WO1998003436A1 - Additif de biodegradation a base de farine et d'un tensio-actif cationique - Google Patents

Additif de biodegradation a base de farine et d'un tensio-actif cationique Download PDF

Info

Publication number
WO1998003436A1
WO1998003436A1 PCT/FR1997/001332 FR9701332W WO9803436A1 WO 1998003436 A1 WO1998003436 A1 WO 1998003436A1 FR 9701332 W FR9701332 W FR 9701332W WO 9803436 A1 WO9803436 A1 WO 9803436A1
Authority
WO
WIPO (PCT)
Prior art keywords
additive according
flour
surfactant
additive
biodegradation
Prior art date
Application number
PCT/FR1997/001332
Other languages
English (en)
Inventor
Anne Basseres
Pascal Brochette
Original Assignee
Elf Aquitaine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elf Aquitaine filed Critical Elf Aquitaine
Publication of WO1998003436A1 publication Critical patent/WO1998003436A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/10Reclamation of contaminated soil microbiologically, biologically or by using enzymes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/344Biological treatment of water, waste water, or sewage characterised by the microorganisms used for digestion of mineral oil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C2101/00In situ

Definitions

  • the present invention relates to a new biodegradation additive and its application for the treatment of environments contaminated by hydrocarbons.
  • nutritional additives which are added to the medium to be treated.
  • These additives can be fertilizers of the type used in agriculture, or synthetic protein products, or even bacterial lyophilisates with the nutrient. These products meet the carbon, nitrogen and phosphorus needs of bacteria.
  • the particular needs of microorganisms for nitrogen and phosphorus correspond to a variable N / P molar ratio to a large extent, without appreciable alteration of the efficiency.
  • these additives contain assimilable carbon.
  • the availability of nutrients is also an important problem, since this conditions the kinetics of degradation of hydrocarbons.
  • FR-A-2 490 672 describes microemulsions in which the nutrients are in an aqueous solution which is microemulsified in a lipomiscible liquid.
  • this technique involves the step of forming the microemulsion and requires the presence of additives such as surfactants.
  • FR-A-2,512,057 describes an improvement of the solution proposed in the aforementioned patent which consists in providing the nitrogen source in the form of a dual system comprising two chemically different kinds of nitrogen compounds.
  • a preferred system is a system consisting of urea and amino acids.
  • FR-A-2 230 401 describes a composition for the biodegradable emulsion of hydrocarbons and greases and its preparation process.
  • the composition consists of an aliphatic amide or a carboxyl ester of aliphatic amide, an ammonium salt of carooxylic acid, an ino-lipid pnosphoa and a petroleum solvent free of oenzene fractions. This method requires high proportions of aqueous emulsion and the result is only acquired after several weeks.
  • the first application relates to a biodegradation additive characterized in that it consists of at least one animal flour, said flour comprising at least one assimilable nitrogen source consisting of at least one amino acid.
  • the biodegradation additive consists of a mixture comprising (i) at least one assimilable nitrogen source consisting of an amino acid, unsubstituted or substituted; (ii) at least one source of phosphorus according to a given ratio.
  • this additive is an animal flour made oleophilic by an appropriate treatment, in particular an acylation, the acyl radical being of oleic type.
  • an appropriate treatment in particular an acylation
  • the acyl radical being of oleic type.
  • the flour is an animal meal, preferably a fish meal
  • the surfactant represents, for example, from 2 to 12 mEq cationonic / 100 g of flour, preferably 4 to 9 mEq cationic / 100 g of flour, in particular 5 mEq cationonic / 100 g of flour
  • cationic mEq is the number of millimoles of amphiphilic compound with cationic hydrophilic pole. We can determine the number of mEq per gram of product - also called active ingredient content - by following the AFNOR NF T 73-320 standard.
  • the surfactant comprises a quaternized nitrogen atom (ammonium)
  • the hydrophobic chain (s) of the surfactant contains (s) 8 to 24 carbon atoms, preferably 12 to 24 carbon atoms.
  • the surfactant is chosen from the group consisting of dialkyl dimethyl ammonium chlorides, alkyl trimethyl ammonium chlorides, N-alkyl-bis (ethoxyhydroxyethyl) benzyl ammonium chlorides and the methosulfate of N, N- di (alkylcarboxy-2-ethyl ⁇ , N-hydroxy-2 - ethyl.N-methylammonium, in which the alkyl radical contains 8 to 24 carbon atoms, preferably 12 to 24 carbon atoms.
  • the surfactant is methosulfate of N, N ⁇ di (alkylcarboxy-2-ethyl), N-hydroxy-2-ethyl, N-methylammonium, the alkyl group comprising from 12 to 24 carbon atoms, in particular when the alkylcarboxy group is derived from a partially hydrogenated tallow radical
  • the additive according to the invention further comprises a source of additional assimilable nitrogen.
  • the nitrogen source can be chosen from the group consisting of formaldehyde urea and superphosphate urea
  • 1 additive according to the invention is in the form of granules, powder, or paste.
  • biodegradation is meant degradation by a microorganism, present or in situ m
  • This application can therefore be carried out in an open environment in the presence of an indigenous bacterial flora or on soil or in the sea in the presence a specific bacterial flora added, if that in presence is judged insufficient.
  • the microorganism used can be a yeast, a fungus, a bacterium, alone or as a mixture; in fact any microorganism capable of degrading a hydrocarbon is appropriate.
  • any microorganism capable of degrading a hydrocarbon is appropriate.
  • nitrogen source means a nitrogen source, respectively phosphorus, effectively metabolized by the microorganism during degradation.
  • the nitrogen source includes the flour as well as the additional nitrogen source added.
  • Any source of nitrogen metabolizable by the microorganisms present such as: amino acids, urea, ammonium nitrate or sulphate, urea formaldehyde or urea superphosphate, can be used as additional nitrogen source.
  • the source of phosphorus alkali metal or ammonium phosphates, or a superphosphate can be used.
  • the sources of nitrogen and phosphorus can be provided by the same compound, for example urea superphosphate.
  • the additional assimilable nitrogen source can represent from 10 to 70% by weight of the final additive, preferably from 15 to 50% by weight.
  • a final composition can be obtained in which the total C / total N additive mass ratio is less than 4.
  • the additional assimilable phosphorus source can represent from 10 to 70% by weight of the final additive, preferably from 20 to 55% by weight.
  • flour animal or vegetable flour, or mixtures thereof.
  • animal meal means any conventional animal meal, as well as mixtures of these meals.
  • the composition of these flours can vary to a large extent; as an example represented if but non-limiting, the compositions for the flours given in applications FR-2695139 and FR-2695138, the flours sold by SARIA and in particular the CRETONS® and SOLATLANTE G® flours will be retained.
  • the N / P ratio of animal meal usable in the context of the present invention can vary over a wide range of values. By way of example, N / P mass ratios of 16 to 7 are perfectly suitable.
  • Animal meal is obtained by any conventional manufacturing process.
  • vegetable flour is meant any conventional vegetable flour, as well as mixtures of these flours.
  • composition of these flours can vary to a large extent.
  • milling outlets such as screenings, sounds, re-molding, etc. You can also use brewery grains.
  • These vegetable flours can also be supplemented with nitrogen sources.
  • the vegetable flours are obtained by any conventional manufacturing process.
  • cationic surfactant is understood to mean, within the framework of the present invention, any compound of which a part of the molecule is hydrophobic (like any surfactant) and which additionally has a cationic hydrophilic head.
  • the surfactant will be sufficiently hydrophobic, the hydrophobicity of the surfactant being determinable by routine tests within the reach of the skilled person.
  • the surfactant will be cationic enough to bind to the sites carrying negative charges present in the flour.
  • the amount of suitable surfactant can vary depending on its hydrophobicity.
  • cationic biodegradable surfactants which may be used in the context of the present invention, mention may be made of the products commercially available under the brands: Noramium®, in particular Noramium® M2C and Noramium® MS50, Noxamium®, in particular Noxamium® MC2 and Noxamium® 91. These surfactants are available from CECA. Other cationic surfactants such as sulphoniums or phosphoniums - for which the cationic charge is carried either by a sulfur atom or by a phosphorus atom - can also be used in the context of the present invention. These surfactants are, however, less preferred than their nitrogen equivalents.
  • surfactants whose hydrophobic chain contains 12 to 24 carbon atoms are preferred and those comprising two hydrophobic chains are more particularly preferred. It has been demonstrated that the surfactants according to the present invention have no bactericidal character and significantly increase the oleophilic character of the flours. The oleophilic test is described in more detail in the examples which follow, for animal meal. The use of additives according to the present invention is therefore useful for the biodegradation of hydrocarbons on soils, sediments and on the surface of water. The sediments contaminated by hydrocarbons can come from accidental discharges of hydrocarbons or not, such as cleaning of basins, pavement, grounds, etc.
  • the additive according to the present invention can be used for the treatment of soils contaminated by hydrocarbons resulting from treatments coal, such as coal soils, etc.
  • the additive according to the present invention is suitable for the treatment of contaminated water in an open environment, in particular in the open sea, for example following a degassing or an oil spill.
  • the proportion of additive relative to 1 hydrocarbon to be degraded is variable.
  • the mass ratio [additive] / [hydrocarbons] is generally between 3 and 30 Preferably, the mass ratio is equal to approximately 10.
  • the present invention also relates to the use of the present additives for the biodegradation of hydrocarbons. O 98/03436
  • FIG. 1 represents the kinetics of mineralization of phenanthrene
  • Figure 2 shows the bacterial count
  • Figures 3 and 4 show the release of nitrogen, in%, or mg N / g of product for different additives.
  • Example 1 No increase in the oleophilic value of flour
  • the oleophilic test is carried out on the surfactants described in Table 1, according to a simple partitioning test.
  • Noramium® S 50 Cationique Alkyl trimethyl ammonium chloride (alkyl tallow C16)
  • Noxamium® 91 Cationic methosulfate of N, N- di (alkylcarboxy-2 -ethyl), N- hydr oxy- 2 - é hy 1 N-methyl ammonium (alkylcarboxy C16 partially hydrogenated)
  • the protocol is as follows. After having contacted the surfactant at a given concentration with the flour in liquid phase (5ml, 12h at 37 ° C), the oil phase (5ml octane) is added. The whole is stirred manually then decanted. Observations are then made: if the flour remains in the bottom, the result is negative, if it floats in the aqueous phase, the result is average and if it remains at the interface water / oil and stabilizes there, the result is good. The results are reported in Table 2.
  • the usable concentrations are in a range from 2 mEq to 12 mEq per 100 grams of flour. The extent of this range, however, depends on the nature of the fatty chains linked to the quaternary ammonium atom. Under the experimental conditions used, it is shown that the surfactant is completely adsorbed by the flour.
  • additives according to the invention can be used even when they are not hydrophobic.
  • a biodegradability test is carried out on labeled hydrocarbons. 1. Manufacture of tested additives
  • the flour control consists only of flour and is prepared as follows.
  • the mineral control consists of NH 4 CI and K 2 HPO 4 in an N / P molar ratio of 4.
  • An additive according to the present invention comprising an animal meal (90% by weight) and Noxamium® 91 (10% by weight) or Noramium® M2C (10%) is prepared as follows:
  • the surfactant is mixed in 200 times its volume of water and stirred for .about 12 hours to obtain its dissolution;
  • the animal flour is prepared by mixing 20% by weight of SOLATLANTE G® flour with 80% by weight of CRETONS® flour (the proportions being indicated relative to the total weight of animal flour);
  • the whole is homogenized by slow agitation (of the Jartest flocculator style) for approximately 12 hours, then the mixture is placed at 20 ° C. for approximately 12 hours, without agitation; - After centrifugation or filtration, the pellet is recovered by any suitable process, such as by using a press filter. If the paste thus obtained is not used immediately, it is stored at a temperature ⁇ 4 ° C.
  • the granules are prepared from the dough (which has at least 15% humidity) thus obtained by any known process.
  • the granules have a diameter of 3-5 mm.
  • the powder is prepared by drying the mixture after the centrifugation step, for example by spreading the mixture at least 24 h at 30-50 ° C. and powdering the cake thus obtained by any suitable process.
  • the bacterial flora used is a complex marine flora (Brest flora). 98/03436
  • Example 3 Influence of an additional nitrogen source on the release of nitrogen.
  • urea formaldehyde (azorgan) and urea superphosphate (USP).
  • the animal flour corresponds to a mixture of 80% SOLATLANTE G® flour and 20% flour
  • a simple tidal simulation system is used; it is a glass funnel filled with sediment (50g of sand calcined beforehand at 550 'W which is fed by a source of seawater (250ml bulb) in a cyclic way, to simulate the tides. This simulation is carried out manually by a communicating mud effect 10g of BAL 250
  • Table 3 below indicates the compositions of the formulations tested.
  • Powdered flour 10.94 46.32 6.97 0.72
  • Figures 3 and 4 show the release of nitrogen into the leaching water, for additives with and without surfactants, with and without nitrogen sources, in powder or granular form. Figures 3 and 4 give the results respectively in% and mg N / g of additive.
  • Noxamium® 91 ® provides a lipophilic character whatever the form, powder or granule, which is manifested by a lesser release of nitrogen in the leaching water (20% difference). .

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Soil Sciences (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Abstract

La présente invention a pour objet un additif de biodégradation comprenant une farine et un tensio-actif cationique biodégradable. La présente invention concerne aussi son utilisation pour la biodégradation d'hydrocarbures.

Description

ADDITIF DE BIODEGRADATION A BASE DE FARINE ET D'UN TENSIO-ACTIF CATIONIQUE
La présente invention a pour objet un nouvel additif de biodégradation et son application pour le traitement de milieux souillés par des hydrocarbures.
Il existe de nombreux procédés mettant en oeuvre des cultures de micro-organismes, qui sont développées en conditions contrôlées (dans des réacteurs par exemple) et ensuite appliquées sur le milieu à traiter. Mais ces procédés ne sont pas efficaces dès qu'il s'agit de travailler en milieu ouvert. On observe en effet des problèmes liés à la dilution des micro-organismes dans le milieu naturel, et des problèmes de compétition avec les micro-organismes indigènes bien mieux adaptés au milieu considéré. C'est pourquoi on s'est orienté vers la solution dans laquelle on stimule les micro-organismes indigènes en leur apportant des éléments nutritifs nécessaires à leur développement et qui sont limitants dans le milieu naturel .
Aussi, a-t-on proposé des additifs nutritionneis qui sont additionnés au milieu à traiter. Ces additifs peuvent être des fertilisants du type de ceux utilisés en agriculture, ou des produits protéiques de synthèse, ou encore des lyophilisats bactériens avec le nutriment. Ces produits satisfont aux besoins en carbone, azote, phosphore des bactéries. Les besoins particuliers des micro-organismes en azote et phosphore correspondent à un rapport molaire N/P variable dans une large mesure, sans altération sensible de l'efficacité. Outre l'azote et le phosphore, ces additifs comportent du carbone assimilable. La disponibilité des nutriments est aussi un problème important, puisque celle-ci conditionne la cinétique de dégradation des hydrocarbures. Afin d'accélérer cette cinétique, on a proposé diverses solutions, qui consistent à mélanger les nutriments avec des additifs divers et à former des suspensions, et surtout des émulsions. FR-A-2 490 672 décrit des microémulsions dans lesquelles les substances nutritives sont dans une solution aqueuse qui est microémulsionnée dans un liquide lipomiscible. Cependant, cette technique implique l'étape de formation de la microemulsion et nécessite la présence d'additifs tels que- des tensio-actifs . FR-A-2 512 057 décrit une amélioration de la solution proposée dans le brevet précédemment cité qui consiste a apporter la source d'azote sous la forme d'un système dual comportant deux sortes chimiquement différentes de composés azotés. Un système préféré est un système consistant en urée et acides aminés. Par ailleurs, ce brevet enseigne que les acides aminés seuls ne sont pas aussi efficaces que le système dual. Ce système dual étant aussi une microemulsion, il souffre des mêmes inconvénients que toute microemulsion. FR-A-2 230 401 décrit une composition pour la mise en emulsion biodégradable d'hydrocarbures et de graisses et son procédé de préparation. Selon ce brevet la composition est constituée par un amide aliphatique ou un ester carboxyl que d ' amide aliphatique, un sel d'ammonium d'acide carooxylique, un pnosphoa ino lipide et un solvanc pétrolier exempt de fractions oenzéniques . Cette méthode exige de fortes proportions d'émulsion aqueuse et le résultat n'est acquis qu'après plusieurs semaines.
Cependant, les additifs de synthèse présentent des risques de toxicité, par eux-mêmes ou du fait de la présence de certains de leurs dérivés .
Aussi a-t-on recherché des produits naturels en tant qu'additifs qui puissent s'utiliser sans nécessiter une microemulsion. Les demandes de brevet français FR-2695139 et FR-2695138 décrivent des additifs de biodégradation à base de produits naturels ne nécessitant pas la formation d'émulsion. La première demande concerne un additif de biodégradation caractérise en ce qu'il consiste en au moins une farine animale, ladite farine comprenant au moins une source d'azote assimilable consistant en au moins un acide aminé. Selon la deuxième demande, l'additif de biodégradation consiste en un mélange comprenant (i) au moins une source d'azote assimilable consistant en un acide aminé, non substitué ou substitué; (ii) au moins une source de phosphore selon un rapport donné. De préférence cet additif est une farine animale rendue oléophile par un traitement approprié, en particulier une acylation, le radical acyle étant de type oléique . La recherche d'additifs de biodégradation plus performants permettant d'obtenir une importante croissance bactérienne et conduisant a une meilleure biodégradation des hydrocarbures a conduit la demanderesse à la mise au point d'additifs appropries pour le traitement des milieux souillés par les hydrocarbures tels que le littoral, les sols pollues ou la surface des eaux souillées Les additifs selon la présente invention sont appropriés pour la dégradation des nappes d'hydrocarbures en pleine mer ou d'hydrocarbures en mileu ferme La demanderesse a donc mis en évidence de façon surprenante un nouvel additif de biodégradation comprenant, (i) au moins une farine, et (ii) au moins un tensio-actif cationique biodégradable.
Selon un mode de réalisation, la farine est une farine animale, de préférence une farine de poisson
Dans le présent additif, le tensio-actif représente par exemple de 2 a 12 mEq catιonιque/100 g de farine, de préférence 4 a 9 mEq cationique/ 100 g de farine, en particulier 5 mEq catιonιque/100 g de farine La définition du mEq cationique est le nombre de millimoles de composé amphiphile à pôle hydrophile cationique. On peut déterminer le nombre de mEq par gramme de produit -que l'on appelle aussi teneur en matière active- en suivant la norme AFNOR NF T 73-320.
Selon un mode de réalisation, le tensio-actif comprend un atome d'azote quaternisé (ammonium)
Selon un autre mode de réalisation, la ou les chaîne(s) hydrophobe (s) du tensio-actif comporte (nt) 8 à 24 atomes de carbone, de préférence 12 a 24 atomes de carbone.
Selon un mode de réalisation, le tensio-actif est choisi dans le groupe consistant en chlorures de dialkyl diméthyl ammonium, chlorures d'alkyl trimethyl ammonium, chlorures de N- alkyl -bis ( ethoxyhydroxyethyl ) benzyl ammonium et le methosulfate de N, N-di (alkylcarboxy-2-éthyl } , N-hydroxy-2 - éthyl.N-methylammonium, dans lesquels le radical alkyl comporte 8 à 24 atomes de carbone, de préférence 12 à 24 atomes de carbone .
De préférence le tensio-actif est le methosulfate de N,N~ di (alkylcarboxy-2-éthyl) ,N-hydroxy-2-ethyl , N-méthylammonium, le groupe alkyl comprenant de 12 a 24 atomes de carbone, en particulier lorsque le groupe alkylcarboxy est dérivé d'un radical suif partiellement hydrogène
Des mélanges de tensio-actifs sont aussi envisageables Selon un autre mode de réalisation, l'additif selon 1 ' invention comprend en outre une source d azote assimilable supplémentaire
Selon ce mode de réalisation, la souce d'azote peut être choisie dans le groupe consistant en urée formaldéhyde et urée superphosphate
Selon un mode de réalisation particulier, 1 additif selon l'invention est sous forme de granules, de poudre, ou de pâte.
Par biodégradation, on entend la dégradation par un micro-organisme, présent m situ ou rapporté Cette application peut donc être réalisée en milieu ouvert en présence d'une flore bactérienne indigène ou sur sols ou en mer en présence d'une flore bactérienne spécifique rajoutée, si celle en présence est jugée insuffisante.
Le micro-organisme utilisé peut être une levure, un champignon, une bactérie, seul(e) ou en mélange; en fait tout micro-organisme susceptible de dégrader un hydrocarbure est approprié. A titre d'exemple non-limitatif, on peut citer
Pseudomonas , Acine tobacter , Flavobac ter i um, Arthrobacter ,
Corynebac ter ium, Nocardia, Rhodococcus .
Par source d'azote, respectivement phosphore, assimilable on entend une source d'azote, respectivement phosphore, effectivement métabolisée par le micro-organisme lors de la dégradation. Dans le cadre de la présente invention, la source d'azote comprend la farine ainsi que la source d'azote supplémentaire ajoutée. On peut utiliser comme source d'azote supplémentaire toute source d'azote metabolisable par les micro-organismes présents, telle que: acides aminés, urée, nitrate ou sulfate d'ammonium, urée formaldéhyde ou l'urée superphosphate. Comme source de phosphore, on peut utiliser des phosphates de métaux alcalins ou d'ammonium, ou un superphosphate. Les sources d'azote et de phosphore peuvent être fournies par le même composé, par exemple l'urée superphosphate .
La source d'azote assimilable supplémentaire peut représenter de 10 à 70% en poids de l'additif final, de préférence de 15 à 50% en poids. Par exemple, on peut obtenir une composition finale dans laquelle le rapport massique C total/N total d'additif est inférieur à 4.
La source de phosphore assimilable supplémentaire peut représenter de 10 à 70% en poids de l'additif final, de préférence de 20 à 55% en poids.
Selon la présente invention, on entend par farine une farine animale ou végétale, ou des mélanges de celles-ci.
Selon la présente invention, on entend par farine animale toute farine animale classique, ainsi que les mélanges de ces farines. La composition de ces farines peut varier dans une large mesure; à titre d'exemple représenta if mais non-limitatif on retiendra les compositions pour les farines données dans les demandes FR-2695139 et FR-2695138, les farines commercialisées par SARIA et notamment les farines CRETONS® et SOLATLANTE G®. Le rapport N/P des farines animales utilisables dans le cadre de la présente invention peut varier sur une large gamme de valeurs. A titre d'exemple des rapports massiques N/P de 16 à 7 sont parfaitement appropriés. Les farines animales sont obtenues par tout procédé classique de fabrication. Selon la présente invention, on entend par farine végétale toute farine végétale classique, ainsi que les mélanges de ces farines. La composition de ces farines peut varier dans une large mesure. À titre d'exemple représentatif mais non-limitatif on retiendra les farines d'avoine, de d'orge, de maïs, ainsi que de soja. De façon générale, on peut utiliser les issues de meunerie telles que criblures, sons, remoulages, etc. On peut aussi utiliser les drèches de brasserie. Ces farines végétales peuvent aussi être complétées par des sources azotées . Les farines végétales sont obtenues par tout procédé classique de fabrication.
On entend par "tensio-actif cationique" dans le cadre de la présente invention tout composé dont une partie de la molécule est hydrophobe (comme tout tensio-actif) et qui présente de plus une tête hydrophile cationique. Le tensio-actif sera suffisamment hydrophobe, 1 ' hydrophobici é du tensio-actif étant déterminable par des tests de routine à la portée de l'homme de l'art. Le tensio-actif sera suffisamment cationique pour se lier aux sites porteurs de charges négatives présents dans la farine. La quantité de tensio-actif appropriée peut varier en fonction de son hydrophobicité.
On peut citer à titre d'exemples de tensioactifs biodégradables cationiques pouvant être utilisés dans le cadre de la présente invention les produits disponibles dans le commerce sous les marques : Noramium®, en particulier Noramium® M2C et Noramium® MS50, Noxamium®, en particulier Noxamium® MC2 et Noxamium® 91. Ces tensio-actifs sont disponibles chez CECA. D'autres tensio-actifs cationiques tels que des sulphoniums ou des phosphoniums -pour lesquels la charge cationique est portée soit par un atome de soufre soit par un atome de phosphore- peuvent également être utilisés dans le cadre de la présente invention. Ces tensio-actifs sont toutefois moins préfères que leurs équivalents azotes. Les tensio-actifs dont la chaîne hydrophobe comporte 12 à 24 atomes de carbone sont préfères et ceux comportant deux chaînes hydrophobes sont plus particulièrement préférés. II a ete mis en évidence que les tensioactifs selon la présente invention ne présentent aucun caractère bactéricide et augmentent sensiblement le caractère oléophile des farines. Le test d'oleophilie est décrit plus en détails dans les exemples qui suivent, pour des farines animales. L'utilisation des additifs selon la présente invention est donc utile pour la biodégradation des hydrocarbures sur sols, sédiments et a la surface de l'eau. Les sédiments souillés par des hydrocarbures peuvent provenir de déversements accidentels d'hydrocarbures ou non, tels que nettoyage de bassins, chaussée, sols, etc L'additif selon la présente invention peu être utilise pour le traitement des sols souillés par des hydrocarbures résultant de traitements de la houille, tel que des sols houilleux, etc. L'additif selon la présente invention est approprie pour le traitement des eaux souillées en milieu ouvert, notamment en pleine mer par exemple a la suite d'un dégazage ou d'une marée noire.
Cette utilisation est tout aussi adaptée et profitable, dans le cas de traitement en milieux fermés, tels que réacteurs, bourbier, stockage d'hydrocarbures et autres. La proportion d'additif par rapport a 1 hydrocarbure a dégrader est variable. Le rapport massique [additif ]/ [hydrocarbures] est généralement compris entre 3 et 30 De préférence, le rapport massique est égal a environ 10.
La présente invention a aussi pour objet l'utilisation des présents additifs pour la biodégradation d ' hydrocarbures . O 98/03436
La présente invention est illustrée plus en détails dans les exemples suivants donnés à titre illustratif mais non limitatif, et en référence aux figures: la figure 1 représente la cinétique de minéralisation du phénanthrène; la figure 2 représente le dénombrement bactérien; les figures 3 et 4 représentent le relargage d'azote, en %, ou en mg N/g de produit pour différents additifs. Exemple 1. Aucrmentation de l'oléophilie des farines
Le test d'oléophilie est mis en oeuvre sur les tensioactifs décrits dans le tableau 1, selon un test de- partage simple.
Tableau 1
Produit Nature Composition
Noramium® M2C Cationique Chlorures de dialkyl diméthyl ammonium (alkyl=huile de copra)
Noramium® S 50 Cationique Chlorures de d' alkyl triméthyl ammonium (alkyl=suif C16)
Noxamium® MC2 Cationique Chlorures de N-alkyl bis ( éthoxyhydroxyéthyl ) benzyl ammonium (alkyl=C8-C24 )
Noxamium® 91 Cationique methosulfate de N,N- di ( alkylcarboxy-2 -éthyl ) , N- hydr oxy- 2 - é hy 1 N-méthyl ammonium ( alkylcarboxy= C16 partiellement hydrogéné)
Le protocole est le suivant. Après avoir mis en contact le tensioactif à une concentration donnée avec la farine en phase liquide (5ml, 12h à 37*C), la phase huile (5ml d'octane) est rajoutée. Le tout est agité manuellement puis décanté. Les observations sont alors effectuées: si la farine reste dans le fond, le résultat est négatif, si elle flotte dans la phase aqueuse, le résultat est moyen et si elle reste à l'interface eau/huile et s'y stabilise, le résultat est bon. Les résultats sont consignés dans le tableau 2.
Tableau 2
Figure imgf000011_0001
Ce test montre clairement que les tensioactifs selon la présente invention confèrent un caractère lipophile à la farine animale. Les concentrations utilisables se situent dans une gamme allant de 2 mEq à 12 mEq pour 100 grammes de farine. L'étendue de cette gamme dépend cependant de la nature des chaînes grasses liées à l'atome d'ammonium quaternaire. Dans les conditions expérimentales utilisées, on montre que le tensio-actif est complètement adsorbé par la farine.
Cependant, les additifs selon l'invention peuvent être utilisés même lorsqu'ils ne sont pas hydrophobes .
Exemple n' 2: Test de biodégradation
Un test de biodégradabilité est mis en oeuvre sur des hydrocarbures marqués . 1. Fabrication des additifs testés
Le témoin farine est uniquement constitué de farine et est préparé de la façon suivante.
On mélange 40 kg de farine SOLATLANTE G® avec 10 kg de farine
CRETONS® et 15% environ d'eau (7,5 1) pour obtenir une pâte facilement extrudable. Des granules présentant un diamètre de
3-5 mm sont ensuite préparés par une méthode classique.
Le témoin minéral est constitué de NH4CI et de K2HPO4 selon un rapport molaire N/P de 4.
Un additif selon la présente invention comprenant une farine animale (90% en poids) et du Noxamium® 91 (10% en poids) ou du Noramium® M2C (10%) est préparé de la façon suivante:
- on mélange le tensioactif dans 200 fois son volume d'eau et on agite pendant .environ 12 heures pour obtenir sa dissolution;
- la farine animale est préparée par mélange de 20% en poids de farine SOLATLANTE G® à 80% en poids de farine CRETONS® (les proportions étant indiquées par rapport au poids total de la farine animale) ;
- l'ensemble est homogénéisé par agitation lente (du style Jartest floculateur) pendant environ 12 heures, puis le mélange est placé à 20 "C pendant environ 12 heures, sans agitation; - après centrifugation ou filtration, le culot est récupéré par tout procédé adapté, tel que par utilisation d'un filtrepresse. Si la pâte ainsi obtenue n'est pas utilisée immédiatement, elle est conservée à une température < 4'C.
On prépare les granulés à partir de la pâte (qui a au moins 15% d'humidité) ainsi obtenue par tout procédé connu. Les granulés présentent un diamètre de 3-5 mm.
La poudre est préparée par séchage du mélange après l'étape de centrifugation, par exemple par étalement du mélange au moins 24h à 30-50 'C et réduction en poudre du gâteau ainsi obtenu par tout procédé approprié.
2. Protocole du test de biodégradation Pour tester l'efficacité des additifs dans la biodégradation des hydrocarbures, nous utilisons une technique de scintillométrie dans laquelle un modèle d'hydrocarbure
(phénanthrène) est radioactif. Sa biodégradation est suivie par le relargage de 14C02 selon le principe suivant: Pour suivre la cinétique de biodégradation du substrat radioactif, le 12 issu de la minéralisation du composé radioactif par une flore bactérienne mixte est quantifié. Pour ce faire, une culture bactérienne (de 100 à 150ml) placée dans un réacteur de 250 ml ou 500 ml est incubée à 20°C à l'obscurité et en conditions agitées ( lOOt/minute) pendant une trentaine de jours. La culture est aérée par un flux d'air sans CO2. La sortie de chaque réacteur est équipée avec un piège à hydrocarbures (pour les hydrocarbures évaporés) suivi par un piège à C02 (soude 4N) . On réalise un comptage sur une fraction aliquote du 14C02 piégé dans la soude après ajout du liquide à scintillation, suivant une cinétique pré-établie. A la fin de l'expérience, le milieu de culture est acidifié. Un bilan global de radioactivité est alors effectué. Le comptage est effectué dans un compteur à scintillation BECMANN LS 3801. La flore bactérienne utilisée est une flore marine complexe { flore de Brest) . 98/03436
Les résul tats de la cinétique de minéralisation du phénanthrène marqué en présence des deux f ormulations ment ionnées c i -dessus et des témoins sont représentés graphiquement à la f igure 1 . Le dénombrement bactérien au début et à la fin de l ' expérience est donné à la figure 2 .
Il apparaî t clairement à partir de ces résultats que les tens ioact i f s selon la présente invention n ' ont pas ef fet bactéricide et qu ' ils n ' altèrent pas l ' activité métabolique des bactéries .
Exemple 3: Influence d'une source d'azote supplémentaire sur le relargaαe de l'azote.
1. Formulations testées
Deux sources d'azote sont testées: l'urée formaldéhyde (azorgan) et l'urée superphosphate (USP) .
Les formulations suivantes sous forme de poudre et de granulés sont testées: (les pourcentages indiqués sont des % en poids . ) farine animale 60% + Noxamium® 91® 3,3% + azorgan 36,7% farine animale 47,5% + Noxamium® 91® 2,5% + USP 50%.
Dans ces formulations la farine animale correspond à un mélange de 80% de farine SOLATLANTE G® et de 20% de farine
CRETONS®,* le témoin farine/tensio-actif est constitué de 95% de farine animale et de 5% de tensioactif. Un témoin 100% farine est également réalisé.
2. Protocole
Un système simple de simulation de marée est utilisé; il s'agit d'un entonnoir de verre rempli de sédiments (50g de sable préalablement calciné à 550 'O qui est alimenté par une source d'eau de mer (ampoule de 250ml) de manière cyclique, pour simuler les marées. Cette simulation est effectuée manuellement par effet de vase communiquant. 10g de BAL 250
(Arabe léger étété à 250°C) est disposé à la surface du sédiment avant immersion, les additifs (quantité connue, exactement environ 10% en poids) sont alors ajoutés aux hydrocarbures. Le sédiment est alors immergé (2h), puis découvert (3 fois). Toute l'eau (200ml) est récupérée pour analyse de l'azote total. La quantité d'azote récupérée est exprimée en % de l'azote mis à la surface du sédiment, ou selon le cas en mg N/g d'additif.
Le tableau 3 ci-après indique les compositions des formulations testées. Tableau 3
Composition
Formulations N% C% H% P%
Farine+Nox poudre 7,75 50,0 6,33 0,53
Farine+Nox granulés 8,40 49,3 5,26 0,50
Farine+Nox+Azorgan poudre 22,02 38,9 6,11 0,25
Farine+Nox+Azorgan granulés 22,88 37,68 6,85 0,23
Farine+Nox+UPS poudre 17,66 23,88 5,5 3,65
Farine+Nox+USP granulés 18,51 25,74 6 3,15
Farine poudre 10,94 46,32 6,97 0,72
Farine granulés 11,75 51,34 7,47 0,69
Les figures 3 et 4 représentent le relargage d'azote dans l'eau de lessivage, pour des additifs avec et sans les tensio- actifs, avec et sans les sources d'azote, sous forme poudre ou granulés. Les figures 3 et 4 donnent les résultats respectivement en % et en mg N/g d'additif.
Au vu de ces résultats, on note que le Noxamium® 91® apporte un caractère lipophile quelle que soit la forme, poudre ou granulé, qui se manifeste par un moindre relargage d'azote dans l'eau de lessivage (20% de différence).
En ce qui concerne le témoin 100% farine et le témoin farine associée au Noxamium®, la forme poudre est meilleure
D'une manière générale, en présence d' azorgan et d'USP, les résultats sont meilleurs. Exprimé en mg de N/g d'additif, c'est l'association farine+Noxamium® 91+USP qui présente le relargage le moins important. Le tensio-actif (ici le Noxamium®) permet un relargage retardé d'azote.
La présente invention n'est pas limitée aux modes de réalisation décrits mais est susceptible de nombreuses variantes aisément accessibles à l'homme de l'art.

Claims

REVENDICATIONS
1. Additif de biodégradation comprenant: (i) au moins une farine; et (ii) au moins un tensio-actif cationique biodégradable.
2. Additif selon la revendication 1, dans lequel la farine est une farine animale.
3. Additif selon la revendication 1 ou 2 , dans lequel la farine est une farine de poisson.
4. Additif selon l'une quelconque des revendications 1 à 3, dans lequel le tensio-actif représente 2 à 12 mEq catιonιque/100 g de farine.
5. Additif selon l'une quelconque des revendications 1 à 4, dans lequel le tensio-actif représente 4 à 9 mEq cationique/100 g de farine.
6. Additif selon l'une quelconque des revendications 1 à 5, dans lequel le tensio-actif comporte un atome d'azote quaternisé .
7. Additif selon l'une quelconque des revendications 1 à 6, dans lequel la ou les chaîne (s) hydrophobe (s ) du tensio-actif comporte (nt) 8 à 24 atomes de carbone, de préférence 12 à 24 atomes de carbone..
8. Additif selon l'une quelconque des revendications 1 à 7, dans lequel le tensio-actif est cnoisi dans le groupe consistant en chlorures de dialkyldiméthylammonium, chlorures d ' alkyltriméthylammonium, chlorures de N-alkyl-bis (éthoxy- hydroxyéthyl ) benzylammonium et le methosulfate de N, N-di ( alkyl- carboxy-2-éthyl ) , N-hydroxy-2-éthyl , N-méthylammomum, dans les- quels le radical alkyl comporte 8 à 24 atomes de carbone, de préférence 12 à 24 atomes de carbone.
9. Additif selon l'une quelconque des revendications 1 à 8, dans lequel le tensio-actif est le methosulfate de N,N- di (alkylcarboxy-2-éthyl) , -hydroxy-2-éthyl,N-méthylammonium, dans lequel le groupe alkylcarboxy est dérivé d'un radical suif partiellement hydrogéné.
10. Additif selon l'une quelconque des revendications 1 à 9, comprenant en outre une source d'azote assimilable supplémentaire .
11. Additif selon la revendication 10, dans lequel ladite source d'azote assimilable supplémentaire est l'urée formaldéhyde ou l'urée superphosphate.
12. Additif selon l'une quelconque des revendications 1 à 11, comprenant en outre une source de phosphore assimilable supplémentaire.
13. Additif selon l'une quelconque des revendications 1 à 12, sous forme de granules, de poudre ou de pâte.
14. Additif selon l'une quelconque des revendications 1 à 13 , caractérisé en ce que ledit additif est présent selon un rapport massique [additif ]/ [hydrocarbures ] compris entre 3 et 30, et de préférence égal à environ 10.
15. Utilisation d'un additif selon l'une quelconque des revendications 1 à 14 pour la biodégradation d'hydrocarbures.
PCT/FR1997/001332 1996-07-17 1997-07-17 Additif de biodegradation a base de farine et d'un tensio-actif cationique WO1998003436A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR96/08964 1996-07-17
FR9608964A FR2751344B1 (fr) 1996-07-17 1996-07-17 Nouvel additif de biodegradation

Publications (1)

Publication Number Publication Date
WO1998003436A1 true WO1998003436A1 (fr) 1998-01-29

Family

ID=9494158

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/FR1997/001332 WO1998003436A1 (fr) 1996-07-17 1997-07-17 Additif de biodegradation a base de farine et d'un tensio-actif cationique
PCT/FR1997/001331 WO1998003435A1 (fr) 1996-07-17 1997-07-17 Additif de biodegradation a base de farine et d'un tensio-actif lipidique non-ionique ou zwitterionique

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/FR1997/001331 WO1998003435A1 (fr) 1996-07-17 1997-07-17 Additif de biodegradation a base de farine et d'un tensio-actif lipidique non-ionique ou zwitterionique

Country Status (2)

Country Link
FR (1) FR2751344B1 (fr)
WO (2) WO1998003436A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006123081A1 (fr) * 2005-05-20 2006-11-23 Randall & Walsh Associates Limited Biorestauration

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5067984A (en) * 1989-12-19 1991-11-26 Starr Tina F Oil absorbent
WO1994005773A1 (fr) * 1992-08-31 1994-03-17 Elf Aquitaine Nouvel additif de biodegradation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2093967T3 (es) * 1992-05-04 1997-01-01 Allied Signal Inc Aparato y proceso para la eliminacion de contaminantes de las aguas residuales.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5067984A (en) * 1989-12-19 1991-11-26 Starr Tina F Oil absorbent
WO1994005773A1 (fr) * 1992-08-31 1994-03-17 Elf Aquitaine Nouvel additif de biodegradation

Also Published As

Publication number Publication date
FR2751344A1 (fr) 1998-01-23
WO1998003435A1 (fr) 1998-01-29
FR2751344B1 (fr) 1998-09-11

Similar Documents

Publication Publication Date Title
CH653362A5 (fr) Procede de culture de microorganismes avec l&#39;emploi de substances nutritives.
Hardison et al. Fate of macroalgae in benthic systems: carbon and nitrogen cycling within the microbial community
JPS63503524A (ja) 油汚染された水および土壌の再生用細菌組成物
FR2627672A1 (fr) Produit alimentaire solide contenant des algues dunaliella et procede pour sa fabrication
Gilewicz et al. Isolation and characterization of a marine bacterium capable of utilizing 2-methylphenanthrene
FR2904248A1 (fr) Procede de traitement bio-assiste d&#39;un sol contamine par des hydrocarbures.
CS203137B2 (en) Mixture for removing oil and other hydrocarbons from see and river water
WO1998003436A1 (fr) Additif de biodegradation a base de farine et d&#39;un tensio-actif cationique
CA1179802A (fr) Composition biocide a base de sulfonium et de composes organiques de l&#39;etain
Wakeham et al. Lipid composition of the pelagic crab Pleuroncodes planipes, its feces, and sinking particulate organic matter in the Equatorial North Pacific Ocean
EP0663948A1 (fr) Nouvel additif de biogradation
EP0721499B1 (fr) Procede de rehabilitation de sols contamines par hydrocarbures et autres substances biodegradables
JP3564237B2 (ja) δ−デカラクトンの製造方法
JP7107259B2 (ja) アワビ類用餌料及びアワビ類用餌料の製造方法
BE1026940B1 (fr) Composition pour le revêtement de substrats
KR20060103311A (ko) 적조제거를 위한 혼합 조성물
EP3110957A1 (fr) Procédé de production de lactones a partir d&#39;une souche d&#39;aureobasidium pullulans
US6001263A (en) Distiller&#39;s dried grain as oil dispersant
DUDU GÜL et al. Comparison the dye removal activity of systems contained surfactants and fungus
EP2844077A1 (fr) Complexe organométallique, poudre destinée à l&#39;alimentation animale et procédés de préparation
FR2696475A1 (fr) Procédé de production de micro-algues.
JPH07144199A (ja) 石油分解材及びそれを用いた石油除去方法
WO2003037496A1 (fr) Emulsion a base de tensioactif et de polymere de charge opposee et procede de fabrication
Brown Fate and Effect of Oil in the Aquatic Environment, Gulf Coast Region
JPH0751000A (ja) 養殖魚用飼料添加剤

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR MX NO SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1998506642

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA