2002-07-05 | 2004-02-05 | Renesas Technology Corp | Nonvolatile semiconductor storage device |
US7847344B2 (en) * | 2002-07-08 | 2010-12-07 | Micron Technology, Inc. | Memory utilizing oxide-nitride nanolaminates |
US7221586B2 (en) | 2002-07-08 | 2007-05-22 | Micron Technology, Inc. | Memory utilizing oxide nanolaminates |
US7221017B2 (en) * | 2002-07-08 | 2007-05-22 | Micron Technology, Inc. | Memory utilizing oxide-conductor nanolaminates |
US6917544B2 (en) * | 2002-07-10 | 2005-07-12 | Saifun Semiconductors Ltd. | Multiple use memory chip |
DE10232938B4 (en) * | 2002-07-19 | 2005-05-04 | Infineon Technologies Ag | Method for producing a buried bit line for a semiconductor memory |
US6826107B2 (en) * | 2002-08-01 | 2004-11-30 | Saifun Semiconductors Ltd. | High voltage insertion in flash memory cards |
US6835619B2 (en) | 2002-08-08 | 2004-12-28 | Micron Technology, Inc. | Method of forming a memory transistor comprising a Schottky contact |
US6730564B1 (en) | 2002-08-12 | 2004-05-04 | Fasl, Llc | Salicided gate for virtual ground arrays |
US6940125B2 (en) * | 2002-08-19 | 2005-09-06 | Silicon Storage Technology, Inc. | Vertical NROM and methods for making thereof |
US6765259B2 (en) | 2002-08-28 | 2004-07-20 | Tower Semiconductor Ltd. | Non-volatile memory transistor array implementing “H” shaped source/drain regions and method for fabricating same |
DE10239491A1 (en) * | 2002-08-28 | 2004-03-18 | Infineon Technologies Ag | Production of trenched bit lines in a semiconductor memory comprises using a mask which is produced whilst an auxiliary layer is applied on the whole surface and structured using a lacquer mask |
US6707078B1 (en) | 2002-08-29 | 2004-03-16 | Fasl, Llc | Dummy wordline for erase and bitline leakage |
DE10240916A1 (en) * | 2002-09-04 | 2004-03-25 | Infineon Technologies Ag | Production of a memory cell field used in charge trapping memory cells, e.g. NROM memory cells comprises forming insulating trenches between trenches whilst a hard mask is applied on or above the upper side of the semiconductor body |
DE10240893A1 (en) * | 2002-09-04 | 2004-03-18 | Infineon Technologies Ag | Production of memory cell, especially NROM memory cells, comprises implanting nitrogen into the walls of a trench before forming electrically insulating layers or producing covered spacers on the walls of the trench |
DE10241990B4 (en) * | 2002-09-11 | 2006-11-09 | Infineon Technologies Ag | Method for structuring layers on semiconductor devices |
KR100480619B1 (en) | 2002-09-17 | 2005-03-31 | 삼성전자주식회사 | SONOS EEPROM having improved programming and erasing performance characteristics and method for fabricating the same |
US7443757B2 (en) * | 2002-09-24 | 2008-10-28 | Sandisk Corporation | Non-volatile memory and method with reduced bit line crosstalk errors |
US7046568B2 (en) * | 2002-09-24 | 2006-05-16 | Sandisk Corporation | Memory sensing circuit and method for low voltage operation |
US7196931B2 (en) | 2002-09-24 | 2007-03-27 | Sandisk Corporation | Non-volatile memory and method with reduced source line bias errors |
US6987693B2 (en) * | 2002-09-24 | 2006-01-17 | Sandisk Corporation | Non-volatile memory and method with reduced neighboring field errors |
US6940753B2 (en) | 2002-09-24 | 2005-09-06 | Sandisk Corporation | Highly compact non-volatile memory and method therefor with space-efficient data registers |
AU2003272596A1 (en) * | 2002-09-24 | 2004-04-19 | Sandisk Corporation | Non-volatile memory and its sensing method |
US6891753B2 (en) | 2002-09-24 | 2005-05-10 | Sandisk Corporation | Highly compact non-volatile memory and method therefor with internal serial buses |
US6983428B2 (en) | 2002-09-24 | 2006-01-03 | Sandisk Corporation | Highly compact non-volatile memory and method thereof |
US7327619B2 (en) * | 2002-09-24 | 2008-02-05 | Sandisk Corporation | Reference sense amplifier for non-volatile memory |
US7324393B2 (en) | 2002-09-24 | 2008-01-29 | Sandisk Corporation | Method for compensated sensing in non-volatile memory |
JP2004127405A (en) * | 2002-10-01 | 2004-04-22 | Renesas Technology Corp | Nonvolatile semiconductor memory |
TWI244165B (en) * | 2002-10-07 | 2005-11-21 | Infineon Technologies Ag | Single bit nonvolatile memory cell and methods for programming and erasing thereof |
US7136304B2 (en) | 2002-10-29 | 2006-11-14 | Saifun Semiconductor Ltd | Method, system and circuit for programming a non-volatile memory array |
US6828618B2 (en) * | 2002-10-30 | 2004-12-07 | Freescale Semiconductor, Inc. | Split-gate thin-film storage NVM cell |
US6730957B1 (en) * | 2002-11-05 | 2004-05-04 | Winbond Electronics Corporation | Non-volatile memory compatible with logic devices and fabrication method thereof |
US6777762B2 (en) | 2002-11-05 | 2004-08-17 | Macronix International Co., Ltd. | Mask ROM structure having a coding layer between gates and word lines |
JP2004193226A (en) * | 2002-12-09 | 2004-07-08 | Nec Electronics Corp | Nonvolatile semiconductor memory device and method of manufacturing the same |
DE10258194B4 (en) * | 2002-12-12 | 2005-11-03 | Infineon Technologies Ag | Semiconductor memory with charge-trapping memory cells and manufacturing process |
US6849905B2 (en) * | 2002-12-23 | 2005-02-01 | Matrix Semiconductor, Inc. | Semiconductor device with localized charge storage dielectric and method of making same |
US6885590B1 (en) * | 2003-01-14 | 2005-04-26 | Advanced Micro Devices, Inc. | Memory device having A P+ gate and thin bottom oxide and method of erasing same |
US6797650B1 (en) | 2003-01-14 | 2004-09-28 | Advanced Micro Devices, Inc. | Flash memory devices with oxynitride dielectric as the charge storage media |
US6912163B2 (en) * | 2003-01-14 | 2005-06-28 | Fasl, Llc | Memory device having high work function gate and method of erasing same |
US7178004B2 (en) | 2003-01-31 | 2007-02-13 | Yan Polansky | Memory array programming circuit and a method for using the circuit |
KR100505108B1 (en) * | 2003-02-12 | 2005-07-29 | 삼성전자주식회사 | Sonos memory cell and method of fabricating the same |
US6878981B2 (en) * | 2003-03-20 | 2005-04-12 | Tower Semiconductor Ltd. | Triple-well charge pump stage with no threshold voltage back-bias effect |
US6936883B2 (en) * | 2003-04-07 | 2005-08-30 | Silicon Storage Technology, Inc. | Bi-directional read/program non-volatile floating gate memory cell and array thereof, and method of formation |
US7183163B2 (en) * | 2003-04-07 | 2007-02-27 | Silicon Storage Technology, Inc. | Method of manufacturing an isolation-less, contact-less array of bi-directional read/program non-volatile floating gate memory cells with independent controllable control gates |
US6806531B1 (en) * | 2003-04-07 | 2004-10-19 | Silicon Storage Technology, Inc. | Non-volatile floating gate memory cell with floating gates formed in cavities, and array thereof, and method of formation |
US7190018B2 (en) * | 2003-04-07 | 2007-03-13 | Silicon Storage Technology, Inc. | Bi-directional read/program non-volatile floating gate memory cell with independent controllable control gates, and array thereof, and method of formation |
US7008846B2 (en) * | 2003-04-23 | 2006-03-07 | Silicon Storage Technology, Inc. | Non-volatile floating gate memory cell with floating gates formed as spacers, and an array thereof, and a method of manufacturing |
KR100885910B1 (en) * | 2003-04-30 | 2009-02-26 | 삼성전자주식회사 | Nonvolatile semiconductor memory device having gate stack comprising OHAOxide-Hafnium oxide-Aluminium oxide film and method for manufacturing the same |
US6962728B2 (en) * | 2003-05-16 | 2005-11-08 | Macronix International Co., Ltd. | Method for forming ONO top oxide in NROM structure |
JP2004356207A (en) | 2003-05-27 | 2004-12-16 | Fujio Masuoka | Semiconductor memory device and its manufacturing method |
DE10324052B4 (en) * | 2003-05-27 | 2007-06-28 | Infineon Technologies Ag | Method for producing a semiconductor memory with charge trapping memory cells |
US7148579B2 (en) | 2003-06-02 | 2006-12-12 | Ambient Systems, Inc. | Energy conversion systems utilizing parallel array of automatic switches and generators |
US7095645B2 (en) * | 2003-06-02 | 2006-08-22 | Ambient Systems, Inc. | Nanoelectromechanical memory cells and data storage devices |
US20040238907A1 (en) * | 2003-06-02 | 2004-12-02 | Pinkerton Joseph F. | Nanoelectromechanical transistors and switch systems |
US7199498B2 (en) * | 2003-06-02 | 2007-04-03 | Ambient Systems, Inc. | Electrical assemblies using molecular-scale electrically conductive and mechanically flexible beams and methods for application of same |
US6958513B2 (en) * | 2003-06-06 | 2005-10-25 | Chih-Hsin Wang | Floating-gate memory cell having trench structure with ballistic-charge injector, and the array of memory cells |
US7115942B2 (en) * | 2004-07-01 | 2006-10-03 | Chih-Hsin Wang | Method and apparatus for nonvolatile memory |
US7297634B2 (en) * | 2003-06-06 | 2007-11-20 | Marvell World Trade Ltd. | Method and apparatus for semiconductor device and semiconductor memory device |
US7759719B2 (en) * | 2004-07-01 | 2010-07-20 | Chih-Hsin Wang | Electrically alterable memory cell |
US7613041B2 (en) * | 2003-06-06 | 2009-11-03 | Chih-Hsin Wang | Methods for operating semiconductor device and semiconductor memory device |
US7550800B2 (en) | 2003-06-06 | 2009-06-23 | Chih-Hsin Wang | Method and apparatus transporting charges in semiconductor device and semiconductor memory device |
US6970383B1 (en) | 2003-06-10 | 2005-11-29 | Actel Corporation | Methods of redundancy in a floating trap memory element based field programmable gate array |
JP2005005513A (en) * | 2003-06-12 | 2005-01-06 | Sony Corp | Nonvolatile semiconductor memory and reading method thereof |
US6721204B1 (en) | 2003-06-17 | 2004-04-13 | Macronix International Co., Ltd. | Memory erase method and device with optimal data retention for nonvolatile memory |
US7035147B2 (en) * | 2003-06-17 | 2006-04-25 | Macronix International Co., Ltd. | Overerase protection of memory cells for nonvolatile memory |
JP2005024665A (en) * | 2003-06-30 | 2005-01-27 | Ricoh Co Ltd | Powder transport device, image forming apparatus, toner storage part, and process cartridge |
US6979857B2 (en) | 2003-07-01 | 2005-12-27 | Micron Technology, Inc. | Apparatus and method for split gate NROM memory |
US7095075B2 (en) * | 2003-07-01 | 2006-08-22 | Micron Technology, Inc. | Apparatus and method for split transistor memory having improved endurance |
US20050012137A1 (en) * | 2003-07-18 | 2005-01-20 | Amitay Levi | Nonvolatile memory cell having floating gate, control gate and separate erase gate, an array of such memory cells, and method of manufacturing |
US6873550B2 (en) * | 2003-08-07 | 2005-03-29 | Micron Technology, Inc. | Method for programming and erasing an NROM cell |
JP2005057187A (en) * | 2003-08-07 | 2005-03-03 | Renesas Technology Corp | Semiconductor memory device and method of manufacturing same |
US7085170B2 (en) * | 2003-08-07 | 2006-08-01 | Micron Technology, Ind. | Method for erasing an NROM cell |
US6861315B1 (en) * | 2003-08-14 | 2005-03-01 | Silicon Storage Technology, Inc. | Method of manufacturing an array of bi-directional nonvolatile memory cells |
US6927136B2 (en) * | 2003-08-25 | 2005-08-09 | Macronix International Co., Ltd. | Non-volatile memory cell having metal nano-particles for trapping charges and fabrication thereof |
US6914819B2 (en) * | 2003-09-04 | 2005-07-05 | Macronix International Co., Ltd. | Non-volatile flash memory |
US6977412B2 (en) * | 2003-09-05 | 2005-12-20 | Micron Technology, Inc. | Trench corner effect bidirectional flash memory cell |
US6956770B2 (en) * | 2003-09-17 | 2005-10-18 | Sandisk Corporation | Non-volatile memory and method with bit line compensation dependent on neighboring operating modes |
US7064980B2 (en) * | 2003-09-17 | 2006-06-20 | Sandisk Corporation | Non-volatile memory and method with bit line coupled compensation |
US6830963B1 (en) * | 2003-10-09 | 2004-12-14 | Micron Technology, Inc. | Fully depleted silicon-on-insulator CMOS logic |
KR100558004B1 (en) * | 2003-10-22 | 2006-03-06 | 삼성전자주식회사 | Programing method of a non-volatile memory device including a charge storage layer between a gate electrode and a semiconductor substrate |
US20050102573A1 (en) * | 2003-11-03 | 2005-05-12 | Macronix International Co., Ltd. | In-circuit configuration architecture for embedded configurable logic array |
US20050097499A1 (en) * | 2003-11-03 | 2005-05-05 | Macronix International Co., Ltd. | In-circuit configuration architecture with non-volatile configuration store for embedded configurable logic array |
US7184315B2 (en) * | 2003-11-04 | 2007-02-27 | Micron Technology, Inc. | NROM flash memory with self-aligned structural charge separation |
US6869844B1 (en) * | 2003-11-05 | 2005-03-22 | Advanced Micro Device, Inc. | Method and structure for protecting NROM devices from induced charge damage during device fabrication |
US7242050B2 (en) * | 2003-11-13 | 2007-07-10 | Silicon Storage Technology, Inc. | Stacked gate memory cell with erase to gate, array, and method of manufacturing |
US7202523B2 (en) * | 2003-11-17 | 2007-04-10 | Micron Technology, Inc. | NROM flash memory devices on ultrathin silicon |
US7049651B2 (en) * | 2003-11-17 | 2006-05-23 | Infineon Technologies Ag | Charge-trapping memory device including high permittivity strips |
US7484329B2 (en) | 2003-11-20 | 2009-02-03 | Seaweed Bio-Technology Inc. | Technology for cultivation of Porphyra and other seaweeds in land-based sea water ponds |
US7183166B2 (en) * | 2003-11-25 | 2007-02-27 | Macronix International Co., Ltd. | Method for forming oxide on ONO structure |
US7050330B2 (en) * | 2003-12-16 | 2006-05-23 | Micron Technology, Inc. | Multi-state NROM device |
US7269072B2 (en) * | 2003-12-16 | 2007-09-11 | Micron Technology, Inc. | NROM memory cell, memory array, related devices and methods |
US7241654B2 (en) * | 2003-12-17 | 2007-07-10 | Micron Technology, Inc. | Vertical NROM NAND flash memory array |
US7157769B2 (en) * | 2003-12-18 | 2007-01-02 | Micron Technology, Inc. | Flash memory having a high-permittivity tunnel dielectric |
US7383375B2 (en) * | 2003-12-30 | 2008-06-03 | Sandisk Corporation | Data run programming |
US20050251617A1 (en) * | 2004-05-07 | 2005-11-10 | Sinclair Alan W | Hybrid non-volatile memory system |
US20050144363A1 (en) * | 2003-12-30 | 2005-06-30 | Sinclair Alan W. | Data boundary management |
US7139864B2 (en) * | 2003-12-30 | 2006-11-21 | Sandisk Corporation | Non-volatile memory and method with block management system |
KR20070007265A (en) | 2003-12-30 | 2007-01-15 | 쌘디스크 코포레이션 | Non-volatile memory and method with control data management |
US7433993B2 (en) * | 2003-12-30 | 2008-10-07 | San Disk Corportion | Adaptive metablocks |
US6937511B2 (en) * | 2004-01-27 | 2005-08-30 | Macronix International Co., Ltd. | Circuit and method for programming charge storage memory cells |
US7151692B2 (en) * | 2004-01-27 | 2006-12-19 | Macronix International Co., Ltd. | Operation scheme for programming charge trapping non-volatile memory |
US6878991B1 (en) * | 2004-01-30 | 2005-04-12 | Micron Technology, Inc. | Vertical device 4F2 EEPROM memory |
US7209389B2 (en) * | 2004-02-03 | 2007-04-24 | Macronix International Co., Ltd. | Trap read only non-volatile memory (TROM) |
US7221018B2 (en) * | 2004-02-10 | 2007-05-22 | Micron Technology, Inc. | NROM flash memory with a high-permittivity gate dielectric |
DE102004006505B4 (en) * | 2004-02-10 | 2006-01-26 | Infineon Technologies Ag | Charge trapping memory cell and manufacturing process |
US6952366B2 (en) * | 2004-02-10 | 2005-10-04 | Micron Technology, Inc. | NROM flash memory cell with integrated DRAM |
US7585731B2 (en) * | 2004-02-20 | 2009-09-08 | Renesas Technology Corp. | Semiconductor integrated circuit device and its manufacturing method |
US7075146B2 (en) * | 2004-02-24 | 2006-07-11 | Micron Technology, Inc. | 4F2 EEPROM NROM memory arrays with vertical devices |
US7072217B2 (en) * | 2004-02-24 | 2006-07-04 | Micron Technology, Inc. | Multi-state memory cell with asymmetric charge trapping |
US7041545B2 (en) * | 2004-03-08 | 2006-05-09 | Infineon Technologies Ag | Method for producing semiconductor memory devices and integrated memory device |
US20050205969A1 (en) * | 2004-03-19 | 2005-09-22 | Sharp Laboratories Of America, Inc. | Charge trap non-volatile memory structure for 2 bits per transistor |
US7102191B2 (en) | 2004-03-24 | 2006-09-05 | Micron Technologies, Inc. | Memory device with high dielectric constant gate dielectrics and metal floating gates |
US6972226B2 (en) * | 2004-03-31 | 2005-12-06 | Infineon Technologies Ag | Charge-trapping memory cell array and method for production |
US7158411B2 (en) * | 2004-04-01 | 2007-01-02 | Macronix International Co., Ltd. | Integrated code and data flash memory |
US7057939B2 (en) | 2004-04-23 | 2006-06-06 | Sandisk Corporation | Non-volatile memory and control with improved partial page program capability |
US7187590B2 (en) * | 2004-04-26 | 2007-03-06 | Macronix International Co., Ltd. | Method and system for self-convergent erase in charge trapping memory cells |
US7133313B2 (en) * | 2004-04-26 | 2006-11-07 | Macronix International Co., Ltd. | Operation scheme with charge balancing for charge trapping non-volatile memory |
US7164603B2 (en) * | 2004-04-26 | 2007-01-16 | Yen-Hao Shih | Operation scheme with high work function gate and charge balancing for charge trapping non-volatile memory |
US7209390B2 (en) * | 2004-04-26 | 2007-04-24 | Macronix International Co., Ltd. | Operation scheme for spectrum shift in charge trapping non-volatile memory |
US7075828B2 (en) * | 2004-04-26 | 2006-07-11 | Macronix International Co., Intl. | Operation scheme with charge balancing erase for charge trapping non-volatile memory |
US7313649B2 (en) * | 2004-04-28 | 2007-12-25 | Matsushita Electric Industrial Co., Ltd. | Flash memory and program verify method for flash memory |
US7274068B2 (en) | 2004-05-06 | 2007-09-25 | Micron Technology, Inc. | Ballistic direct injection NROM cell on strained silicon structures |
KR100546409B1 (en) * | 2004-05-11 | 2006-01-26 | 삼성전자주식회사 | 2-bit SONOS type memory cell comprising recessed channel and manufacturing method for the same |
US7490283B2 (en) * | 2004-05-13 | 2009-02-10 | Sandisk Corporation | Pipelined data relocation and improved chip architectures |
US7776758B2 (en) | 2004-06-08 | 2010-08-17 | Nanosys, Inc. | Methods and devices for forming nanostructure monolayers and devices including such monolayers |
US7968273B2 (en) | 2004-06-08 | 2011-06-28 | Nanosys, Inc. | Methods and devices for forming nanostructure monolayers and devices including such monolayers |
US7190614B2 (en) * | 2004-06-17 | 2007-03-13 | Macronix International Co., Ltd. | Operation scheme for programming charge trapping non-volatile memory |
US20080203464A1 (en) * | 2004-07-01 | 2008-08-28 | Chih-Hsin Wang | Electrically alterable non-volatile memory and array |
US7106625B2 (en) * | 2004-07-06 | 2006-09-12 | Macronix International Co, Td | Charge trapping non-volatile memory with two trapping locations per gate, and method for operating same |
US7209386B2 (en) * | 2004-07-06 | 2007-04-24 | Macronix International Co., Ltd. | Charge trapping non-volatile memory and method for gate-by-gate erase for same |
US20060007732A1 (en) * | 2004-07-06 | 2006-01-12 | Macronix International Co., Ltd. | Charge trapping non-volatile memory and method for operating same |
US7387932B2 (en) * | 2004-07-06 | 2008-06-17 | Macronix International Co., Ltd. | Method for manufacturing a multiple-gate charge trapping non-volatile memory |
US7120059B2 (en) * | 2004-07-06 | 2006-10-10 | Macronix International Co., Ltd. | Memory array including multiple-gate charge trapping non-volatile cells |
US7518283B2 (en) | 2004-07-19 | 2009-04-14 | Cjp Ip Holdings Ltd. | Nanometer-scale electrostatic and electromagnetic motors and generators |
US7324376B2 (en) * | 2004-09-09 | 2008-01-29 | Macronix International Co., Ltd. | Method and apparatus for operating nonvolatile memory cells in a series arrangement |
US7170785B2 (en) * | 2004-09-09 | 2007-01-30 | Macronix International Co., Ltd. | Method and apparatus for operating a string of charge trapping memory cells |
US7327607B2 (en) * | 2004-09-09 | 2008-02-05 | Macronix International Co., Ltd. | Method and apparatus for operating nonvolatile memory cells in a series arrangement |
US7345920B2 (en) * | 2004-09-09 | 2008-03-18 | Macronix International Co., Ltd. | Method and apparatus for sensing in charge trapping non-volatile memory |
US7307888B2 (en) * | 2004-09-09 | 2007-12-11 | Macronix International Co., Ltd. | Method and apparatus for operating nonvolatile memory in a parallel arrangement |
US7327611B2 (en) * | 2004-09-09 | 2008-02-05 | Macronix International Co., Ltd. | Method and apparatus for operating charge trapping nonvolatile memory |
US20060054963A1 (en) * | 2004-09-10 | 2006-03-16 | Qian Rong A | Non-volatile and non-uniform trapped-charge memory cell structure and method of fabrication |
US20060054964A1 (en) * | 2004-09-15 | 2006-03-16 | Mark Isler | Semiconductor device and method for fabricating a region thereon |
US7119396B2 (en) * | 2004-10-08 | 2006-10-10 | Silicon Storage Technology, Inc. | NROM device |
US7638850B2 (en) | 2004-10-14 | 2009-12-29 | Saifun Semiconductors Ltd. | Non-volatile memory structure and method of fabrication |
US7558108B2 (en) * | 2004-11-02 | 2009-07-07 | Tower Semiconductor Ltd. | 3-bit NROM flash and method of operating same |
US20060091444A1 (en) * | 2004-11-04 | 2006-05-04 | Skymedi Corporation | Double word line memory structure and manufacturing method thereof |
US7133317B2 (en) * | 2004-11-19 | 2006-11-07 | Macronix International Co., Ltd. | Method and apparatus for programming nonvolatile memory |
US20060113586A1 (en) * | 2004-11-29 | 2006-06-01 | Macronix International Co., Ltd. | Charge trapping dielectric structure for non-volatile memory |
US7026220B1 (en) * | 2004-12-07 | 2006-04-11 | Infineon Technologies Ag | Method for production of charge-trapping memory devices |
US7158421B2 (en) * | 2005-04-01 | 2007-01-02 | Sandisk Corporation | Use of data latches in multi-phase programming of non-volatile memories |
US7420847B2 (en) * | 2004-12-14 | 2008-09-02 | Sandisk Corporation | Multi-state memory having data recovery after program fail |
US7227234B2 (en) * | 2004-12-14 | 2007-06-05 | Tower Semiconductor Ltd. | Embedded non-volatile memory cell with charge-trapping sidewall spacers |
US7120051B2 (en) * | 2004-12-14 | 2006-10-10 | Sandisk Corporation | Pipelined programming of non-volatile memories using early data |
US7132337B2 (en) * | 2004-12-20 | 2006-11-07 | Infineon Technologies Ag | Charge-trapping memory device and method of production |
US7849381B2 (en) * | 2004-12-21 | 2010-12-07 | Sandisk Corporation | Method for copying data in reprogrammable non-volatile memory |
US7437653B2 (en) | 2004-12-22 | 2008-10-14 | Sandisk Corporation | Erased sector detection mechanisms |
US7072220B1 (en) * | 2004-12-28 | 2006-07-04 | Macronix International Co., Ltd. | Method and apparatus for operating a non-volatile memory array |
US7130215B2 (en) * | 2004-12-28 | 2006-10-31 | Macronix International Co., Ltd. | Method and apparatus for operating a non-volatile memory device |
US7072219B1 (en) * | 2004-12-28 | 2006-07-04 | Macronix International Co., Ltd. | Method and apparatus for operating a non-volatile memory array |
US20060140007A1 (en) * | 2004-12-29 | 2006-06-29 | Raul-Adrian Cernea | Non-volatile memory and method with shared processing for an aggregate of read/write circuits |
US7473589B2 (en) * | 2005-12-09 | 2009-01-06 | Macronix International Co., Ltd. | Stacked thin film transistor, non-volatile memory devices and methods for fabricating the same |
US8482052B2 (en) | 2005-01-03 | 2013-07-09 | Macronix International Co., Ltd. | Silicon on insulator and thin film transistor bandgap engineered split gate memory |
US7315474B2 (en) * | 2005-01-03 | 2008-01-01 | Macronix International Co., Ltd | Non-volatile memory cells, memory arrays including the same and methods of operating cells and arrays |
US7476926B2 (en) * | 2005-01-06 | 2009-01-13 | International Business Machines Corporation | Eraseable nonvolatile memory with sidewall storage |
US7315917B2 (en) * | 2005-01-20 | 2008-01-01 | Sandisk Corporation | Scheduling of housekeeping operations in flash memory systems |
KR100672998B1 (en) * | 2005-02-14 | 2007-01-24 | 삼성전자주식회사 | Non-volatile memory device, operation thereof and method for forming thereof |
US7186607B2 (en) * | 2005-02-18 | 2007-03-06 | Infineon Technologies Ag | Charge-trapping memory device and method for production |
US8330202B2 (en) * | 2005-02-23 | 2012-12-11 | Micron Technology, Inc. | Germanium-silicon-carbide floating gates in memories |
KR100632953B1 (en) * | 2005-03-07 | 2006-10-12 | 삼성전자주식회사 | Memory device, memory array architecture for the memory device and operation of the memory array architecture |
JP2006252670A (en) * | 2005-03-10 | 2006-09-21 | Matsushita Electric Ind Co Ltd | Method for driving nonvolatile memory and nonvolatile memory used therefor |
US7158416B2 (en) * | 2005-03-15 | 2007-01-02 | Infineon Technologies Flash Gmbh & Co. Kg | Method for operating a flash memory device |
US7251160B2 (en) * | 2005-03-16 | 2007-07-31 | Sandisk Corporation | Non-volatile memory and method with power-saving read and program-verify operations |
US8053812B2 (en) | 2005-03-17 | 2011-11-08 | Spansion Israel Ltd | Contact in planar NROM technology |
US20060223267A1 (en) * | 2005-03-31 | 2006-10-05 | Stefan Machill | Method of production of charge-trapping memory devices |
US7447078B2 (en) | 2005-04-01 | 2008-11-04 | Sandisk Corporation | Method for non-volatile memory with background data latch caching during read operations |
US7463521B2 (en) * | 2005-04-01 | 2008-12-09 | Sandisk Corporation | Method for non-volatile memory with managed execution of cached data |
US7206230B2 (en) * | 2005-04-01 | 2007-04-17 | Sandisk Corporation | Use of data latches in cache operations of non-volatile memories |
US7173854B2 (en) * | 2005-04-01 | 2007-02-06 | Sandisk Corporation | Non-volatile memory and method with compensation for source line bias errors |
US7170784B2 (en) * | 2005-04-01 | 2007-01-30 | Sandisk Corporation | Non-volatile memory and method with control gate compensation for source line bias errors |
US7272040B2 (en) * | 2005-04-29 | 2007-09-18 | Infineon Technologies Ag | Multi-bit virtual-ground NAND memory device |
US7158420B2 (en) * | 2005-04-29 | 2007-01-02 | Macronix International Co., Ltd. | Inversion bit line, charge trapping non-volatile memory and method of operating same |
US7144776B1 (en) * | 2005-05-31 | 2006-12-05 | Infineon Technologies Ag | Charge-trapping memory device |
DE102005025167B3 (en) * | 2005-06-01 | 2006-07-13 | Infineon Technologies Ag | Multi-bit virtual ground NAND-memory unit, has memory cells of two adjacent groups of rows connected in common |
US7161831B2 (en) * | 2005-06-10 | 2007-01-09 | Macronix International Co., Ltd. | Leaf plot analysis technique for multiple-side operated devices |
US7411244B2 (en) | 2005-06-28 | 2008-08-12 | Chih-Hsin Wang | Low power electrically alterable nonvolatile memory cells and arrays |
US7184317B2 (en) * | 2005-06-30 | 2007-02-27 | Infineon Technologies Ag | Method for programming multi-bit charge-trapping memory cell arrays |
US7375394B2 (en) * | 2005-07-06 | 2008-05-20 | Applied Intellectual Properties Co., Ltd. | Fringing field induced localized charge trapping memory |
US7399673B2 (en) * | 2005-07-08 | 2008-07-15 | Infineon Technologies Ag | Method of forming a charge-trapping memory device |
JP2007027760A (en) | 2005-07-18 | 2007-02-01 | Saifun Semiconductors Ltd | High density nonvolatile memory array and manufacturing method |
US20070048160A1 (en) * | 2005-07-19 | 2007-03-01 | Pinkerton Joseph F | Heat activated nanometer-scale pump |
US7927948B2 (en) | 2005-07-20 | 2011-04-19 | Micron Technology, Inc. | Devices with nanocrystals and methods of formation |
WO2007013132A1 (en) * | 2005-07-25 | 2007-02-01 | Spansion Llc | Semiconductor device and control method thereof |
US20070018278A1 (en) * | 2005-07-25 | 2007-01-25 | Michael Kund | Semiconductor memory device |
US7763927B2 (en) * | 2005-12-15 | 2010-07-27 | Macronix International Co., Ltd. | Non-volatile memory device having a nitride-oxide dielectric layer |
WO2007017926A1 (en) | 2005-08-08 | 2007-02-15 | Spansion Llc | Semiconductor device and control method thereof |
US7668017B2 (en) | 2005-08-17 | 2010-02-23 | Saifun Semiconductors Ltd. | Method of erasing non-volatile memory cells |
US20070048951A1 (en) * | 2005-08-31 | 2007-03-01 | Hocine Boubekeur | Method for production of semiconductor memory devices |
US20070045717A1 (en) * | 2005-08-31 | 2007-03-01 | Stefano Parascandola | Charge-trapping memory device and method of production |
US20080025084A1 (en) * | 2005-09-08 | 2008-01-31 | Rustom Irani | High aspect ration bitline oxides |
US20070057318A1 (en) * | 2005-09-15 | 2007-03-15 | Lars Bach | Semiconductor memory device and method of production |
US7245535B2 (en) * | 2005-09-21 | 2007-07-17 | Actel Corporation | Non-volatile programmable memory cell for programmable logic array |
US7414888B2 (en) * | 2005-09-22 | 2008-08-19 | Macronix International Co., Ltd. | Program method and circuit of non-volatile memory |
US7881123B2 (en) * | 2005-09-23 | 2011-02-01 | Macronix International Co., Ltd. | Multi-operation mode nonvolatile memory |
US7388252B2 (en) * | 2005-09-23 | 2008-06-17 | Macronix International Co., Ltd. | Two-bits per cell not-and-gate (NAND) nitride trap memory |
US7514742B2 (en) * | 2005-10-13 | 2009-04-07 | Macronix International Co., Ltd. | Recessed shallow trench isolation |
US7321145B2 (en) * | 2005-10-13 | 2008-01-22 | Macronix International Co., Ltd. | Method and apparatus for operating nonvolatile memory cells with modified band structure |
CN100442538C (en) * | 2005-10-13 | 2008-12-10 | 旺宏电子股份有限公司 | Operating method of non-volatile memory body |
US20070087503A1 (en) * | 2005-10-17 | 2007-04-19 | Saifun Semiconductors, Ltd. | Improving NROM device characteristics using adjusted gate work function |
US7509471B2 (en) * | 2005-10-27 | 2009-03-24 | Sandisk Corporation | Methods for adaptively handling data writes in non-volatile memories |
US7631162B2 (en) | 2005-10-27 | 2009-12-08 | Sandisck Corporation | Non-volatile memory with adaptive handling of data writes |
US20070096198A1 (en) * | 2005-10-28 | 2007-05-03 | Franz Hofmann | Non-volatile memory cells and method for fabricating non-volatile memory cells |
US7739472B2 (en) * | 2005-11-22 | 2010-06-15 | Sandisk Corporation | Memory system for legacy hosts |
US7747927B2 (en) * | 2005-11-22 | 2010-06-29 | Sandisk Corporation | Method for adapting a memory system to operate with a legacy host originally designed to operate with a different memory system |
US7538384B2 (en) * | 2005-12-05 | 2009-05-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | Non-volatile memory array structure |
US7491599B2 (en) * | 2005-12-09 | 2009-02-17 | Macronix International Co., Ltd. | Gated diode nonvolatile memory process |
US7888707B2 (en) * | 2005-12-09 | 2011-02-15 | Macronix International Co., Ltd. | Gated diode nonvolatile memory process |
US7283389B2 (en) | 2005-12-09 | 2007-10-16 | Macronix International Co., Ltd. | Gated diode nonvolatile memory cell array |
US7272038B2 (en) * | 2005-12-09 | 2007-09-18 | Macronix International Co., Ltd. | Method for operating gated diode nonvolatile memory cell |
US7269062B2 (en) * | 2005-12-09 | 2007-09-11 | Macronix International Co., Ltd. | Gated diode nonvolatile memory cell |
US20070143378A1 (en) * | 2005-12-21 | 2007-06-21 | Gorobets Sergey A | Non-volatile memories with adaptive file handling in a directly mapped file storage system |
US20070156998A1 (en) * | 2005-12-21 | 2007-07-05 | Gorobets Sergey A | Methods for memory allocation in non-volatile memories with a directly mapped file storage system |
US20070143560A1 (en) * | 2005-12-21 | 2007-06-21 | Gorobets Sergey A | Non-volatile memories with memory allocation for a directly mapped file storage system |
US20070143566A1 (en) * | 2005-12-21 | 2007-06-21 | Gorobets Sergey A | Non-volatile memories with data alignment in a directly mapped file storage system |
US20070143567A1 (en) * | 2005-12-21 | 2007-06-21 | Gorobets Sergey A | Methods for data alignment in non-volatile memories with a directly mapped file storage system |
US20070143561A1 (en) * | 2005-12-21 | 2007-06-21 | Gorobets Sergey A | Methods for adaptive file data handling in non-volatile memories with a directly mapped file storage system |
US7310255B2 (en) * | 2005-12-29 | 2007-12-18 | Sandisk Corporation | Non-volatile memory with improved program-verify operations |
US7733704B2 (en) * | 2005-12-29 | 2010-06-08 | Sandisk Corporation | Non-volatile memory with power-saving multi-pass sensing |
US7447094B2 (en) * | 2005-12-29 | 2008-11-04 | Sandisk Corporation | Method for power-saving multi-pass sensing in non-volatile memory |
US7224614B1 (en) * | 2005-12-29 | 2007-05-29 | Sandisk Corporation | Methods for improved program-verify operations in non-volatile memories |
WO2007080586A2 (en) * | 2006-01-10 | 2007-07-19 | Saifun Semiconductors Ltd. | Rd algorithm improvement for nrom technology |
US7808818B2 (en) | 2006-01-12 | 2010-10-05 | Saifun Semiconductors Ltd. | Secondary injection for NROM |
US7709402B2 (en) | 2006-02-16 | 2010-05-04 | Micron Technology, Inc. | Conductive layers for hafnium silicon oxynitride films |
US7760554B2 (en) | 2006-02-21 | 2010-07-20 | Saifun Semiconductors Ltd. | NROM non-volatile memory and mode of operation |
US7692961B2 (en) | 2006-02-21 | 2010-04-06 | Saifun Semiconductors Ltd. | Method, circuit and device for disturb-control of programming nonvolatile memory cells by hot-hole injection (HHI) and by channel hot-electron (CHE) injection |
US8253452B2 (en) | 2006-02-21 | 2012-08-28 | Spansion Israel Ltd | Circuit and method for powering up an integrated circuit and an integrated circuit utilizing same |
US7224605B1 (en) | 2006-03-24 | 2007-05-29 | Sandisk Corporation | Non-volatile memory with redundancy data buffered in data latches for defective locations |
EP2008283B1 (en) | 2006-03-24 | 2013-08-07 | SanDisk Technologies Inc. | Non-volatile memory and method with redundancy data buffered in data latches for defective locations |
US7324389B2 (en) * | 2006-03-24 | 2008-01-29 | Sandisk Corporation | Non-volatile memory with redundancy data buffered in remote buffer circuits |
US7394690B2 (en) * | 2006-03-24 | 2008-07-01 | Sandisk Corporation | Method for column redundancy using data latches in solid-state memories |
US7352635B2 (en) * | 2006-03-24 | 2008-04-01 | Sandisk Corporation | Method for remote redundancy for non-volatile memory |
EP2002447B1 (en) | 2006-03-24 | 2014-02-26 | SanDisk Technologies Inc. | Non-volatile memory and method with redundancy data buffered in remote buffer circuits |
US7701779B2 (en) | 2006-04-27 | 2010-04-20 | Sajfun Semiconductors Ltd. | Method for programming a reference cell |
US7907450B2 (en) * | 2006-05-08 | 2011-03-15 | Macronix International Co., Ltd. | Methods and apparatus for implementing bit-by-bit erase of a flash memory device |
KR100812933B1 (en) * | 2006-06-29 | 2008-03-11 | 주식회사 하이닉스반도체 | Semiconductor memory device having SONOS structure and method for manufacturing the same |
US7606966B2 (en) * | 2006-09-08 | 2009-10-20 | Sandisk Corporation | Methods in a pseudo random and command driven bit compensation for the cycling effects in flash memory |
US7734861B2 (en) * | 2006-09-08 | 2010-06-08 | Sandisk Corporation | Pseudo random and command driven bit compensation for the cycling effects in flash memory |
US7885112B2 (en) * | 2007-09-07 | 2011-02-08 | Sandisk Corporation | Nonvolatile memory and method for on-chip pseudo-randomization of data within a page and between pages |
KR101410288B1 (en) | 2006-09-12 | 2014-06-20 | 샌디스크 테크놀로지스, 인코포레이티드 | Non-volatile memory and method for linear estimation of initial programming voltage |
US7453731B2 (en) * | 2006-09-12 | 2008-11-18 | Sandisk Corporation | Method for non-volatile memory with linear estimation of initial programming voltage |
US7606077B2 (en) * | 2006-09-12 | 2009-10-20 | Sandisk Corporation | Non-volatile memory with reduced erase/write cycling during trimming of initial programming voltage |
US8264884B2 (en) * | 2006-09-12 | 2012-09-11 | Spansion Israel Ltd | Methods, circuits and systems for reading non-volatile memory cells |
US7599223B2 (en) | 2006-09-12 | 2009-10-06 | Sandisk Corporation | Non-volatile memory with linear estimation of initial programming voltage |
US7606091B2 (en) * | 2006-09-12 | 2009-10-20 | Sandisk Corporation | Method for non-volatile memory with reduced erase/write cycling during trimming of initial programming voltage |
US7779056B2 (en) * | 2006-09-15 | 2010-08-17 | Sandisk Corporation | Managing a pool of update memory blocks based on each block's activity and data order |
US7774392B2 (en) * | 2006-09-15 | 2010-08-10 | Sandisk Corporation | Non-volatile memory with management of a pool of update memory blocks based on each block's activity and data order |
US7881121B2 (en) * | 2006-09-25 | 2011-02-01 | Macronix International Co., Ltd. | Decoding method in an NROM flash memory array |
US7811890B2 (en) * | 2006-10-11 | 2010-10-12 | Macronix International Co., Ltd. | Vertical channel transistor structure and manufacturing method thereof |
US8772858B2 (en) * | 2006-10-11 | 2014-07-08 | Macronix International Co., Ltd. | Vertical channel memory and manufacturing method thereof and operating method using the same |
US20080091901A1 (en) * | 2006-10-12 | 2008-04-17 | Alan David Bennett | Method for non-volatile memory with worst-case control data management |
US20080091871A1 (en) * | 2006-10-12 | 2008-04-17 | Alan David Bennett | Non-volatile memory with worst-case control data management |
US7811887B2 (en) * | 2006-11-02 | 2010-10-12 | Saifun Semiconductors Ltd. | Forming silicon trench isolation (STI) in semiconductor devices self-aligned to diffusion |
US20080111182A1 (en) * | 2006-11-02 | 2008-05-15 | Rustom Irani | Forming buried contact etch stop layer (CESL) in semiconductor devices self-aligned to diffusion |
US7847341B2 (en) | 2006-12-20 | 2010-12-07 | Nanosys, Inc. | Electron blocking layers for electronic devices |
US20080150004A1 (en) * | 2006-12-20 | 2008-06-26 | Nanosys, Inc. | Electron Blocking Layers for Electronic Devices |
US8686490B2 (en) | 2006-12-20 | 2014-04-01 | Sandisk Corporation | Electron blocking layers for electronic devices |
US20080150009A1 (en) * | 2006-12-20 | 2008-06-26 | Nanosys, Inc. | Electron Blocking Layers for Electronic Devices |
US20080150003A1 (en) * | 2006-12-20 | 2008-06-26 | Jian Chen | Electron blocking layers for electronic devices |
US20090136785A1 (en) * | 2007-01-03 | 2009-05-28 | Nanosys, Inc. | Methods for nanopatterning and production of magnetic nanostructures |
US20080246076A1 (en) * | 2007-01-03 | 2008-10-09 | Nanosys, Inc. | Methods for nanopatterning and production of nanostructures |
US8223540B2 (en) | 2007-02-02 | 2012-07-17 | Macronix International Co., Ltd. | Method and apparatus for double-sided biasing of nonvolatile memory |
US20080192544A1 (en) * | 2007-02-13 | 2008-08-14 | Amit Berman | Error correction coding techniques for non-volatile memory |
US20080205140A1 (en) * | 2007-02-26 | 2008-08-28 | Aplus Flash Technology, Inc. | Bit line structure for a multilevel, dual-sided nonvolatile memory cell array |
US7502255B2 (en) * | 2007-03-07 | 2009-03-10 | Sandisk Corporation | Method for cache page copy in a non-volatile memory |
US7499320B2 (en) * | 2007-03-07 | 2009-03-03 | Sandisk Corporation | Non-volatile memory with cache page copy |
US7830713B2 (en) * | 2007-03-14 | 2010-11-09 | Aplus Flash Technology, Inc. | Bit line gate transistor structure for a multilevel, dual-sided nonvolatile memory cell NAND flash array |
US7508713B2 (en) * | 2007-03-29 | 2009-03-24 | Sandisk Corporation | Method of compensating variations along a word line in a non-volatile memory |
US7577031B2 (en) * | 2007-03-29 | 2009-08-18 | Sandisk Corporation | Non-volatile memory with compensation for variations along a word line |
US7839028B2 (en) * | 2007-04-03 | 2010-11-23 | CJP IP Holding, Ltd. | Nanoelectromechanical systems and methods for making the same |
US7551483B2 (en) * | 2007-04-10 | 2009-06-23 | Sandisk Corporation | Non-volatile memory with predictive programming |
US7643348B2 (en) * | 2007-04-10 | 2010-01-05 | Sandisk Corporation | Predictive programming in non-volatile memory |
US7688612B2 (en) * | 2007-04-13 | 2010-03-30 | Aplus Flash Technology, Inc. | Bit line structure for a multilevel, dual-sided nonvolatile memory cell array |
KR100877100B1 (en) * | 2007-04-16 | 2009-01-09 | 주식회사 하이닉스반도체 | Methods for manufacturing non-volatile memory device |
JP5149539B2 (en) * | 2007-05-21 | 2013-02-20 | ルネサスエレクトロニクス株式会社 | Semiconductor device |
US8030161B2 (en) * | 2007-05-23 | 2011-10-04 | Nanosys, Inc. | Gate electrode for a nonvolatile memory cell |
US7492640B2 (en) * | 2007-06-07 | 2009-02-17 | Sandisk Corporation | Sensing with bit-line lockout control in non-volatile memory |
US7489553B2 (en) * | 2007-06-07 | 2009-02-10 | Sandisk Corporation | Non-volatile memory with improved sensing having bit-line lockout control |
KR101338158B1 (en) * | 2007-07-16 | 2013-12-06 | 삼성전자주식회사 | Non-volatile memory devices and methods of forming the same |
US20090039414A1 (en) * | 2007-08-09 | 2009-02-12 | Macronix International Co., Ltd. | Charge trapping memory cell with high speed erase |
US7564707B2 (en) * | 2007-08-22 | 2009-07-21 | Zerog Wireless, Inc. | One-time programmable non-volatile memory |
JP5205011B2 (en) * | 2007-08-24 | 2013-06-05 | ルネサスエレクトロニクス株式会社 | Nonvolatile semiconductor device and manufacturing method thereof |
US20090065841A1 (en) * | 2007-09-06 | 2009-03-12 | Assaf Shappir | SILICON OXY-NITRIDE (SiON) LINER, SUCH AS OPTIONALLY FOR NON-VOLATILE MEMORY CELLS |
US7864588B2 (en) * | 2007-09-17 | 2011-01-04 | Spansion Israel Ltd. | Minimizing read disturb in an array flash cell |
US8098525B2 (en) * | 2007-09-17 | 2012-01-17 | Spansion Israel Ltd | Pre-charge sensing scheme for non-volatile memory (NVM) |
US7969785B1 (en) | 2007-09-20 | 2011-06-28 | Venkatraman Prabhakar | Low voltage non-volatile memory with charge trapping layer |
US7760547B2 (en) * | 2007-09-25 | 2010-07-20 | Sandisk Corporation | Offset non-volatile storage |
US20090109755A1 (en) * | 2007-10-24 | 2009-04-30 | Mori Edan | Neighbor block refresh for non-volatile memory |
US8339865B2 (en) * | 2007-11-01 | 2012-12-25 | Spansion Israel Ltd | Non binary flash array architecture and method of operation |
US8072023B1 (en) | 2007-11-12 | 2011-12-06 | Marvell International Ltd. | Isolation for non-volatile memory cell array |
US7924628B2 (en) * | 2007-11-14 | 2011-04-12 | Spansion Israel Ltd | Operation of a non-volatile memory array |
US7945825B2 (en) * | 2007-11-25 | 2011-05-17 | Spansion Isreal, Ltd | Recovery while programming non-volatile memory (NVM) |
US8120088B1 (en) | 2007-12-07 | 2012-02-21 | Marvell International Ltd. | Non-volatile memory cell and array |
US7764547B2 (en) * | 2007-12-20 | 2010-07-27 | Sandisk Corporation | Regulation of source potential to combat cell source IR drop |
US7701761B2 (en) * | 2007-12-20 | 2010-04-20 | Sandisk Corporation | Read, verify word line reference voltage to track source level |
US7593265B2 (en) | 2007-12-28 | 2009-09-22 | Sandisk Corporation | Low noise sense amplifier array and method for nonvolatile memory |
US7816947B1 (en) | 2008-03-31 | 2010-10-19 | Man Wang | Method and apparatus for providing a non-volatile programmable transistor |
US8072811B2 (en) | 2008-05-07 | 2011-12-06 | Aplus Flash Technology, Inc, | NAND based NMOS NOR flash memory cell, a NAND based NMOS NOR flash memory array, and a method of forming a NAND based NMOS NOR flash memory array |
US7957197B2 (en) * | 2008-05-28 | 2011-06-07 | Sandisk Corporation | Nonvolatile memory with a current sense amplifier having a precharge circuit and a transfer gate coupled to a sense node |
US8120959B2 (en) * | 2008-05-30 | 2012-02-21 | Aplus Flash Technology, Inc. | NAND string based NAND/NOR flash memory cell, array, and memory device having parallel bit lines and source lines, having a programmable select gating transistor, and circuits and methods for operating same |
US7813172B2 (en) * | 2008-06-12 | 2010-10-12 | Sandisk Corporation | Nonvolatile memory with correlated multiple pass programming |
US7796435B2 (en) * | 2008-06-12 | 2010-09-14 | Sandisk Corporation | Method for correlated multiple pass programming in nonvolatile memory |
US7800945B2 (en) * | 2008-06-12 | 2010-09-21 | Sandisk Corporation | Method for index programming and reduced verify in nonvolatile memory |
US7826271B2 (en) * | 2008-06-12 | 2010-11-02 | Sandisk Corporation | Nonvolatile memory with index programming and reduced verify |
US7995384B2 (en) | 2008-08-15 | 2011-08-09 | Macronix International Co., Ltd. | Electrically isolated gated diode nonvolatile memory |
US7715235B2 (en) * | 2008-08-25 | 2010-05-11 | Sandisk Corporation | Non-volatile memory and method for ramp-down programming |
US8130552B2 (en) | 2008-09-11 | 2012-03-06 | Sandisk Technologies Inc. | Multi-pass programming for memory with reduced data storage requirement |
US7800949B2 (en) * | 2008-09-25 | 2010-09-21 | Macronix International Co., Ltd | Memory and method for programming the same |
US7768836B2 (en) * | 2008-10-10 | 2010-08-03 | Sandisk Corporation | Nonvolatile memory and method with reduced program verify by ignoring fastest and/or slowest programming bits |
US8254177B2 (en) | 2008-10-24 | 2012-08-28 | Sandisk Technologies Inc. | Programming non-volatile memory with variable initial programming pulse |
US8335108B2 (en) * | 2008-11-14 | 2012-12-18 | Aplus Flash Technology, Inc. | Bit line gate transistor structure for a multilevel, dual-sided nonvolatile memory cell NAND flash array |
US7813181B2 (en) * | 2008-12-31 | 2010-10-12 | Sandisk Corporation | Non-volatile memory and method for sensing with pipelined corrections for neighboring perturbations |
US7944754B2 (en) * | 2008-12-31 | 2011-05-17 | Sandisk Corporation | Non-volatile memory and method with continuous scanning time-domain sensing |
US8244960B2 (en) | 2009-01-05 | 2012-08-14 | Sandisk Technologies Inc. | Non-volatile memory and method with write cache partition management methods |
US8700840B2 (en) * | 2009-01-05 | 2014-04-15 | SanDisk Technologies, Inc. | Nonvolatile memory with write cache having flush/eviction methods |
KR101760144B1 (en) | 2009-01-05 | 2017-07-31 | 샌디스크 테크놀로지스 엘엘씨 | Non-volatile memory and method with write cache partitioning |
US8040744B2 (en) | 2009-01-05 | 2011-10-18 | Sandisk Technologies Inc. | Spare block management of non-volatile memories |
US20100174845A1 (en) * | 2009-01-05 | 2010-07-08 | Sergey Anatolievich Gorobets | Wear Leveling for Non-Volatile Memories: Maintenance of Experience Count and Passive Techniques |
US8094500B2 (en) * | 2009-01-05 | 2012-01-10 | Sandisk Technologies Inc. | Non-volatile memory and method with write cache partitioning |
US8120966B2 (en) * | 2009-02-05 | 2012-02-21 | Aplus Flash Technology, Inc. | Method and apparatus for management of over-erasure in NAND-based NOR-type flash memory |
FR2943850B1 (en) | 2009-03-27 | 2011-06-10 | Commissariat Energie Atomique | METHOD FOR MAKING ELECTRICAL INTERCONNECTIONS WITH CARBON NANOTUBES |
TWI401688B (en) * | 2009-03-31 | 2013-07-11 | Macronix Int Co Ltd | Memory apparatus and method thereof for operating memory |
JP2010244641A (en) * | 2009-04-08 | 2010-10-28 | Renesas Electronics Corp | Erase method of nonvolatile semiconductor memory device |
US8102705B2 (en) | 2009-06-05 | 2012-01-24 | Sandisk Technologies Inc. | Structure and method for shuffling data within non-volatile memory devices |
US8027195B2 (en) * | 2009-06-05 | 2011-09-27 | SanDisk Technologies, Inc. | Folding data stored in binary format into multi-state format within non-volatile memory devices |
US20100318720A1 (en) * | 2009-06-16 | 2010-12-16 | Saranyan Rajagopalan | Multi-Bank Non-Volatile Memory System with Satellite File System |
US7974124B2 (en) * | 2009-06-24 | 2011-07-05 | Sandisk Corporation | Pointer based column selection techniques in non-volatile memories |
US8054691B2 (en) | 2009-06-26 | 2011-11-08 | Sandisk Technologies Inc. | Detecting the completion of programming for non-volatile storage |
US20110002169A1 (en) | 2009-07-06 | 2011-01-06 | Yan Li | Bad Column Management with Bit Information in Non-Volatile Memory Systems |
US8400854B2 (en) | 2009-09-11 | 2013-03-19 | Sandisk Technologies Inc. | Identifying at-risk data in non-volatile storage |
US8214700B2 (en) * | 2009-10-28 | 2012-07-03 | Sandisk Technologies Inc. | Non-volatile memory and method with post-write read and adaptive re-write to manage errors |
US8423866B2 (en) | 2009-10-28 | 2013-04-16 | SanDisk Technologies, Inc. | Non-volatile memory and method with post-write read and adaptive re-write to manage errors |
US8634240B2 (en) | 2009-10-28 | 2014-01-21 | SanDisk Technologies, Inc. | Non-volatile memory and method with accelerated post-write read to manage errors |
US8174895B2 (en) | 2009-12-15 | 2012-05-08 | Sandisk Technologies Inc. | Programming non-volatile storage with fast bit detection and verify skip |
US8468294B2 (en) * | 2009-12-18 | 2013-06-18 | Sandisk Technologies Inc. | Non-volatile memory with multi-gear control using on-chip folding of data |
US8144512B2 (en) | 2009-12-18 | 2012-03-27 | Sandisk Technologies Inc. | Data transfer flows for on-chip folding |
US8054684B2 (en) | 2009-12-18 | 2011-11-08 | Sandisk Technologies Inc. | Non-volatile memory and method with atomic program sequence and write abort detection |
US20110153912A1 (en) | 2009-12-18 | 2011-06-23 | Sergey Anatolievich Gorobets | Maintaining Updates of Multi-Level Non-Volatile Memory in Binary Non-Volatile Memory |
US8725935B2 (en) | 2009-12-18 | 2014-05-13 | Sandisk Technologies Inc. | Balanced performance for on-chip folding of non-volatile memories |
US8213255B2 (en) | 2010-02-19 | 2012-07-03 | Sandisk Technologies Inc. | Non-volatile storage with temperature compensation based on neighbor state information |
JPWO2011111290A1 (en) | 2010-03-10 | 2013-06-27 | パナソニック株式会社 | Nonvolatile semiconductor memory device |
US8218366B2 (en) | 2010-04-18 | 2012-07-10 | Sandisk Technologies Inc. | Programming non-volatile storage including reducing impact from other memory cells |
FR2959349B1 (en) | 2010-04-22 | 2012-09-21 | Commissariat Energie Atomique | MANUFACTURING A MEMORY WITH TWO SELF-ALIGNED INDEPENDENT GRIDS |
US8427874B2 (en) | 2010-04-30 | 2013-04-23 | SanDisk Technologies, Inc. | Non-volatile memory and method with even/odd combined block decoding |
US8416624B2 (en) | 2010-05-21 | 2013-04-09 | SanDisk Technologies, Inc. | Erase and programming techniques to reduce the widening of state distributions in non-volatile memories |
US8274831B2 (en) | 2010-05-24 | 2012-09-25 | Sandisk Technologies Inc. | Programming non-volatile storage with synchronized coupling |
US8543757B2 (en) | 2010-06-23 | 2013-09-24 | Sandisk Technologies Inc. | Techniques of maintaining logical to physical mapping information in non-volatile memory systems |
US8417876B2 (en) | 2010-06-23 | 2013-04-09 | Sandisk Technologies Inc. | Use of guard bands and phased maintenance operations to avoid exceeding maximum latency requirements in non-volatile memory systems |
US8514630B2 (en) | 2010-07-09 | 2013-08-20 | Sandisk Technologies Inc. | Detection of word-line leakage in memory arrays: current based approach |
US8305807B2 (en) | 2010-07-09 | 2012-11-06 | Sandisk Technologies Inc. | Detection of broken word-lines in memory arrays |
US8432732B2 (en) | 2010-07-09 | 2013-04-30 | Sandisk Technologies Inc. | Detection of word-line leakage in memory arrays |
US8464135B2 (en) | 2010-07-13 | 2013-06-11 | Sandisk Technologies Inc. | Adaptive flash interface |
US9069688B2 (en) | 2011-04-15 | 2015-06-30 | Sandisk Technologies Inc. | Dynamic optimization of back-end memory system interface |
KR101719395B1 (en) | 2010-07-13 | 2017-03-23 | 샌디스크 테크놀로지스 엘엘씨 | Dynamic optimization of back-end memory system interface |
US8374031B2 (en) | 2010-09-29 | 2013-02-12 | SanDisk Technologies, Inc. | Techniques for the fast settling of word lines in NAND flash memory |
FR2968453B1 (en) | 2010-12-02 | 2013-01-11 | Commissariat Energie Atomique | ELECTRONIC MEMORY CELL WITH DOUBLE GRID AND ELECTRONIC MEMORY CELL DEVICE WITH DOUBLE GRID |
US8472280B2 (en) | 2010-12-21 | 2013-06-25 | Sandisk Technologies Inc. | Alternate page by page programming scheme |
US8782495B2 (en) * | 2010-12-23 | 2014-07-15 | Sandisk Il Ltd | Non-volatile memory and methods with asymmetric soft read points around hard read points |
US8498152B2 (en) | 2010-12-23 | 2013-07-30 | Sandisk Il Ltd. | Non-volatile memory and methods with soft-bit reads while reading hard bits with compensation for coupling |
US8099652B1 (en) | 2010-12-23 | 2012-01-17 | Sandisk Corporation | Non-volatile memory and methods with reading soft bits in non uniform schemes |
US8451657B2 (en) | 2011-02-14 | 2013-05-28 | Nscore, Inc. | Nonvolatile semiconductor memory device using MIS transistor |
US8472257B2 (en) | 2011-03-24 | 2013-06-25 | Sandisk Technologies Inc. | Nonvolatile memory and method for improved programming with reduced verify |
US9342446B2 (en) | 2011-03-29 | 2016-05-17 | SanDisk Technologies, Inc. | Non-volatile memory system allowing reverse eviction of data updates to non-volatile binary cache |
US8334796B2 (en) | 2011-04-08 | 2012-12-18 | Sandisk Technologies Inc. | Hardware efficient on-chip digital temperature coefficient voltage generator and method |
US9240405B2 (en) | 2011-04-19 | 2016-01-19 | Macronix International Co., Ltd. | Memory with off-chip controller |
US8713380B2 (en) | 2011-05-03 | 2014-04-29 | SanDisk Technologies, Inc. | Non-volatile memory and method having efficient on-chip block-copying with controlled error rate |
US8379454B2 (en) | 2011-05-05 | 2013-02-19 | Sandisk Technologies Inc. | Detection of broken word-lines in memory arrays |
US9176864B2 (en) | 2011-05-17 | 2015-11-03 | SanDisk Technologies, Inc. | Non-volatile memory and method having block management with hot/cold data sorting |
US8843693B2 (en) | 2011-05-17 | 2014-09-23 | SanDisk Technologies, Inc. | Non-volatile memory and method with improved data scrambling |
US9141528B2 (en) | 2011-05-17 | 2015-09-22 | Sandisk Technologies Inc. | Tracking and handling of super-hot data in non-volatile memory systems |
CN103688246A (en) | 2011-05-17 | 2014-03-26 | 桑迪士克科技股份有限公司 | A non-volatile memory and a method with small logical groups distributed among active SLC and MLC memory partitions |
US8456911B2 (en) | 2011-06-07 | 2013-06-04 | Sandisk Technologies Inc. | Intelligent shifting of read pass voltages for non-volatile storage |
US8427884B2 (en) | 2011-06-20 | 2013-04-23 | SanDisk Technologies, Inc. | Bit scan circuits and method in non-volatile memory |
US8432740B2 (en) | 2011-07-21 | 2013-04-30 | Sandisk Technologies Inc. | Program algorithm with staircase waveform decomposed into multiple passes |
US8726104B2 (en) | 2011-07-28 | 2014-05-13 | Sandisk Technologies Inc. | Non-volatile memory and method with accelerated post-write read using combined verification of multiple pages |
US8750042B2 (en) | 2011-07-28 | 2014-06-10 | Sandisk Technologies Inc. | Combined simultaneous sensing of multiple wordlines in a post-write read (PWR) and detection of NAND failures |
US8775901B2 (en) | 2011-07-28 | 2014-07-08 | SanDisk Technologies, Inc. | Data recovery for defective word lines during programming of non-volatile memory arrays |
US20130031431A1 (en) | 2011-07-28 | 2013-01-31 | Eran Sharon | Post-Write Read in Non-Volatile Memories Using Comparison of Data as Written in Binary and Multi-State Formats |
WO2013043602A2 (en) | 2011-09-19 | 2013-03-28 | SanDisk Technologies, Inc. | High endurance non-volatile storage |
US8705293B2 (en) | 2011-10-20 | 2014-04-22 | Sandisk Technologies Inc. | Compact sense amplifier for non-volatile memory suitable for quick pass write |
WO2013058960A2 (en) | 2011-10-20 | 2013-04-25 | Sandisk Technologies Inc. | Compact sense amplifier for non-volatile memory |
US8630120B2 (en) | 2011-10-20 | 2014-01-14 | Sandisk Technologies Inc. | Compact sense amplifier for non-volatile memory |
US8593866B2 (en) | 2011-11-11 | 2013-11-26 | Sandisk Technologies Inc. | Systems and methods for operating multi-bank nonvolatile memory |
KR101904581B1 (en) | 2011-11-18 | 2018-10-04 | 샌디스크 테크놀로지스 엘엘씨 | Non-volatile storage with broken word line screen and data recovery |
US8811091B2 (en) | 2011-12-16 | 2014-08-19 | SanDisk Technologies, Inc. | Non-volatile memory and method with improved first pass programming |
US8811075B2 (en) | 2012-01-06 | 2014-08-19 | Sandisk Technologies Inc. | Charge cycling by equalizing and regulating the source, well, and bit line levels during write operations for NAND flash memory: verify to program transition |
FR2985593B1 (en) | 2012-01-09 | 2014-02-21 | Commissariat Energie Atomique | METHOD FOR MANUFACTURING NON-VOLATILE MEMORY CELL WITH DOUBLE GRID |
FR2985592B1 (en) | 2012-01-09 | 2014-02-21 | Commissariat Energie Atomique | METHOD FOR MANUFACTURING NON-VOLATILE MEMORY CELL WITH DOUBLE GRID |
US8582381B2 (en) | 2012-02-23 | 2013-11-12 | SanDisk Technologies, Inc. | Temperature based compensation during verify operations for non-volatile storage |
US8730722B2 (en) | 2012-03-02 | 2014-05-20 | Sandisk Technologies Inc. | Saving of data in cases of word-line to word-line short in memory arrays |
US8937835B2 (en) | 2012-03-13 | 2015-01-20 | Sandisk Technologies Inc. | Non-volatile storage with read process that reduces disturb |
US8842473B2 (en) | 2012-03-15 | 2014-09-23 | Sandisk Technologies Inc. | Techniques for accessing column selecting shift register with skipped entries in non-volatile memories |
US8817569B2 (en) | 2012-03-19 | 2014-08-26 | Sandisk Technologies Inc. | Immunity against temporary and short power drops in non-volatile memory |
US8760957B2 (en) | 2012-03-27 | 2014-06-24 | SanDisk Technologies, Inc. | Non-volatile memory and method having a memory array with a high-speed, short bit-line portion |
FR2988896B1 (en) | 2012-03-29 | 2014-04-25 | Commissariat Energie Atomique | DOUBLE-GRID ELECTRONIC MEMORY CELL AND METHOD OF MANUFACTURING SUCH CELL |
US9053066B2 (en) | 2012-03-30 | 2015-06-09 | Sandisk Technologies Inc. | NAND flash memory interface |
US8995183B2 (en) | 2012-04-23 | 2015-03-31 | Sandisk Technologies Inc. | Data retention in nonvolatile memory with multiple data storage formats |
US8732391B2 (en) | 2012-04-23 | 2014-05-20 | Sandisk Technologies Inc. | Obsolete block management for data retention in nonvolatile memory |
US8681548B2 (en) | 2012-05-03 | 2014-03-25 | Sandisk Technologies Inc. | Column redundancy circuitry for non-volatile memory |
US8937837B2 (en) | 2012-05-08 | 2015-01-20 | Sandisk Technologies Inc. | Bit line BL isolation scheme during erase operation for non-volatile storage |
US9293195B2 (en) | 2012-06-28 | 2016-03-22 | Sandisk Technologies Inc. | Compact high speed sense amplifier for non-volatile memory |
US20140003176A1 (en) | 2012-06-28 | 2014-01-02 | Man Lung Mui | Compact High Speed Sense Amplifier for Non-Volatile Memory with Reduced layout Area and Power Consumption |
US9142305B2 (en) | 2012-06-28 | 2015-09-22 | Sandisk Technologies Inc. | System to reduce stress on word line select transistor during erase operation |
US8971141B2 (en) | 2012-06-28 | 2015-03-03 | Sandisk Technologies Inc. | Compact high speed sense amplifier for non-volatile memory and hybrid lockout |
US8566671B1 (en) | 2012-06-29 | 2013-10-22 | Sandisk Technologies Inc. | Configurable accelerated post-write read to manage errors |
DE102012211460A1 (en) * | 2012-07-03 | 2014-01-09 | Robert Bosch Gmbh | Gas sensor and method for producing such |
US8854900B2 (en) | 2012-07-26 | 2014-10-07 | SanDisk Technologies, Inc. | Non-volatile memory and method with peak current control |
US8750045B2 (en) | 2012-07-27 | 2014-06-10 | Sandisk Technologies Inc. | Experience count dependent program algorithm for flash memory |
US8737125B2 (en) | 2012-08-07 | 2014-05-27 | Sandisk Technologies Inc. | Aggregating data latches for program level determination |
US8730724B2 (en) | 2012-08-07 | 2014-05-20 | Sandisk Technologies Inc. | Common line current for program level determination in flash memory |
US9329986B2 (en) | 2012-09-10 | 2016-05-03 | Sandisk Technologies Inc. | Peak current management in multi-die non-volatile memory devices |
US20140071761A1 (en) | 2012-09-10 | 2014-03-13 | Sandisk Technologies Inc. | Non-volatile storage with joint hard bit and soft bit reading |
US8887011B2 (en) | 2012-09-13 | 2014-11-11 | Sandisk Technologies Inc. | Erased page confirmation in multilevel memory |
US9099532B2 (en) | 2012-09-14 | 2015-08-04 | Sandisk Technologies Inc. | Processes for NAND flash memory fabrication |
US9164526B2 (en) | 2012-09-27 | 2015-10-20 | Sandisk Technologies Inc. | Sigma delta over-sampling charge pump analog-to-digital converter |
US9810723B2 (en) | 2012-09-27 | 2017-11-07 | Sandisk Technologies Llc | Charge pump based over-sampling ADC for current detection |
US9490035B2 (en) | 2012-09-28 | 2016-11-08 | SanDisk Technologies, Inc. | Centralized variable rate serializer and deserializer for bad column management |
US9076506B2 (en) | 2012-09-28 | 2015-07-07 | Sandisk Technologies Inc. | Variable rate parallel to serial shift register |
US8897080B2 (en) | 2012-09-28 | 2014-11-25 | Sandisk Technologies Inc. | Variable rate serial to parallel shift register |
US9053011B2 (en) | 2012-09-28 | 2015-06-09 | Sandisk Technologies Inc. | Selective protection of lower page data during upper page write |
US9047974B2 (en) | 2012-10-04 | 2015-06-02 | Sandisk Technologies Inc. | Erased state reading |
US9129854B2 (en) | 2012-10-04 | 2015-09-08 | Sandisk Technologies Inc. | Full metal gate replacement process for NAND flash memory |
US20140108705A1 (en) | 2012-10-12 | 2014-04-17 | Sandisk Technologies Inc. | Use of High Endurance Non-Volatile Memory for Read Acceleration |
US9218881B2 (en) | 2012-10-23 | 2015-12-22 | Sandisk Technologies Inc. | Flash memory blocks with extended data retention |
US8902669B2 (en) | 2012-11-08 | 2014-12-02 | SanDisk Technologies, Inc. | Flash memory with data retention bias |
US9466382B2 (en) | 2012-11-14 | 2016-10-11 | Sandisk Technologies Llc | Compensation for sub-block erase |
US8830717B2 (en) | 2012-11-29 | 2014-09-09 | Sandisk Technologies Inc. | Optimized configurable NAND parameters |
US9171620B2 (en) | 2012-11-29 | 2015-10-27 | Sandisk Technologies Inc. | Weighted read scrub for nonvolatile memory |
US9183945B2 (en) | 2012-11-30 | 2015-11-10 | Sandisk Technologies Inc. | Systems and methods to avoid false verify and false read |
US9146807B2 (en) | 2012-12-04 | 2015-09-29 | Sandisk Technologies Inc. | Bad column handling in flash memory |
US8995184B2 (en) | 2012-12-06 | 2015-03-31 | Sandisk Technologies Inc. | Adaptive operation of multi level cell memory |
US9195584B2 (en) | 2012-12-10 | 2015-11-24 | Sandisk Technologies Inc. | Dynamic block linking with individually configured plane parameters |
US9098428B2 (en) | 2012-12-11 | 2015-08-04 | Sandisk Technologies Inc. | Data recovery on cluster failures and ECC enhancements with code word interleaving |
US8988941B2 (en) | 2012-12-18 | 2015-03-24 | SanDisk Tehcnologies Inc. | Select transistor tuning |
US8923065B2 (en) | 2012-12-31 | 2014-12-30 | SanDisk Technologies, Inc. | Nonvolatile memory and method with improved I/O interface |
US9026757B2 (en) | 2013-01-25 | 2015-05-05 | Sandisk Technologies Inc. | Non-volatile memory programming data preservation |
US8913428B2 (en) | 2013-01-25 | 2014-12-16 | Sandisk Technologies Inc. | Programming non-volatile storage system with multiple memory die |
US9098205B2 (en) | 2013-01-30 | 2015-08-04 | Sandisk Technologies Inc. | Data randomization in 3-D memory |
US8885416B2 (en) | 2013-01-30 | 2014-11-11 | Sandisk Technologies Inc. | Bit line current trip point modulation for reading nonvolatile storage elements |
US8971128B2 (en) | 2013-01-31 | 2015-03-03 | Sandisk Technologies Inc. | Adaptive initial program voltage for non-volatile memory |
US9082867B2 (en) | 2013-01-31 | 2015-07-14 | Tower Semiconductor Ltd. | Embedded cost-efficient SONOS non-volatile memory |
US8722496B1 (en) | 2013-01-31 | 2014-05-13 | Tower Semiconductor Ltd. | Method for making embedded cost-efficient SONOS non-volatile memory |
US20140217492A1 (en) * | 2013-02-04 | 2014-08-07 | National Tsing Hua University | Charge-trap type flash memory device having low-high-low energy band structure as trapping layer |
US8995195B2 (en) | 2013-02-12 | 2015-03-31 | Sandisk Technologies Inc. | Fast-reading NAND flash memory |
US9384839B2 (en) | 2013-03-07 | 2016-07-05 | Sandisk Technologies Llc | Write sequence providing write abort protection |
US9465732B2 (en) | 2013-03-15 | 2016-10-11 | Sandisk Technologies Llc | Binning of blocks for dynamic linking |
US8942038B2 (en) | 2013-04-02 | 2015-01-27 | SanDisk Technologies, Inc. | High endurance nonvolatile memory |
US9070449B2 (en) | 2013-04-26 | 2015-06-30 | Sandisk Technologies Inc. | Defective block management |
US9218890B2 (en) | 2013-06-03 | 2015-12-22 | Sandisk Technologies Inc. | Adaptive operation of three dimensional memory |
US9183086B2 (en) | 2013-06-03 | 2015-11-10 | Sandisk Technologies Inc. | Selection of data for redundancy calculation in three dimensional nonvolatile memory |
US9230656B2 (en) | 2013-06-26 | 2016-01-05 | Sandisk Technologies Inc. | System for maintaining back gate threshold voltage in three dimensional NAND memory |
US20150006784A1 (en) | 2013-06-27 | 2015-01-01 | Sandisk Technologies Inc. | Efficient Post Write Read in Three Dimensional Nonvolatile Memory |
US9063671B2 (en) | 2013-07-02 | 2015-06-23 | Sandisk Technologies Inc. | Write operations with full sequence programming for defect management in nonvolatile memory |
US9218242B2 (en) | 2013-07-02 | 2015-12-22 | Sandisk Technologies Inc. | Write operations for defect management in nonvolatile memory |
FR3008229B1 (en) | 2013-07-05 | 2016-12-09 | Commissariat Energie Atomique | METHOD FOR MANUFACTURING A DOUBLE-GRID ELECTRONIC MEMORY CELL AND ASSOCIATED MEMORY CELL |
US9177663B2 (en) | 2013-07-18 | 2015-11-03 | Sandisk Technologies Inc. | Dynamic regulation of memory array source line |
US9442842B2 (en) | 2013-08-19 | 2016-09-13 | Sandisk Technologies Llc | Memory system performance configuration |
US9142324B2 (en) | 2013-09-03 | 2015-09-22 | Sandisk Technologies Inc. | Bad block reconfiguration in nonvolatile memory |
US8932955B1 (en) | 2013-09-04 | 2015-01-13 | Sandisk Technologies Inc. | Triple patterning NAND flash memory with SOC |
US9613806B2 (en) | 2013-09-04 | 2017-04-04 | Sandisk Technologies Llc | Triple patterning NAND flash memory |
US9240238B2 (en) | 2013-09-20 | 2016-01-19 | Sandisk Technologies Inc. | Back gate operation with elevated threshold voltage |
US9165683B2 (en) | 2013-09-23 | 2015-10-20 | Sandisk Technologies Inc. | Multi-word line erratic programming detection |
US8929141B1 (en) | 2013-10-02 | 2015-01-06 | Sandisk Technologies Inc. | Three-dimensional NAND memory with adaptive erase |
US9177673B2 (en) | 2013-10-28 | 2015-11-03 | Sandisk Technologies Inc. | Selection of data for redundancy calculation by likely error rate |
US20150121156A1 (en) | 2013-10-28 | 2015-04-30 | Sandisk Technologies Inc. | Block Structure Profiling in Three Dimensional Memory |
US9501400B2 (en) | 2013-11-13 | 2016-11-22 | Sandisk Technologies Llc | Identification and operation of sub-prime blocks in nonvolatile memory |
US9411721B2 (en) | 2013-11-15 | 2016-08-09 | Sandisk Technologies Llc | Detecting access sequences for data compression on non-volatile memory devices |
US9043537B1 (en) | 2013-11-21 | 2015-05-26 | Sandisk Technologies Inc. | Update block programming order |
US9229644B2 (en) | 2013-11-25 | 2016-01-05 | Sandisk Technologies Inc. | Targeted copy of data relocation |
US9141291B2 (en) | 2013-11-26 | 2015-09-22 | Sandisk Technologies Inc. | Adaptive context disbursement for improved performance in non-volatile memory systems |
US9218283B2 (en) | 2013-12-02 | 2015-12-22 | Sandisk Technologies Inc. | Multi-die write management |
US9213601B2 (en) | 2013-12-03 | 2015-12-15 | Sandisk Technologies Inc. | Adaptive data re-compaction after post-write read verification operations |
US9058881B1 (en) | 2013-12-05 | 2015-06-16 | Sandisk Technologies Inc. | Systems and methods for partial page programming of multi level cells |
US9244631B2 (en) | 2013-12-06 | 2016-01-26 | Sandisk Technologies Inc. | Lower page only host burst writes |
US9093158B2 (en) | 2013-12-06 | 2015-07-28 | Sandisk Technologies Inc. | Write scheme for charge trapping memory |
US9218886B2 (en) | 2013-12-10 | 2015-12-22 | SanDisk Technologies, Inc. | String dependent parameter setup |
US9208023B2 (en) | 2013-12-23 | 2015-12-08 | Sandisk Technologies Inc. | Systems and methods for scheduling post-write read in nonvolatile memory |
US9466383B2 (en) | 2013-12-30 | 2016-10-11 | Sandisk Technologies Llc | Non-volatile memory and method with adaptive logical groups |
US9312017B2 (en) | 2014-01-15 | 2016-04-12 | Apple Inc. | Storage in charge-trap memory structures using additional electrically-charged regions |
US9508437B2 (en) | 2014-01-30 | 2016-11-29 | Sandisk Technologies Llc | Pattern breaking in multi-die write management |
US9368224B2 (en) | 2014-02-07 | 2016-06-14 | SanDisk Technologies, Inc. | Self-adjusting regulation current for memory array source line |
US9542344B2 (en) | 2014-02-19 | 2017-01-10 | Sandisk Technologies Llc | Datapath management in a memory controller |
US9159404B2 (en) | 2014-02-26 | 2015-10-13 | Nscore, Inc. | Nonvolatile memory device |
US9823860B2 (en) | 2014-03-14 | 2017-11-21 | Nxp B.V. | One-time programming in reprogrammable memory |
US9230689B2 (en) | 2014-03-17 | 2016-01-05 | Sandisk Technologies Inc. | Finding read disturbs on non-volatile memories |
US9384128B2 (en) | 2014-04-18 | 2016-07-05 | SanDisk Technologies, Inc. | Multi-level redundancy code for non-volatile memory controller |
US8929169B1 (en) | 2014-05-13 | 2015-01-06 | Sandisk Technologies Inc. | Power management for nonvolatile memory array |
US8902652B1 (en) | 2014-05-13 | 2014-12-02 | Sandisk Technologies Inc. | Systems and methods for lower page writes |
US8886877B1 (en) | 2014-05-15 | 2014-11-11 | Sandisk Technologies Inc. | In-situ block folding for nonvolatile memory |
US9015561B1 (en) | 2014-06-11 | 2015-04-21 | Sandisk Technologies Inc. | Adaptive redundancy in three dimensional memory |
US8918577B1 (en) | 2014-06-13 | 2014-12-23 | Sandisk Technologies Inc. | Three dimensional nonvolatile memory with variable block capacity |
US9483339B2 (en) | 2014-06-27 | 2016-11-01 | Sandisk Technologies Llc | Systems and methods for fast bit error rate estimation |
US9633742B2 (en) | 2014-07-10 | 2017-04-25 | Sandisk Technologies Llc | Segmentation of blocks for faster bit line settling/recovery in non-volatile memory devices |
US9443612B2 (en) | 2014-07-10 | 2016-09-13 | Sandisk Technologies Llc | Determination of bit line to low voltage signal shorts |
US9460809B2 (en) | 2014-07-10 | 2016-10-04 | Sandisk Technologies Llc | AC stress mode to screen out word line to word line shorts |
US9484086B2 (en) | 2014-07-10 | 2016-11-01 | Sandisk Technologies Llc | Determination of word line to local source line shorts |
US9514835B2 (en) | 2014-07-10 | 2016-12-06 | Sandisk Technologies Llc | Determination of word line to word line shorts between adjacent blocks |
US9218874B1 (en) | 2014-08-11 | 2015-12-22 | Sandisk Technologies Inc. | Multi-pulse programming cycle of non-volatile memory for enhanced de-trapping |
US9208895B1 (en) | 2014-08-14 | 2015-12-08 | Sandisk Technologies Inc. | Cell current control through power supply |
US9330776B2 (en) | 2014-08-14 | 2016-05-03 | Sandisk Technologies Inc. | High voltage step down regulator with breakdown protection |
US9305648B2 (en) | 2014-08-20 | 2016-04-05 | SanDisk Technologies, Inc. | Techniques for programming of select gates in NAND memory |
US9312026B2 (en) | 2014-08-22 | 2016-04-12 | Sandisk Technologies Inc. | Zoned erase verify in three dimensional nonvolatile memory |
US9349468B2 (en) | 2014-08-25 | 2016-05-24 | SanDisk Technologies, Inc. | Operational amplifier methods for charging of sense amplifier internal nodes |
US9224637B1 (en) | 2014-08-26 | 2015-12-29 | Sandisk Technologies Inc. | Bi-level dry etching scheme for transistor contacts |
US9240249B1 (en) | 2014-09-02 | 2016-01-19 | Sandisk Technologies Inc. | AC stress methods to screen out bit line defects |
US9202593B1 (en) | 2014-09-02 | 2015-12-01 | Sandisk Technologies Inc. | Techniques for detecting broken word lines in non-volatile memories |
US9401275B2 (en) | 2014-09-03 | 2016-07-26 | Sandisk Technologies Llc | Word line with multi-layer cap structure |
US9224744B1 (en) | 2014-09-03 | 2015-12-29 | Sandisk Technologies Inc. | Wide and narrow patterning using common process |
US9449694B2 (en) | 2014-09-04 | 2016-09-20 | Sandisk Technologies Llc | Non-volatile memory with multi-word line select for defect detection operations |
US9411669B2 (en) | 2014-09-11 | 2016-08-09 | Sandisk Technologies Llc | Selective sampling of data stored in nonvolatile memory |
US9418750B2 (en) | 2014-09-15 | 2016-08-16 | Sandisk Technologies Llc | Single ended word line and bit line time constant measurement |
US10114562B2 (en) | 2014-09-16 | 2018-10-30 | Sandisk Technologies Llc | Adaptive block allocation in nonvolatile memory |
US9419006B2 (en) | 2014-09-24 | 2016-08-16 | Sandisk Technologies Llc | Process for 3D NAND memory with socketed floating gate cells |
US9431411B1 (en) | 2014-09-24 | 2016-08-30 | Sandisk Technologies Llc | Efficient process for 3D NAND memory with socketed floating gate cells |
US9595338B2 (en) | 2014-09-24 | 2017-03-14 | Sandisk Technologies Llc | Utilizing NAND strings in dummy blocks for faster bit line precharge |
US9236393B1 (en) | 2014-09-24 | 2016-01-12 | Sandisk Technologies Inc. | 3D NAND memory with socketed floating gate cells |
US9496272B2 (en) | 2014-09-24 | 2016-11-15 | Sandisk Technologies Llc | 3D memory having NAND strings switched by transistors with elongated polysilicon gates |
DE102014114197B4 (en) * | 2014-09-30 | 2016-11-17 | Infineon Technologies Ag | Chip and method for identifying a chip |
US20160098197A1 (en) | 2014-10-06 | 2016-04-07 | SanDisk Technologies, Inc. | Nonvolatile memory and method with state encoding and page-by-page programming yielding invariant read points |
US9576673B2 (en) | 2014-10-07 | 2017-02-21 | Sandisk Technologies Llc | Sensing multiple reference levels in non-volatile storage elements |
US9318204B1 (en) | 2014-10-07 | 2016-04-19 | SanDisk Technologies, Inc. | Non-volatile memory and method with adjusted timing for individual programming pulses |
US20160118135A1 (en) | 2014-10-28 | 2016-04-28 | Sandisk Technologies Inc. | Two-strobe sensing for nonvolatile storage |
US9443606B2 (en) | 2014-10-28 | 2016-09-13 | Sandisk Technologies Llc | Word line dependent two strobe sensing mode for nonvolatile storage elements |
US9934872B2 (en) | 2014-10-30 | 2018-04-03 | Sandisk Technologies Llc | Erase stress and delta erase loop count methods for various fail modes in non-volatile memory |
US9361990B1 (en) | 2014-12-18 | 2016-06-07 | SanDisk Technologies, Inc. | Time domain ramp rate control for erase inhibit in flash memory |
US20170054032A1 (en) | 2015-01-09 | 2017-02-23 | SanDisk Technologies, Inc. | Non-volatile memory having individually optimized silicide contacts and process therefor |
US9224502B1 (en) | 2015-01-14 | 2015-12-29 | Sandisk Technologies Inc. | Techniques for detection and treating memory hole to local interconnect marginality defects |
US9385721B1 (en) | 2015-01-14 | 2016-07-05 | Sandisk Technologies Llc | Bulk driven low swing driver |
US9318210B1 (en) | 2015-02-02 | 2016-04-19 | Sandisk Technologies Inc. | Word line kick during sensing: trimming and adjacent word lines |
US9236128B1 (en) | 2015-02-02 | 2016-01-12 | Sandisk Technologies Inc. | Voltage kick to non-selected word line during programming |
US9959067B2 (en) | 2015-02-04 | 2018-05-01 | Sandisk Technologies Llc | Memory block allocation by block health |
US9390922B1 (en) | 2015-02-06 | 2016-07-12 | Sandisk Technologies Llc | Process for forming wide and narrow conductive lines |
US10032524B2 (en) | 2015-02-09 | 2018-07-24 | Sandisk Technologies Llc | Techniques for determining local interconnect defects |
US9583207B2 (en) | 2015-02-10 | 2017-02-28 | Sandisk Technologies Llc | Adaptive data shaping in nonvolatile memory |
US9627395B2 (en) | 2015-02-11 | 2017-04-18 | Sandisk Technologies Llc | Enhanced channel mobility three-dimensional memory structure and method of making thereof |
US9425047B1 (en) | 2015-02-19 | 2016-08-23 | Sandisk Technologies Llc | Self-aligned process using variable-fluidity material |
US9595566B2 (en) | 2015-02-25 | 2017-03-14 | Sandisk Technologies Llc | Floating staircase word lines and process in a 3D non-volatile memory having vertical bit lines |
US10055267B2 (en) | 2015-03-04 | 2018-08-21 | Sandisk Technologies Llc | Block management scheme to handle cluster failures in non-volatile memory |
US9318209B1 (en) | 2015-03-24 | 2016-04-19 | Sandisk Technologies Inc. | Digitally controlled source side select gate offset in 3D NAND memory erase |
US9269446B1 (en) | 2015-04-08 | 2016-02-23 | Sandisk Technologies Inc. | Methods to improve programming of slow cells |
US9564219B2 (en) | 2015-04-08 | 2017-02-07 | Sandisk Technologies Llc | Current based detection and recording of memory hole-interconnect spacing defects |
US9502123B2 (en) | 2015-04-21 | 2016-11-22 | Sandisk Technologies Llc | Adaptive block parameters |
US9502428B1 (en) | 2015-04-29 | 2016-11-22 | Sandisk Technologies Llc | Sidewall assisted process for wide and narrow line formation |
US9595444B2 (en) | 2015-05-14 | 2017-03-14 | Sandisk Technologies Llc | Floating gate separation in NAND flash memory |
US9484098B1 (en) | 2015-08-05 | 2016-11-01 | Sandisk Technologies Llc | Smart reread in nonvolatile memory |
US9659666B2 (en) | 2015-08-31 | 2017-05-23 | Sandisk Technologies Llc | Dynamic memory recovery at the sub-block level |
US10157681B2 (en) | 2015-09-14 | 2018-12-18 | Sandisk Technologies Llc | Programming of nonvolatile memory with verify level dependent on memory state and programming loop count |
WO2017053329A1 (en) | 2015-09-21 | 2017-03-30 | Monolithic 3D Inc | 3d semiconductor device and structure |
US9691473B2 (en) | 2015-09-22 | 2017-06-27 | Sandisk Technologies Llc | Adaptive operation of 3D memory |
US9401216B1 (en) | 2015-09-22 | 2016-07-26 | Sandisk Technologies Llc | Adaptive operation of 3D NAND memory |
US9842651B2 (en) | 2015-11-25 | 2017-12-12 | Sunrise Memory Corporation | Three-dimensional vertical NOR flash thin film transistor strings |
US9892800B2 (en) | 2015-09-30 | 2018-02-13 | Sunrise Memory Corporation | Multi-gate NOR flash thin-film transistor strings arranged in stacked horizontal active strips with vertical control gates |
US10121553B2 (en) | 2015-09-30 | 2018-11-06 | Sunrise Memory Corporation | Capacitive-coupled non-volatile thin-film transistor NOR strings in three-dimensional arrays |
US11120884B2 (en) | 2015-09-30 | 2021-09-14 | Sunrise Memory Corporation | Implementing logic function and generating analog signals using NOR memory strings |
US9484072B1 (en) | 2015-10-06 | 2016-11-01 | Nscore, Inc. | MIS transistors configured to be placed in programmed state and erased state |
US9792175B2 (en) | 2015-10-21 | 2017-10-17 | Sandisk Technologies Llc | Bad column management in nonvolatile memory |
US9478495B1 (en) | 2015-10-26 | 2016-10-25 | Sandisk Technologies Llc | Three dimensional memory device containing aluminum source contact via structure and method of making thereof |
US9858009B2 (en) | 2015-10-26 | 2018-01-02 | Sandisk Technologies Llc | Data folding in 3D nonvolatile memory |
JP6867387B2 (en) | 2015-11-25 | 2021-04-28 | サンライズ メモリー コーポレイション | 3D vertical NOR flash thin film transistor string |
US9966141B2 (en) | 2016-02-19 | 2018-05-08 | Nscore, Inc. | Nonvolatile memory cell employing hot carrier effect for data storage |
US9698676B1 (en) | 2016-03-11 | 2017-07-04 | Sandisk Technologies Llc | Charge pump based over-sampling with uniform step size for current detection |
US9817593B1 (en) | 2016-07-11 | 2017-11-14 | Sandisk Technologies Llc | Block management in non-volatile memory system with non-blocking control sync system |
US9792994B1 (en) | 2016-09-28 | 2017-10-17 | Sandisk Technologies Llc | Bulk modulation scheme to reduce I/O pin capacitance |
US10608011B2 (en) | 2017-06-20 | 2020-03-31 | Sunrise Memory Corporation | 3-dimensional NOR memory array architecture and methods for fabrication thereof |
US10692874B2 (en) | 2017-06-20 | 2020-06-23 | Sunrise Memory Corporation | 3-dimensional NOR string arrays in segmented stacks |
US10608008B2 (en) | 2017-06-20 | 2020-03-31 | Sunrise Memory Corporation | 3-dimensional nor strings with segmented shared source regions |
US11180861B2 (en) | 2017-06-20 | 2021-11-23 | Sunrise Memory Corporation | 3-dimensional NOR string arrays in segmented stacks |
US10896916B2 (en) | 2017-11-17 | 2021-01-19 | Sunrise Memory Corporation | Reverse memory cell |
JP7072658B2 (en) | 2017-12-28 | 2022-05-20 | サンライズ メモリー コーポレイション | 3D NOR flash memory array with ultra-fine pitch: devices and methods |
US10475812B2 (en) | 2018-02-02 | 2019-11-12 | Sunrise Memory Corporation | Three-dimensional vertical NOR flash thin-film transistor strings |
US10381378B1 (en) | 2018-02-02 | 2019-08-13 | Sunrise Memory Corporation | Three-dimensional vertical NOR flash thin-film transistor strings |
US10199434B1 (en) | 2018-02-05 | 2019-02-05 | Sandisk Technologies Llc | Three-dimensional cross rail phase change memory device and method of manufacturing the same |
US10468596B2 (en) | 2018-02-21 | 2019-11-05 | Sandisk Technologies Llc | Damascene process for forming three-dimensional cross rail phase change memory devices |
US10580976B2 (en) | 2018-03-19 | 2020-03-03 | Sandisk Technologies Llc | Three-dimensional phase change memory device having a laterally constricted element and method of making the same |
WO2020014655A1 (en) | 2018-07-12 | 2020-01-16 | Sunrise Memory Corporation | Fabrication method for a 3-dimensional nor memory array |
US11751391B2 (en) | 2018-07-12 | 2023-09-05 | Sunrise Memory Corporation | Methods for fabricating a 3-dimensional memory structure of nor memory strings |
US10685705B2 (en) * | 2018-07-27 | 2020-06-16 | Globalfoundries Inc. | Program and erase memory structures |
TWI713195B (en) | 2018-09-24 | 2020-12-11 | 美商森恩萊斯記憶體公司 | Wafer bonding in fabrication of 3-dimensional nor memory circuits and integrated circuit formed therefrom |
EP3891780A4 (en) | 2018-12-07 | 2022-12-21 | Sunrise Memory Corporation | Methods for forming multi-layer vertical nor-type memory string arrays |
JP7425069B2 (en) | 2019-01-30 | 2024-01-30 | サンライズ メモリー コーポレイション | High-bandwidth, large-capacity memory embedded electronic device using substrate bonding |
WO2020167658A1 (en) | 2019-02-11 | 2020-08-20 | Sunrise Memory Corporation | Vertical thin-film transistor and application as bit-line connector for 3-dimensional memory arrays |
US11917821B2 (en) | 2019-07-09 | 2024-02-27 | Sunrise Memory Corporation | Process for a 3-dimensional array of horizontal nor-type memory strings |
TWI747369B (en) | 2019-07-09 | 2021-11-21 | 美商森恩萊斯記憶體公司 | Process for a 3-dimensional array of horizontal nor-type memory strings |
US11515309B2 (en) | 2019-12-19 | 2022-11-29 | Sunrise Memory Corporation | Process for preparing a channel region of a thin-film transistor in a 3-dimensional thin-film transistor array |
US11580038B2 (en) | 2020-02-07 | 2023-02-14 | Sunrise Memory Corporation | Quasi-volatile system-level memory |
US11675500B2 (en) | 2020-02-07 | 2023-06-13 | Sunrise Memory Corporation | High capacity memory circuit with low effective latency |
US11561911B2 (en) | 2020-02-24 | 2023-01-24 | Sunrise Memory Corporation | Channel controller for shared memory access |
US11508693B2 (en) | 2020-02-24 | 2022-11-22 | Sunrise Memory Corporation | High capacity memory module including wafer-section memory circuit |
US11507301B2 (en) | 2020-02-24 | 2022-11-22 | Sunrise Memory Corporation | Memory module implementing memory centric architecture |
WO2021207050A1 (en) | 2020-04-08 | 2021-10-14 | Sunrise Memory Corporation | Charge-trapping layer with optimized number of charge-trapping sites for fast program and erase of a memory cell in a 3-dimensional nor memory string array |
WO2022047067A1 (en) | 2020-08-31 | 2022-03-03 | Sunrise Memory Corporation | Thin-film storage transistors in a 3-dimensional array or nor memory strings and process for fabricating the same |
WO2022108848A1 (en) | 2020-11-17 | 2022-05-27 | Sunrise Memory Corporation | Methods for reducing disturb errors by refreshing data alongside programming or erase operations |
US11848056B2 (en) | 2020-12-08 | 2023-12-19 | Sunrise Memory Corporation | Quasi-volatile memory with enhanced sense amplifier operation |
TW202310429A (en) | 2021-07-16 | 2023-03-01 | 美商日升存儲公司 | 3-dimensional memory string array of thin-film ferroelectric transistors |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5426605A (en) * | 1992-08-19 | 1995-06-20 | U.S. Philips Corporation | Semiconductor memory device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1297899A (en) * | 1970-10-02 | 1972-11-29 | ||
US4173766A (en) * | 1977-09-16 | 1979-11-06 | Fairchild Camera And Instrument Corporation | Insulated gate field-effect transistor read-only memory cell |
US4173791A (en) * | 1977-09-16 | 1979-11-06 | Fairchild Camera And Instrument Corporation | Insulated gate field-effect transistor read-only memory array |
US4527257A (en) * | 1982-08-25 | 1985-07-02 | Westinghouse Electric Corp. | Common memory gate non-volatile transistor memory |
US5168334A (en) * | 1987-07-31 | 1992-12-01 | Texas Instruments, Incorporated | Non-volatile semiconductor memory |
-
1996
- 1996-07-23 US US08/681,430 patent/US5768192A/en not_active Expired - Lifetime
-
1997
- 1997-06-24 KR KR10-1998-0710390A patent/KR100433994B1/en not_active IP Right Cessation
- 1997-06-24 AU AU31883/97A patent/AU3188397A/en not_active Abandoned
- 1997-06-24 WO PCT/IL1997/000211 patent/WO1998003977A1/en not_active Application Discontinuation
- 1997-06-24 JP JP10506749A patent/JP2000514946A/en not_active Ceased
- 1997-06-24 EP EP97927356A patent/EP0914658A4/en not_active Withdrawn
- 1997-08-14 TW TW086111697A patent/TW359041B/en not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5426605A (en) * | 1992-08-19 | 1995-06-20 | U.S. Philips Corporation | Semiconductor memory device |
Non-Patent Citations (1)
Title |
---|
See also references of EP0914658A4 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7145001B1 (en) | 1999-10-27 | 2006-12-05 | Cognis Deutschland Gmbh & Co. Kg | Method for producing solid sugar surfactants |
JP2004503040A (en) * | 2000-05-04 | 2004-01-29 | サイファン・セミコンダクターズ・リミテッド | Programming non-volatile memory cells |
EP1235229A3 (en) * | 2001-02-26 | 2002-10-02 | Fujitsu Limited | Method of read operation of nonvolatile semiconductor memory and nonvolatile semiconductor memory |
EP1235229A2 (en) * | 2001-02-26 | 2002-08-28 | Fujitsu Limited | Method of read operation of nonvolatile semiconductor memory and nonvolatile semiconductor memory |
US7834392B2 (en) | 2001-10-31 | 2010-11-16 | Sandisk Corporation | Multi-state non-volatile integrated circuit memory systems that employ dielectric storage elements |
US7145807B2 (en) | 2004-03-05 | 2006-12-05 | Infineon Technologies Ag | Method for operating an electrical writable and erasable memory cell and a memory device for electrical memories |
US7411837B2 (en) | 2004-03-05 | 2008-08-12 | Infineon Technologies Ag | Method for operating an electrical writable and erasable memory cell and a memory device for electrical memories |
US7943982B2 (en) | 2005-05-30 | 2011-05-17 | Spansion Llc | Semiconductor device having laminated electronic conductor on bit line |
US8278171B2 (en) | 2005-05-30 | 2012-10-02 | Spansion Llc | Fabrication method for semiconductor device having laminated electronic conductor on bit line |
US7800948B2 (en) | 2005-11-02 | 2010-09-21 | Sharp Kabushiki Kaisha | Nonvolatile semiconductor memory device |
EP2234115A1 (en) | 2009-03-27 | 2010-09-29 | Commissariat à l'Énergie Atomique et aux Énergies Alternatives | Method for manufacturing a memory device with conductive nanoparticles |
US8389368B2 (en) | 2009-03-27 | 2013-03-05 | Commissariat à l'énergie atomique et aux energies alternatives | Method for producing a conductive nanoparticle memory device |
JP2013524397A (en) * | 2010-03-30 | 2013-06-17 | シリコン ストーリッジ テクノロージー インコーポレイテッド | Nonvolatile memory sensing system and method including selective / differential threshold voltage capability |
CN103199115A (en) * | 2012-01-05 | 2013-07-10 | 国际商业机器公司 | Nanowire floating gate transistor |
CN103199115B (en) * | 2012-01-05 | 2016-01-20 | 国际商业机器公司 | Nano wire floating transistor |
Also Published As
Publication number | Publication date |
---|---|
AU3188397A (en) | 1998-02-10 |
EP0914658A1 (en) | 1999-05-12 |
US5768192A (en) | 1998-06-16 |
EP0914658A4 (en) | 2000-03-22 |
JP2000514946A (en) | 2000-11-07 |
TW359041B (en) | 1999-05-21 |
KR20000065239A (en) | 2000-11-06 |
KR100433994B1 (en) | 2004-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5768192A (en) | Non-volatile semiconductor memory cell utilizing asymmetrical charge trapping | |
US6566699B2 (en) | Non-volatile electrically erasable and programmable semiconductor memory cell utilizing asymmetrical charge trapping | |
US6011725A (en) | Two bit non-volatile electrically erasable and programmable semiconductor memory cell utilizing asymmetrical charge trapping | |
US6266281B1 (en) | Method of erasing non-volatile memory cells | |
US6088269A (en) | Compact page-erasable EEPROM non-volatile memory | |
US6269023B1 (en) | Method of programming a non-volatile memory cell using a current limiter | |
EP0360504B1 (en) | One transistor flash eprom cell | |
US6438031B1 (en) | Method of programming a non-volatile memory cell using a substrate bias | |
US6243300B1 (en) | Substrate hole injection for neutralizing spillover charge generated during programming of a non-volatile memory cell | |
US6768681B2 (en) | Non-volatile memory device | |
US6618290B1 (en) | Method of programming a non-volatile memory cell using a baking process | |
US6583479B1 (en) | Sidewall NROM and method of manufacture thereof for non-volatile memory cells | |
US6456536B1 (en) | Method of programming a non-volatile memory cell using a substrate bias | |
US6930928B2 (en) | Method of over-erase prevention in a non-volatile memory device and related structure | |
US6490205B1 (en) | Method of erasing a non-volatile memory cell using a substrate bias | |
US6366501B1 (en) | Selective erasure of a non-volatile memory cell of a flash memory device | |
US6349062B1 (en) | Selective erasure of a non-volatile memory cell of a flash memory device | |
US6331952B1 (en) | Positive gate erasure for non-volatile memory cells | |
WO2002031879A2 (en) | Select transistor architecture for a virtual ground non-volatile memory cell array | |
Müller | Electrically alterable MOS-ROMs, with particular emphasis on the floating gate type |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN AM AZ BY KG KZ MD RU TJ TM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1997927356 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1019980710390 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 1997927356 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
NENP | Non-entry into the national phase |
Ref country code: CA |
|
WWP | Wipo information: published in national office |
Ref document number: 1019980710390 Country of ref document: KR |
|
WWG | Wipo information: grant in national office |
Ref document number: 1019980710390 Country of ref document: KR |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1997927356 Country of ref document: EP |