WO1998001402A1 - Preparation de beton projete - Google Patents

Preparation de beton projete Download PDF

Info

Publication number
WO1998001402A1
WO1998001402A1 PCT/CA1997/000482 CA9700482W WO9801402A1 WO 1998001402 A1 WO1998001402 A1 WO 1998001402A1 CA 9700482 W CA9700482 W CA 9700482W WO 9801402 A1 WO9801402 A1 WO 9801402A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixture
concrete
cement
weight
barium sulfate
Prior art date
Application number
PCT/CA1997/000482
Other languages
English (en)
Other versions
WO1998001402A9 (fr
WO1998001402B1 (fr
Inventor
Ioan Toma
Ileana Toma
Pierre Rolland
Original Assignee
3055515 Canada Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3055515 Canada Inc. filed Critical 3055515 Canada Inc.
Priority to CA002260267A priority Critical patent/CA2260267C/fr
Priority to AU33316/97A priority patent/AU730990C/en
Publication of WO1998001402A1 publication Critical patent/WO1998001402A1/fr
Publication of WO1998001402B1 publication Critical patent/WO1998001402B1/fr
Publication of WO1998001402A9 publication Critical patent/WO1998001402A9/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/36Inorganic materials not provided for in groups C04B14/022 and C04B14/04 - C04B14/34
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5076Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with masses bonded by inorganic cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/60After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
    • C04B41/61Coating or impregnation
    • C04B41/65Coating or impregnation with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00146Sprayable or pumpable mixtures
    • C04B2111/00155Sprayable, i.e. concrete-like, materials able to be shaped by spraying instead of by casting, e.g. gunite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials

Definitions

  • the present invention relates to an improved method in the field of shotcrete technology, which uses a microstructure, the shotcrete being made of a mineral of the greatest chemical stability mixed with cement, aggregates, water, which are used by spraying preferably with compressed air. More particularly, the present invention relates to the addition of barium sulphate, in particular barite, in the technology of shotcrete, with the aim of improving the feeding, mixing, transport and spraying, as well as '' to the resulting improved products, in particular grouts, plasters, mortars, concretes, backfill, and others.
  • the sprayed concrete is therefore a concrete applied by spraying preferably pneumatic at very high speed with or without prior pumping.
  • this concept of high-speed spraying gives it very characteristic advantages and disadvantages, and consequently makes it suitable for very specific uses.
  • the power and the speed of projection facilitate obtaining a more compact, denser, more impermeable, less porous product, and also gives a product which has better cohesion and better adhesion to the surfaces which are intended for it than '' they are of regular, irregular shape, texture, or hardness.
  • this concept of pneumatic projection makes it possible to transport the components of the mixture, from the mixer to the receiving surfaces by means of hoses, over a very long distance, in particular up to 600 meters in the dry process.
  • the projection allows to operate in very small spaces, to eliminate structures and to perform vertical applications, as well as horizontal applications up or down.
  • the projection also provides better anti-corrosion protection, particularly on metal reinforcements, as well as fire protection.
  • this projection concept also has several disadvantages, difficulties and limits which science and industry have tried to correct, but with very little success, for several years.
  • the main disadvantages are: abrasion of the mixing equipment and the hoses used for transport and spraying; blocking of mixing equipment and hoses; irregular quality of the mixing operation, and segregation during transport and projection; long, difficult and often imperfect cleaning of equipment after use; very important need to adequately adjust the humidity inside and outside the equipment during mixing and during transport operations to avoid hasty and undesirable setting of the cement; need for setting retarders or superplasticizers in the wet process; production of dust, mainly in the dry process, during feeding, transport and projection, seriously affecting the lungs of the "nozzleman", visibility and adhesion to receiving surfaces; rebounds during projection, causing loss of materials, risk of injury to the "nozzleman", pockets of sand and voids in the applied product; jerky projection, with blockages, jerks and throws, causing risks of injury to the "nozzleman", and also variations in the quality, homogeneity and uniformity of the product obtained; difficulty for the "nozzle
  • the inventors therefore consider that innovation efforts should, as far as possible, be part of the perspective of sustainable development, as described in the Rio Convention.
  • the object of the invention is therefore to use as little as possible chemically constituted components and / or which risk acting chemically with one another and / or with their environment in the short, medium or long term.
  • the invention relates to a method according to which a cement-based spray mixture is prepared, and this mixture is sprayed at high speed onto a surface under conditions such that said mixture forms a coating which adheres to said surface, characterized in that said mixture comprises barium sulfate.
  • the mixture to be sprayed is a concrete mixture, and the latter comprises up to approximately 100% by weight of barium sulphate relative to the weight of cement in said mixture.
  • the concrete mixture will comprise between approximately 2 and
  • barium sulfate 50% by weight of barium sulfate relative to the weight of cement in said mixture, for example between about 2 and 10% by weight of barium sulfate.
  • barium sulfate in the form of barite.
  • the barite used will preferably have a particle size varying between 0.01 micron and 75mm and will have a content between about 80 and
  • the surface to be treated may contain rocks and / or degraded concrete (reinforced or unreinforced).
  • the treatment in “sandwich" will then be carried out by spraying the surface with a first mixture to form a layer which makes the surface waterproof and / or fireproof, by then spraying successively or alternately one or more of said concrete mixtures on the layer waterproof to form one or more protective and load-bearing structures, and finally by spraying a final mixture intended to constitute a protective layer thus eliminating or reducing the formation of efflorescence and the degradation of the surface by the aggression of external chemical agents.
  • the surface consists of deposits, metalliferous and non-metalliferous ores, coal, salt and ice deposits, and low-consistency building materials or by degraded concrete, and prior to spraying onto this surface, we channels on the surface to anchor the concrete mixture.
  • These channels will usually have a depth of at least about 10cm and a width of about at least 15cm.
  • channels constituting resistance ribs in helical shape will be made with a pitch of at least about 50 cm.
  • These helical canals can be reinforced with metallic elements (mesh or rebar), or by anchoring.
  • the channels will have a sectional profile of rectangular or trapezoidal shape.
  • barite The properties of barite are as follows: pH: 6.4 to 7.2; low hardness: 3 to 3.5 on the Mohs scale; density: 4, 3 to 4, 6; chemical inactivity; extreme insolubility of 0.000285 g / lOOg H2O at 30 ° C; complete absence of effervescence in hydrochloric acid; opacity to X-rays and gamma rays; low degree of abrasiveness; lubricant and filler properties; pale shade and very low reflectance (slightly higher than that of quartz); fineness up to 0.01 micron; high reversible compressibility (decompressibility and non-agglomerability); amorphous character; anti-magnetic properties; relative non-toxicity to humans and animals; harmful influence on benthos colonies; melting temperature: 1250 ° C; low coefficient of expansion and heat stability; good thermal storage capacity; good thermal insulation capacity; low oil absorption rate; ease of wetting by oil.
  • the lubricating and filling character of the barite makes it possible inter alia: to reduce the abrasion of the mixer and the hoses; ensure easier pneumatic and pumping transport due to less resistance exerted by the walls of the hose, and less friction of the particles of the components between them; better fluidization of the particles of the components and less segregation; a
  • the chemical inactivity and neutral pH of barite make it possible, among other things: to obtain better durability in aggressive aggressive media (H2O, sulphates, chlorides, alkaline reactions, in particular with silica, etc.) of cement paste and reinforcements metallic; soften the thermal shock of chemical hydration of the cement which causes the initial shrinkage and micro-cracking of the concrete (this softening of the thermal shock also results from the thermal storage capacity of the barite); to make its use compatible with cements, aggregates, additives, and admixtures normally used in shotcrete technology; the creation of insulating barriers against chemical attack by gases or liquids; projection onto a wet surface.
  • aggressive aggressive media H2O, sulphates, chlorides, alkaline reactions, in particular with silica, etc.
  • the delicacy and softness of the barite allow: inter alia a better malleability-workability; better cohesion of the projected product; more product sprayed per application; better compaction; better air and water impermeability; greater density; lower porosity as a result of the decrease in voids without adversely affecting the workability; a decrease in rebounds; a reduction in the dust produced during projection; an increase in the mechanical resistance in compression especially; better gas tightness; increased adhesion by more intimate contact with all reception surfaces including cracks and the hidden rear part of the reinforcement; a reduced thermal shock due to the density generated by the compaction with the result that there is less oxygen available for hydration; improved resistance to freeze-thaw cycles, due to a higher insulation capacity against water, air, chlorides, etc.
  • the density of the barite makes it possible to obtain, among other things: better flow of the concrete mixture in the feed hopper; greater impact force of the sprayed product on the receiving surface, which increases adhesion, compaction and self- compacting, cohesion and maximum possible thickness of the coating and consequently a reduction in the amount of setting accelerator necessary for the same cohesion; a reduction in the emission of dust during feeding into the hoppers (dust from cement, sand, but also mineral additives with pozzolanic reactions such as silica smoke); as well as an increase in the rate of sedimentation of dust, in particular in mines; fewer rebounds during application.
  • the barite used complied with the following quality criteria:
  • the projection of concrete containing barite according to the invention can be used in places of which little or little is known about the development in the future; in places of which little or little is known about developments in the past; for the manufacture of concrete conduits and pipes, which must resist liquid chemical attack; in the manufacture and repair of swimming pools and aquaculture ponds; in the construction of domes, domes, vaults and the like which usually require reinforcing mesh; in agriculture, to isolate contaminating animal waste, pesticides and fertilizers and to keep perishable items away from humidity and temperature variations, as well as in horticulture for the manufacture of mulch; for thermal storage; for the exterior cladding of buildings subjected to the coirosive action of wind and sea-saline air along ocean coasts; in repairing concrete infrastructure to make it more durable, more economical, more flexible in relation to site conditions, less dangerous for the health of workers; to ensure more predictable results; to ensure a longer life for equipment, especially machines and hoses; to carry out various repairs such as grout projections in foundation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

L'invention concerne une amélioration à la méthode de produire un revêtement par projection d'un mélange à projeter à base de ciment, notamment du béton, soit par voie sèche, soit par voie humide. Selon cette amélioration, on incorpore du sulfate de baryum, plus particulièrement de la barytine dans le mélange à base de ciment.

Description

PREPARATION DE BETON PROJETE
DOMAINE TECHNIQUE
La présente invention concerne une méthode améliorée dans le domaine de la technologie du béton projeté (shotcrete), laquelle utilise une microstructure, le béton projeté étant constitué d'un minéral de la plus grande stabilité chimique en mélange avec du ciment, des agrégats, de l'eau, lesquels sont mis en oeuvre par projection de préférence avec de l'air comprimé. Plus particulièrement, la présente invention se réfère à l'addition de sulfate de baryum, notamment de la barytine, dans la technologie du béton projeté, dans le but d'améliorer l'alimentation, le mélange, le transport et la projection, ainsi qu'aux produits améliorés qui en résultent, notamment des coulis, enduits, mortiers, bétons, remblais, et autres.
TECHNIQUE ANTERIEURE
On sait que l'application de mortiers et bétons par projection connut ses débuts aux États-Unis au tournant du siècle. La projection s'effectuait avec une machine appelée "Cément Gun". Préalablement, la technologie du béton projeté telle que connue jusqu'à présent a été appliquée pour la première fois en Roumanie vers 1905 dans la construction d'un barrage en béton, protégé par une couche de béton projeté d'une épaisseur de 8 cm.
En 1965, donc environ 50 ans plus tard, l'ouvrage a été vérifié et on a constaté que le béton projeté en parement amont se trouvait en bon état tandis qu'en parement aval le barrage présentait des déformations et des fissures. Cet ouvrage a démontré la durabilité du béton projeté, les déformations étant attribuées au vieillissement depuis 50 ans et aux équipements périmés utilisés à l'époque.
La technologie du béton projeté a été beaucoup améliorée pendant cette période de plus de 90 années, surtout depuis la seconde guerre mondiale, notamment en ce qui concerne les équipements, les composantes, les problèmes d'environnement, l'hygiène et la sécurité du travail, les maladies professionnelles et la formation des travailleurs, mais de façon insuffisante.
Le béton projeté est donc un béton appliqué par projection de préférence pneumatique à très haute vitesse avec ou sans pompage préalable. Par rapport au béton conventionnel, moulé et vibré, ce concept de projection à haute vitesse lui donne des avantages et des désavantages bien caractéristiques, et en conséquence le destine à des usages bien spécifiques. Ainsi, la puissance et la vitesse de projection facilite l'obtention d'un produit plus compact, plus dense, plus imperméable, moins poreux, et donne aussi un produit qui possède une meilleure cohésion et une meilleure adhérence aux surfaces qui lui sont destinées qu'elles soient de forme, de texture, ou de dureté régulières ou irrégulières. Entre autres, ce concept de projection pneumatique permet de transporter les composantes du mélange, depuis le mélangeur aux surfaces réceptrices par l'entremise de boyaux, sur une très longue distance, notamment jusqu'à 600 mètres dans le procédé par voie sèche. La projection permet d'opérer dans des espaces très exiguës, d'éliminer des structures et d'effectuer des applications verticales, de même que des applications horizontales vers le haut ou vers le bas. La projection permet aussi d'obtenir une meilleure protection anti-corrosive, particulièrement sur des renforcements métalliques, ainsi qu'une protection ignifuge. Malheureusement, en dépit de ses avantages importants et nombreux, ce concept de projection, possède aussi plusieurs désavantages, difficultés et limites que la science et l'industrie ont tenté de corriger, mais avec très peu de succès, depuis plusieurs années. Dépendant du procédé de mélange choisi, c'est-à-dire, le procédé par voie sèche ou par voie humide, les principaux désavantages sont les suivants: abrasion de l'équipement de mélange et des boyaux utilisés pour le transport et la projection; blocage de l'équipement de mélange et des boyaux; qualité irrégulière de l'opération mélange, et ségrégation durant le transport et la projection; nettoyage long, difficile et souvent imparfait des équipements après usage; nécessité très importante d'ajuster de façon adéquate le degré d'humidité à l'intérieur et à l'extérieur des équipements pendant le mélange et au cours des opérations de transport pour éviter la prise hâtive et indésirable du ciment; besoin d'utilisation de retardateurs de prise ou de superplastifiants dans le procédé par voie humide; production de poussières, principalement dans le procédé par voie sèche, pendant l'alimentation, le transport et la projection, affectant sérieusement les poumons du "nozzleman", la visibilité et l'adhérence aux surfaces réceptrices; rebonds durant la projection, provoquant des pertes de matériaux, des risques de blessures au "nozzleman", des poches de sable et des vides dans le produit appliqué; projection saccadée, avec blocages, saccades et coups de lance, provoquant des risques de blessures au "nozzleman", et aussi des variations dans la qualité, l'homogénéité et runiformité du produit obtenu; difficulté pour le "nozzleman" d'obtenir un réglage parfait du rapport eau-ciment pendant la projection dans le procédé par voie sèche, ce qui est un facteur essentiel de qualité du produit obtenu; l'expertise et l'expérience adéquates du "nozzleman" comme facteur déterminant; la production d'électricité statique, surtout dans le procédé par voie sèche.
Plusieurs innovations ont été suggérées dans le passé afin de corriger ces désavantages, ou pour améliorer la performance de la technologie de béton projeté, notamment en utilisant des accélérateurs ou des retardateurs de prise, des agents entraîneurs d'air, des latex, des réducteurs d'eau ou des super-plastifiants.. Cependant, plus il y a de composantes, plus il est difficile de contrôler la durabilité à long terme à cause des problèmes de compatibilité des additifs-adjuvants, des ciments, ou des agrégats utilisés. De plus, on doit se rappeler que le béton projeté est souvent utilisé dans des environnements inconnus, ou dans des environnements qui deviendront inconnus ou non-contrôlés dans le temps.
Il est bien connu dans l'art antérieur (brevet U.S. A. 4,391,098) d'améliorer l'application de béton par projection en utilisant une fumée de silice contenant au moins 90% de Siθ2, dans la composition de départ. On préconise l'utilisation de 5-30% en poids de fumée de silice par rapport au poids de solution de barbotine et 8 à 10% en poids par rapport au poids de ciment. L'utilisation de fumée de silice est basée sur le fait que l'on obtient à court terme un produit plus imperméable qui contribue aussi à la production d'une quantité satisfaisante de rebonds. Cependant, il a été noté que la fumée de silice représente une source de maladies professionnelles à long terme et que son utilisation n'a pas éliminé ou fait diminuer les réactions alcalines ni la formation des fissures et micro-fissures de dilatation ou de contraction à long terme. Plus encore, les "nozzleman" ainsi que les environnementalistes sont devenus réticents à manipuler et utiliser ce produit dans la technologie de béton projeté.
L'un des demandeurs, l'ingénieur Ioan Toma, a déjà appliqué la technologie de béton projeté en 1943 en Roumanie, dans une mine de charbon. L'abattage (le front de travail) était situé dans une zone où il y avait émanation de gaz méthane, CH4, et l'opération avait pour but de colmater et d' empêcher l'émigration du gaz.
De plus, un brevet concernant une machine de béton projeté commercialisé en Roumanie et au Maroc, sous le nom de "Machine à torcreter type Toma" lui fut décerné en Roumanie à titre d'auteur sous le numéro 51.166, le 27 juin 1966. D'autre part, un autre brevet Roumain lui fut décerné à titre de co-auteur sous le numéro 50.548, le 14 mars 1966 sur un dispositif pour projeter un mélange de bétonnage. Ce dispositif est actionné par un moteur pneumatique et sert à protéger les roches de faible consistance 15 minutes après le tir de dérochage. Un autre brevet lui fut émis en Roumanie à titre d'auteur sous le numéro 51.338 le 20 octobre 1967 et concerne un procédé de consolidation par béton projeté d'excavation souterraine dans des roches de faible consistance. Le procédé consiste à exécuter des canaux dans les parois rocheuses d'une profondeur adéquate sous forme hélicoïdale et sous divers angles.
D'autre part, on sait que l'utilisation de barytine dans les mélanges de béton conventionnel a été étudiée depuis longtemps. L'objectif a été de produire un béton lourd et opaque aux rayons X et gamma. Cependant, toutes ces études n'ont porté que sur le béton obtenu par coulage et vibration et ont mal réussi à éliminer la ségrégation gravimétrique (ce qui a pour conséquence de diminuer le compactage et l'imperméabilité).
Les inventeurs considèrent donc que les efforts d'innovation doivent, autant que possible, s'inscrire dans la perspective du développement durable, tel que décrit dans la Convention de Rio. L'invention a donc pour objet de recourir le moins possible à des composantes constituées chimiquement et/ou qui risquent d'agir chimiquement entre elles et/ou avec leur environnement à court, moyen ou long terme. L'EXPOSÉ DE L'INVENTION
L'invention concerne une méthode selon laquelle on prépare un mélange à projeter à base de ciment, et l'on projette ce mélange à haute vitesse sur une surface dans des conditions telles que ledit mélange forme un revêtement qui adhère à ladite surface, caractérisé en ce que ledit mélange comporte du sulfate de baryum.
De préférence, le mélange à projeter est un mélange de béton, et ce dernier comporte jusqu'à environ 100% en poids de sulfate de baryum par rapport au poids de ciment dans ledit mélange. De préférence, le mélange de béton comportera entre environ 2 et
50% en poids de sulfate de baryum par rapport au poids de ciment dans ledit mélange, par exemple entre environ 2 et 10% en poids de sulfate de baryum.
On pourra, par exemple, utiliser le sulfate de baryum sous forme de barytine. La barytine utilisée aura de préférence une granulométrie variant entre 0,01 micron et 75mm et aura une teneur entre environ 80 et
99%.
Selon une réalisation préférée, la surface à traiter peut contenir des roches et/ou du béton dégradé (armé ou non armé). Le traitement (en "sandwich") s'effectuera alors en projetant sur la surface un premier mélange pour former une couche qui rend la surface étanche et/ou ignifuge, en projetant ensuite successivement ou alternativement un ou plusieurs desdits mélanges de béton sur la couche étanche pour former une ou des structures protectrices et portantes, et enfin en projetant un dernier mélange destiné à constituer une couche de protection éliminant ou diminuant ainsi la formation d'efflorescence et la dégradation de la surface par l'aggression d'agents chimiques extérieurs.
Selon une autre réalisation, la surface est constituée par des gisements, des minerais métallifères et non métallifères, charbon, sel et dépôt de glace, et matériaux de construction de faible consistance ou par du béton dégradé, et préalablement à la projection sur cette surface, on pratique des canaux sur la surface de façon à ancrer le mélange de béton. Ces canaux auront habituellement une profondeur d'environ au moins 10cm et une largeur d'environ au moins 15cm. De préférence, on pratiquera des canaux constituant des nervures de résistance en forme hélicoïdale avec un pas d'au moins environ 50cm. On peut renforcer ces canaux de forme hélicoïdale avec des éléments métalliques (grillage ou barres d'armature), ou par ancrage. De préférence, les canaux auront un profil en coupe de forme rectangulaire ou trapézoïdale.
MANIÈRE DE RÉALISER L'INVENTION
Il a donc été découvert que le sulfate de baryum (BaSO.4) » Que l'on retrouve sous forme d'un minéral appelé barytine, est d'une très grande utilité lorsqu'on l'incorpore comme élément essentiel dans la fabrication et la mise en place du béton projeté. Il a été constaté que la barytine améliore la technologie de projection du béton et vice-versa, que la technologie de projection de béton optimise certaines caractéristiques de la barytine. Cette relation bénéfique n'existe pas dans la technologie du béton conventionnel. Les propriétés de la barytine sont les suivantes: pH: 6,4 à 7,2; faible dureté: 3 à 3,5 sur l'échelle Mohs; densité: 4, 3 à 4, 6; inactivité chimique; extrême insolubilité de 0,000285 g/lOOg H2O à 30°C; absence complète d'effervescence dans l'acide chlorhydrique; opacité aux rayons X et aux rayons gamma; faible degré d'abrasivité; propriétés de lubrifiant et d'agent de remplissage; teinte pâle et très faible pouvoir réflecteur (un peu supérieur à celui du quartz); finesse jusqu'à 0,01 micron; grande compressibilité réversible (décompressibilité et non- agglomérabilité); caractère amorphe; propriétés anti-magnétiques; non-toxicité relative pour l'humain et pour l'animal; influence néfaste sur les colonies de benthos; température de fusion: 1250°C; bas coefficient d'expansion et stabilité à la chaleur; bonne capacité d'accumulation thermique; bonne capacité d'isolation thermique; bas taux d'absorption d'huile; facilité de mouillage par l'huile.
Ces propriétés de la barytine, dans un contexte de projection cimentaire avec aggrégats petits ou gros ont un effet multiplicateur, et non seulement cumulatif. Elles agissent entre elles par interaction; on parle d'une combinaison en synergie.
Ainsi, le caractère lubrifiant et de remplissage de la barytine permet entre autres: de diminuer l'abrasion du mélangeur et des boyaux; d'assurer un transport pneumatique et par pompage plus facile par suite de moins de résistance exercée par les parois du boyau, et moins de friction des particules des composantes entre elles; une meilleure fluidisation des particules des composantes et moins de ségrégation; une
(vitesse de) projection moins énergivore; d'obtenir un mélange plus homogène du ciment, de l'eau et des agrégats, et consequemment, un rythme de projection plus doux, plus uniforme, et avec moins de saccades; de diminuer la quantité de poussière produite lors de l'alimentation, du transport, ou de la projection; d'améliorer la pompabilité; de diminuer le barbotage; de réduire le retrait initial et la micro-fissuration initiale, et ainsi d'augmenter la résistance mécanique à long terme et la durabilité du béton, en dmiinuant le ratio eau-ciment sans affecter négativement la maléabilité-oeuvrabilité (souvent obtenue par des retardateurs de prise, des réducteurs d'eau, des super- plastifiants); d'améliorer la cohésion du produit fraîchement projeté et d'augmenter l'épaisseur possible maximale par application; d'obtenir une meilleure pénétration des fissures des surfaces de réception et un contact plus intime avec le béton original existant et les armatures, résultant d'une meilleure élimination du film d'air présent à la surface des armatures et du béton existant; de produire moins d'électricité statique durant le transport et la projection; de faire le nettoyage des équipements de mélange, de transport et de projection plus facilement et plus rapidement; de réduire les quantités et la grosseur des vides dans le béton causés entre autres par l'utilisation de fibres; de rendre possible une application par projection à l'intérieur d'une fourchette plus large de températures ambiantes. L'inactivité chimique et le pH neutre de la barytine permettent entre autres: d'obtenir une meilleure durabilité en milieu agressif humide (H2O, sulfates, chlorures, réactions alcalines notamment avec la silice, etc.) de la pâte de ciment et des armatures métalliques; d'adoucir le choc thermique d'hydratation chimique du ciment qui cause le retrait et la micro-fissuration initiale du béton (cet adoucissement du choc thermique résulte aussi de la capacité d'accumulation thermique de la barytine); de rendre son utilisation compatible avec les ciments, aggrégats, additifs, et adjuvants normalement utilisés dans la technologie du béton projeté; la réalisation de barrières isolantes contre les agressions chimiques des gaz ou des liquides; la projection sur une surface humide.
La finesse et la mollesse de la barytine permettent: entre autres une meilleure maléabilité-oeuvrabilité; une meilleure cohésion du produit projeté; une plus grande quantité de produit projeté par application; une meilleure compaction; une meilleure imperméabilité à l'air et à l'eau; une plus grande densité; une plus faible porosité par suite de la diminution des vides sans affecter négativement la maléabilité- oeuvrabilité; une diminution des rebonds; une diminution de la poussière produite durant la projection; une augmentation de la résistance mécanique en compression surtout; une meilleure étanchéité aux gaz; une adhérence accrue par un contact plus intime avec toutes les surfaces de réception incluant les fissures et la partie cachée arrière des armatures; un choc thermique diminué par suite de la densité générée par la compaction avec le résultat qu'il y a moins d'oxygène disponible pour l'hydratation; l'amélioration de la résistance aux cycles gel-dégel, à cause d'une capacité d'isolation supérieure contre l'eau, l'air, les chlorures, etc.
La densité de la barytine permet d'obtenir entre autres: un meilleur écoulement du mélange de béton dans la trémie d'alimentation; une plus grande force d'impact du produit projeté sur la surface de réception, ce qui augmente l'adhérence, le compactage et l'auto- compactage, la cohésion et l'épaisseur possible maximale du revêtement et en conséquence une réduction de la quantité d'accélérateur de prise nécessaire pour une même cohésion; une diminution de l'émission de poussière lors de l'alimentation dans les trémies (poussières provenant du ciment, du sable, mais aussi des adjuvants minéraux à réaction pouzzolanique tels que la fumée de silice); ainsi qu'une augmentation de la vitesse de sédimentation des poussières, en particulier dans les mines; moins de rebonds lors de l'application.
EXEMPLES COMPARATIFS
L'ingénieur Toma a expérimenté un mélange de béton projeté avec barytine, utilisant une courbe granulométrique discontinue et une barytine dont la qualité est conforme aux spécifications qui suivent. Les résultats ont été très concluants, et ont motivé la présente demande.
- 9b -
Le barytine utilisé était conforme aux critères de qualité suivants:
BaS04 97% ± 5%
Si02 1% ± 5% Fe2θ3 max 0,15%
BaCθ3 max 0,4%
Cu, Mn max 0,003%
Pb, As néant
Autres sulfures 0,13% AI2O3 max 0,15%
SrSθ4 max 0,15%
Sels solubles dans l'eau 0,05%
Autres alcalis 0,1%
CaF2 néant Chlorures max 0,03%
Humidité + volatile max 0,08% pH 7
Absoφtion d'huile minérale 11
Densité minimum 4,30 Dureté max 3
Granulométrie BaSθ4
Poudre micronisée 0,01-4 microns Poudre fine 4-47 microns
Poudre normale 47-1000 microns
Granulométrie Agrégats
Sable 1-4 mm (3τavier 7-25 mm Grossier (remblai) 25-75 mm - 10 -
Plus récemment, les demandeurs ont réalisé des essais par projection de béton sur des panneaux en bois, sur un parapet en béton, et sur un quai de déchargement en béton armé fortement dégradé. Les essais comportaient des projections vers le plafont, vers le plancher, et vers le mur. L'épaisseur de béton projeté variait entre 3 cm et 15 cm. Des comparaisons ont été faites en utilisant a) un mélange standard, b) un mélange standard avec 2% de barytine en rapport du ciment, c) un mélange standard avec 5% de barytine en rapport du ciment, d) un mélange standard avec 66 2/3% de barytine en rapport du ciment. De façon générale, on a noté, en utilisant la barytine:
1) une légère diminution de la poussière produite durant l'alimentation et durant la projection;
2) que le béton projeté couvrait mieux, s'étendait mieux, et remplissait mieux; le nozzleman l'a qualifié de plus "boueux"; 3) que la tenue, la cohésion, et l'épaisseur maximale possible par application était comparable, sinon supérieures;
4) que la finition à la truelle était aussi facile, sinon plus facile, mais surtout plus lisse; de plus, un jet à main de barytine sur la surface finie et lissée a permis une finition additionnelle plus lisse et plus "régulière". Après avoir recueilli des échantillons par carottage quelques jours après la projection, on a observé dans le cas des carottes avec barytine, par rapport aux carottes sans barytine:
1) une répartition plus uniforme des agrégats grossiers, depuis le début de la carotte, jusqu'à la fin, indiquant une diminution dans la quantité de rebonds en début de projection et une meilleure compaction;
2) moins de vides (d'air), donc moins poreux;
3) une adhérence plus intime avec la surface de réception (bois, béton ancien, métal);
4) une meilleure uniformité de la couleur, indiquant une meilleure homogénéité du mélange;
5) une meilleure imperméabilité à l'eau;
6) une résistance en arrachement, en compression, en cisaillement, et en torsion comparables;
7) un meilleur enrobage du treillis métallique (et probablement des barres d'armatures) et des agrégats grossiers; - 11 -
8) une surface latérale des carottes notablement plus douce, plus tisse.
Par ailleurs, certains tests ont été faits avec fumée de silice et barytine, d'autres avec fumée de silice sans barytine: on n'a noté aucune incompatibilité d'asssociation.
De plus, deux types d'équipements (machines à projeter) ont été utilisée, sans différence notoire au niveau des résultats.
On peut utiliser à titre d'exemples non limitatifs, la projection de béton renfermant de la barytine selon l'invention dans les endroits dont on connaît peu ou mal l'évolution dans le futur; dans les endroits dont on connaît peu ou mal l'évolution dans le passé; pour la fabrication de conduits et tuyaux en béton, devant résister aux agressions chimiques liquides; dans la fabrication et la réparation de piscines et de bassins aquicoles; dans la construction de dômes, coupoles, voûtes et autres qui nécessitent habituellement des treillis de renfort; en agriculture, pour isoler les déchets animaux contaminants, les pesticides et les engrais et pour conserver les périssables à l'abri de l'humidité et des variations de température, de même qu'en horticulture pour la fabrication de paillis; pour le stockage thermique; pour les revêtements extérieurs des bâtiments soumis à l'action coirosive du vent et de l'air marin-salin le long des littoraux océaniques; dans les travaux de réparation des infrastructures en béton pour les rendre plus durables, plus économiques, plus flexibles en rapport avec les conditions de site, moins dangereux pour la santé des travailleurs; pour s'assurer des résultats plus prévisibles; pour assurer une plus longue vie aux équipements notamment machines et boyaux; pour effectuer des réparations diverses telles que les projections de coulis dans les solages-fondations, les projections de mortier lors de la réparation de murs de briques, les projection de coulis et l'application d'enduit pour réparer les voûtes de métro; pour les soutènements miniers et la réhabilitation de sites miniers; pour la fabrication de blocs, briques, pavés, dalles et autres, réalisés par une projection dans des moules; et pour toutes combinaisons d'usages ci-haut mentionnées notamment les conduites d'eau dans les pays chauds ou secs, où l'eau est une denrée précieuse.

Claims

- 12 - REVENDICATIONS
1. Méthode selon laquelle on prépare un mélange à projeter à base de ciment, et l'on projette ce mélange à haute vitesse sur une surface dans des conditions telles que ledit mélange forme un revêtement qui adhère à ladite surface, caractérisée en ce que ledit mélange comporte du sulfate de baryum.
2. Méthode selon la revendication 1, caractérisée en ce que le mélange à projeter est un mélange de béton, et ce dernier comporte jusqu'à environ 100% en poids de sulfate de baryum par rapport au poids de ciment dans le dit mélange.
3. Méthode selon la revendication 2, caractérisée en ce que ledit mélange de béton comporte entre environ 2 et 50% en poids de sulfate de baryum par rapport au poids de ciment dans ledit mélange.
4. Méthode selon la revendication 2, caractérisée en ce que ledit mélange de béton comporte entre environ 2 et 10% en poids de sulfate de baryum par rapport au poids de ciment dans le mélange.
5. Méthode selon la revendication 1, caractérisée en ce que le sulfate de baryum est utilisé sous forme de barytine.
6. Méthode selon les revendications 1 à 4, caractérisées en ce que le sulfate de baryum utilisé possède une granulométrie de 0,01 micron à 75mm d'une teneur entre 80 et 99% de sulfate de baryum.
7. Méthode selon la revendication 2, caractérisée en ce que ladite surface contient des roches et/ou du béton dégradé, on projette sur ladite surface un premier mélange pour former une couche qui rend ladite surface étanche et/ou ignifuge, on projette successivement ou alternativement un ou plusieurs desdits mélanges de béton sur ladite couche étanche pour former une ou des structures protectrices et portantes, et enfin on projette un dernier dit mélange destiné à constituer une couche de protection éliminant ou diminuant ainsi la formation - 13 - d'efflorescence, et la dégradation de ladite surface par l'aggression d'agents chimiques extérieurs, la succession de couches pouvant éventuellement se présenter en forme de sandwich.
8. Méthode selon les revendications 1 à 7, caractérisée en ce que ladite surface est constituée par des gisements, des minerais métallifères et non métallifères, charbon, sel et dépôt de glace, et matériaux de construction de faible consistance ou par du béton dégradé, et préalablement à ladite projection, on pratique des canaux sur ladite surface de façon à ancrer le mélange à base de ciment.
9. Méthode selon la revendication 8, caractérisée en ce que lesdits canaux ont une profondeur d'environ au moins 10cm et une largeur d'environ au moins 15cm.
10. Méthode selon la revendication 8 ou 9, caractérisée en ce que lesdits canaux sont en forme hélicoïdale.
11. Méthode selon la revendication 10, caractérisée en ce que lesdits canaux en forme hélicoïdale ont un pas d'environ 50cm.
12. Méthode selon les revendications 8 à 12, caractérisée en ce que lesdits canaux ont un profil en coupe de forme rectangulaire ou trapézoïdale.
PCT/CA1997/000482 1996-07-08 1997-07-07 Preparation de beton projete WO1998001402A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA002260267A CA2260267C (fr) 1996-07-08 1997-07-07 Preparation de beton projete
AU33316/97A AU730990C (en) 1996-07-08 1997-07-07 Method of improving shotcrete technology

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US2137496P 1996-07-08 1996-07-08
US60/021,374 1996-07-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/708,099 Continuation-In-Part US6465048B1 (en) 1996-07-08 2000-08-11 Method of improving shotcrete technology

Publications (3)

Publication Number Publication Date
WO1998001402A1 true WO1998001402A1 (fr) 1998-01-15
WO1998001402B1 WO1998001402B1 (fr) 1998-02-12
WO1998001402A9 WO1998001402A9 (fr) 1998-07-09

Family

ID=21803831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA1997/000482 WO1998001402A1 (fr) 1996-07-08 1997-07-07 Preparation de beton projete

Country Status (4)

Country Link
US (1) US6465048B1 (fr)
AU (1) AU730990C (fr)
CA (1) CA2260267C (fr)
WO (1) WO1998001402A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2360472A (en) * 2000-03-24 2001-09-26 Joseph Ash Storage Tanks Ltd Method of coating storage tanks with concrete
WO2012078071A1 (fr) * 2010-12-08 2012-06-14 Svechkopalov Anatoly Petrovich Matériau de ballast pour pipelines sous-marins principaux
RU2455553C1 (ru) * 2011-01-18 2012-07-10 Общество с ограниченной ответственностью "Балластные трубопроводы СВАП" Балластный материал повышенной плотности для подводных магистральных трубопроводов
RU2544194C1 (ru) * 2014-01-31 2015-03-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Поволжский государственный технологический университет" Композитный теплоизоляционно-балластный материал на основе древесных отходов

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6565647B1 (en) 2002-06-13 2003-05-20 Shieldcrete Ltd. Cementitious shotcrete composition
US6892814B2 (en) * 2002-12-19 2005-05-17 Halliburton Energy Services, Inc. Cement compositions containing coarse barite, process for making same and methods of cementing in a subterranean formation
US20070102672A1 (en) 2004-12-06 2007-05-10 Hamilton Judd D Ceramic radiation shielding material and method of preparation

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2279262A (en) * 1937-02-15 1942-04-07 Continental Oil Co Weighted cement
DE1172289B (de) * 1956-10-27 1964-06-18 Johannes W Vogelberg Auskleidung fuer Stollen oder Tunnel
FR1423286A (fr) * 1964-03-06 1966-01-03 Silver S P A Procédé d'avancement et de pose d'un revêtement porteur définitif en béton armé dans la construction des galeries en terrains meubles ou difficiles
FR1603362A (en) * 1968-09-16 1971-04-13 Radiation shield for x-rays from barium sul-phate
EP0439372A2 (fr) * 1990-01-26 1991-07-31 Blue Circle Industries Plc Composition de ciment et production du béton à partir de cette composition
DE4027332A1 (de) * 1990-08-29 1992-03-05 Schwenk Zementwerke Kg E Zement und seine verwendung zur herstellung von spritzbeton und -moertel
EP0681999A2 (fr) * 1994-05-09 1995-11-15 W.R. Grace & Co.-Conn. Compositions projetables ignifugeantes améliorées à base de ciment portland
ZA957733B (en) * 1994-06-16 1996-04-22 Mentor International Cc Method of forming a protective skin on a surface

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3739747A (en) * 1970-12-16 1973-06-19 R Sullivan Machine for applying coating material to pipe
US4293463A (en) * 1976-02-20 1981-10-06 Vroom Alan H Sulphur cements, process for making same and sulphur concretes made therefrom
US4773934A (en) * 1985-10-03 1988-09-27 Cemtech Laboratories Inc. Cementatious admixture
US4762811A (en) * 1987-01-21 1988-08-09 Dresser Industries, Inc. Castable refractory
NO162848C (no) 1987-09-11 1990-02-28 Elkem As Fremgangsmaate for tilsetning av silica stoev til en toerr sproeyte-betongblanding.
CH686780A5 (de) * 1992-07-22 1996-06-28 Sandoz Ag Fliessfaehige Zementmischungen.
US5512096A (en) * 1993-10-20 1996-04-30 Wyo-Ben, Inc. Flexible grouting composition
US5650004A (en) * 1995-06-20 1997-07-22 Yon; Michael D. Cement plaster composition, additive therefor and method of using the composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2279262A (en) * 1937-02-15 1942-04-07 Continental Oil Co Weighted cement
DE1172289B (de) * 1956-10-27 1964-06-18 Johannes W Vogelberg Auskleidung fuer Stollen oder Tunnel
FR1423286A (fr) * 1964-03-06 1966-01-03 Silver S P A Procédé d'avancement et de pose d'un revêtement porteur définitif en béton armé dans la construction des galeries en terrains meubles ou difficiles
FR1603362A (en) * 1968-09-16 1971-04-13 Radiation shield for x-rays from barium sul-phate
EP0439372A2 (fr) * 1990-01-26 1991-07-31 Blue Circle Industries Plc Composition de ciment et production du béton à partir de cette composition
DE4027332A1 (de) * 1990-08-29 1992-03-05 Schwenk Zementwerke Kg E Zement und seine verwendung zur herstellung von spritzbeton und -moertel
EP0681999A2 (fr) * 1994-05-09 1995-11-15 W.R. Grace & Co.-Conn. Compositions projetables ignifugeantes améliorées à base de ciment portland
ZA957733B (en) * 1994-06-16 1996-04-22 Mentor International Cc Method of forming a protective skin on a surface

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BUL. INST. POLITEH. IASI, SECT. 5, vol. 23, no. 1-2, 1977, pages 77 - 82 *
CHEMICAL ABSTRACTS, vol. 89, no. 12, 18 September 1978, Columbus, Ohio, US; abstract no. 94143, BRANISTE C. & AL.: "Some characteristics of concretes with added barite" XP002042338 *
DATABASE WPI Section Ch Week 9635, Derwent World Patents Index; Class A14, AN 96-354813, XP002044197 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2360472A (en) * 2000-03-24 2001-09-26 Joseph Ash Storage Tanks Ltd Method of coating storage tanks with concrete
WO2012078071A1 (fr) * 2010-12-08 2012-06-14 Svechkopalov Anatoly Petrovich Matériau de ballast pour pipelines sous-marins principaux
US20140018476A1 (en) * 2010-12-08 2014-01-16 Anatoly P. Svechkopalov Buoyancy control material for subsea main pipelines and high-density buoyancy control material for subsea main pipelines
US8895642B2 (en) * 2010-12-08 2014-11-25 Anatoly P. Svechkopalov Buoyancy control material for subsea main pipelines and high-density buoyancy control material for subsea main pipelines
EA028923B1 (ru) * 2010-12-08 2018-01-31 Анатолий Петрович Свечкопалов Балластный материал для подводных магистральных трубопроводов и балластный материал повышенной плотности для подводных магистральных трубопроводов
RU2455553C1 (ru) * 2011-01-18 2012-07-10 Общество с ограниченной ответственностью "Балластные трубопроводы СВАП" Балластный материал повышенной плотности для подводных магистральных трубопроводов
RU2544194C1 (ru) * 2014-01-31 2015-03-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Поволжский государственный технологический университет" Композитный теплоизоляционно-балластный материал на основе древесных отходов

Also Published As

Publication number Publication date
AU730990B2 (en) 2001-03-22
CA2260267C (fr) 2002-08-06
CA2260267A1 (fr) 1998-01-15
US6465048B1 (en) 2002-10-15
AU730990C (en) 2002-01-03
AU3331697A (en) 1998-02-02

Similar Documents

Publication Publication Date Title
RU2592307C2 (ru) Высокоэффективные несгораемые гипсоцементные композиции с повышенной устойчивостью к воде и термостойкостью для армированных цементных легких конструкционных цементных панелей
KR101340856B1 (ko) 내구성 및 수밀성이 우수한 시멘트 모르타르 조성물과 이를 이용한 콘크리트 구조물의 보수방법
JP2019031438A (ja) レオロジーが改変されたコンクリート材料、その作製法、およびその使用
KR101528120B1 (ko) 콘크리트 구조물 보수 보강제 및 이를 이용한 콘크리트 구조물의 보수 보강 공법
KR101954575B1 (ko) 고강도 내구성 모르타르 및 탄성 보강재를 이용한 콘크리트 구조물의 내진 보강 공법
Bernardo et al. Advancements in shotcrete technology
JP7045269B2 (ja) ポリマーセメントモルタル組成物及びポリマーセメントモルタル
CA2260267C (fr) Preparation de beton projete
KR102382696B1 (ko) 고강도 고기능성 건식 숏크리트용 프리믹스 조성물 및 이를 이용한 시공방법
WO1998001402A9 (fr) Preparation de beton projete
JP6508789B2 (ja) ポリマーセメントモルタル、及びポリマーセメントモルタルを用いた工法
KR101862611B1 (ko) 콘크리트 구조물 보수용 모르타르 조성물, 콘크리트 보호용 코팅제 조성물 및 콘크리트 구조물 보수 방법
KR102084250B1 (ko) 수중 불분리성 시멘트 모르타르 조성물 및 이를 이용한 하수암거가 포함된 수중구조물 보수보강공법
KR101102249B1 (ko) 방청 몰탈을 이용한 철근콘크리트 구조물 보수보강공법
JP6373047B2 (ja) セメント組成物、その製造方法、及び鉄筋コンクリート構造物
JP6203546B2 (ja) ポリマーセメントモルタル、及びポリマーセメントモルタルを用いた工法
JP4253375B2 (ja) 被覆細骨材、セメント組成物、セメント組成物の製造方法
DE19780838B4 (de) Verfahren zur Herstellung eines Konstruktionsbeton-Zuschlagstoffes
JPH03193649A (ja) 遮塩性に優れた高流動・高耐久性繊維補強充填モルタル
JP4409281B2 (ja) 軽量気泡コンクリートの製造方法
US20220089486A1 (en) Systems and methods for self-sustaining reactive cementitious systems
KR102717398B1 (ko) 염화물 이온 침투 저항성 및 유지적 성능이 우수한 모르타르 조성물 및 이를 이용한 콘크리트 구조물의 보수보강 시공방법
Guyer et al. An Introduction to Special Concretes
KR102626820B1 (ko) 초고강도 숏크리트 조성물 및 이를 이용한 시공방법
KR102624647B1 (ko) 동해, 염해 복합 열화 대응을 위한 알루미나 시멘트 함유 모르타르 조성물 및 이를 이용한 구조물 보수 공법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
COP Corrected version of pamphlet

Free format text: PAGE 9A, DESCRIPTION, ADDED

ENP Entry into the national phase

Ref document number: 2260267

Country of ref document: CA

Kind code of ref document: A

Ref document number: 2260267

Country of ref document: CA

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref document number: 1998504610

Country of ref document: JP

122 Ep: pct application non-entry in european phase