WO1994005773A1 - Nouvel additif de biodegradation - Google Patents

Nouvel additif de biodegradation Download PDF

Info

Publication number
WO1994005773A1
WO1994005773A1 PCT/FR1993/000834 FR9300834W WO9405773A1 WO 1994005773 A1 WO1994005773 A1 WO 1994005773A1 FR 9300834 W FR9300834 W FR 9300834W WO 9405773 A1 WO9405773 A1 WO 9405773A1
Authority
WO
WIPO (PCT)
Prior art keywords
additive
flour
acylated
hydrocarbons
biodegradation
Prior art date
Application number
PCT/FR1993/000834
Other languages
English (en)
Inventor
Anne Basseres
Patrick Eyraud
Alain Ladousse
Original Assignee
Elf Aquitaine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elf Aquitaine filed Critical Elf Aquitaine
Priority to JP6506927A priority Critical patent/JPH08501935A/ja
Priority to CA002143624A priority patent/CA2143624A1/fr
Priority to EP93919407A priority patent/EP0663948A1/fr
Priority to AU49649/93A priority patent/AU4964993A/en
Priority to US08/387,723 priority patent/US5618725A/en
Publication of WO1994005773A1 publication Critical patent/WO1994005773A1/fr
Priority to NO950750A priority patent/NO950750L/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/38Chemical stimulation of growth or activity by addition of chemical compounds which are not essential growth factors; Stimulation of growth by removal of a chemical compound
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/32Materials not provided for elsewhere for absorbing liquids to remove pollution, e.g. oil, gasoline, fat
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S530/00Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
    • Y10S530/827Proteins from mammals or birds
    • Y10S530/841Muscles; heart
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S530/00Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
    • Y10S530/855Proteins from animals other than mammals or birds
    • Y10S530/857Fish; fish eggs; shell fish; crustacea

Definitions

  • the present invention relates to a new biodegradation additive and its application for the treatment of environments soiled by hydrocarbons, by acceleration of natural biodegradation.
  • these products meet the carbon, nitrogen and phosphorus needs of bacteria.
  • the particular needs of microorganisms for nitrogen and phosphorus correspond to a variable N / P molar ratio to a large extent, without appreciable alteration in efficiency.
  • these additives contain assimilable carbon. This assimilable carbon is contained in hydrocarbon molecules whose chain is similar to a chain aliphatic which one meets in hydrocarbons.
  • these products serve as a "starter", that is to say that they promote the reaction in the first moments.
  • FR-A-2 490 672 describes microemulsions in which the nutritive substances are in an aqueous solution which is microemulsified in a lipomiscible liquid.
  • this technique involves the step of forming the microemulsion and requires the presence of additives such as surfactants and the like, which are expensive.
  • FR-A-2,512,057 describes an improvement to the solution proposed in the aforementioned patent, which consists in providing the source of nitrogen in the form of a dual system comprising two chemically different kinds of nitrogenous compounds.
  • a preferred system is a system consisting of urea and amino acids.
  • this patent teaches that amino acids alone are not as effective as the dual system.
  • This dual system is also a microemulsion, it suffers from the same drawbacks as any (micro) emulsion.
  • additives are sought which can be used without requiring a (micro) emulsion or the use of expensive additives. O is also aware of the use of animal meal as a nutrient for microorganisms, these being in aqueous solution or suspension.
  • the subject of the present invention is a biodegradation additive characterized in that it consists of a mixture comprising:
  • At least one assimilable nitrogen source consisting of at least one amino acid, unsubstituted or substituted;
  • at least one source of phosphorus according to an N / P ratio of between 2 and 100; said additive having been subjected to a treatment aimed at making it oleophilic.
  • biodegradation is meant degradation by a microorganism, present in situ or reported. This application can therefore be carried out in an open environment in the presence of an indigenous bacterial flora, or on soils in the presence of a specific bacterial flora added, if that in presence is judged insufficient.
  • the microorganism used can be a yeast, a fungus, a bacterium; in fact any micro-organism capable of degrading a hydrocarbon is appropriate.
  • any micro-organism capable of degrading a hydrocarbon is appropriate.
  • the nitrogen effectively metabolized by the micro-organism during degradation.
  • This treatment can be a conventional treatment.
  • the treatment consists of acylation.
  • the carbon chain of the acyl group is preferably a fatty chain; advantageously, an acid chloride, in particular laurylic acid, is used.
  • amino acids which can be used within the framework of the present invention can be any amino acid, natural or close synthetic acids such as ornitine, and the like. These amino acids can be unsubstituted or substituted. When substituted, the substituent is an alkyl, lower alkoxy, hydroxy and the like.
  • the amino acid is chosen from the group consisting of: lysine, methionine, cystine, threonine, tryptophane, hydroxylysine, hydroxyproline, and mixtures thereof.
  • the assimilable nitrogen source represents at least 5% by weight of the total weight of said biodegradation additive.
  • the assimilable nitrogen source is found in proteins representing at least 50% by weight of the total weight of said additive.
  • the source of phosphorus is an inorganic salt of phosphorus.
  • said N / P ratio is between 4 and 40, preferably is equal to about 16.
  • the additive consists of animal meal.
  • the flour is fish meal.
  • the flour is a meat meal.
  • Fish or meat meal is obtained by any conventional manufacturing process.
  • the following process may be cited: shredding, cooking, press, mixing with a concentrated press juice, drying, sieving, and final grinding.
  • the composition of these flours can vary to a large extent; as a representative but non-limiting example, compositions for various flours are given below.
  • Fishmeal proteins: 60 to 85% of which main amino acids: lysine, methionine, threonine.
  • fat 3 to 25%.
  • mineral matter phosphorus, calcium, chlorides
  • Meat meal protein: 60 to 85% of which main amino acids: lysine, threonine, hydroxy-proline.
  • fat 2 to 7%.
  • mineral matter phosphorus, calcium, chlorides
  • additives according to the present invention in particular animal meal, such as meat or fish meal, is therefore useful for the biodegradation of hydrocarbons on soils, sediments and on the surface of water.
  • the sediments contaminated by hydrocarbons can come from accidental discharges of hydrocarbons or not, such as cleaning of basins, pavement, grounds, ...
  • This use is just as adapted and profitable, in the case of treatment in closed environments, such as reactors, quagmire, storage of hydrocarbons and others.
  • the proportion of additive relative to the hydrocarbon is variable.
  • the mass ratio [additive] / [hydrocarbons] is generally between 3 and 30. Preferably, the mass ratio is equal to approximately 10.
  • the present invention also relates to the use of the present additives for the biodegradation of hydrocarbons.
  • the following examples illustrate the invention in more detail.
  • composition of the biodegradation additives is given in the table below.
  • Figures 1 and 2 show the evolution of the ammonia nitrogen contents in tanks and reactors with acylated flour or not.
  • Figures 3 and 4 show the evolution of orthophosphate contents in tanks and reactors with acylated flour or not.
  • Figures 5 and 6 show the release of nitrogen in the reactors with acylated flour or not.
  • Figures 7 and 8 show the release of phos ⁇ phore in the reactors with acylated flour or not.
  • FIGS. 9 and 10 represent the temporal evolution of the total bacterial flora and specific hydrocarbon in the presence of non-acylated flour and acylated flour.
  • FIG. 11 represents the evolution of the indices of bio-degradation of the alkanes for the two experiments: in the presence of acylated flour or not.
  • Figures 12 and 13 represent the temporal evolution of total bacterial flora and specific hydrocarbons in the three basins: control, with non-acylated flour and with acylated flour.
  • FIG. 14 represents the composition of the crude samples recovered in the 3 basins, at TO, and at 42 days: alkane, aromatic, asphaltene and resin fraction.
  • Figures 15 to 18 are the alkane fraction chromatograms for, respectively, the BAL 150 at 0 days, the control basin at 42 days, the basin treated with non-acylated flour at 42 days, the basin treated with flour rolled at 42 days.
  • This synthesis is carried out in a solvent medium.
  • the principle of the reaction is to bring the animal meal (fish meal) into contact with an acid chloride (lauroyl chloride C 12 H 23 C10) in the presence of solvent (dichloromethane CH C1 ⁇ ).
  • middle a proton sensor which is triethylamine [C ⁇ HJ ⁇ N]
  • the mixture [lauroyl chloride + fishmeal + dichloromethane + triethylamine] is stirred (mechanical agitator) for 24 hours at 30 ° C.
  • the amount of acid chloride is put in excess (+ 20%) relative to that necessary to react on the amine groups of lysine. Lysine accounts for 5% of the protein in fishmeal. The amount of triethylamine is added in the same proportions.
  • acylated flour is washed on a solvent filter (dichloromethane) to remove the excess acid chloride.
  • the cake is then taken up in water, then filtered to remove the excess of triethylamine and the salt formed.
  • the cake consisting of acylated flour is then dried in an oven.
  • First test degree of oleophilicity of acylated flour
  • the degree of oleophilia of raw flour or acylated flour is measured by means of a partition coefficient test.
  • the mixture is stirred for 5 minutes in a separatory funnel with a mixture of artificial seawater without nitrogen (700 ml) + hydrocarbons (BAL 150: 28 g) and a known quantity of animal flour on the surface of the hydrocarbons. After stirring, the mixture is left to settle for 12 hours and the nitrogen content of the aqueous phase is assayed. This nitrogen content is representative of a passage of the nitrogen contained in the flour to the aqueous phase. We can thus calculate the degree of oleophilia. The results obtained are listed in Table I. TABLE I
  • the 14C0 ⁇ observed by a bacterial culture is observed.
  • a technique is used in which a mini-reactor (5 ml) containing a bacterial culture (nutrient medium: 1 ml and inoculum: 0.1 ml) is enclosed in a scintillation vial containing 2.5 ml of molar soda. After incubation at 20 ° C in the dark and without shaking, the 14C0- trapped in soda is analyzed after acidification of the culture medium and after addition of the scintillation liquid (Hionic fluorine). It is the same for the marked substrate remaining in the vial. Radioactivity is read in a BECMANN scintillation counter
  • Biodegradation of hydrocarbons in the presence of animal flour, acylated or not, in an open environment In order to demonstrate the interest of making animal meal oleophilic, an experiment was carried out in an open environment, this in order to check whether the oleophilicity of the flour keeps nutrients (nitrogen and phosphorus) in contact with hydrocarbons and thus make biodegradation faster.
  • the animal meals used for Examples 2 and 3 are fish meals.
  • the modifications made to the chemical synthesis, compared to that described previously in Example 1, are:
  • reaction temperature which is of the order of 50 ° C., which corresponds to the reflux temperature of the solvent
  • the acid chloride is in excess of 300%, which corresponds to the parameter which has undergone the most significant modification compared to the synthesis according to Example 1.
  • the other parameters and protocols are unchanged. Test:
  • the pilot used for this experiment is composed of a reactor containing 100 ml of sea water polluted by hydrocarbons (2.5 ml of light Arabic). Animal flour, acylated or non-acylated, was applied to the surface of the hydrocarbons at a rate of 10% by weight relative to the hydrocarbons present. This reactor is continuously stirred and aerated. The reactor water is continuously renewed for 15 days with sea water, contained in a tank, at the rate of 8 renewals per day. The effluent is collected at the outlet of the reactor,
  • the physico-chemical analyzes are carried out in accordance with the standards in force: ammoniacal nitrogen: AFNOR NF T90-015; nitrogen in nitrate form: Standard methods 4500-NO3-E; orthophosphate: standard method 4500-PC-Vn Acid Col. Meth.
  • Total bacteria are counted according to the most probable number technique, in liquid medium (Marine Broth 2216).
  • the specific hydrocarbon bacteria are also counted by the technique of the most probable number, in a liquid medium, in which the hydrocarbons represent the only source of carbon.
  • Hydrocarbons are analyzed by gas chromatography.
  • the quantification of the biodegradation of hydrocarbons is carried out by the estimation of biodegradation indices calculated from gas chromatography. These indices are the C17 / pristane and C18 / phytane ratios. The decrease in these ratios is correlated with the biodegradation of alphatic hydrocarbons. They are reported in table VIII.
  • Acylated animal flour therefore has more advantages than non-acylated flour for the acceleration of hydrocarbons.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Public Health (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

La présente invention a pour objet un additif de biodégradation caractérisé en ce qu'il consiste en un mélange comprenant: (i) au moins une source d'azote assimilable consistant en au moins un acide aminé, non-substitué ou substitué; (ii) au moins une source de phosphore; selon un rapport N/P compris entre 2 et 100; ledit additif ayant été soumis à un traitement visant à le rendre oléophile. Elle concerne également l'utilisation d'un additif selon l'une quelconque des revendications précédentes pour la biodégradation d'hydrocarbures.

Description

NOUVEL ADDITIF DE BIODEGRADATION
La présente invention a pour objet un nouvel additif de biodégradation et son application pour le traitement de mi- lieux souillés par des hydrocarbures, par accélération de la biodégradation naturelle.
Il existe de nombreux procédés mettant en oeuvre des cultures de micro-organismes, qui sont développées en condi¬ tions contrôlées (dans des réacteurs par exemple) et ensuite appliquées sur le milieu à traiter. Mais ces procédés ne sont pas efficaces dès qu'il s'agit de travailler en milieu ouvert. On observe en effet des problèmes liés à la dilution des micro-organismes dans le milieu naturel, et des problèmes de compétition avec les micro-organismes indigènes bien mieux adaptés au milieu considéré. C'est pourquoi on s'est orienté vers la solution dans laquelle on stimule les micro-organismes indigènes en leur apportant des éléments nutritifs nécessaires à leur développement et qui sont limitants dans le milieu naturel. Aussi, a-t-on proposé des additifs nutritionnels qui sont additionnés au milieu à traiter. Ces additifs peuvent être des fertilisants du type de ceux utilisés en agriculture, ou des produits protéiques de synthèse, ou encore des lyophi- lisats bactériens avec le nutriment. Ces produits satisfont aux besoins en carbone, azote, phosphore des bactéries. Les besoins particuliers des micro-organismes en azote et phos¬ phore correspondent à un rapport molaire N/P variable dans une large mesure, sans altération sensible de l'efficacité. Outre l'azote et le phosphore, ces additifs comportent du carbone assimilable. Ce carbone assimilable est contenu dans des molé¬ cules hydrocarbonées dont la chaîne est similaire à une chaîne aliphatique que 1'on rencontre dans les hydrocarbures. Par ailleurs, ces produits servent de "starter", c'est-à-dire qu'ils favorisent la réaction dans les premiers instants.
La disponibilité des nutriments est aussi un problème important, puisque celle-ci conditionne la cinétique de dégra¬ dation des hydrocarbures. Afin d'accélérer cette cinétique, on a proposé diverses solutions, qui consistent à mélanger les nutriments avec des additifs divers et à former des suspen¬ sions, et surtout des émulsions. FR-A-2 490 672 décrit des microémulsions dans lesquelles les substances nutritives sont dans une solution aqueuse qui est microémulsionnée dans un liquide lipomiscible. Cependant, cette technique implique 1'étape de formation de la microémulsion et nécessite la pré¬ sence d'additifs tels que des tensio-actifs et autres, qui sont coûteux. FR-A-2 512 057 décrit une amélioration de la solution proposée dans le brevet précédemment cité qui consis¬ te à apporter la source d'azote sous la forme d'un système dual comportant deux sortes chimiquement différentes de compo¬ sés azotés. Un système préféré est un système consistant en urée et acides aminés. Par ailleurs, ce brevet enseigne que les acides aminés seuls ne sont pas aussi efficaces que le système dual. Ce système dual étant aussi une microémulsion, il souffre des mêmes inconvénients que toute (micro)émulsion.
Cependant, ces additifs de synthèse présentent des pro- blêmes de toxicité, du fait de la présence de dérivés, tel par exemple du butoxyéthanol, et autres produits similaires.
Aussi recherche-t-on des produits naturels en tant qu'additifs; mais le problème est que ces produits ne contien¬ nent pas de carbone sous une forme proche d'un groupe alipha- tique du type de ceux présents dans les hydrocarbures et, par là, ne sont pas susceptibles de conduire à un effet starter. Par ailleurs, on recherche des additifs qui puissent s'utili¬ ser sans nécessiter une (micro)émulsion ou l'emploi d'additifs coûteu . O connaît par ailleurs 1'emploi de farines animales en tant que nutrient pour des microorganismes, ceux-ci étant en solution ou suspension aqueuse.
Biosis Previews Databan . Philadelphie, Biosis Number: 83042449, G.A. Kochkina et al.: "Development of a Nutrient Médium for Cultivating Ntomophthora-Thaxteriana" & Biotekhno- logiya, vol. 4, 1986, pages 46-51, décrit l'utilisation de farine de poisson comme nutrient pour la culture d'un micro- organisme, par exemple Entomophthora-Thaxteriana fungi.
Biosis Previews Databank, Philadelphie, Biosis Number: 70050436, M. Rusan et al.: "Influence of Animal Proteins on the Fermentation of Antibiotics" & Bol Soc Broteriana 52, vol. 0, 1978, (Recd. 1979), pages 29-36, décrit l'utilisation de farines de viandes ou de sang comme source d'azote pour la production d'antibiotiques à partir de microorganismes de type fungi.
Biosis Previews Databank, Philadelphie, Biosis Number: 70043472, 0. Yagi et al.: "Dégradation of Poly Chlorinated Bi Phenyls by Microorganisms" & J. ater Pollut Control Fed 52, vol. 5, 1980, pages 1035-1043, décrit l'utilisation de micro¬ organismes pour la lutte contre la pollution, de l'extrait de viande étant additionné au milieu de culture.
Cependant, il n'y a aucune indication que ces mêmes farines puissent aussi être utilisées dans un milieu souillé par un hydrocarbure, c'est-à-dire aussi différent qu'un milieu aqueux simple.
De façon surprenante, la demanderesse a trouvé que l'ad¬ ditif selon la présente invention répond à toutes les exigen- ces énnoncées ci-avant.
Ainsi, la présente invention a pour objet un additif de biodégradation caractérisé en ce qu'il consiste en un mélange comprenant:
(i) au moins une source d'azote assimilable consistant en au moins un acide aminé, non-substitué ou substitué; (ii) au moins une source de phosphore; selon un rapport N/P compris entre 2 et 100; ledit additif ayant été soumis à un traitement visant à le rendre oléophile. P r biodégradation, on entend la dégradation par un micro-organisme, présent in situ ou rapporté. Cette applica¬ tion peut donc être réalisée en milieu ouvert en présence d'une flore bactérienne indigène, ou sur sols en présence d'une flore bactérienne spécifique rajoutée, si celle en pré¬ sence est jugée insuffisante.
Le micro-organisme utilisé peut être une levure, un champignon, une bactérie; en fait tout micro-organisme sus- ceptible de dégrader un hydrocarbure est approprié. A titre d'exemple non-limitatif, on peut citer Pseudomonas, Aciteno- bacter, Flavobacterium, Artrobacter, Corynebacterium.
Par azote assimilable, on entend l'azote effectivement métabolisé par le micro-organisme lors de la dégradation. Ce traitement, visant à rendre oléophile l'additif, peut être un traitement classique. On peut citer, à titre d'exem¬ ple: acylation, estérification, greffage d'un radical long sur différents groupements, transformation par base de Schiff, formation de carbamate. en présence d'isocyanate et autres. De préférence, le traitement consiste en une acylation. La chaîne carbonée du groupe acyle est de préférence une chaîne grasse; avantageusement, on utilise un chlorure d'acide, par¬ ticulièrement l'acide laurylique.
Les acides aminés qui peuvent être utilisés dans la cadre de la présente invention peuvent être tout acide aminé, naturel ou les acides de synthèse proches tels que l'ornitine, et autre. Ces acides aminés peuvent être non-substitués ou substitués. Lorsqu'ils sont substitués, le substituant est un groupe alkyle, alkoxy inférieur, hydroxy et autre. De préférence, l'acide aminé est choisi dans le groupe con¬ sistant en: lysine, méthionine, cystine, thréonine, trypto- phane, hydroxylysine, hydroxyproline, et leurs mélanges.
De préférence, la source d'azote assimilable représente au moins 5% en poids du poids total dudit additif de biodégra- dation.
Selon un mode réalisation de la présente invention, la source d'azote assimilable se trouve dans des protéines repré¬ sentant au moins 50% en poids du poids total dudit additif.
Toute source de phosphore, tant naturelle que synthèti- que, est appropriée.
De préférence, la source de phosphore est un sel minéral de phosphore.
Avantageusement, ledit rapport N/P est compris entre 4 et 40, de préférence est égal à environ 16.
Selon un mode de réalisation de la présente invention, l'addi¬ tif consiste en une farine animale.
Selon une variante, la farine est une farine de poisson. Selon une autre variante, la farine est une farine de viande. Les farines de poisson ou de viande sont obtenues par tout procédé classique de fabrication. A titre d'exemple, on peut citer le procédé suivant pour la farine de viande: dépe¬ çage des cadavres, broyage de ceux-ci, calibrage, préchauf- fage, égouttage, séchage, presse et broyage final. A titre d'exemple pour la farine de poisson, on peut citer le procédé suivant: déchiquetage, cuisson, presse, mélange avec un con¬ centré de jus de presse, séchage, tamisage, et broyage final. La composition de ces farines peut varier dans une large mesure; à titre d'exemple représentatif mais non-limitatif on donne ci-après des compositions pour diverses farines. Farines de poisson: protéines: 60 à 85% dont acides aminés principaux: lysine, méthionine, thréonine. matières grasses: 3 à 25%. matières minérales (phosphore, calcium, chlorures): 5 à 24%, Farines de viande: protéines: 60 à 85% dont acides aminés principaux: lysine, thréonine, hydroxy- proline. matières grasses: 2 à 7%. matières minérales (phosphore, calcium, chlorures): 7 à 28%,
L'utilisation des additifs selon la présente invention, en particulier de farines animales, telles que farines de viande ou poisson, est donc utile pour la biodégradation des hydrocarbures sur sols, sédiments et à la surface de l'eau. Les sédiments souillés par hydrocarbures peuvent provenir de déversements accidentels d'hydrocarbures ou non, tels que nettoyage de bassins, chaussée, sols, ... Cette utilisation est tout aussi adaptée et profitable, dans le cas de traite¬ ment en milieux fermés, tels que réacteurs, bourbier, stockage d'hydrocarbures et autres.
La proportion d'additif par rapport à l'hydrocarbure est variable. Le rapport massique [additif]/[hydrocarbures] est généralement comprise entre 3 et 30. De préférence, le rapport massique est égal à environ 10.
La présente invention a aussi pour objet l'utilisation 5 des présents additifs pour la biodégradation d'hydrocarbures. Les exemples suivants illustrent l'invention plus en détail. EXEMPLES COMPOSITION DES ADDITIFS
La composition des additifs de biodégradation est donnée ° dans le tableau ci-après.
Produits % Azote % Phosphore N/P % Carbone (P)
. farine de poisson 5 (Solatlante G)
. farine de viande 60 % .... (d'extraction Viandor)
. farine de viande 70%
(Creton d'extraction Viandor
. farine de viande 80%
Figure imgf000008_0001
Q (Creton d'extraction Viandor)
Ces farines présentent les caractéristiques analytiques moyennes suivantes.
5
0
5
Figure imgf000008_0002
La présente invention est illustrée plus en détail dans les exemples suivants donnés à titre illustratif mais non limitatif.
Les figures 1 et 2 représentent 1'évolution des teneurs en azote ammoniacal dans les réservoirs et les réacteurs avec de la farine acylée ou non.
Les figures 3 et 4 représentent 1'évolution des teneurs en orthophosphate dans les réservoirs et les réacteurs avec de la farine acylée ou non. Les figures 5 et 6 représentent le relargage de 1'azote dans les réacteurs avec de la farine acylée ou non.
Les figures 7 et 8 représentent le relargage du phos¬ phore dans les réacteurs avec de la farine acylée ou non.
Les figures 9 et 10 représentent 1'évolution temporelle de la flore bactérienne totale et spécifique hydrocarbure en présence de farine non acylée et farine acylée.
La figure 11 représente l'évolution des indices de bio¬ dégradation des alcanes pour les deux expérimentations: en présence de farine acylée ou non. Les figures 12 et 13 représentent l'évolution temporelle des flores bactériennes totales et spécifiques hydrocarbures dans les trois bassins: témoin, avec farine non acylée et avec farine acylée.
La figure 14 représente la composition des échantillons de brut récupérés sur les 3 bassins, à TO, et à 42 jours: fraction alcane, aromatique, asphaltène et résine.
Les figures 15 à 18 sont les chromatogrammes de la fraction alcane pour, respectivement, le BAL 150 à 0 jour, le bassin témoin à 42 jours, le bassin traité avec de la farine non-acylée à 42 jours, le bassin traité avec de la farine cylée à 42 jours. EXEMPLE 1
Biodégradation des hydrocarbures en présence de farines ani¬ males acylées Afin de rendre plus oléophiles les farines animales, on a fait subir une réaction d'acylation aux farines brutes. Synthèse de la farine acylée
La synthèse de la farine acylée a été obtenue dans les conditions décrites ci-dessous.
Cette synthèse est réalisée en milieu solvant. Le principe de la réaction est de mettre en contact la farine animale (farine de poisson) avec un chlorure d'acide (chlorure de lauroyle C12H23C10) en présence de solvant (di- chlorométhane CH C1~)• On ajoute au milieu un capteur de pro¬ ton qui est de la triéthylamine [C^H-J^N], Dans un réacteur, on agite (agitateur mécanique) le mélange [chlorure de lauroyle + farine de poisson + dichloro- méthane + triéthylamine] pendant 24 heures à 30°C.
La quantité de chlorure d'acide est mise en excès (+20%) par rapport à celle nécessaire pour réagir sur les groupements aminé de la lysine. La lysine représente de l'or¬ dre de 5% des protéines de la farine de poisson. La quantité de triéthylamine est ajoutée dans les mêmes proportions.
Après 24 heures de réaction, la farine acylée est lavée sur filtre au solvant (dichlorométhane) pour éliminer l'excès de chlorure d'acide. Le gâteau est alors repris dans de l'eau, puis filtré pour éliminer 1'excès de triéthylamine et le sel formé. Le gâteau consistant en la farine acylée est alors séché à 1'étuve. Premier test (degré d'oléophilie de la farine acylée) Le degré d'oléophilie de la farine brute ou farine acy¬ lée est mesurée grâce à un test de coefficient de partage.
On agite pendant 5 minutes dans une ampoule à décanter un mélange eau de mer artificielle sans azote (700 ml) + hy¬ drocarbures (BAL 150: 28 g) et une quantité connue de farine animale à la surface des hydrocarbures. Après agitation, on laisse décanter pendant 12 heures et 1'on dose la teneur en azote de la phase aqueuse. Cette teneur en azote est repré¬ sentative d'un passage de l'azote contenu dans la farine à la phase aqueuse. On peut ainsi calculer le degré d'oléophilie. Les résultats obtenus sont répertoriés dans le tableau I. TABLEAU I
Degré d'oléophilie des farines animales
(HC: hydrocarbures, N: azote)
Quantité Quantité
Farine % poids % N dans d'azote d'azote % d'azote animale Farine/HC la farine introduite dans l'eau dans 1'eau
Farine brute 3,54% 12,1% 120 mg 123,9 mg 100,0% Farine acylée 3,54% 12,1% 120 mg 3,5 mg 2,(
On s'aperçoit donc que le traitement de la farine ani¬ male par acylation rend la farine oléophile et que le relar¬ gage d'azote diminue nettement quand la farine a été acylée. Second test (biodégradation des hydrocarbures en présence de farine acylée ou non acylée)
Pour tester l'efficacité des farines animales dans la biodégradation des hydrocarbures, nous utilisons une technique en scintillométrie dans laquelle un modèle d'hydrocarbure
(1'hexadécane) est radioactif. Sa biodégradation est suivie par le relargage de 14CO- selon le principe suivant:
Afin de suivre la cinétique de dégradation du substrat marqué, on observe le 14C0~ dégagé par une culture bactérienne. Pour cela, on utilise une technique dans laquelle un mini-réacteur (5 ml) contenant une culture bactérienne (milieu nutritif: 1 ml et inoculum: 0,1 ml) est enfermé dans une fiole à scin¬ tillation contenant 2,5 ml de soude molaire. Après incubation à 20°C à l'obscurité et sans agitation, le 14C0- piégé dans la soude est analysé après acidification du milieu de culture et après ajout du liquide à scintillation (Hionic fluor). Il en est de même pour le substrat marqué restant dans la fiole. La radioactivité est lue dans un compteur à scintillation BECMANN
LS 3801.
Les résultats obtenus sont portés dans le tableau II. TABLEAU I I
Biodégradation (%) de 1'hexadécane en présence ou non de farine animale acylée ou non
Figure imgf000012_0001
Le taux de biodégradation de 1'hexadécane seul reste nul. Les bactéries en présence ne sont donc pas capables de dégrader tel quel 1'hexadécane. Par contre, en présence de farine animale, on observe une accélération de la biodégra- dation de 1'hexadécane. Cette accélération est d'autant plus forte que la farine est acylée. EXEMPLE 2
Biodégradation des hydrocarbures en présence de farine animale acylée ou non, en milieu ouvert Dans le but de démontrer 1'intérêt de rendre les farines animales oléophiles, une expérience a été réalisée en milieu ouvert, ceci afin de vérifier si l'oléophilie de la farine permet de maintenir les éléments nutritifs (azote et phos¬ phore) au contact des hydrocarbures et ainsi rendre la biodé- gradation plus rapide.
Acylation de la farine de poisson
Les farines animales utilisées pour les exemples 2 et 3 sont des farines de poisson. Les modifications apportées à la synthèse chimique, par rapport à celle décrite précédemment dans 1'exemple 1, sont:
- la température de réaction, qui est de l'ordre de 50°C, qui correspond à la température du reflux du solvant,
- la durée de la réaction est de 17 heures,
- le chlorure d'acide est en excès de 300%, ce qui corres- pond au paramètre qui a sube la modification la plus importante par rapport à le synthèse selon 1'exemple 1. Les autres paramètres et protocoles sont inchangés. Test :
Le pilote servant à cette expérimentation est composé d'un réacteur contenant 100 ml d'eau de mer polluée par hydro¬ carbures (2,5 ml d'arabe léger). La farine animale, acylée ou non acylée a été appliquée à la surface des hydrocarbures à raison de 10% en poids par rapport aux hydrocarbures présents. Ce réacteur est agité et aéré en continu. L'eau du réacteur est renouvellée en continu pendant 15 jours avec de l'eau de mer, contenue dans un réservoir, à raison de 8 renouvellements par jour. L'effluent est recueilli à la sortie du réacteur,
3_ dans lequel des analyses physico-chimiques (NH., NO,-,, PO. , hydrocarbures) et bactériologiques (bactéries totales et spé¬ cifiques) sont effectuées. Les mêmes analyses sont effectuées dans l'eau du réservoir. A la fin du test, tout le réacteur est sacrifié et les hydrocarbures restant sont extraits au chloroforme.
Les analyses physico-chimiques sont effectuées selon les normes en vigueur: azote ammoniacal: AFNOR NF T90-015; azote sous forme nitrate: Standard methods 4500-NO3-E; orthophos- phate: standard method 4500-PC-Vn Acid Col. Meth.
Les bactéries totales sont dénombrées selon la technique du nombre le plus probable, en milieu liquide (Marine Broth 2216). Les bactéries spécifiques hydrocarbures sont dénombrées également par la technique du nombre le plus probable, en milieu liquide, dans lequel les hydrocarbures représentent la seule source de carbone. Les hydrocarbures sont analysés par chromatographie en phase gazeuse.
Deux expériences ont été réalisées : une avec une farine animale non acylée, l'autre avec la même farine animale acy- lée. Chaque expérimentation dure 15 jours.
Les résultats obtenus sont présentés ci-dessous. L'évolution
3_ des éléments minéraux (NH. ; PO. ) est donnée dans les ta¬ bleaux III et IV et les figures 1, 2, 3 et 4. TABLEAU III Evolution des teneurs en azote ammoniacal dans les deux expérimentations: avec farine acylée ou non
Figure imgf000014_0001
TABLEAU IV Evolution des teneurs en orthophosphate dans les deux expérimentations: avec farine acylée ou non
Figure imgf000014_0002
Les résultats obtenus sont différents pour la farine acylée de la non acylée. On observe que la farine acylée pro¬ voque un relargage moins important de 1 ' azote et du phosphore. Il faut tenir compte de la comparaison avec les concentrations en azote et phosphore de l'eau du réservoir, qui évoluent, car il s'agit d'eau de mer vivante (plancton, bactéries...). L'ob¬ tention de ces résultats a donc permis d'estimer quelle était la quantité de nutriments qui était lessivée par soustraction avec les concentrations mesurées dans les réservoirs. Les ré¬ sultats sont donnés tableau V et aux figures 5, 6, 7 et 8.
TABLEAU V Relargage de nutriments: azote et phosore dans chaque réacteur: avec farine acylée ou non.
Figure imgf000015_0001
Ces résultats montrent clairement que le relargage est bien moins important pour la farine rendue oléophile par acylation. Ce traitement permet donc d'obtenir un produit qui reste plus longtemps en contact avec les hydrocarbures. Ainsi les nutriments: azote et phosphore, indispensables au dévelop¬ pement des bactéries spécifiques hydrocarbures sont présents à l'endroit de la biodégradation: à l'interface eau-hydrocar¬ bures.
Les résultats concernant l'évolution des flores bactériennes sont présentés tableaux VI et VII et dans les figures 9 et 10. TABLEAU VI Evolution de la flore bactérienne totale et spécifique hydrocarbure dans le réacteur avec la farine non acylée
Figure imgf000016_0001
Evolution de la flore bactérienne totale et spécifique hydrocarbure dans le réacteur avec la farine non acylée
Figure imgf000016_0002
Les dénombrements bactériens effectués pendant les deux expériences permettent de mettre en évidence que dans le cas de 1a farine acylée, le développement bactérien est plus rapi¬ de, mais surtout, que la différence entre les bactéries du réservoir (qui entre dans le réacteur tous les jours), est plus importante en présence de cette farine. Elle stimule donc plus favorablement les bactéries totales et spécifiques hydro¬ carbures, puisque les nutriments sont plus disponibles.
La quantification de la biodégradation des hydrocarbures est effectuée par 1'estimation d' indices de biodégradation calculés à partir de chromatographie en phase gazeuse. Ces indices sont les rapports C17/pristane et C18/phytane. La diminution de ces rapports est corrélée à la biodégradation des hydrocarbures alphatiques. Ils sont reportés dans le ta¬ bleau VIII.
TABLEAU VIII Indices de biodégradation obtenus après 15 jours d'expérimentation
Figure imgf000017_0001
Les résultats, en particulier, l'évolution des indices de biodégradation, montrent que la farine acylée donne de meilleurs résultats que la farine non acylée.
Les résultats permettent de constater que 1 ' acylation de la farine animale conduit à un produit qui reste au contact avec les hydrocarbures: il y a présence d'azote et phosphore à l'interface eau-hydrocarbure, cela stimule donc la flore bac¬ térienne, autant spécifique que totale, et la biodégradation des hydrocarbures qui en résulte est également stimulée.
La farine animale acylée présente donc plus d' avantages que la farine non acylée pour 1'accélération des hydrocar¬ bures. le
EXEMPLE 3
Biodégradation des hydrocarbures en présence de farine animale acylée pu non, en milieu ouvert, à grande échelle
Compte tenu des résultats obtenus en laboratoire, qui montrent l'intérêt d'utiliser une farine animale acylée, un test à plus grande échelle a été réalisé. Cette expérimenta¬ tion a été faite dans 3 bacs de 400 litres alimentés en conti¬ nu par de l'eau de mer fraîche, pompée dans la lagune située à côté des bacs. Le taux de renouvellement de ces bacs est de 4 fois le volume du bassin par jour. Du pétrole (arabian light étêté à 150°C) a été mis dans chaque bac (1 litre). Un bac, dans lequel il n'y a pas eu d'ajout a servi de témoin; de la farine non acylée (5%/brut) a été rajoutée dans le deuxième bac; de la farine acylée (5%/brut) a été rajoutée dans le troisième bac. La farine non-acylée et la farine acylée sont identiques à celles utilisées dans l'exemple 2.
Tout au long de l'expérimentation qui a durée 2 mois, il y a eu un suivi de la flore bactérienne totale et spécifique hydrocarbures selon le même protocole que celui décrit dans 1'exemple 2. Un suivi des hydrocarbures a également a été fait.
Les résultats du suivi bactériologique sont donnés dans le tableau IX et les figures 12 et 13.
TABLEAU IX Dénombrement des bactéries totales et spécifiques d'hydrocarbures
Figure imgf000018_0001
Dans les bassins traités avec la farine acylée ou non acylée, le développement de la flore bactérienne est 'plus important que dans le témoin. Les farines animales permettent donc de stimuler les flores bactériennes indigènes. On observe que le développement est plus important dans le bassin traité avec la farine acylée qu'avec la farine non acylée. L'acylation de la farine permet de maintenir le pro¬ duit près de la nappe d'hydrocarbures et favorise ainsi le développement de la flore bactérienne. Les résultats obtenus sur les analyses des hydrocarbures sont présentés sur la figure 14 et dans les chromatogrammes donnés dans les figures 15 à 18.
L'interprétation de l'évolution des différentes frac¬ tions du brut permet d'estimer s'il y a eu biodégradation. Ainsi, dans le cas où le pétrole a été biodégradé, on observe une diminution de la fraction alcane et aromatique et une augmentation des fractions asphaltene et résine.
Sur la figure 14, on observe qu'il y a eu diminution des fractions alcanes dans les 3 bassins après 42 jours, mais 1'augmentation de la fraction asphaltene + résine est la plus importante dans le bassin traité avec la farine acylée. Ce résultat qui montre que la biodégradation est la plus impor¬ tante dans le bassin traité avec la farine acylée, est corro¬ boré par les chromatogrammes présentés ci-dessous. En effet, on observe une diminution nette de la fraction alcane entre 0 et 42 jours; cette diminution est plus importante pour le bassin traité avec la farine acuylée.
L'ensemble de ces résultats obtenus à 42 jours montre que la présence de farine acylée favorise la biodégradation des hydrocarbures. Les résultats sont encore plus significa¬ tifs après une plus longue période, 42 jours étant une période de temps assez courte pour observer la biodégradation des hydrocarbures.
De plus, des observations visuelles permettent de dire que la farine acylée ne provoque pas le coulage des hydrocar¬ bures dans le fond du bassin. Cette expérience permet de mettre en évidence 1'intérêt de traiter une nappe d'hydrocarbures avec de la farine animale acylée. Ceci est d'autant plus intéressant qu'il n'existe pas ou peu d'additifs de biodégradation pour traiter les nappes flottantes d'hydrocarbures.

Claims

REVENDICATIONS
1.- Additif de biodégradation caractérisé en ce qu'il consiste en un mélange comprenant:
(i) au moins une source d'azote assimilable consistant en au moins un acide aminé, non-substitué ou substitué; (ii) au moins une source de phosphore; selon un rapport N/P compris entre 2 et 100; ledit additif ayant été soumis à un traitement visant à le rendre oléophile. 2.- Additif selon la revendication 1, caractérisé en ce que ledit traitement consiste en une acylation.
3.- Additif selon la revendication 2, caractérisé en ce que 1 ' acylation est mise en oeuvre avec un chlorure d'acide laurylique. A . - Additif selon la revendication 1, 2 ou 3, caracté¬ risé en ce que 1'acide aminé est choisi dans le groupe consis¬ tant en: lysine, méthionine, cystine, thréonine, tryptophane, hydroxylysine, hydroxyproline, et leurs mélanges.
I. . - Additif selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la source d'azote assimilable re¬ présente au moins 5% en poids du poids total dudit additif.
6.- Additif selon 1'une quelconque des revendications 1 à 5, caractérisé en ce que la source d'azote assimilable se trouve dans des protéines représentant au moins 50% en poids du poids total dudit additif.
7.- Additif selon l'une quelconque des revendications 1 à 6, caractérisé en ce que la source de phosphore est un sel minéral de phosphore.
8.- Additif selon l'une quelconque des revendications 1 à 7, caractérisé en ce que ledit rapport N/P est compris entre 4 et 40, de préférence est égal à environ 16.
9.- Additif selon 1 'une quelconque des revendications 1 à 8, caractérisé en ce que ledit additif est présent selon un rapport massique [additif]/[hydrocarbures] compris entre 3 et 30, et de préférence égal à environ 10.
10.- Additif selon l'une quelconque des revendications 1 à 9, caractérisé en ce qu'il consiste en une farine animale. 11.- Additif selon la revendication 10, caractérisé en ce que ladite farine est une farine de poisson.
12.- Additif selon la revendication 10, caractérisé en ce que ladite farine est une farine de viande. 13.- Utilisation d'un additif selon l'une quelconque des revendications précédentes pour la biodégradation d'hydrocar¬ bures.
PCT/FR1993/000834 1992-08-31 1993-08-27 Nouvel additif de biodegradation WO1994005773A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP6506927A JPH08501935A (ja) 1992-08-31 1993-08-27 新規生物分解性添加剤
CA002143624A CA2143624A1 (fr) 1992-08-31 1993-08-27 Nouvel additif de biodegradation
EP93919407A EP0663948A1 (fr) 1992-08-31 1993-08-27 Nouvel additif de biogradation
AU49649/93A AU4964993A (en) 1992-08-31 1993-08-27 Novel biodegradation additive
US08/387,723 US5618725A (en) 1992-08-31 1993-08-27 Oleophilic biodegrading additive and method of treating hybrocarbon polluted medium
NO950750A NO950750L (no) 1992-08-31 1995-02-27 Nye biodegraderingsadditiver

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9210409A FR2695138A1 (fr) 1992-08-31 1992-08-31 Nouvel additif de biodégradation.
FR92/10409 1992-08-31

Publications (1)

Publication Number Publication Date
WO1994005773A1 true WO1994005773A1 (fr) 1994-03-17

Family

ID=9433097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1993/000834 WO1994005773A1 (fr) 1992-08-31 1993-08-27 Nouvel additif de biodegradation

Country Status (7)

Country Link
US (1) US5618725A (fr)
EP (1) EP0663948A1 (fr)
JP (1) JPH08501935A (fr)
AU (1) AU4964993A (fr)
CA (1) CA2143624A1 (fr)
FR (1) FR2695138A1 (fr)
WO (1) WO1994005773A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2751344A1 (fr) * 1996-07-17 1998-01-23 Elf Aquitaine Nouvel additif de biodegradation
WO2001002086A1 (fr) * 1999-07-06 2001-01-11 Elf Aquitaine Microemulsion nutritive pulverisable utile comme accelerateur de biodegradation

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DZ2980A1 (fr) * 1998-12-31 2004-03-15 453168Bc Ltd Procédé et compositions de traitement de matériauxcontaminés hydrocarbures.
CA2257706C (fr) 1998-12-31 2002-05-28 Paul Sicotte Procede et composition pour traiter les materiaux contamines par des hydrocarbures
FR2791351B1 (fr) * 1999-03-22 2001-05-04 Elf Exploration Prod Boue de forage biodegradable et procede de preparation
EP2407432A1 (fr) * 2010-07-14 2012-01-18 Söll GmbH Composition pour déclencher des procédés microbiologiques dans l'eau et son procédé de production
FI127131B (en) 2016-11-25 2017-11-30 Univ Helsinki Environmental remediation
CN112147039B (zh) * 2019-06-26 2022-04-15 中国海洋石油集团有限公司 复杂断块稠油油藏原油粘度的预测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0181769A1 (fr) * 1984-11-08 1986-05-21 International Technology Corporation Stimulation des bactéries aérobiques
EP0192285A1 (fr) * 1985-02-15 1986-08-27 Heidemij Uitvoering B.V. Procédé et installation pour le reconditionnement biologique d'un sol contaminé
US4925802A (en) * 1988-12-21 1990-05-15 Ecova Corporation Method for stimulating biodegradation of halogenated aliphatic hydrocarbons
CH674210A5 (en) * 1986-10-15 1990-05-15 Henri Rothlisberger Culturing bacteria in anaerobic medium - to give azobacteria capable of purifying transformer oils contg. organo:chlorine cpds.
WO1991019039A1 (fr) * 1990-06-08 1991-12-12 Grace Sierra Horticultural Products Company Nutriments a liberation regulee pour microbes et procede de biotraitement
WO1992003393A1 (fr) * 1990-08-23 1992-03-05 Yamashita Thomas T Detoxication du sol

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3880824A (en) * 1972-07-18 1975-04-29 Far Mar Co Gluten lipid complexes and process for preparing same
US3952115A (en) * 1975-04-02 1976-04-20 The Procter & Gamble Company Fortification of foodstuffs with N-acyl derivatives of sulfur-containing L-amino acid esters
US4975106A (en) * 1985-12-16 1990-12-04 Biotherm International, Inc. Anaerobic digestion of fish wastes
US5484729A (en) * 1993-06-07 1996-01-16 General Electric Company Microbial dechlorination of polychlorinated biphenyl compounds

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0181769A1 (fr) * 1984-11-08 1986-05-21 International Technology Corporation Stimulation des bactéries aérobiques
EP0192285A1 (fr) * 1985-02-15 1986-08-27 Heidemij Uitvoering B.V. Procédé et installation pour le reconditionnement biologique d'un sol contaminé
CH674210A5 (en) * 1986-10-15 1990-05-15 Henri Rothlisberger Culturing bacteria in anaerobic medium - to give azobacteria capable of purifying transformer oils contg. organo:chlorine cpds.
US4925802A (en) * 1988-12-21 1990-05-15 Ecova Corporation Method for stimulating biodegradation of halogenated aliphatic hydrocarbons
WO1991019039A1 (fr) * 1990-06-08 1991-12-12 Grace Sierra Horticultural Products Company Nutriments a liberation regulee pour microbes et procede de biotraitement
WO1992003393A1 (fr) * 1990-08-23 1992-03-05 Yamashita Thomas T Detoxication du sol

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BIOSIS PREVIEWS DATABANK, Philadelphia, Biosis Number: 70043472, O. YAGI et al.: "Degradation of Poly Chlorinated Bi Phenyls by Microorganisms" & J WATER POLLUT CONTROL FED 52, vol. 5, 1980, pages 1035-1043 (cité dans la demande) *
BIOSIS PREVIEWS DATABANK, Philadelphia, Biosis Number: 70050436, M. RUSAN et al.: "Influence of Animal Proteins on the Fermentation of Antibiotics" & BOL SOC BROTERIANA 52, vol. 0, 1978 (Recd. 1979), pages 29-36 (cité dans la demande) *
BIOSIS PREVIEWS DATABANK, Philadelphia, Biosis Number: 83042449, G.A. KOCHKINA et al.: "Development of a Nutrient Medium for Cultivating Entomophthora-Thaxteriana" & BIOTEKHNOLOGIYA, vol. 4, 1986, pages 46-51, (cité dans la demande) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2751344A1 (fr) * 1996-07-17 1998-01-23 Elf Aquitaine Nouvel additif de biodegradation
WO1998003436A1 (fr) * 1996-07-17 1998-01-29 Elf Aquitaine Additif de biodegradation a base de farine et d'un tensio-actif cationique
WO1998003435A1 (fr) * 1996-07-17 1998-01-29 Elf Aquitaine Additif de biodegradation a base de farine et d'un tensio-actif lipidique non-ionique ou zwitterionique
WO2001002086A1 (fr) * 1999-07-06 2001-01-11 Elf Aquitaine Microemulsion nutritive pulverisable utile comme accelerateur de biodegradation
FR2795974A1 (fr) * 1999-07-06 2001-01-12 Elf Aquitaine Microemulsion nutritive pulverisable utile comme accelerateur de biodegradation

Also Published As

Publication number Publication date
AU4964993A (en) 1994-03-29
CA2143624A1 (fr) 1994-03-17
FR2695138A1 (fr) 1994-03-04
EP0663948A1 (fr) 1995-07-26
JPH08501935A (ja) 1996-03-05
US5618725A (en) 1997-04-08

Similar Documents

Publication Publication Date Title
CA1156574A (fr) Microemulsion de substances nutritives
EP0605308B1 (fr) Composition contenant un composé tensio-actif et des glycolipides et procédé de décontamination d'un milieu poreux pollué
Ozawa et al. Accumulation and depuration of microcystin produced by the cyanobacterium Microcystis in a freshwater snail
FR2626869A1 (fr) Procede de purification biologique des eaux contenant des matieres organiques et produits derives, utilisant la diffusion et l'action de micro-organismes aerobies et anaerobies et dispositif pour la mise en oeuvre
AU2016225310B2 (en) Process for producing polyhydroxyalkanoates from precursors obtained by anaerobic fermentation from fermentable biomass
FR2475522A1 (fr) Procede pour separer des metaux de leurs solutions aqueuses par traitement a l'aide de champignons vivants
WO1997016381A1 (fr) Composition pour le traitement d'eaux residuaires municipales et industrielles
EP0663948A1 (fr) Nouvel additif de biogradation
FR2554827A1 (fr) Procede d'activation de la bioreactivite des microorganismes
FR2575032A1 (fr) Procedes d'elevage intensif de crevettes
HUE026329T2 (en) Process for converting plant biomass and combustion process
FR2658077A1 (fr) Produit de traitement chimico-biologique d'excrements d'animaux.
FR2695139A1 (fr) Nouvel additif de biodégradation à base de farine animale et son utilisation pour la dépollution.
Watanabe et al. Treatment of, and Candida utilis biomass production from shochu wastewater; the effects of maintaining a low pH on DOC removal and feeding cultivation on biomass production
JP3564237B2 (ja) δ−デカラクトンの製造方法
JP3453129B2 (ja) 水の浄化促進剤とこの浄化促進剤を使用した水の浄化方法及び浄化システム
Varma et al. Kinetics of oxygen uptake by dead algae
RU2114174C1 (ru) Консорциум дрожжей candida maltosa для биодеградации нефтезагрязнений
WO1998003435A1 (fr) Additif de biodegradation a base de farine et d'un tensio-actif lipidique non-ionique ou zwitterionique
CA2591290C (fr) Traitement de boues d'epuration
Xie et al. Isomerization and bioaccessibility of cypermethrin and fenpropathrin in Pacific oyster during simulated digestion as influenced by domestic cooking methods
JPS6014996A (ja) 食品製造等廃水の処理方法
FR2535338A1 (fr) Procede de lutte contre la pollution des eaux de mer et compositions dispersantes pour la mise en oeuvre du procede
Kamble et al. Studies on consortium of marine oil degrading bacteria for degradation of high speed diesel (HSD)
BE832298A (fr) Degradation microbienne de petrole.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU BB BG BR BY CA CH CZ DE DK ES FI GB HU JP KP KR KZ LK LU MG MN MW NL NO NZ PL PT RO RU SD SE SK UA US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1993919407

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2143624

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 08387723

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1993919407

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1993919407

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1993919407

Country of ref document: EP