WO1998000227A1 - Dispositif de generation de mousse - Google Patents

Dispositif de generation de mousse Download PDF

Info

Publication number
WO1998000227A1
WO1998000227A1 PCT/FR1997/001167 FR9701167W WO9800227A1 WO 1998000227 A1 WO1998000227 A1 WO 1998000227A1 FR 9701167 W FR9701167 W FR 9701167W WO 9800227 A1 WO9800227 A1 WO 9800227A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
gas
liquid
foam
divergent
Prior art date
Application number
PCT/FR1997/001167
Other languages
English (en)
Inventor
Christophe Klein
Original Assignee
Christophe Klein
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9608162A external-priority patent/FR2750347A1/fr
Priority claimed from FR9700690A external-priority patent/FR2758476A1/fr
Application filed by Christophe Klein filed Critical Christophe Klein
Priority to US09/029,417 priority Critical patent/US6042089A/en
Priority to DE69722583T priority patent/DE69722583D1/de
Priority to CA002231338A priority patent/CA2231338A1/fr
Priority to EP97931836A priority patent/EP0869841B1/fr
Priority to AT97931836T priority patent/ATE242044T1/de
Publication of WO1998000227A1 publication Critical patent/WO1998000227A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/0018Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas with devices for making foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/311Injector mixers in conduits or tubes through which the main component flows for mixing more than two components; Devices specially adapted for generating foam
    • B01F25/3111Devices specially adapted for generating foam, e.g. air foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3124Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characterised by the place of introduction of the main flow
    • B01F25/31241Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characterised by the place of introduction of the main flow the main flow being injected in the circumferential area of the venturi, creating an aspiration in the central part of the conduit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3124Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characterised by the place of introduction of the main flow
    • B01F25/31243Eductor or eductor-type venturi, i.e. the main flow being injected through the venturi with high speed in the form of a jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/80Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
    • B01F31/86Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations with vibration of the receptacle or part of it
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0425Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid without any source of compressed gas, e.g. the air being sucked by the pressurised liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0441Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber
    • B05B7/0458Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber the gas and liquid flows being perpendicular just upstream the mixing chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/24Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas with means, e.g. a container, for supplying liquid or other fluent material to a discharge device
    • B05B7/2489Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas with means, e.g. a container, for supplying liquid or other fluent material to a discharge device an atomising fluid, e.g. a gas, being supplied to the discharge device
    • B05B7/2494Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas with means, e.g. a container, for supplying liquid or other fluent material to a discharge device an atomising fluid, e.g. a gas, being supplied to the discharge device a liquid being supplied from a pressurized or compressible container to the discharge device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/235Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids for making foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3125Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characteristics of the Venturi parts
    • B01F25/31253Discharge
    • B01F25/312533Constructional characteristics of the diverging discharge conduit or barrel, e.g. with zones of changing conicity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S261/00Gas and liquid contact apparatus
    • Y10S261/26Foam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S261/00Gas and liquid contact apparatus
    • Y10S261/75Flowing liquid aspirates gas

Definitions

  • the subject of the present invention is a device for generating foam and an apparatus making it possible to produce a foam, an aerosol, an emulsion or bubbles, comprising a nozzle for introducing the liquid, coaxial with a venturi stage comprising a convergent disposed opposite the nozzle, and a gas inlet coaxial to the corresponding nozzle with the convergent and a divergent
  • Foam production systems are used for example, to apply an active product to a surface to be cleaned, degrease, sanitize and depollute. chemically deactivate or neutralize
  • Foam generation systems have evolved in recent years with the introduction of systems allowing, in particular the simultaneous introduction of gas and liquid into a liquid-gas-liquid dispersion space which can be adjustable to modify the proportion of gas introduced as decnt in WO 9531287 Even if the proportion of gas can thus be significant, there is no action of division of the bubbles by cavitation and their size remains visible to the naked eye
  • the outlet nozzle is adapted to atomize the fluid by increasing the parameters of pressure and speed of the fluid, which leads to a lowering of the static pressure, the potential energy of the static pressure thus being transformed into kinetic energy.
  • the present invention relates to the formation of a foam of minimum density, as homogeneous as possible, using the cavitation phenomenon which was avoided in the prior art.
  • the system operating values are greater than 90% of gas volume in the final mixture.
  • the device for forming foam by the Ventu ⁇ effect, mixing a product in the liquid phase and a product in the gaseous phase comprising a nozzle for introducing the liquid, coaxial with a venturi stage comprising a convergent disposed opposite the nozzle.
  • the neck of which is of diameter “D” and a gas inlet coaxial with the nozzle corresponding to the converging, the gas being sucked in by a ventu ⁇ effect in a divergent and directed onto a mixing chamber connected to a kind of foam is characterized in that the divergent part of the venturi comprises at at least two zones of progressive horns with ruptures between the zones causing with the determined shape of the venturi a cavitation and opens into a chamber of turbulence
  • the device uses the difference in kinetic energy between that of the free incident liquid jet emitted by the nozzle, causing a conical dispersion which comes into contact with the neck diameter convergent "D" which decreases the speed of the liquid-gas mixture by lowering its pressure, and that of the lower pressure liquid-gas mixture stored as potential energy in the gas bubbles during suction in the jet and compression in the convergent of the venturi
  • This energy is released in the form of energy of cavitation in the divergent venturi comprising sections of progressive conicts which creates the phenomenon of cavitation due to the excess of gas in the liquid associated with the increase of the static pressure and the decrease of the speed of the fluid in the divergent and in the turbulence chamber located downstream of the divergent II a turbulent zone in the divergent is formed, by the tears of conicity put in cavitation waves which causes the division of bubbles up to submillimetric dimensions If active products and in particular surfactants are used in suitable concentration in the liquid-gas mixture, a foam of very low density is
  • the present invention uses a nozzle creating a free jet of low conicity a convergent neck adapted to the dimension of this jet followed by a divergent L assembly allows to create a gas suction upstream of the neck by Ventu ⁇ effect and to create with the gas thus sucks the conditions of a cavitation on your walls of divergent divergence Unlike other uses already de ⁇ rtes, this divergent forms wall of entry and creation of turbulence for a chamber of turbulence
  • An object of the present invention is a device for producing low density foam, therefore containing a high proportion of gas and a large contact surface. with the surface on which it is dispersed at the outlet of the system. It uses the forces generated by cavrtantes depressions. same controlled in a stabilization chamber, to atomize the liquid by projecting it.
  • the present invention further relates to an autonomous foam generation apparatus using the above device, which achieves homogeneity and reduced dimensions of bubbles allowing the active product to have a contact surface and an action brought to levels never reached. by conventional foam production systems.
  • Another object of the present invention is the production of a two-phase mixture in which the size of the bubbles is as small as possible, that is to say in all cases with a diameter of 20 microns.
  • the coupling of the cavitation, the turbulent flow and possibly the energy supply in the form of ultrasound allows maximum division of the gas bubbles present in the fluid and the formation of a stable foam at the outlet of said bedroom.
  • the device in addition to the formation of foam, makes it possible to mix and dose an incident fluid under pressure with a sucked gas, to generate bubbles, aerosols or emulsions.
  • the adaptation of the system is perfectly carried out if the vacuum measured upstream from the neck of said nozzle outside the incident free jet at high pressure is, (for example), greater than 1 bar or more generally close to the maximum for the fluid considered.
  • the distance between the outlet of the nozzle and the neck has an influence on the size of the gas cavities admitted into the Venturi and the quantity of gas admitted, it will be comp ⁇ se according to the invention between 2.d and 20.d (if the we call "d" the nozzle outlet diameter), the diameter D of the neck will be comp ⁇ s according to the length of said free jet between 1 d and 4.d.
  • FIG. 3 an external view of an embodiment of the apparatus according to the invention
  • FIG. 4 an embodiment of an apparatus according to the invention, seen in partial section, using a pyrotechnic charge
  • a nozzle 1 is adapted to disperse a fluid according to the flow and pressure parameters determined according to a cone of angle at the apex of low value ( ⁇ 20 °) and receives the fluid under a high inlet pressure through a supply channel 9
  • the active element comprises two ultrasonic wave generators 10 positioned radially on the turbulence chamber 4
  • the divergent comprises three zones of increasing conicities 14 15, 16, the first zone 14 having an angle a ⁇ comp ⁇ s between 0 and 10 °
  • the second zone 15 has an angle u2 greater by at least 5 ° than the angle u1 presented by the first zone, so that the lines of separation of the zones are located at distances between 2D and 4D for the line 14,15, and between 5D and 8D for the line 15, 16 with respect to the line X, 14, materializing the exit from the X neck of conicity 0 °
  • the third zone 16 has an angle at the top u3 at least 15 ° greater than the value of the angle ⁇ 1 and inferior to the value of the angle al plus 35 ° and is of a length less than 20D
  • the divergent 13 preferably comprises surface discontinuities such as scratches or squares
  • the mixing chamber adjustable in length by a thread 21 is of a length greater than 20D and leads to the outlet by a conduit (20)
  • the fluid constitutes one or more active ingredient (s), in solution or not, in emulsion or not, containing or not a solvent or any other liquid endowed with specific physicochemical characteristics. or adapted to a given application, is ejected in coaxial jet to the Ventu ⁇ 22 tube
  • the mixing of the two phases is carried out in a free jet, that is to say that the static pressure exerted by the gas on the jet is that of the gas entering the slots
  • Figure 2 shows the detail of a preferred embodiment of the divergent Ventun according to the invention. This embodiment includes three successive tapers of increasing angle value at the top: ai. u 2. ⁇ 3.
  • FIG. 3 represents a device which does not include an ultrasonic exciter but which, as in FIG. 1, has a gas suction opening in the form of a circular slot.
  • the increase in the gas inlet pressure helps to a certain extent in increasing the proportion of gases admitted into the neck 2.
  • the gas is air and the incident jet is an aqueous solution at the aforementioned high pressure
  • pressurizing the incident gas to 10 bars results in a gain of at least 50% in the quantity of gas admitted.
  • its effect on the free jet becomes neutral then disruptive, being able to cause phenomena of turbulence in the convergent 18 and even phenomena of cavitation at the level of the neck for high gas and incident jet pressures which is undesirable.
  • the conformation of the divergent and the turbulence chamber generate a significant depression upstream of the venturi which allows the foam production system to function very well and is already clearly superior to other systems even without gas overpressure
  • the advantage according to the invention of the introduction of the gases is to introduce by this means at input 3, gases having an action or an activity specific to the application of the process
  • gases having an action or an activity specific to the application of the process For example, it is possible to use ozone in a sanitizing application or even in certain cases of pollution control, halon gases may be used in a fire-fighting application or nitrogen or even nitrous oxide in a food, cosmetic or pharmaceutical emulston application.
  • the cavities are subjected to static pressure and are shaped into bubbles, but without cavitation phenomenon due to the increase in the speed of the fluid.
  • the static pressure has decreased and the speed of the mixture has increased compared to the entry of the jet into the Venturi: the speed of the mixture must be greater than a certain limit directly dependent on the Reynolds number which defines the nature of the fluid.
  • the Reynolds number is given by the formula:
  • mixing takes place at the pressure of introduction of the free jet gases and the cavitation precursors are formed by transformation of the kinetic energy of the incident fluid into potential static compression energy at the moment when the free jet contacts the Venturi converging 18. it is this energy returned in cavitation energy on the walls of the divergent 15,16 which generates a chaotic regime in the chamber 4.
  • the operating criterion of the device is that the flow comes out non-turbulent at the neck 2 (with a Reynolds number between 2300 and 3000) and allows cavitation in the divergent 13. Furthermore, the proportion of gas by volume can exceed 50 % and even reach or even exceed 80% in some cases.
  • the changes in taper or discontinuity of the divergent 17 cause the formation of turbulences which contribute to the slowing down of the fluid and favor the cavrtation which occurs firstly along the walls where the static pressure rises faster.
  • the potential energy stored by the bubbles in the passage of the Ventu ⁇ is restored during cavitation in the turbulent medium in the form of shock waves.
  • the kinetic energy thus released propagates the phenomenon of cavrtation, atomizes the liquid and allows the obtaining of submillimetric bubbles.
  • the angle at the apex “1 of the first section 14 of the diverging portion must remain below 10 °.
  • This angle is constant over said section, or varies continuously between 0 ° and the value retained below 10 ° in order to avoid or reduce maximum the cavrtation phenomenon at this location, which would not allow the device to be optimized
  • the angle at the top u2 of the second section 15 must be at least 10 ° greater than that mentioned for the first section so that the phenomenon cavitation is maximum at this location
  • the apex angle ⁇ 3 of the third section 16 must for the same reasons be at least 10 ° greater than that of the section 15
  • the outlet 20 from the chamber 4 is coaxial with the neck 2 Whatever the fluid used, there is formation at the outlet of the divergent 13 of bubbles of very small sizes, in the case of a non-reactive fluid or little surfactant, these bubbles disappear very quickly as soon as they leave the chamber, and even if the effect of cavitation causes molecular breaks and favese your creation of free radicals, the product will leave the system in almost liquid form or return in this form very quickly when the mixture is dispersed in free jet
  • the micro-bubbles formed by this process form a very light foam having very good tixotropic qualities but also very homogeneous and retain these properties even after dispersion in the open air.
  • a foam containing surfactants in sufficient quantity typically
  • the essential characteristic of the foam formed according to the invention is the formation of microscopic or even micronic bubbles at the level of chamber 4 This distinctive property makes it possible, during the diffusion of the product by a nozzle adapted, not to disperse droplets as most of the systems but to ensure your diffusion of small bubbles and even in most cases of heaps of micro-bubbles These naturally tend to open air to expand and regroup But I homogeneity and the large contact surface produced by the foam allows the active products a reinforced and almost instantaneous action in particular, with regard to the actions of ionic compounds of polar compounds and of surfactants This property is preserved for several minutes if the thickness of foam spread per unit of area is sufficient compared to the quantity of product to be treated per quantity of surface, in fact the reaction of an active compound d u sparkling mixture and in particular, a surfactant with the medium to be treated leads to the disappearance of the bubbles concerned by this reaction this phenomenon is easily visualized by a user of the apparatus or of the process and allows him to agree on the parts to be treated because dirt
  • the length of the section 14 of the diverging part is 1.5 to 5 times the diameter D of the neck 2, it is however possible to extend this portion, up to 30 times this length, if the 'application requires it, provided that the angle of this conicity is continuously variable between 0 ° and the selected value less than 10 ° at the exit of this section and this in order to limit in this phase the cavrtation phenomenon.
  • their preferred production length will be from 1 to 6 times the diameter of the neck 2 for the part marked 15 in FIG. 1 and less than 30 times this same diameter for the part 16, however these values being adapted according to the first use of the invention concerning aqueous solutions, different lengths can be envisaged for other fluids or mixtures of emulsion type
  • the diverging part 13 comprises three zones of increasing conicts with zone breaks
  • the diverging part can also have a number of zones different from three, the angles of the conicity zones will continuously vary and the ruptures be softened.
  • outlet section 20 will be sized according to the area of the neck 2 to have a surface area between 1, 2 and 3 times the area of said neck, higher values can be considered for high concentrations of surfactants and a quantity of gas higher per unit of liquid volume
  • the preferential flow of the fluid leaving the first section is laminar along the walls
  • this portion of the fluid is then subjected to a high static pressure due to the angle of this portion of the diverging portion and to turbulence which help to decrease the speed
  • the mixture near said wall is then in ideal cavitation conditions.
  • the gas bubbles implode, releasing the energy stored during their training at the entrance to the Ventu ⁇ .
  • This release of energy leads to the disappearance of bubbles and the formation of micro-bubbles, moreover it can break atomic or molecular bonds.
  • the metal of the walls is then subjected to the combination of violent shock waves and electrochemical couples. important It is necessary to guarantee a prolonged good operation of the device operating according to the present invention that the mechanical part forming Ventun is made of a metal or any other material resistant to this phenomenon.
  • An alloy based on special cast iron or steel trarte can commonly obtain more than a year in continuous operation without significant deterioration in the quality or activity of the foam produced
  • the cavitation phenomenon of essentially producing near the walls, the atomization of the bubbles and the resulting liquid have essentially radial components which ensure a chaotic movement of the central part of the chamber 4, moreover, the cavrtation generates waves ultrasound reflected by the walls and whose energy is absorbed by the mixture and participates in chaotic mixing
  • the pressure can be generated by various means such as a pressurized gas tank, a pyrotechnic generator or a steam generator
  • FIG. 4 One of the embodiments is shown diagrammatically in FIG. 4
  • the operation is obtained by action of a pyrotechnic charge in the chamber 25 which generates by the chamber 24 the quantity of gas required and allows the active products contained to be mixed in the casing 26 with the liquid contained in the chamber 23
  • the liquid is contained in a reservoir 23 whose wall is thick enough to undergo a notable increase in pressure
  • the chamber 25 has openings adapted to deliver a nominal pressure, which allows the establishment of a rapid combustion regime at high pressure ensuring the combustion of the entire product, the high pressure gases are released into the chamber 24.
  • This tank comprises, at its upper part a valve 37 allowing the liquid to be purged or mixed by admitting air from a gas tank under pressure
  • the active products are contained in the tearable envelope 26 in the form of powder or liquid.
  • the envelope 26 is made of a material which, by the play of variable thicknesses or fragile points on its surface, makes it possible to ensure the rupture of the seal in order to facilitate the passage of the liquid and to optimize the mixing and diluting the produrt in the liquid.
  • These products can be left immersed in the liquid in the reservoir 23.
  • the liquid can be discharged into the venturi tube 22 via a pipe 34 through a thermostatic mixing valve 33
  • the valve 33 makes it possible to maintain an almost constant temperature during of use
  • pressure regulators 31, 32 are mounted in bypass on the valve 33 so that the temperature and the pressure of the liquid are controlled.
  • the volume of foam leaving the device is approximately five times higher than in the devices currently in use
  • the opening of the lance outlet 35 causes the liquid ⁇ ui to move around the casing 26 in a helical movement promoting heat exchange
  • This embodiment can also be provided with a device for pressurizing the gases to supply the inlet of the ventu ⁇ and adapt the nature of the gas to the desired action.
  • the device can be fitted with a quick coupling fitted with a valve 38 calibrated in pressure to ensure gas feeding at the inlet of the venturi, of the pressure regulator 40 through the pipe 39
  • the present invention also relates to an apparatus for dispersing macrobubbles of gas in a liquid by also using the device dec ⁇ t above.
  • the venturi is placed in a liquid line 25
  • the main applications of the process concern the use as water fluid with a sufficient percentage of active products for specific actions:
  • Detergent products whether or not mixed with solvents of all types depending on the application, with an advantage given, according to the invention, to polar or ionic compounds as well as to surfactants for cleaning applications,
  • Pollution neutralization products and in particular enzymes or proteins specific to certain chemical actions on organic products and which can preferably be mixed, according to the invention, with solvents and destructuring products (in the event of polyme ⁇ sée pollution) or surfactants
  • Another application of the device is to use its low pressure capacity which can be greater than 1 bar. Such a device therefore becomes the pnn ⁇ pal element of a pump.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nozzles (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

Dispositif de formation de mousse par effet Venturi, mélangeant un produit en phase liquide et un produit en phase gazeuse, comprenant une buse (1) d'introduction du liquide, coaxiale à un étage venturi (22) comprenant un convergent (18) disposé en regard de la buse (1), dont le col est de diamètre 'D' et une entrée de gaz (3) coaxiale à la buse (1) correspondant avec le convergent (18), le gaz étant aspiré par effet Venturi et dirigé sur une chambre de mélange (4) connectée à une sortie de mousse, caractérisé en ce que, le mélange des deux phases s'effectuant en jet libre, le divergent (13) du venturi (22) comprend au moins trois zones de conicités progressives, avec des ruptures entre les zones provoquant un phénomène de cavitation, et débouche dans une chambre (4) de turbulences.

Description

DISPOSITIF DE GENERATION DE MOUSSE
La présente invention a pour objet un dispositif de génération de mousse et un appareil permettant de produire une mousse, un aérosol une emulsion ou des bulles, comprenant une buse d'introduction du liquide, coaxiale a un étage venturi comprenant un convergent dispose en regard de la buse, et une entrée de gaz coaxiale a la buse correspondant avec le convergent et un divergent
De multiples systèmes sont utilisés pour fabnquer de la mousse pour diverses applications où les propriétés physiques (faible densité et grande surface de contact, qualrtes tixotropiques) apportent une amélioration notable aux qualités intnnseques du produit dispense sous forme liquide Des systèmes de production de mousse sont utilises par exemple, pour appliquer un produit actif sur une surface a nettoyer, dégraisser aseptiser depolluer. desactiver chimiquement ou neutraliser
Dans toutes les applications utilisant une mousse, il est toujours recherche une réduction de la dimension des bulles a proportion égale de gaz dans le liquide, cette diminution de la taille des bulles augmentant la surface de contact avec le milieu a traiter, par unité de masse du produit actif. De nombreux systèmes de dispersion de mousse utilisent une buse qui atomise le produit en sortie de l'appareil et provoque un effet moussant par la projection a vitesse élevée d un grand nombre de fines gouttelettes contenant un produit moussant à l'impact
Les systèmes de génération de mousse ont évolue dans les dernières années avec l'introduction de systèmes permettant, en particulier l'introduction simultanée de gaz et de liquide dans un espace de dispersion liquide-gaz-liquide qui peut être réglable pour modifier la proportion de gaz introduit comme decnt dans WO 9531287 Même si la proportion de gaz peut ainsi être significative, il n'y a aucune action de division des bulles par cavitation et leur dimension reste visible a l'oeil nu
D'autres , par exemple US-A- 5 085 371, font appel a des éléments mécaniques sous forme d'obstacles (une gnlle dans le document cité) ou de guides destinés à créer un régime tourbillonnaire et non laminaire favorisant le mélange gaz-liquide
En fart, l'efficacité d'un tel système peut être facilement et complètement vérifiée par le pourcentage de produit actif nécessaire en solution pour accomplir une action donnée qui peut être quantifiée par unité de surface Ces solutions bien qu'améliorant de façon sensible la production de mousse par rapport à des systèmes plus primitifs ne réalisent pas un mélange et une finesse optimaux des bulles de gaz dans le liquide
De plus, dans le cas d'utilisation d'une buse d'atomisaton, la mousse est toujours formée après la sortie du système ce qui induit une formation des bulles sous une pression statique atmosphérique et donc des dimensions de bulles importantes et la surface de contact et l'activité tensioactive de la mousse ne peut être optimisée Dans la plupart des systèmes de lavage utilisés, la buse de sortie est adaptée pour atomiser le fluide en augmentant les paramètres de pression et vitesse du fluide, ce qui conduit à un abaissement de la pression statique, l'énergie potentielle de la pression statique étant ainsi transformée en énergie cinétique.
Quand un fluide liquide-gaz passe dans le divergent, sa vitesse diminue et les conditions de pression statique dépassent une certaine valeur, les bulles de gaz ne peuvent plus continuer leur expansion, sous l'effet de la pression elles implosent alors et se divisent en plusieurs cavités de dimensions très inféneures Cette implosion s'accompagne d'ondes de choc très importantes comparées avec les dimensions des cavités liées à une vitesse élevée des parois de ces mêmes cavités Ce phénomène a été étudié en détail par Hamitt, « Cavitation and Multi-phase
Phenomena », Mac-Graw Hill 1980. En particulier, il décrit les phénomènes de cavitation dans un divergent conique d'un tube de venturi Mais dans la plupart des utilisations existantes, ce phénomène doit être évité sinon il nuit au bon fonctionnementdes buses.
La présente invention a pour objet la formation d'une mousse d'une densité minimale, la plus homogène possible, utilisant le phénomène de cavitation qui était évité dans la technique anténeure. Avec un fluide contenant un produit tensioactif moussant, les valeurs de bon fonctionnement du système sont supérieures à 90% de volume gazeux dans le mélange final.
Selon I invention, le dispositif de formation de mousse par effet Ventuπ, mélangeant un produit en phase liquide et un produit en phase gazeuse, comprenant une buse d'introduction du liquide, coaxiale à un étage venturi comprenant un convergent disposé en regard de la buse, dont le col est de diamètre « D » et une entrée de gaz coaxiale à la buse correspondant avec le convergent, le gaz étant aspiré par effet ventuπ dans un divergent et dirigé sur une chambre de mélange connectée à une sorte de mousse, est caractérisé en ce que le divergent du venturi comprend au moins deux zones de cornettes progressives avec des ruptures entre les zones provoquant avec la forme déterminée du venturi une cavitation et débouche dans une chambre de turbulences
Le dispositif utilise la différence d'énergie cinétique entre celle du jet liquide incident libre émis par la buse, provoquant une dispersion conique qui entre en contact avec le convergent de diametrede col « D » ce qui diminue la vitesse du mélange liquide- gaz en abaissant sa pression, et celle du mélange liquide-gaz a plus basse pression stockée sous forme d'énergie potentielle dans les bulles de gaz lors de l'aspiration dans le jet et de la compression dans le convergent du venturi Cette énergie est libérée sous forme d'énergie de cavitation dans le divergent du venturi comprenant des sections de conicrtes progressives ce qui crée le phénomène de cavitation dû a I excès de gaz dans le liquide associe a l'augmentation de la pression statique et a la diminutionde la vitesse du fluide dans le divergent et dans la chambre de turbulences disposée en aval du divergent II se forme, par les ruptures de conicite, une zone turbulente dans le divergent qui est de plus soumise aux ondes de cavitation ce qui provoque la division des bulles jusqu'à des dimensions submillimetπques Si des produits actifs et en particulier tensioactifs sont utilise en concentration adaptée dans le mélange liquide-gaz on obtient une mousse de densité très faible, les produits chimiques actifs ayant ete soumis aux forces de cavitation et par suite étant fortement ionises et polanses avec une surface de contact importante due a la finesse des bulles ce qui confère au mélange une activité exceptionnelle, résultant de ce que, lors de I application du mélange a l'aide d'une buse, le jet est en fart constitue d'amas de bulles
La présente invention utilise une buse créant un jet libre de faible conicite un col convergent adapte a la dimension de ce jet suivi d'un divergent L ensemble permet de créer une aspiration de gaz en amont du col par effet Ventuπ et de créer avec le gaz ainsi aspire les conditions d'une cavitation sur tes parois dudrt divergent Au contraire des autres utilisations déjà deσrtes, ce divergent forme paroi d'entrée et de création de turbulences pour une chambre de turbulences
Ladite chambre peut être avantageusement équipée d'un dispositif permettant d'exciter le mélange qu'elle contient avec des ondes ultrasonores dans la chambre de turbulences
Un objet de la présente invention est un dispositif de production de mousse de faible densité, donc contenant une forte proportion de gaz et une grande surface de contact avec la surface sur laquelle elle est dispersée en sortie du système. Elle utilise les forces générées par les dépressions cavrtantes. mêmes contrôlées dans une chambre de stabilisation, pour atomiser le liquide en le projetant.
La présente invention concerne en outre un appareil autonome de génération de mousse utilisant le dispositif ci-dessus, qui atteint une homogénéité et des dimensions réduites de bulles permettant au produit actif d'avoir une surface de contact et une action portées à des niveaux jamais atteints par les systèmes de production de mousse conventionnels.
Un autre objet de la présente invention est la production d'un mélange diphasique dans lequel la taille des bulles soit ta plus petite possible, c'est-à-dire dans tous les cas d'un diamètre tnféπeur à 20 microns. Le couplage de la cavitation, de l'écoulement turbulent et éventuellement de l'apport d'énergie sous forme d'ultrasons permet une division maximale des bulles de gaz présent dans le fluide et la formation d'une mousse stable à la sortie de ladite chambre. Le dispositif, outre la formation de mousse permet de mélanger et de doser un fluide incident sous pression avec un gaz aspiré, de générer des bulles, des aérosols ou des emulsions.
Le volume du mélange augmentant très sensiblement au passage dans ladite chambre et sa vitesse sensiblement, il est nécessaire d'adapter sur l'arrivée haute pression une canalisation de retour qui permet une adaptation automatique du système, par régulation de débit, ladite régulation étant en soi connue.
L'adaptation du système est parfaitement réalisée si la dépression mesurée en amont du col de ladite tuyère en dehors du jet libre incident à haute pression est, (par exemple), supérieure à 1 bar ou plus généralement voisine du maximumpour le fluide considéré. La distance entre la sortie de la buse et le col a une influence sur la taille des cavités gazeuses admises dans le Venturi et la quantité de gaz admis, elle sera compπse selon l'invention entre 2.d et 20.d (si l'on appelle « d » le diamètre de sortie de la buse), le diamètre D du col sera compπs selon la longueur dudit jet libre entre 1 d et 4.d.
D'autres caractéristiques et avantages de la présente invention apparaîtront au cours de la description qui va suivre d'un exemple de réalisation particulier donné uniquementà titre d'exemple non limitatif en regard des figures qui représentent :
- La figure 1 , un mode de réalisation de l'invention vue en coupe ;
- la figure 2, le détail de réalisation du divergent du Venturi ; - la figure 3, une vue exténeure d'une réalisation de l'appareil selon l'invention,
- la figure 4, un mode de réalisation d'un appareil selon l'invention, vu en coupe partielle, utilisant une charge pyrotechnique,
- la figure 5, un exemple d'application de l'invention à la production de micro-bulles
Dans la réalisation de l'invention schématisée sur la figure 1 , une buse 1 est adaptée pour disperser un fluide selon les paramètres de débit et de pression déterminés selon un cône d'angle au sommet de valeur faible (<20°) et reçoit le fluide sous une pression d'arrivée élevée par un canal d'alimentation 9 Dans cet exemple, on pourra retenir une valeur de 100 bars a titre indicatif mais non limitatif des valeurs compnses entre 20 et 500 bars pouvant être spécifiques dans diverses applications Sur ta figure 1 l'élément actif comporte deux générateurs d'ondes ultrasonores 10 positionnes radiaiementsur la chambre de turbulences 4
Le divergent comprend trois zones de conicites croissantes 14 15, 16, la première zone 14 présentant un angle a \ compπs entre 0 et 10° La seconde zone 15 présente un angle u2 supérieur d'au moins 5° à l'angle u1 présenté par la première zone, de sorte que les lignes de séparation des zones soient situées a des distances comprises entre 2D et 4D pour la ligne 14,15, et entre 5D et 8D pour la ligne 15, 16 par rapport à la ligne X, 14, maténalisant la sortie du col X de conicite 0° La troisième zone 16 présente un angle au sommet u3 supérieur d'au moins 15° à la valeur de l'angle α1 et infeneur à la valeur de l'angle al plus 35° et est d'une longueur inféneure à 20D Le divergent 13 comporte, de préférence, des discontinuités de surface telles que rayures ou quadnllages
la chambre de mélange réglable en longueur par un filetage 21 est d une longueur supérieure a 20D et débouche sur la sortie par un conduit (20)
Le fluide, constitue selon l'application de l'invention par un ou plusieurs prιncιpe(s) actif (s), en solution ou non, en emulsionou non, contenant ou non un solvant ou tout autre liquide dote de caractéristiques physico-chimiques spécifiques ou adaptées a une application donnée, est éjecte en jet coaxial au tube Ventuπ 22
Selon l'invention, le mélangedes deux phases s'effectue en jet libre, c'est-à-dire que la pression statique exercée par le gaz sur le jet est celle du gaz en entrée des fentes
3 (ou d'une entrée des gaz pour alimenter le Ventuπ en gaz) La figure 2 représente le détail d'une réalisation préférée du divergent du Ventun selon l'invention. Cette réalisation comporte trois conicités successives de valeur d'angle au sommet croissantes : ai. u 2. α 3.
La figure 3 représente un disposrtif qui ne comporte pas d'excitateur à ultrasons mais comporte, comme dans la figure 1 , une ouverture d'aspiration des gaz en forme de fente circulaire.
L'augmentation de la pression d'arrivée des gaz aide dans une certaine mesure à accroître la proportion de gaz admis dans le col 2. A titre d'exemple si le gaz est de l'air et que le jet incident est une solution aqueuse à la haute pression précitée, la mise en pression à 10 bars du gaz incident entraîne un gain de 50% au moins de la quantité de gaz admis. Au delà d'une certaine valeur et si l'on continue à augmenter ladite pression, son effet sur le jet libre devient neutre puis perturbateur, pouvant entraîner des phénomènes de turbulence dans le convergent 18 et même des phénomènes de cavitation au niveau du col pour des pressions élevées de gaz et de jet incident ce qui est indésirable.
La conformation du divergent et de la chambre de turbulence génèrent en amont du venturi une dépression importante qui permet un fonctionnement du système de production de mousse très bon et déjà nettement supéneur aux autres systèmes même sans surpression des gaz L'avantage selon l'invention de l'introduction des gaz est d'introduire par ce moyen en entrée 3, des gaz ayant une action ou une activité spécifique à l'application du procédé Par exemple, on pourra utiliser de I ozone dans une application d'aseptisation voire dans certain cas de dépollution, on pourra utiliser des gaz halons dans une application de lutte contre l'incendie ou de l'azote voir protoxyde d'azote dans une application d'émulston alimentaire, cosmétique ou pharmaceutique.
Les cavités gazeuses qui se sont formées pendant le jet libre du fart de la dépression du Ventun sont entraînées à la vitesse d'écoulement du jet dans le Ventuπ. Après le passage de cette discontinuité, le mélange biphasique se trouve soumis à un écoulement monodirectionnel qui est, en première approche, décπt par l'équation de Bemouilli : P+V2/2g = Constante où P est la pression statique du mélange,
- V la vitesse du fluide et
- g la constante de gravitation A l'entrée dans le convergent du Venturi, les cavités sont soumises à une pression statique et sont conformées en bulles, mais sans phénomène de cavitation du fait de l'augmentation de la vitesse du fluide. En particulier, au passage du col, la pression statique a diminué et la vitesse du mélange a augmenté par rapport à l'entrée du jet dans le Venturi : la vitesse du mélange doit être supéπeure à une certaine limite directement dépendante du nombre de Reynolds qui définit la nature du fluide. Au- dessus d'un nombre de Reynolds de 3000, le liquide passe progressivement en écoulement turbulent et à I inverse, pour les nombres de Reynolds décroissants, l'écoulement devient plus laminaire. Pour un passage dans un tube rectiligne de section circulairele nombre de Reynolds est donné par la formule :
Re=V.D.r/m où D est le diamètre de la section
- V la vitesse du liquide,
- r sa densité et m sa viscosité
Le phénomène de la cavitation n'est pas possible pour Re<2300. En deçà de cette valeur la vitesse du liquide augmente dans le passage et la pression statique diminue mais pas suffisamment pour permettre la création des cavités précurseurs de cavitation. Les systèmes connus se doivent de fonctionner avec Re>2300 pour σéer une cavitation car le gaz ou la vapeur sont mélangés au fluide en amont du système.
Dans la présente invention, le mélange s'effectue à la pression d'introduction des gaz en jet libre et les précurseurs de cavitation se forment par transformation de l'énergie cinétique du fluide incident en énergie potentielle de compression statique au moment où le jet libre prend contact avec le convergent 18 du Venturi. c'est cette énergie restituée en énergie de cavitation sur les parois du divergent 15,16 qui génère un régime chaotique dans la chambre 4.
Le critère de fonctionnement du dispositif est que l'écoulement sort non turbulent au col 2 (avec un nombre de Reynolds compris entre 2300 et 3000) et permette une cavitation dans le divergent 13. Par ailleurs, la proportion de gaz en volume peut excéder 50% et même atteindre voire dépasser 80% dans certains cas. Avec ces proportions il y a coexistence de bulles et de fluide contenant des cavités à la sortie du col 2, dans la mesure où le ou les principes actifs ou produits contenus dans le fluide contient des agents tensioactits en quantité suffisante, ces bulles déjà formées sont aspirées dans l'axe de la chambre 4 qui est en dépression relative par rapport aux parois, où elles sont soumises au régime turbulent et aux ondes de choc de la cavitafion près des parois, ce qui produit des éclatements et implosions successives conduisant à la formation de bulles microscopiques Ce phénomène de turbulence chaotique n'est pas uniquement dû à la cavitation, il est également attπbuable à ta conformation spécifique du divergent en trois cornettes successives selon l'invention
Les changements de conicités ou discontinuités du divergent 17 entraînent la formation de turbulences qui contribuent au ralentissement du fluide et favorisent la cavrtation qui se produit en premier heu le long des parois où la pression statique s'élève le plus vite. L'énergie potentielle emmagasinée par les bulles au passage du Ventuπ est restituée lors de la cavitation au milieu turbulent sous forme d'ondes de choc. L'énergie cinétique ainsi libérée propage le phénomène de cavrtation, atomise le liquide et permet l'obtention de bulles submillimetnques
De préférence, l'angle au sommet «1 du premier tronçon 14 du divergent doit rester infeneura 10° Cet angle est constant sur ledit tronçon, ou varie continûment entre 0° et la valeur retenue infeπeure à 10° afin d'éviter ou de réduire au maximum le phénomène de cavrtation à cet endroit, ce qui ne permettrait pas d'optimiser l'appareil L'angle au sommet u2 du deυxième tronçon 15 doit être supéneur de 10° au moins à celui précité pour le premier tronçon afin que le phénomène de cavitation soit maximal à cet endroit De même l'angle au sommet α3 du troisième tronçon 16 doit pour les mêmes raisons être supéneur d'au moins 10° à celui du tronçon 15
Selon l'invention, la sortie 20 de la chambre 4 est coaxiale au col 2 Quel que sort te fluide utilisé, il y a formation en sortie du divergent 13 de bulles de très petites tailles , dans le cas d'un fluide non réactif ou peu tensioactif, ces bulles disparaissent très vite dès la sortie de la chambre, et même si l'effet de la cavitation provoque des cassures moléculaires et favonse ta création de radicaux libres, le produit sortira du système sous forme quasiment liquide ou retournera sous cette forme très rapidement quand le mélange sera disperse en jet libre
Au contraire, si le produit contient des composés moussants ou tensioactifs (ioniques ou non ioniques) en quantité suffisante, les micro-bulles formées par ce procédé forment une mousse très légère possédant de très bonnes qualités tixotropiques mais égalementtrès homogène et conservent ces propnétés même après dispersion à l'air libre. En effet, dans les mêmes conditions de pression que dans la chambre 4 une mousse contenant des produits tensioactifs en quantité suffisante (typiquement
>0,5% en masse du fluide) peut être conservée plusieurs minutes en conservant toutes son activité Après 5 mm, moins de 10% du volume du mélange sera retourné sous forme liquide dans des conditions de fonctionnement normal à température 8 9 ambiante Ce résultat améliore considérablement ceux obtenus par des moyens classiques a des concentrations supérieures
L'utilisation de tels produits adaptes rend non nécessaire la fermeture de la chambre en aval, la mousse opérant sa formation dans le divergent 13 et s'ecoulant ensuite après homogénéisation jusqu'au moment de sa dispersion dans une buse adaptée en pression et débit par rapport au col 2 la buse de sortie pouvant être située a plusieurs dizaines de mètres de la formation de mousse dans le divergent II est même possible, selon I invention d organiser la distπbution de mousse en reseau a partir d'une seule source
La particularité essentielle de la mousse formée selon I invention est la formation de bulles microscopiques voir microniques au niveau de la chambre 4 Cette propriété distinctive permet lors de la diffusion du produit par une buse adaptée de ne pas disperser des gouttelettes comme le font la plupart des systèmes mais d'assurer ta diffusion de petites bulles et même dans la plupart des cas d amas de micro-bulles Celles-ci ont naturellement tendance a l'air libre a sexpanser et a se regrouper Mais I homogénéité et la grande surface de contact produite par la mousse permet aux produits actifs une action renforcée et quasi instantanée en particulier, en ce qui concerne les actions de composes ioniques de composes polaires et des tensioactifs Cette propriété est conservée plusieurs minutes si l'épaisseur de mousse répandue par unité de surface est suffisante par rapport a la quantité de produrt a traiter par quantité de surface, en effet la reaction d un compose actif du mélange mousseux et en particulier, un agent tensioactif avec le milieu a traiter conduit a la disparition des bulles concernées par cette reaction ce phénomène est aisément visualise par un utilisateur de l'appareil ou du procède et lui permet d insister sur les parties a traiter de façon accrue parce que plus sales ou plus polluées, par exemple
Par ailleurs il est possible d'introduire par des systèmes de dosage appropries en amont de I appareil, plusieurs produits pas forcement miscibles entre eux par exemple, de l'huile et de l'eau, du solvant et du détergent, un produrt actif et un produit solvant, ete Le jet incident est alors forme d'un mélange non homogène localement mais cependant dose, ce mélange est alors parfaitement emulsionne au passage dans I appareil, les conditions de formation de la mousse et donc ses propriétés finales étant cependant modifiées par la nature et les proportions des fluides utilises Selon la réalisation préférée de l'invention, la longueur du tronçon 14 du divergent est de 1 ,5 à 5 fois le diamètre D du col 2, il est cependant possible de rallonger cette portion, jusqu'à 30 fois cette longueur, si l'application le nécessite, à condrtion que l'angle de cette conicite soit continûment variable entre 0° et la valeur retenue inféπeure à 10° en sortie de ce tronçon et ceci afin de limiter dans cette phase le phénomène de cavrtation.
Pour les autres tronçons, leur longueur de réalisation préférée, selon l'invention, sera de 1 à 6 fois le diamètre du col 2 pour la partie repérée 15 sur la figure 1 et infeπeur a 30 fois ce même diamètre pour la partie 16, cependant ces valeurs étant adaptées selon l'utilisation première de l'invention concernant des solutions aqueuses, des longueurs différentes peuvent être envisagées pour d'autres fluides ou mélanges de type émulsion
Dans la réalisation préférée de l'invention, le divergent 13 comporte trois zones de conicrtes croissantes avec des ruptures de zones Le divergent peut également avoir un nombre de zones différent de trois, les angles des zones de conicite vaπer continûment et les ruptures être adoucies La section de sortie 20 sera dimensionnee en fonction de l'aire du col 2 pour avoir une surface compnse entre 1 , 2 et 3 fois la surface dudit col, des valeurs supéπeures peuvent être envisagées pour des concentrations élevées de produits tensioactifs et une quantité de gaz plus élevée par unité de volume liquide
Dans le divergent 13, le mélange aborde un premier tronçon d'angle au sommet faible (<10°), étudie selon les conditions de débit, pression et concentration en gaz pour que la pression statique ne s'élève pas trop brutalement, créant des conditions empêchant l'implosion des bulles de gaz dans cette première partie du divergent
Du fart de la vitesse élevée du fluide atteinte au passage du col, et du fait que la chambre 4 est en régime continu d'écoulement du mélange et pleine dudrt mélange, l'écoulement préférentiel du fluide en sortie du premier tronçon est laminairele long des parois Au passage dans le deuxième tronçon, une partie majoritaire du fluide reste le long de la paroi du divergent 15 , cette partie du fluide est alors soumise à une pression statique élevée due à l'angle de cette partie du divergent et aux turbulences q ui contribuent a en diminuer la vitesse
Le mélange à proximité de ladite paroi est alors dans des conditions idéales de cavitation Les bulles de gaz implosent, libérant l'énergie emmagasinée pendant leur formation à l'entrée du Ventuπ. Cette libération d'énergie condurt à la disparition des bulles et a la formation de micro-bulles, de plus elle peut casser des liaisons atomiques ou moléculaires Le métal des parois est alors soumis à la combinaison d'ondes de choc violentes et de couples électrochimiques importants II est nécessaire pour garantir un bon fonctionnement prolongé de l'appareil fonctionnant selon la présente invention que la pièce mécanique formant Ventun soit constituée dans un métal ou tout autre maténau résistant à ce phénomène Un alliage à base de fonte spéciale ou en aciertrarte peut courammenttenir plus d'un an en fonctionnement continu sans dégradation sensible de la qualité ou de l'activité de la mousse produite
Ce processus se répète dans le troisième tronçon. Le phénomène de cavitation de produisant essentiellement à proximité des parois, l'atomisation des bulles et du liquide qui en résulte ont des composantes essentiellement radiales qui assurent un mouvement chaotique de la partie centrale de la chambre 4, de plus, la cavrtation génère des ondes uttrasonores réfléchies par les parois et dont l'énergie est absorbée par le mélange et participe au brassage chaotique
Dans le cas de la réalisation optimisée d'un dispositif selon la présente invention, l'utilisation additionnelle de genérateur(s) d'onde ultrasonores s'avère inutile, cependant si les trois conicrtes successives ne sont pas parfaitement adaptées aux conditions de débit et de pression demandées, la dépression générée par le Ventuπ restera inféneure à 0,9 bar et l'utilisation d'un apport d'énergie dans la mousse en cours de formation au niveau de la chambre 4 peut permettre de compenser ce défaut d'optimisation
La présente vise également un appareil autonome de production de mousse, utilisant les prophètes particulières du Ventuπ qui vient d'être décπt La pression peut être générée par différents moyens tels qu'un réservoir de gaz sous pression, un générateur pyrotechnique ou un générateur de vapeur
Un de réalisation est schematiquement représenté sur la figure 4 Dans celui-ci, le dédenchementdu fonctionnement est obtenu par action d'une charge pyrotechnique dans la chambre 25 qui génère par la chambre 24 la quantité de gaz nécessaire et permet le mélange des produits actifs contenus dans l'enveloppe 26 avec le liquide contenu dans la chambre 23 Le liquide est contenu dans un réservoir 23 dont la paroi est suffisamment épaisse pour subir une augmentation notable de pression Afin d'optimiser la combustion et réduire les coûts de fabncation, i est intéressant de travailler avec de la poudre vive à des densités de charge importantes La chambre 25 possède des ouvertures adaptées pour délivrer une pression nominale, qui permet l'établissement d'un régime de combustion rapide à haute pression assurant la combustion de la totalité du produit, les gaz à haute pression sont libérés dans la chambre 24. Lorsque la pression de forcementdu bouchon 27 est atteinte, celui-ci est propulsé dans l'enveloppe 26. Ce réservoir comprend, à sa partie supérieure une vanne 37 permettant la purge ou le brassage du liquide par admission d'air en provenance d'un réservoir de gaz sous pression
Les produits actifs sont contenus dans l'enveloppe déchirable 26 sous forme de poudre ou de liquide. L'enveloppe 26 est réalisée en un matériau qui, par le jeu d'épaisseurs variables ou de points fragiles sur sa surface, permet d'assurer ta rupture de l'étanchérté dans le but de faciliter le passage du liquide et d'optimiser le mélange et la dilution du produrt dans le liquide. Ces produits peuvent être laissés en immersiondans le liquide du réservoir 23. Le liquide peut se décharger dans le tube venturi 22 par l'intermédiaire d'une canalisation 34 a travers une vanne mélangeuse thermostatique 33 La vanne 33 permet de conserver une température quasi constante lors de l'utilisation De préférence des régulateurs de pression 31 ,32 sont montes en dérivation sur la vanne 33 de manière a ce que la température et la pression du liquide soient maîtπsées. Le volume de la mousse sortant de l'appareil est environ cinq fois plus élevé que dans les appareils actuellement utilisés
L'ouverture de la sortie de lance 35 provoque la mise en mouvement du liquide αui circule autour de l'enveloppe 26 en un mouvement hélicoïdal favorisant les échanges thermiques
Ce mode de réalisation peut également être dote d'un dispositif de mise sous pression des gaz pour alimenter l'entrée du ventuπ et adapter la nature du gaz à l'action recherchée Par exemple, l'appareil peut être muni d'un raccord rapide muni d'une valve 38 tarée en pression pour assurer le gavage en gaz à l'entrée du venturi, du régulateur de pression 40 à travers le tuyau 39
La présente invention vise également un appareil permettant de disperser des mcro- bulles de gaz dans un liquide en utilisant également le dispositif décπt d-dessus. Sur la figure 5, le venturi est placé dans une canalisation de liquide 25
Les applications pnncipales du procédé concernent l'utilisation comme fluide d'eau additionnée d'un pourcentage suffisant de produits actifs pour des actions déterminées : Produits détergents mélanges ou non a des solvants de tous types en fonction de l'application, avec un avantage donne, selon l'invention, a des composes polaires ou ioniques ainsi qu'a des produits tensioactifs pour des applications de nettoyage,
Produits de neutralisation de pollution, et en particulier de enzymes ou protéines spécifiques de certaines actions chimiques sur des produits organiques et pouvant être mélanges preferentiellement, selon l'invention, avec des solvants et des produrts déstructurants (en cas de pollution polymeπsée) ou tensioactifs
D'autres applications peuvent être envisagées ou le fluide n'est pas nécessairement en solution aqueuse
Avec des produits de neutralisation du phénomène de combustion, avec des tensioactifs et des composes polaires ou ioniques pour l'application d'extinction de feux ou d'incendies de toutes natures, avec des carburants additionnes de produits moussants polaires et/ou tensioactifs la mousse étant alors utilisée par dispersion ulteπeure par une buse selon l'état de l'art mats n'utilisant pas le phénomène de cavrtation
Une autre application de l'appareil est d'utiliser sa capacité depressionnaire qui peut être supeneure a 1 bar Un tel appareil devient donc l'élément pnnαpal d'une pompe
D'autres applications sont possibles en utilisant dans le fluide deux produits qui ne sont pas normalement miscibles pour créer des emulsions par exemple dans les domaines alimentaire cosmétique ou pharmaceutique

Claims

REVENDICATIONS
1 ° Dispositif de formation de mousse par effet Venturi, mélangeant un produit en phase liquide et un produrt en phase gazeuse, comprenant une buse (1 ) d'introduction du liquide, coaxiale à un étage venturi (22) comprenant un convergent (18) dispose en regard de la buse (1 ), dont le col est de diamètre « D » et une entrée de gaz (3) coaxiale à la buse (1 ) correspondant avec le convergent (18), le gaz étant aspiré par effet venturi et diπgé sur une chambre de mélange (4) connectée à une sortie de mousse, caractérisé en ce que le divergent (13) du venturi (22) comprend au moins trois zones de conicrtes progressives, avec des ruptures entre les zones, provoquant en combinaison avec la geometne du divergent, un phénomène de cavrtation, et débouche dans une chambre (4) de turbulences, le mélange des deux phases s'effectuant en jet libre.
2° Dispositif selon la revendication 1 , caractérise en ce que le divergent comprend trois zones de conicrtes croissantes (14, 15, 16), la première zone (14) présentant un angle (α 1 ) compπs entre 0 et 10°
3° Dispositif selon les revendications 1 et 2, caractérisé en ce que la troisième zone (16) possède un angle au sommet (u3) supéneur d'au moins 15° à la valeur de l'angle (αl) et mféneur à la valeur de l'angle (ui) plus 35° et est d'une longueur ιnféneurà 30D
4° Dispositif selon les revendications 1 à 3, caractérisé en ce que la seconde zone (15) présente un angle (u2) supéneur d'au moins 5° à l'angle (ui) présenté par la première zone, de sorte que les lignes de séparation des zones soient situées à des distances comprises entre 2D et 4D pour la ligne (14, 15) et entre 5D et 8D pour la ligne (15, 16) par rapport à la ligne (X, 14), matéπalisantla sortie du col (X) de conicite
5° Dispositif selon l'une des revendications 1 , 2 ou 3, caractérise en ce que le divergent (13) comporte de discontinuités de surface telles que rayures ou quadrillages 6e Dispositif selon l'une des revendications 1 ,2 ou 3, caractérisé en ce que les angles des zones de coniαté augmentent continûment et sont adoucis
7° Dispositif selon l'une des revendications 1 à 4, caractérisé en ce que la distance entre la sortie de la buse (1 ) et l'entrée (17) du Ventuπ est compnse entre 2d et 20d,
(d) étant le diamètredu condurtde la buse (1 ), le diamètre (2) de col du Ventuπ étant compris 1 d et 4.d.
8e Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que la chambre de mélange est réglable en longueur par un moyen (21 )
9° Dispositif selon l'une quelconque des revendications précédentes, caractérise en ce que la chambrede mélange est d'une longueur supérieure à 30D et débouche sur la sortie par un conduit (20)
10° Dispositif selon la revendication 1 , caractérise en ce que deux générateurs d'ondes ultrasonores (10) sont disposes radialementsur la chambre (4)
11° Dispositif selon l'une quelconque des revendications précédentes, caractérise en ce qu'au moins un mélangeur et/ou un régulateurde débit et de pression est connecté à l'entrée (9)
12° Dispositif selon l'une quelconque des revendications précédentes, caractérise en ce qu'au moins un mélangeur et/ou un régulateurde débit et de pression est connecte a l'entrée (3)
13° Dispositif selon la revendication 11 , caractérise en ce qu'au moins un mélangeur est connecté à l'entrée de chaque régulateurde débit et de pression
14° Dispositif selon la revendication 12, caractérisé en ce qu'au moins un régulateur de débit et de pression est connectée l'entrée de chaque mélangeur
15° Appareil de formation de mousse, incluant un dispositif selon la revendication 1 , caractérisé en ce qu'il comprend une enceinte (23) contenant un liquide, dans laquelle est immergée une enveloppe (26) contenant des produits actifs, un dispositif pyrotechnique (24,25,27) provoquant la dissolution des produits actifs dans le liquide
PCT/FR1997/001167 1996-07-01 1997-07-01 Dispositif de generation de mousse WO1998000227A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US09/029,417 US6042089A (en) 1996-07-01 1997-07-01 Foam generating device
DE69722583T DE69722583D1 (de) 1996-07-01 1997-07-01 Schaumstoffherstellungsvorrichtung
CA002231338A CA2231338A1 (fr) 1996-07-01 1997-07-01 Dispositif de generation de mousse
EP97931836A EP0869841B1 (fr) 1996-07-01 1997-07-01 Dispositif de generation de mousse
AT97931836T ATE242044T1 (de) 1996-07-01 1997-07-01 Schaumstoffherstellungsvorrichtung

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
FR9608162A FR2750347A1 (fr) 1996-07-01 1996-07-01 Procede de production de mousse optimise et reglable, ainsi que l'appareil concu a cet effet
FR96/08162 1996-07-01
FR9610947 1996-09-09
FR96/10947 1996-09-09
FR9700690A FR2758476A1 (fr) 1997-01-23 1997-01-23 Appareil de production de mousse optimise et reglable
FR97/00690 1997-01-23

Publications (1)

Publication Number Publication Date
WO1998000227A1 true WO1998000227A1 (fr) 1998-01-08

Family

ID=27253196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1997/001167 WO1998000227A1 (fr) 1996-07-01 1997-07-01 Dispositif de generation de mousse

Country Status (6)

Country Link
US (1) US6042089A (fr)
EP (1) EP0869841B1 (fr)
AT (1) ATE242044T1 (fr)
CA (1) CA2231338A1 (fr)
DE (1) DE69722583D1 (fr)
WO (1) WO1998000227A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002037965A2 (fr) * 2000-11-08 2002-05-16 L'air Liquide, Societe Anonyme Pour L'etude Et, L'exploitation Des Procedes Georges Claude Milieu moussant ozone, systeme et procede de production dudit milieu, visant a desinfecter un environnement de transformation d'aliments
WO2010078604A3 (fr) * 2009-06-24 2011-01-06 Saint-Gobain Abrasives, Inc. Systèmes d'élimination de matières et procédés utilisant de la mousse
EP2883618A1 (fr) * 2013-12-11 2015-06-17 Lechler GmbH Tuyère d'injecteur

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6561438B1 (en) * 1997-07-15 2003-05-13 The Fountainhead Group Foam generating nozzle assembly
RU2184619C1 (ru) * 2001-03-22 2002-07-10 Душкин Андрей Леонидович Распылитель жидкости (варианты)
US8512680B2 (en) * 2001-08-08 2013-08-20 Btg International Ltd. Injectables in foam, new pharmaceutical applications
DE10228853B4 (de) * 2002-06-27 2007-02-08 Esau & Hueber Gmbh Düsenanordnung zum Einleiten von Gas in eine Flüssigkeit
US7156377B2 (en) * 2003-05-01 2007-01-02 Chapman Teddie C Water aeration device and method
US6986506B2 (en) * 2003-05-01 2006-01-17 Chapman Teddie C Water aerator and method of using same
JP5292046B2 (ja) 2007-10-26 2013-09-18 ローム アンド ハース カンパニー 建造物用の耐候性バリア
EP2053082B1 (fr) 2007-10-26 2019-07-10 Rohm and Haas Company Revêtement résistant aux intempéries pour bâtiments
JP4760843B2 (ja) * 2008-03-13 2011-08-31 株式会社デンソー エジェクタ装置およびエジェクタ装置を用いた蒸気圧縮式冷凍サイクル
CN101371944B (zh) * 2008-08-22 2012-01-11 杭州新纪元安全产品有限公司 用洁净气体作为发泡剂的灭火产品及制作方法和灭火系统
US8286836B2 (en) * 2008-10-14 2012-10-16 Gojo Industries, Inc. Dispensing tube assembly and foam generator for coaxial tubes
US8360339B2 (en) * 2008-11-13 2013-01-29 Forced Gas Technologies, Llc Fire suppression apparatus and method for generating foam
EP2210925B1 (fr) 2009-01-21 2020-05-06 Rohm and Haas Company Dispositif d'applicateur étanche de frottis
CA2794521C (fr) 2010-04-14 2018-05-01 Dow Global Technologies Llc Dispositif de distribution pour revetements a la fois moussants et non moussants
WO2011133533A2 (fr) * 2010-04-20 2011-10-27 California Institute Of Technology Procédé de production de bulles microniques liquides remplies de gaz comme particules marqueuses ou brouillard d'inhalateur pour l'administration de médicaments
US8104745B1 (en) 2010-11-20 2012-01-31 Vladimir Vladimirovich Fisenko Heat-generating jet injection
CN102247673B (zh) * 2011-07-05 2013-02-13 淄博吉孚消防科技有限公司 压缩气体泡沫灭火系统气液比例混合发泡器
KR101351301B1 (ko) * 2012-10-23 2014-01-15 주식회사 디섹 선박의 밸러스트수 처리시스템
CA2907063C (fr) * 2013-03-15 2021-05-25 Fluid-Quip, Inc. Processeur de cavitation d'impulsion et procede d'utilisation de ce dernier
AT514381B1 (de) * 2013-04-04 2015-05-15 Avl List Gmbh Venturiverdünner
WO2015051146A1 (fr) 2013-10-02 2015-04-09 Aerocore Technologies Llc Procédé de nettoyage pour moteur à réaction
US11643946B2 (en) 2013-10-02 2023-05-09 Aerocore Technologies Llc Cleaning method for jet engine
AP2016009203A0 (en) 2013-10-17 2016-05-31 Ashok Adrian Singh Fluid treatment apparatus and process
CN103752204B (zh) * 2014-01-26 2016-02-03 中国地质大学(武汉) 一种用于多成分冲洗液的分散处理装置
EP3125944A4 (fr) 2014-04-01 2017-11-22 TDL Innovations, LLC Procédés et compositions pour l'administration d'un agent actif à une plèvre d'un patient
US10857100B2 (en) 2014-04-01 2020-12-08 Tdl Innovations Llc Methods and compositions for administering an active agent to the pleura of a patient
US10233097B2 (en) 2014-12-08 2019-03-19 Fluid-Quip, Inc. Liquid treatment apparatus with ring vortex processor and method of using same
AU2015261669A1 (en) * 2014-12-08 2016-06-23 Robert Pulz A Firefighting Foam Generator
US10099078B1 (en) 2015-07-17 2018-10-16 Gregory A. Blanchat Compressed air foam mixing device
US11691041B1 (en) 2015-07-17 2023-07-04 Gregory A. Blanchat Compressed air foam mixing device
CN105909567B (zh) * 2016-06-15 2018-08-21 江苏大学 一种改善射流式离心泵空化性能的射流器
JP6279179B1 (ja) * 2016-07-25 2018-02-14 株式会社シバタ 気泡発生装置
US20180169012A1 (en) * 2016-12-16 2018-06-21 TDL Innovations, LLC Medical Foam for Delivery of an Active Agent
US11229502B1 (en) 2017-06-03 2022-01-25 Knight, Llc Instrument cleaning systems and methods
JP6961219B2 (ja) * 2017-09-21 2021-11-05 ミクニ総業株式会社 マイクロ・ナノバブル発生器及び配管洗浄方法
MX2021000063A (es) 2018-06-29 2021-03-25 Corning Res & Dev Corp Boquilla atomizadora, sistemas, y metodos para limpiar conectores de fibra optica.
PT110818A (pt) * 2018-07-04 2020-01-06 Nanospectral Lda Processo de cavitação para preparação de emulsões de combustível com água e reactor para a realização do processo.
CN109731490A (zh) * 2018-08-21 2019-05-10 北京环域生态环保技术有限公司 一种二次加压多级破碎的纳米气泡发生方法及装置
CN110036996A (zh) * 2019-04-13 2019-07-23 安徽瓦尔特机械贸易有限公司 一种植保无人机用烟雾机
DE102019213569A1 (de) 2019-09-06 2021-03-11 Lechler Gmbh Injektionsdüse für eine Sprühvorrichtung und Sprühvorrichtung
CN115501994B (zh) * 2022-10-11 2023-08-22 山东科川节能环保科技有限公司 一种旋流高效、防倒流喷射的喷射装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1249223B (de) * 1967-09-07 C. A. Norgren Co., Englewood, Col. (V. St. A.) Aerosol-Erzeuger
US3838002A (en) * 1972-07-21 1974-09-24 Gen Electric Jet pump for nuclear reactor
FR2301710A1 (fr) * 1975-02-24 1976-09-17 Dresser Ind Appareil d'aspiration a fluide moteur comportant un ajutage du type
GB2026093A (en) * 1978-07-12 1980-01-30 Dresser Ind Jet pump nozzle construction
GB2189843A (en) * 1986-04-30 1987-11-04 James Maitland Pringle Apparatus for mixing fluids
GB2203065A (en) * 1987-04-11 1988-10-12 Wormald Ansul Foam dispensing nozzle
US4802630A (en) * 1985-11-19 1989-02-07 Ecolab Inc. Aspirating foamer
US5085371A (en) * 1990-06-15 1992-02-04 Shop-Vac Corporation Foam creating nozzle system
WO1995003129A1 (fr) * 1993-07-20 1995-02-02 Sinaisky Nicoli A Tuyere de pulverisateur a une depression cavitante externe par tube de venturi

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE517287A (fr) * 1952-02-05
US4098851A (en) * 1974-02-20 1978-07-04 Erdolchemie Gesellschaft Mit Beschrankter Haftung Device for mixing gases and liquids
US4333833A (en) * 1978-05-08 1982-06-08 Fischer & Porter Co. In-line disinfectant contactor
US4308138A (en) * 1978-07-10 1981-12-29 Woltman Robert B Treating means for bodies of water
US4861165A (en) * 1986-08-20 1989-08-29 Beloit Corporation Method of and means for hydrodynamic mixing
US5054688A (en) * 1989-12-20 1991-10-08 Robwen, Inc. Foam producing nozzle
US5061406A (en) * 1990-09-25 1991-10-29 Union Carbide Industrial Gases Technology Corporation In-line gas/liquid dispersion
US5275763A (en) * 1992-10-26 1994-01-04 Toshiharu Fukai Nozzle for generating bubbles
US5423488A (en) * 1994-05-11 1995-06-13 Davidson Textron Inc. Spray apparatus for mixing, atomizing and spraying foam forming components

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1249223B (de) * 1967-09-07 C. A. Norgren Co., Englewood, Col. (V. St. A.) Aerosol-Erzeuger
US3838002A (en) * 1972-07-21 1974-09-24 Gen Electric Jet pump for nuclear reactor
FR2301710A1 (fr) * 1975-02-24 1976-09-17 Dresser Ind Appareil d'aspiration a fluide moteur comportant un ajutage du type
GB2026093A (en) * 1978-07-12 1980-01-30 Dresser Ind Jet pump nozzle construction
US4802630A (en) * 1985-11-19 1989-02-07 Ecolab Inc. Aspirating foamer
GB2189843A (en) * 1986-04-30 1987-11-04 James Maitland Pringle Apparatus for mixing fluids
GB2203065A (en) * 1987-04-11 1988-10-12 Wormald Ansul Foam dispensing nozzle
US5085371A (en) * 1990-06-15 1992-02-04 Shop-Vac Corporation Foam creating nozzle system
WO1995003129A1 (fr) * 1993-07-20 1995-02-02 Sinaisky Nicoli A Tuyere de pulverisateur a une depression cavitante externe par tube de venturi

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002037965A2 (fr) * 2000-11-08 2002-05-16 L'air Liquide, Societe Anonyme Pour L'etude Et, L'exploitation Des Procedes Georges Claude Milieu moussant ozone, systeme et procede de production dudit milieu, visant a desinfecter un environnement de transformation d'aliments
WO2002037965A3 (fr) * 2000-11-08 2003-02-06 Air Liquide Milieu moussant ozone, systeme et procede de production dudit milieu, visant a desinfecter un environnement de transformation d'aliments
US6669902B1 (en) 2000-11-08 2003-12-30 L'air Liquide - Societe Anonyme A'directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Ozonated foam medium and production system and method for sanitizing a food processing environment
WO2010078604A3 (fr) * 2009-06-24 2011-01-06 Saint-Gobain Abrasives, Inc. Systèmes d'élimination de matières et procédés utilisant de la mousse
US8763617B2 (en) 2009-06-24 2014-07-01 Saint-Gobain Abrasives, Inc. Material removal systems and methods utilizing foam
EP2883618A1 (fr) * 2013-12-11 2015-06-17 Lechler GmbH Tuyère d'injecteur
US9339022B2 (en) 2013-12-11 2016-05-17 Lechler Gmbh Injector nozzle

Also Published As

Publication number Publication date
DE69722583D1 (de) 2003-07-10
CA2231338A1 (fr) 1998-01-08
EP0869841B1 (fr) 2003-06-04
US6042089A (en) 2000-03-28
EP0869841A1 (fr) 1998-10-14
ATE242044T1 (de) 2003-06-15

Similar Documents

Publication Publication Date Title
EP0869841B1 (fr) Dispositif de generation de mousse
KR101244237B1 (ko) 고속의 저압 배출기
CA1269410A (fr) Dispositif aspirant generateur de mousse
AU605650B2 (en) Emulsification method and apparatus
CN103341243A (zh) 一种液相灭火介质的灭火系统与方法
Omer et al. Spray nozzles
JPH09509882A (ja) 音場にかけられた分離した気体および液体部分を有する流れを提供する方法およびノズル
FR2750347A1 (fr) Procede de production de mousse optimise et reglable, ainsi que l&#39;appareil concu a cet effet
Lin et al. Structures of internal flow and the corresponding spray for aerated-liquid injectors
FR2758476A1 (fr) Appareil de production de mousse optimise et reglable
JP2011025202A (ja) 機能ミスト生成装置
EP1343577B1 (fr) Procede, module et dispositif de mise en contact d&#39;un gaz et d&#39;un liquide
KR101190788B1 (ko) 마이크로 버블 헤드 및 이를 구비하는 마이크로 버블 생성장치
CA2939691C (fr) Procede et dispositif de dispersion de gaz dans un liquide
US20030199595A1 (en) Device and method of creating hydrodynamic cavitation in fluids
JP2011025203A (ja) 機能ミスト生成装置
US20210331014A1 (en) A low-pressure mist fire extinguishing device and a set of components for a low-pressure mist fire extinguishing device
RU2258568C1 (ru) Распылитель жидкости
JP7287777B2 (ja) ウルトラファインバブル生成方法
FR2796568A1 (fr) Procede de fabrication d&#39;emulsions et son dispositif
Ejim et al. A scaling study of the atomization of a two-phase industrial nozzle: Part 1-effect of surface tension and viscosity on mean drop size profiles
BE510572A (fr)
RU2383386C1 (ru) Устройство для смешивания текущих сред
FR2885057A1 (fr) Rampe de distribution de brouillard
WO2009154587A1 (fr) Dispositif de mélange de milieux fluides

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1997931836

Country of ref document: EP

Ref document number: 09029417

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2231338

Country of ref document: CA

Kind code of ref document: A

Ref document number: 2231338

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997931836

Country of ref document: EP

NENP Non-entry into the national phase

Ref document number: 98503890

Country of ref document: JP

WWG Wipo information: grant in national office

Ref document number: 1997931836

Country of ref document: EP