WO1997042509A1 - Verfahren zur messung der strömungsgeschwindigkeit von gasförmigen oder flüssigen medien mittels ultraschall sowie zur durchführung des verfahrens geeignetes messgerät - Google Patents

Verfahren zur messung der strömungsgeschwindigkeit von gasförmigen oder flüssigen medien mittels ultraschall sowie zur durchführung des verfahrens geeignetes messgerät Download PDF

Info

Publication number
WO1997042509A1
WO1997042509A1 PCT/DE1997/000907 DE9700907W WO9742509A1 WO 1997042509 A1 WO1997042509 A1 WO 1997042509A1 DE 9700907 W DE9700907 W DE 9700907W WO 9742509 A1 WO9742509 A1 WO 9742509A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
signal
medium
section
sections
Prior art date
Application number
PCT/DE1997/000907
Other languages
English (en)
French (fr)
Inventor
Bernhard Puttke
Vladimir Agueev
Stanislav Rastopov
Original Assignee
Heuser, Ralf
HÜTTEMANN, Michael
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heuser, Ralf, HÜTTEMANN, Michael filed Critical Heuser, Ralf
Priority to AU29504/97A priority Critical patent/AU2950497A/en
Publication of WO1997042509A1 publication Critical patent/WO1997042509A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/24Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave
    • G01P5/245Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave by measuring transit time of acoustical waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
    • G01F1/668Compensating or correcting for variations in velocity of sound
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • G01P13/02Indicating direction only, e.g. by weather vane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • G01P13/02Indicating direction only, e.g. by weather vane
    • G01P13/025Indicating direction only, e.g. by weather vane indicating air data, i.e. flight variables of an aircraft, e.g. angle of attack, side slip, shear, yaw
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/24Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave
    • G01P5/245Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave by measuring transit time of acoustical waves
    • G01P5/248Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave by measuring transit time of acoustical waves by measuring phase differences

Definitions

  • the invention relates to a method for measuring the flow rate of gaseous or liquid media by means of ultrasound, in which within one or more measuring sections through which the medium flows and in a further reference section connected to the medium, in which the medium rests and in which the same characteristic there are physical boundary conditions, the running times of a signal emitted by an ultrasound transmitter are determined and the flow velocity of the medium in the respective signal direction is then derived therefrom in a signal processing device and a measuring device suitable for carrying out this method.
  • Devices are used to measure the flow velocity of media, which operate according to mechanical, electrothermal, laser-optical or ultrasonic methods. Except for the devices that work according to the electrothermal methods, the non-mechanical devices require expensive electronics, a complex housing and complex evaluation programs for calculating the target values, which is one reason for the relatively low prevalence of such devices.
  • Ultrasonic measuring devices are nevertheless gladly used for more demanding measuring tasks, since they allow the direction and speed of a medium to be determined at the same time, which makes them particularly suitable for use in meteorology. They also allow turbulence to be measured.
  • Ultrasonic measuring devices for measuring a flow velocity are constructed in such a way that one or more measuring sections are present, in which the transit time of the signal of an ultrasonic transmitter between a transmitter and a receiver or the phase shift between the transmitted and received signal is measured.
  • the transit time of an acoustic signal in a medium depends on the speed of movement of the medium in the signal direction and on the specific speed of sound in this medium. The speed of sound in turn is subject to the influence of temperature and possibly slightly to the influence of other properties of the medium.
  • a measurement is basically connected to a measurement in the opposite direction and both transit times or phase shifts are subtracted, so that the purely wind-speed-related component remains.
  • the transmitter and receiver must be used twice depending on the signal direction. High-quality piezo elements are therefore used, which cause high costs.
  • the invention is based on the object of specifying a method and a measuring device of the type mentioned at the outset which permits full detection of the direction and flow velocity with high resolution, but which allows the measuring device to be constructed with inexpensive components allowed and does not require complicated control electronics.
  • the object is achieved in that the flow velocity of the medium is derived from the difference between the reciprocal values of the transit times of the respective measuring section and the reference section measured in only one signal direction.
  • a signal in phase is used for the measurements in the reference section and in the measuring section or sections.
  • the transit times at the end of the reference path and the measuring path (s) are determined by measuring the phase shifts of the received signal or signals relative to the output signal.
  • the invention thus allows the use of inexpensive acoustic microphones as receivers and thereby already leads to a drastic reduction in the manufacturing costs of a corresponding measuring device.
  • the avoidance of double use of the electroacoustic components by the associated avoidance of complex control electronics leads to a further reduction in manufacturing costs, as does the relatively straightforward signal processing.
  • the invention opens up the possibility of working with an uninterrupted, continuous signal in only one measuring direction between the sounder and the receiver, which has unmistakable advantages in terms of signal processing.
  • the method provides an exact flow value which is independent of the temperature, humidity and density of the flow medium.
  • the frequency of the transmitted ultrasound signal is regulated by the signal processing device in such a way that there is no phase shift in the reference path between the transmitted and the received ultrasound signal.
  • the sensitivity can advantageously always be kept in the optimal range, since the signals can always be evaluated in their increasing range.
  • the maximum achievable measuring range is maintained within the phase.
  • the measuring range can be expanded by knowing the number of periods.
  • the signal measured at the output of the reference path is passed to a controller, which tracks the frequency generated by a frequency generator with which the sound generator is acted on.
  • the control signal of the controller is then also a measure of the temperature of the medium, since the change in transit time in the reference path is essentially only dependent on the temperature.
  • the control signal can therefore be used directly for temperature display after appropriate signal processing.
  • the sound generator is preferably operated in its resonance range, the resonance frequency of the sound generator being expediently set by feedback. In this way, the influence of dirt or droplet coating, which can in particular deposit on the sound generator, on the phase shift between the electrical excitation signal and the emitted acoustic signal of the sound generator is minimized.
  • the resonance frequency of the sound generator is measured, the phase shift is corrected accordingly and if there is a deviation an error signal is triggered from predetermined tolerance values.
  • the frequency deviation can, for. B. triggered by coarse dirt.
  • Deviating from the signal processing described above this can also be carried out in accordance with the invention in such a way that the transit times at the end of the reference path and the measuring path (s) are determined by measuring the frequency of the signal received in each case, at which the phase shift between the in its frequency, the output signal, which can be varied within limits, and the respectively received signal becomes zero.
  • the measurement is also carried out with a continuous output signal, the frequency of which is preferably continuously changed between two limit frequencies.
  • the length of the reference section and the measuring sections is calibrated in a resting medium before the start of a measurement by comparing the transit times or the phase shifts of the signals received at the end of the reference section and the measuring sections.
  • a constant calibration can alternatively also be carried out by means of laser-optical methods or by means of microwave measurement.
  • the amplitudes of the signals received at the end of the reference path and the measuring paths are compared with one another and if the amplitude of a signal deviates an error signal is triggered by a mean value of the received signals or a predetermined value.
  • a further method variant can be realized in that the running time of an ultrasound signal from virtual temperature, humidity and pressure measurements in a virtual, than with a certain flow rate (which can be positive, negative or zero) and the same physical Boundary conditions such as electronically simulated in the reference path or the measuring paths underlying it.
  • the further signal processing takes place in a manner analogous to the presence of a real reference path.
  • the transit time at the end of the measuring section (s) is determined by measuring the phase shift (s) of the received signal (s) with respect to the output signal.
  • the runtime in the (virtual) reference path is determined by simulating the phase shift in the reference path.
  • the measuring device for carrying out the method has at least one sound generator, at least one measuring path equipped with a receiver and through which the medium flows, and one reference path equipped with a receiver which is connected to the medium but does not flow through it.
  • the measuring device has at least one sound generator, at least one measuring section equipped with a receiver, through which the medium flows, and a virtual reference section, the reference signal of which takes place via at least one temperature measurement.
  • the measuring sections and the reference section can have the same length.
  • a single sound generator which is effective for all measuring sections and the reference section can be used.
  • the sound generator can preferably have an in-phase radiation characteristic in the directions of the measuring sections and the reference section. Suitable as such - 8 - a cylindrical piezo element to which i. ü. only moderate quality requirements have to be set.
  • the measuring device can be constructed such that the receivers of the measuring sections and the sound generator are arranged at the corner points of an imaginary tetrahedron.
  • the reference path can be configured as a monomodal acoustic, ie. H. reflection-free conductor (single-mode).
  • the structure could e.g. be designed so that a thin aluminum cylinder is arranged together with the sound generator and a receiver in a coupling tube.
  • the coupling tube can additionally be closed by an ultrasound-permeable membrane, so that the sound generator is protected against environmental influences.
  • openings can be provided in the hollow cylinder, so that a connection to the ambient air is created.
  • the sound generator is preferably operated in resonant regions if a phase difference measurement is carried out in accordance with the method.
  • a phase difference measurement is carried out in accordance with the method.
  • straightforward simple piezo elements have a wide resonance spectrum, so that measurement in a large measuring range is made possible, for example by using upper frequencies of a resonant fundamental frequency to multiply the measuring range. Due to the possibility to adjust the phase position at the receiver of the reference path
  • phase angle in the remaining measuring sections is also always in the area of the signal zero crossing, in which measurements with the highest measuring accuracy can be made.
  • the measuring range can be expanded many times over conventional devices.
  • the advantages of the measuring device according to the invention open up a wide field of use. With the high measuring precision, the measuring device is suitable for meteorological and aeronautical uses as well as for environmental tasks.
  • Wind measurement on cranes is an option for the construction industry.
  • the measuring device can also be used to determine the flight data, e.g. B. Airspeed, pushing and angle of attack of aircraft can be used, the flow velocity then being determined in a quasi-stationary medium and a moving reference system.
  • flight data e.g. B.
  • Airspeed, pushing and angle of attack of aircraft can be used, the flow velocity then being determined in a quasi-stationary medium and a moving reference system.
  • the price advantages also make it possible to use the measuring device in a non-professional area.
  • B. as a handheld device for surfers, hang gliders and. athletes.
  • 1 shows the basic structure of a measuring device according to the invention for wind measurement in a perspective view
  • 2 shows a block diagram of the control and evaluation electronics of the measuring device when using the phase difference measurement according to the method
  • FIG. 3 shows a block diagram of the control and evaluation electronics of the measuring device when using the frequency measurement according to the method
  • FIG. 4 shows a block diagram of the control and evaluation electronics of the measuring device when using the phase difference measurement according to the method and a virtual reference path.
  • the exemplary embodiments relate to a wind measuring device, the wind vector being completely detected in three spatial directions with regard to the wind speeds in accordance with the method according to the invention.
  • the measuring device contains three receivers 1, 2, 3 and a sound generator 4.
  • the receivers 1, 2, 3 are all equidistant from the sound generator 4 and together span an axis cross, which in the present case is to be understood as orthogonal.
  • the three receivers 1, 2, 3 and the sound generator 4 are located at the corner points of an imaginary tetrahedron.
  • the equally long measuring sections L1, L2, L3 are indicated by dashed lines.
  • the structure is formed by a ring 5, on the underside of which the receivers 1, 2, 3 are attached at a distance of 120 °, and by a support 6 which holds the ring 5 in place.
  • a reference path LR is formed from a tube 7 designed as a monomodal acoustic conductor, in which the receiver 8 of the reference path LR is accommodated at the lower end, likewise at the same distance from the sound generator 4 as the receivers 1, 2, 3.
  • the reference path LR is thermally and mechanically protected within a cylindrical coupling tube 9, in which parts of the electronics can also be accommodated. Via the opening 10 in the union tube 9 and via the openings 11 in the tube 7, the reference path LR is connected to the surrounding atmosphere.
  • the sound generator 4 is covered with an ultrasound-permeable window in the form of a film 12, which protects the sound generator 4 against environmental influences and closes the reference path LR.
  • the transit time T (TR, T1, T2, T3) is determined for the reference path and each measuring path L (LR, L1, L2, L3). The following calculation is based on the consideration of the measuring section L1 and a reference section in which the medium rests.
  • the running time TR in the reference path LR depends only on the speed of sound sv, which results from
  • the transit time T1 of the measuring section L1 represented by the receiver 1 also depends on the air speed v1 in the direction of this measuring section according to the relationship
  • v1 L1 / T1 - LR / TR.
  • T1 n x Tg + 11.
  • the wind speed v1 in the direction of the first measuring section L1 can therefore be determined solely by measuring the phase shifts t1 and tR.
  • the wind speed v1 can be determined solely from the measurement of the phase shift t1, which is convenient signal processing and working in one Large measuring range allowed, since only small phase shifts are always to be measured, for which there is no danger that they will exceed the length of a period Tg. The latter is important for the phase comparison method, since the number n of the periods must be kept unchanged.
  • wind speeds v2, v3 in the other directions are to be determined analogously.
  • Fig. 2 shows the block diagram of such a signal processing.
  • the sound generator 4 is connected to a frequency generator 13 and is stimulated to emit continuously.
  • sound generator 4 in this embodiment for. B. uses a cylindrical piezo element, the emission characteristics of which lead to a phased radiation both in the direction of the receiver 8 of the reference path LR and in the direction of the receivers 1, 2, 3 of the measuring paths L1, L2, L3.
  • the receiver signals are amplified in the amplifiers 14-17 and converted into square pulses for a phase comparison method in the triggers 18-21, which serve as primary signals for the comparators 22-25.
  • the signal from the reference path LR is compared with the respective signal of the corresponding measuring path L1, L2, L3 and the difference signal is transmitted to the resistance transmitters 26 to 28 for further signal processing.
  • Their output signals are proportional to the amounts of the components X, Y and Z of the wind vector, based on the axis cross spanned by the sound generator 4 and the receivers 1, 2, 3. If necessary, the components X, Y, Z can be converted into a spatially rotated axis cross according to geographical points of view or a axis cross that is not at right angles to one another, for which purpose the known geometric relationships are to be used for the conversion.
  • the output signal of the comparator 25 also serves to feed back the phase position of the signal of the receiver 8 of the reference link LR to the frequency generator 13.
  • the control signal at the output of the controller 29 then serves simultaneously as a measure of the temperature of the atmosphere, which can be taken from the resistance transformer 30.
  • FIG. 4 Another method variant (FIG. 4) uses a reference signal instead of the reference signal of the reference path LR, which is generated from a temperature, humidity and pressure measurement 39 via a microprocessor 40.
  • This signal is used like a primary signal and is compared in comparators 22, 23 and 24 with the respective signals of the measuring sections L1, L2 and L3. In many application cases with low demands on the measuring accuracy, a temperature measurement will be sufficient to generate the reference signal of a virtual reference path.
  • the transit times T (T1, T2, T3, TR) for the measuring sections and the reference section (L1, L2, L3, LR) are not determined from measurements of the amount of the phase shifts, but from a measurement of a variable frequency at which the phase shift at the respective receiver 1, 2, 3, 8 just becomes zero.
  • the flow velocity can then be determined from the measured frequency in the following way:
  • the frequency fg of the frequency generator 13 is changed within limits in proportion to the voltage U of a sawtooth generator 31 and is applied to the sound generator 4.
  • the frequency fR, f1, f2, f3 at which the phase shift tR, t1, t2, t3 at the respective receiver 8, 1, 2, 3 becomes zero is then measured in each case. Then again refer to the measuring section L1 with
  • v1 L / n (f1-fR).
  • c is a device constant that u. a. represents the resonance behavior of the piezo crystal.
  • the signal evaluation is again shown in FIG. 3 as a block diagram.
  • the signal received by the receivers 1, 2, 3, 8 is compared by comparators 32-35 with the signal output by the frequency generator 13. If the phase shift tR, t1, t2, t3 reaches the value zero, then the respective point in time is passed on by a logic circuit 36 to the analog / digital converter 37, which at that moment is predetermined by the sawtooth generator 31 and at the frequency ⁇ generator 13 applies voltage UR, U1, U2, U3 to a processor for further processing.
  • the flow velocity of a medium can thus be determined in three directions regardless of temperature.
  • the temperature is either in the reference limit distance LR is determined before the start of the measuring process and then the mean value position of the voltage U is regulated via feedback to an actuator 38 or a separate temperature sensor acting on the actuator 38 is used.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Measuring Volume Flow (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

Bekannte Ultraschallmeßgeräte verwenden Paare von einander zugewandten akustischen Sendern und Empfängern. Die windbeeinflußte Schallgeschwindigkeit in den Meßstrecken wird durch Messung der Laufzeiten oder durch Messung der Phasenverschiebungen gegenüber dem Ausgangssignal ermittelt. Die Abhängigkeit der Schallgeschwindigkeit von physikalischen Eigenschaften der Luft wird eliminiert, indem in alternierender Richtung gemessen wird, weshalb hochwertige Sender/Empfänger benötigt werden. Das vorliegende Verfahren arbeitet so, daß neben der Messung in mindestens einer Meßstrecke außerdem die Laufzeit eines Signals innerhalb einer mit dem Medium verbundenen Referenzstrecke ermittelt wird, in der keine Strömung, ansonsten aber die gleichen Bedingungen wie in dem Medium herrschen und die Strömungsgeschwindigkeit des Mediums in der jeweiligen Signalrichtung aus der Differenz der Reziprokwerte der Laufzeiten der jeweiligen Meßstrecke und der Referenzstrecke abgeleitet wird. Das Verfahren eignet sich für alle Strömungsmessungen in gasförmigen oder flüssigen Medien.

Description

VERFAHREN ZUR MESSUNG DER STRÖMUNGSGESCHWINDIGKEIT VON GASFÖRMIGEN ODER FLÜSSIGEN MEDIEN MITTELS ULTRASCHALL SOWIE ZUR DURCHFÜHRUNG DES VERFAHRENS GEEIGNETES MEßGERÄT
Beschreibung
Die Erfindung betrifft ein Verfahren zur Messung der Strömungsgeschwindigkeit von gasförmigen oder flüssigen Medien mittels Ultraschall, bei dem innerhalb einer oder mehrerer von dem Medium durchströmten Meßstrecken und in einer weiteren, mit dem Medium verbundenen Referenzstrecke, in der das Medium ruht und in der die gleichen charakteristischen physikalischen Randbedingungen herrschen, die Lauf¬ zeiten eines von einem Ultraschallgeber ausgesendeten Signals ermittelt und an¬ schließend in einem Signalverarbeitungsgerät daraus die Strömungsgeschwindigkeit des Mediums in der jeweiligen Signalrichtung abgeleitet werden und ein zur Durch¬ führung dieses Verfahrens geeignetes Meßgerät.
Zur Messung der Strömungsgeschwindigkeit von Medien werden Geräte eingesetzt, die nach mechanischen, elektrothermischen, laseroptischen oder Ultraschallverfah¬ ren arbeiten. Bis auf die nach den elektrothermischen Verfahren arbeitenden Geräte benötigen die nicht mechanischen Geräte eine teure Elektronik, ein aufwendiges Gehäuse und aufwendige Auswerteprogramme zur Berechnung der Zielgrößen, was ein Grund für die relativ geringe Verbreitung derartiger Geräte ist.
Ultraschallmeßgeräte werden dennoch für anspruchsvollere Meßaufgaben gern ein¬ gesetzt, da sie die gleichzeitige Ermittlung von Richtung und Geschwindigkeit eines Mediums erlauben, was sie insbesondere für den Einsatz in der Meteorologie geeig¬ net macht. So erlauben sie auch die Messung von Turbulenzen. Ultraschallmeßgeräte zur Messung einer Strömungsgeschwindigkeit sind so aufge¬ baut, daß ein oder mehrere Meßstrecken vorhanden sind, in denen die Laufzeit des Signals eines Ultraschallgebers zwischen einem Sender und einem Empfänger bzw. die Phasenverschiebung zwischen ausgesandtem und empfangenen Signal gemes¬ sen wird. Die Laufzeit eines akustischen Signals in einem Medium ist von der Bewe¬ gungsgeschwindigkeit des Mediums in Signalrichtung und von der spezifischen Schallgeschwindigkeit in diesem Medium abhängig. Die Schallgeschwindigkeit wie¬ derum unterliegt dem Einfluß der Temperatur und eventuell geringfügig dem Einfluß weiterer Eigenschaften des Mediums.
Um den Einfluß der Temperatur zu kompensieren, arbeiten bisher bekannte Geräten nach folgendem Verfahren: An eine Messung wird grundsätzlich eine Messung in der Gegenrichtung angeschlossen und beide Laufzeiten bzw. Phasenverschiebun- gen werden subtrahiert, so daß die rein windgeschwindigkeitsbedingte Komponente übrigbleibt. Zu diesem Zweck ist eine Doppelverwendung von Sender und Empfän¬ ger je nach Signalrichtung nötig. Verwendet werden deshalb hochwertige Piezoele- mente, die hohe Kosten verursachen.
Aus der US-PS 5 343 744 ist z.B. eine Anordnung mit drei um 120° versetzten Transducern bekannt, von denen jeweils einer als Schallgeber und die übrigen bei¬ den als Empfänger arbeiten. Durch ringförmiges Weiterschalten nach einer bestimmten Meßzeit wird die Signallaufzeit in den drei Meßstrecken jeweils in bei¬ den Richtungen gemessen und dann rechentechnisch verarbeitet.
Aus der DE-PS 26 51 142 ist ein Strömungsgeschwindigkeitsmesser für ein nur in einer Richtung strömendes Medium mit einer einzigen Meßstrecke bekannt, in der ebenfalls in der bereits erläuterten Weise in alternierender Richtung gemessen wird.
Ähnliche Geräte bzw. Verfahren sind Gegenstand der DE-OS 38 43 678 und DE-AS 24 29 822. Wegen der erforderlichen Umschaltungen und der Anschwingeigenschaften der be¬ reits erwähnten Piezoeiemente werden hochwertige Auswertegeräte benötigt. Die Anschwingzeiten der Piezoeiemente bewegen sich in ms-Bereich, während eine Auf¬ lösung des Signales im ns-Bereich benötigt wird, so daß die Laufzeitdifferenzen aus den Einhüllenden der Wellenpakete des Signals analysiert werden müssen, was eine komplizierte Ansteuerelektronik erfordert. Schließlich sind der Genauigkeit ei¬ ner solchen Messung enge Grenzen gesetzt, so daß für verschiedene Meßbereiche spezielle Geräte benutzt werden müssen.
Aus der DE-C 31 46 477 ist auch bereits eine Lösung bekannt, bei der die Lauf¬ zeitdifferenz des Ultraschallsignals in einer Meßstrecke und einer Referenzstrecke, in der das Medium ruht und in der die gleichen charakteristischen physikalischen Randbedingungen wie in der Meßstrecke herrschen, verarbeitet wird. Das gewon- nene Signal ist jedoch noch von der Temperatur sowie der Feuchtigkeit und der Dichte des Strömungsmediums abhängig, so daß diese, mindestens aber die Tem¬ peratur, gesondert gemessen und als Korrekturfaktoren verarbeitet werden müssen. Dieses Verfahren ist somit sehr aufwendig und fehlerhaft. Außerdem ist auch nach dieser Lösung vorgesehen, die Messung in beiden Richtungen einer Meßstrecke vorzunehmen, was die bereits oben genannten Nachteile mit sich bringt.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und ein nach dem Verfah¬ ren arbeitendes Meßgerät der eingangs genannten Art anzugeben, das die voll¬ ständige Erfassung von Richtung und Strömungsgeschwindigkeit mit hoher Auflö- sung erlaubt, das aber den Aufbau des Meßgerätes mit preiswerten Bauelementen gestattet und keine komplizierte Steuerelektronik erfordert.
Erfindungsgemäß wird die Aufgabe dadurch gelöst, daß die Strömungsgeschwindig¬ keit des Mediums aus der Differenz der Reziprokwerte der nur in einer Signalrich- tung gemessenen Laufzeiten der jeweiligen Meßstrecke und der Referenzstrecke abgeleitet wird. In erfindungsgemäß bevorzugter Weise kann vorgesehen sein, daß für die Messun¬ gen in der Referenzstrecke und in der bzw. den Meßstrecken ein phasengleiches Signal verwendet wird.
Außerdem kann erfindungsgemäß vorgesehen sein, daß die Laufzeiten am Ende der Referenzstrecke und der Meßstrecke(n) durch Messung der Phasenverschiebungen des bzw. der empfangenen Signale gegenüber dem Ausgangssignal ermittelt wer¬ den.
Mit der erfindungsgemäßen Lösung entfällt die bisher übliche sequentielle Doppel¬ verwendung der Schallgeber/Empfänger, da die Einflüsse der Temperatur und wei¬ terer Größen auf die Schallgeschwindigkeit durch Vergleich der Laufzeiten in den offenen Meßstrecken mit der Laufzeit in einer im wesentlichen geschlossenen Refe- renzstrecke bei ansonsten gleichen Bedingungen eliminiert werden.
Die Erfindung erlaubt damit den Einsatz von preiswerten akustischen Mikrofonen als Empfänger und führt hierdurch bereits zu einer drastischen Senkung der Herstel¬ lungskosten eines entsprechenden Meßgerätes. Außerdem führt die Vermeidung der Doppelverwendung der elektroakustischen Bauteile durch die damit verbundene Vermeidung einer komplexen Steuerungselektronik zu einer weiteren Senkung der Herstellungskosten, ebenso wie die relativ geradlinige Signalverarbeitung. Für die Gewinnung einer dreidimensionalen Information sind nicht mehr drei Sen¬ der/Empfängerpaare notwendig, sondern lediglich ein einfacher Schallgeber und vier handelsübliche Mikrofone.
Die Erfindung eröffnet die Möglichkeit, mit einem ununterbrochenen, kontinuierlichen Signal in jeweils nur einer Meßrichtung zwischen Schallgeber und Empfänger zu arbeiten, was hinsichtlich der Signalverarbeitung unverkennbare Vorteile erbringt. Wie später noch gezeigt werden wird, liefert das Verfahren einen genauen Strö¬ mungswert, der von der Temperatur, Feuchte und Dichte des Strömungsmediums unabhängig ist.
Bevorzugt kann zusätzlich vorgesehen sein, daß die Frequenz des ausgesandten Ultraschallsignals durch das Signalverarbeitungsgerät so geregelt wird, daß in der Referenzstrecke keine Phasenverschiebung zwischen dem ausgesandten und dem empfangenen Ultraschallsignal besteht. Vorteilhaft kann so die Empfindlichkeit stets im optimalen Bereich gehalten werden, da die Signale immer in ihrem ansteigenden Bereich ausgewertet werden können. Außerdem wird so innerhalb der Phase der maximal erreichbare Meßbereich aufrechterhalten. Der Meßbereich kann durch Kenntnis der Periodenzahl erweitert werden.
Das am Ausgang der Referenzstrecke gemessene Signal wird zu diesem Zweck an einen Regler geführt, der die von einem Frequenzgenerator erzeugte Frequenz, mit der der Schallgeber beaufschlagt wird, entsprechend nachführt. Das Stellsignal des Reglers ist gleichzeitig dann ein Maß für die Temperatur des Mediums, da die Lauf¬ zeitänderung in der Referenzstrecke im wesentlichen nur von der Temperatur ab¬ hängig ist.
Das Stellsignal kann deshalb nach einer entsprechenden Signalverarbeitung direkt zur Temperaturanzeige verwendet werden.
In bevorzugter Weise wird der Schallgeber in seinem Resonanzbereich betrieben, wobei zweckmäßig die Resonanzfrequenz des Schallgebers durch Rückkopplung eingestellt wird. Auf diese Weise wird der Einfluß von Verschmutzungen oder Trop¬ fenbelag, die sich insbesondere auf dem Schallgeber absetzen können, auf die Phasenverschiebung zwischen dem elektrischen Erregersignal und dem emittierten akustischen Signal des Schallgebers minimiert.
Bevorzugt ist außerdem vorgesehen, daß die Resonanzfrequenz des Schallgebers gemessen, die Phasenverschiebung entsprechend korrigiert und bei Abweichung von vorgegebenen Toleranzwerten ein Fehlersignal ausgelöst wird. Die Frequenz¬ abweichung kann z. B. durch grobe Verschmutzungen ausgelöst sein.
Von der vorbeschriebenen Signalverarbeitung abweichend kann diese in erfin¬ dungsgemäßer Weise auch so erfolgen, daß die Laufzeiten am Ende der Referenz¬ strecke und der Meßstrecke(n) durch Messung der Frequenz des jeweils empfange¬ nen Signals ermittelt werden, bei der die Phasenverschiebung zwischen dem in sei¬ ner Frequenz in Grenzen veränderbaren Ausgangssignal und dem jeweils empfan¬ genen Signal zu Null wird.
Die Messung erfolgt ebenfalls mit einem kontinuierlichen Ausgangssignal, das be¬ vorzugt in seiner Frequenz fortlaufend zwischen zwei Grenzfrequenzen kontinuier¬ lich geändert wird.
Erfindungsgemäß kann für den Verfahrensablauf vorgesehen sein, daß die Länge der Referenzstrecke und der Meßstrecken vor Beginn einer Messung in einem ru¬ henden Medium mittels Vergleich der Laufzeiten bzw. der Phasenverschiebungen der am Ende der Referenzstrecke und der Meßstrecken empfangenen Signale kali¬ briert wird.
Soll eine fortlaufende Messung über einen längeren Zeitraum erfolgen, so kann al¬ ternativ dazu auch eine ständige Kalibrierung mittels laseroptischen Verfahren oder mittels Mikrowellenmessung vorgenommen werden.
Um eine mögliche Störung an der Referenzstrecke oder den Meßstrecken aufdek- ken zu können, kann erfindungsgemäß außerdem vorgesehen sein, daß die Ampli¬ tuden der am Ende der Referenzstrecke und der Meßstrecken empfangenen Signale miteinander verglichen werden und bei Abweichen der Amplitude eines Signals ge¬ genüber einem Mittelwert der empfangenen Signale oder einem vorgegebenen Wert ein Fehlersignal ausgelöst wird. Eine weitere Verfahrensvariante kann dadurch realisiert werden, daß aus gesonder¬ ten Temperatur-, Feuchte- und Druckmessungen die Laufzeit eines Ultraschallsig¬ nals in einer virtuellen, als mit einer bestimmten Strömungsgeschwindigkeit (die positiv, negativ oder gleich null sein kann) und den gleichen physikalischen Rand- bedingungen wie in der oder den Meßstrecken unterliegend angenommenen Refe¬ renzstrecke elektronisch simuliert wird. Die weitere Signalverarbeitung geschieht in analoger Weise wie beim Vorhandensein einer realen Referenzstrecke. So kann also auch vorgesehen sein, daß die Laufzeit am Ende der Meßstrecke(n) durch Messung der Phasenverschiebung(en) des bzw. der empfangenen Signale gegen- über dem Ausgangssignal ermittelt wird. Die Bestimmung der Laufzeit in der (virtuellen) Referenzstrecke erfolgt durch Simulation der Phasenverschiebung in der Referenzstrecke.
Das Meßgerät zur Durchführung des Verfahrens weist erfindungsgemaß mindestens einen Schallgeber, mindestens eine mit einem Empfänger ausgerüstete, von dem Medium durchströmte Meßstrecke und eine mit einem Empfänger ausgerüstete, mit dem Medium in Verbindung stehende, aber von diesem nicht durchströmte Refe¬ renzstrecke auf.
Alternativ weist das Meßgerät mindesten einen Schallgeber, mindestens eine mit einem Empfänger ausgerüstete, von dem Medium durchströmte Meßstrecke und eine virtuelle Referenzstrecke auf, deren Referenzsignal mindestens über eine Temperaturmessung erfolgt.
In erfindungsgemäß bevorzugter Weise können die Meßstrecken und die Referenz¬ strecke die gleiche Länge aufweisen.
In ebenso erfindungsgemäß bevorzugter Weise kann ein einziger, für alle Meßstrek- ken und die Referenzstrecke wirksamer Schallgeber verwendet werden.
Bevorzugt kann der Schallgeber in den Richtungen der Meßstrecken und der Refe¬ renzstrecke eine phasengleiche Abstrahlcharakteristik aufweisen. Als solches eignet - 8 - sich ein zylindrisches Piezoelement, an das i. ü. nur mäßige Qualitätsanforderungen gestellt werden müssen.
Für eine dreidimensionale Messung des Strömungsvektors kann das Meßgerät er- findungsgemäß so aufgebaut sein, daß die Empfänger der Meßstrecken und der Schallgeber an den Eckpunkten eines gedachten Tetraeders angeordnet sind.
Um Reflektionen des Signals und somit eine Rückkopplung auf den Schallgeber zu vermeiden, kann erfindungsgemäß die Referenzstrecke als monomodaler akusti- scher, d. h. reflexionsfreier Leiter ausgebildet sein (single-mode).
Praktisch könnte der Aufbau z.B. so gestaltet sein, daß ein dünner Aluminiumzylin¬ der zusammen mit dem Schallgeber und einem Empfänger in einem Überwurfrohr angeordnet wird.
Ist das Meßgerät z.B. für die Messung von Windgeschwindigkeiten vorgesehen, kann das Überwurfrohr zusätzlich durch eine ultraschalldurchlässige Membran ver¬ schlossen sein, so daß der Schallgeber gegen Umwelteinflüsse geschützt ist. Zum Ausgleich der Meßbedingungen können in dem Hohizylinder Öffnungen vorgesehen sein, so daß eine Verbindung zur Umgebungsluft entsteht.
Für eine Ausführung als Handgerät empfiehlt sich die Anbringung eines zusätzlichen Handgriffs am Überwurfrohr.
Bevorzugt wird der Schallgeber in resonanten Bereichen betrieben, wenn verfah¬ rensgemäß eine Phasendifferenzmessung erfolgt. Hier kommt der Vorteil hinzu, daß gerade einfache Piezoeiemente ein breites Resonanzspektrum aufweisen, so daß ein Messen in einem großen Meßbereich ermöglicht wird, indem beispielsweise Oberfrequenzen einer resonanten Grundfrequenz zur Meßbereichsvervielfachung ausgenutzt werden können. Durch die Möglichkeit, die Phasenlage am Empfänger der Referenzstrecke bis auf
Null zu verschieben, befindet sich der Phasenwinkel in den übrigen Meßstrecken auch stets im Bereich des Signal-Nulldurchgangs, in dem mit der höchsten Meßge¬ nauigkeit gemessen werden kann.
Der Meßbereich kann gegenüber herkömmlichen Geräten um ein Vielfaches erwei¬ tert werden.
Durch die Vorteile des erfindungsgemaßen Meßgerätes eröffnet sich ein breites Verwendungsfeld. Mit der hohen Meßpräzision ist das Meßgerät für meteorologische und luftfahrttechnische Verwendungen sowie für umwelttechnische Aufgaben geeig¬ net.
Für die Bauindustrie kommt die Windmessung auf Kranen in Betracht.
In luftfahrttechnischen Anlagen kann das Meßgerät auch zur Ermittlung der Flugda¬ ten, z. B. Fluggeschwindigkeit, Schiebe- und Anstellwinkel von Flugzeugen, verwen¬ det werden, wobei dann die Strömungsgeschwindigkeit in einem quasi ruhenden Medium und einem bewegten Bezugssystem bestimmt wird.
Insbesondere die Preisvorteile lassen darüberhinaus auch einen Einsatz des Me߬ gerätes im nicht professionellen Bereich möglich werden, so z. B. als Handgerät für Surfer, Drachenflieger u. ä. Sportler.
Neben der Verwendung für Luft und Gase ist auch die Strömungsmessung in Flui- den hoher als auch niedriger Viskosität möglich.
Die Erfindung soll nachstehend anhand eines Ausführungsbeispieles näher erläutert werden. In den zugehörigen Zeichnungen zeigen
Fig. 1 den prinzipiellen Aufbau eines erfindungsgemäßen Meßgerätes zur Wind¬ messung in perspektivischer Ansicht, Fig. 2 ein Blockschaltbild der Ansteuer- und Auswerteelektronik des Meßgerätes bei Anwendung der verfahrensgemäßen Phasendifferenzmessung,
Fig. 3 ein Blockschaltbild der Ansteuer- und Auswerteelektronik des Meßgerätes bei Anwendung der verfahrensgemäßen Frequenzmessung
Fig. 4 ein Blockschaltbild der Ansteuer- und Auswerteelektronik des Meßgerätes bei Anwendung der verfahrensgemäßen Phasendifferenzmessung und virtueller Refe- renzstrecke.
Die Ausführungsbeispiele beziehen sich auf ein Windmeßgerät, wobei der Windvek¬ tor nach dem erfindungsgemäßen Verfahren hinsichtlich der Windgeschwindigkeiten in drei räumlichen Richtungen vollständig erfaßt wird.
Das Meßgerät enthält drei Emfpänger 1 , 2, 3 und einen Schallgeber 4. Die Empfän¬ ger 1 , 2, 3 befinden sich alle äquidistant zum Schallgeber 4 und spannen zusammen ein Achsenkreuz auf, das im vorliegenden Fall als orthogonal zu verstehen ist. Die drei Empfänger 1 , 2, 3 und der Schallgeber 4 sitzen an den Eckpunkten eines ge- dachten Tetraeders. Die so festgelegten gleichlangen Meßstrecken L1 , L2, L3 sind dabei durch gestrichelte Linien angedeutet.
Die Struktur wird durch einen Ring 5 gebildet, an dessen Unterseite die Empfänger 1 , 2, 3 im Abstand von 120° angebracht sind, sowie durch eine Stütze 6, die den Ring 5 festhält.
Eine Referenzstrecke LR ist aus einem als monomodaler akustischer Leiter ausge¬ führten Rohr 7 gebildet, in dem am unteren Ende, ebenfalls im gleichen Abstand zum Schallgeber 4 wie die Empfänger 1 , 2, 3, der Empfänger 8 der Referenzstrecke LR untergebracht ist. Die Referenzstrecke LR befindet sich thermisch und mecha¬ nisch geschützt innerhalb eines zylindrischen Überwurfrohres 9, in dem auch Teile der Elektronik untergebracht sein können. Über die Öffnung 10 im Überwurfrohr 9 sowie über die Öffnungen 11 im Rohr 7 ist die Referenzstrecke LR mit der umge¬ benden Atmosphäre verbunden.
Der Schallgeber 4 ist mit einem ultraschalldurchlässigen Fenster in Form einer Folie 12 abgedeckt, die den Schallgeber 4 gegen Umwelteinflüsse schützt und die Refe¬ renzstrecke LR abschließt.
Der verfahrensmäßige Ablauf der Signalverarbeitung bei einer Messung läßt sich folgendermaßen darstellen:
Für die Referenzstrecke und jede Meßstrecke L (LR, L1 , L2, L3) wird die Laufzeit T (TR, T1 , T2, T3) ermittelt. Die folgende Berechnung beruht auf der Betrachtung der Meßstrecke L1 und einer Referenzstrecke, in der das Medium ruht.
Die Laufzeit TR in der Referenzstrecke LR hängt dabei lediglich von der Schallge¬ schwindigkeit sv ab, die sich aus
sv = LR/TR ergibt.
Die Laufzeit T1 der durch den Empfänger 1 repräsentierten Meßstrecke L1 hängt dagegen auch von der Luftgeschwindigkeit v1 in Richtung dieser Meßstrecke ab nach der Beziehung
Figure imgf000013_0001
Aus der Verbindung beider Gleichungen ergibt sich die Windgeschwindigkeit v1 zu
v1 = L1/T1 - LR/TR.
Nach einer ersten Verfahrensvariante soll TR dabei stets aus einer festen Anzahl n an Perioden Tg der Generatorfrequenz fg mit Tg = 1/fg
bestehen.
Bei einer Temperaturänderung ergibt sich auch eine Veränderung der Laufzeit TR in der Referenzstrecke LR, die als Phasenverschiebung tR gekennzeichnet werden kann, so daß gilt
TR = nxTg+tR
und entsprechend für die Meßstrecke L1
T1 = n x Tg + 11.
Mit L = L1 = LR
wird insgesamt
v1 =L/(nxTg+t1)-L/(nxTg+tR)
Allein durch Messung der Phasenverschiebungen t1 und tR läßt sich daher die Windgeschwindigkeit v1 in Richtung der ersten Meßstrecke L1 bestimmen.
Indem nun durch Rückkopplung die Generatorfrequenz fg und damit die Perioden¬ zahl Tg verändert wird, kann stets die Phasenverschiebung tR = Null erreicht wer¬ den, so daß mit
v1 =L/(nxTg + t1)-L/nxTg
sich die Windgeschwindigkeit v1 allein aus der Messung der Phasenverschiebung t1 ermitteln läßt, was eine komfortable Signalverarbeitung und das Arbeiten in einem großen Meßbereich erlaubt, da stets nur kleine Phasenverschiebungen zu messen sind, bei denen nicht die Gefahr besteht, daß sie die Länge einer Periode Tg über¬ schreiten. Letzteres ist bedeutsam für das Phasenvergleichsverfahren, da die An¬ zahl n der Perioden unverändert beizubehalten ist.
Analog sind die Windgeschwindigkeiten v2, v3 in den übrigen Richtungen zu ermit¬ teln.
Fig. 2 zeigt das Blockschaltbild einer solchen Signalverarbeitung. Der Schallgeber 4 ist an einen Frequenzgenerator 13 angeschlossen und wird zu kontinuierlicher Ab- strahlung angeregt. Als Schallgeber 4 wird in dieser Ausführungsform z. B. ein zylin¬ drisches Piezoelement verwendet, dessen Emmissionscharakteristik zu einer pha¬ sengleichen Abstrahlung sowohl in Richtung auf den Empfänger 8 der Referenz¬ strecke LR als auch in Richtung der Empfänger 1 , 2, 3 der Meßstrecken L1 , L2, L3 führt. Die Empfängersignale werden in den Verstärkern 14-17 verstärkt und für ein Phasenvergleichsverfahren in den Triggern 18-21 in Rechteckimpulse umgewandelt, die als Primärsignale für die Komparatoren 22-25 dienen. In den Komparatoren 22, 23 und 24 wird das Signal aus der Referenzstrecke LR mit dem jeweiligen Signal der entsprechenden Meßstrecke L1 , L2, L3 verglichen und das Differenzsignal zur wei- teren Signalverarbeitung an die Widerstandsübertrager 26 bis 28 übergeben. Deren Ausgangssignale sind proportional zu den Beträgen der Komponenten X, Y und Z des Windvektors, bezogen auf das durch den Schallgeber 4 und die Empfänger 1 , 2, 3 aufgespannte Achsenkreuz. Gegebenenfalls kann eine Umrechnung der Kompo¬ nenten X, Y, Z in ein räumlich gedrehtes Achsenkreuz nach geographischen Ge- Sichtspunkten oder ein nicht rechtwinklig aufeinander stehendes Achsenkreuz erfol¬ gen, wofür die bekannten geometrischen Beziehungen zur Umrechnung heranzuzie¬ hen sind.
Das Ausgangssignal des Komparators 25 dient außerdem zur Rückkopplung der Phasenlage des Signals des Empfängers 8 der Referenzstrecke LR an den Fre¬ quenzgenerator 13. Das Signal ist zu diesem Zweck einem Regler 29 aufgeschaltet, dessen Stellgröße den Frequenzgenerator 13 in der Weise regelt, daß zwischen dem Signal des Schallgebers 4 und dem Signal des Empfängers 8 und somit am Ausgang des Komparators 25 eine Phasenverschiebung = Null aufrechterhalten wird. Damit wird eine optimale Empfindlichkeit, unabhängig von der Änderung der Temperatur, erreicht.
Das Stellsignal am Ausgang des Reglers 29 dient dann gleichzeitig als ein Maß für die Temperatur der Atmosphäre, das am Widerstandsübertrager 30 abgenommen werden kann.
Eine weitere Verfahrensvariante (Fig. 4) verwendet anstelle des Referenzsignals der Referenzstrecke LR ein Referenzsignal, welches aus einer Temperatur-, Feuchte- und Druckmessung 39 über einen Mikroprozessor 40 erzeugt wird. Dieses Signal wird wie ein Primärsignal benutzt und in den Komparatoren 22,23 und 24 mit den jeweiligen Signalen der Meßstrecken L1 ,L2 und L3 verglichen. In vielen Anwen- dungsfallen mit geringen Anforderungen an die Meßgenauigkeit wird zur Erzeugung des Referenzsignals einer virtuellen Referenzstrecke eine Temperaturmessung ausreichen.
Eine weitere Möglichkeit zur Ermittlung der Signallaufzeiten wird nachfolgend an- hand der Fig. 3 beschrieben.
Die Laufzeiten T (T1 , T2, T3, TR) für die Meßstrecken und die Referenzstrecke (L1 , L2, L3, LR) werden nicht aus Messungen der Höhe der Phasenverschiebungen, sondern einer Messung einer veränderlichen Frequenz ermittelt, bei der die Pha- senverschiebung am jeweiligen Empfänger 1 , 2, 3, 8 gerade zu Null wird. Aus der gemessenen Frequenz kann die Strömungsgeschwindigkeit dann auf folgende Weise bestimmt werden:
Die Frequenz fg des Frequenzgenerators 13 wird proportional zur Spannung U ei- nes Sägezahngenerators 31 in Grenzen geändert und auf den Schallgeber 4 gege¬ ben. Gemessen wird dann jeweils die Frequenz fR, f1 , f2, f3, bei der die Phasenver¬ schiebung tR, t1 , t2, t3 am jeweiligen Empfänger 8, 1 , 2, 3 zu Null wird. Wiederum auf die Meßstrecke L1 bezogen wird dann mit
T1 = n x Tg1 (bei t1 = 0)
= n/f1
v1 = L xf1/n - L x fR/n oder
v1 = L/n (f1-fR).
Da die zu messende Frequenz als zur Spannung U (UR, U1 , U2, U3) am Sägezahn¬ generator 31 proportionales Signal vorliegt, kann die Gleichung auch geschrieben werden als
v1 = cL/n (U1-UR),
wobei c eine Gerätekonstante ist, die u. a. das Resonanzverhalten des Piezokristalls repräsentiert.
Die Signalauswertung ist in Fig. 3 wiederum als Blockschaltbild gezeigt. Das von den Empfängern 1 ,2,3,8 aufgenommene Signal wird Komparatoren 32-35 mit dem vom Frequenzgenerator 13 ausgegebenen Signal verglichen. Erreicht die Phasen¬ verschiebung tR, t1 , t2, t3 den Wert null, so wird der jeweilige Zeitpunkt von einer Logikschaltung 36 an den Analog/Digital-Wandler 37 weitergegeben, der die in die¬ sem Augenblick von dem Sägezahngenerator 31 vorgegebene und am Frequenzge¬ nerator 13 anliegende Spannung UR, U1 , U2, U3 einem Prozessor zur Weiterverar¬ beitung übergibt. Somit kann die Strömungsgeschwindigkeit eines Mediums in drei Richtungen temperaturunabhängig ermittelt werden.
Zur Einstellung des Empfindlichkeitsbereiches, d.h. der Mittelwertslage der Span¬ nung U des Sägezahngenerators 31 , wird die Temperatur entweder in der Refe- renzstrecke LR vor Beginn des Meßvorganges festgestellt und dann die Mittelwerts¬ lage der Spannung U über Rückkopplung auf ein Stellglied 38 geregelt oder ein se¬ parater, auf das Stellglied 38 einwirkender Temperaturfühler benutzt.

Claims

Ansprüche
1. Verfahren zur Messung der Strömungsgeschwindigkeit von gasförmigen oder flüssigen Medien mittels Ultraschall, bei dem innerhalb einer oder mehrerer von dem Medium durchströmten Meßstrecken und in einer weiteren, mit dem Medium verbun¬ denen Referenzstrecke, in der das Medium ruht und in der die gleichen charakteri¬ stischen physikalischen Randbedingungen herrschen, die Laufzeiten eines von ei¬ nem Ultraschallgeber ausgesendeten Signals ermittelt und anschließend in einem Signalverarbeitungsgerät daraus die Strömungsgeschwindigkeit des Mediums in der jeweiligen Signalrichtung abgeleitet werden, dadurch gekennzeichnet, daß die Strömungsgeschwindigkeit des Mediums aus der Differenz der Rezi¬ prokwerte der nur in einer Signalrichtung gemessenen Laufzeiten der jeweiligen Meßstrecke und der Referenzstrecke abgeleitet wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß für die Messun¬ gen in der Referenzstrecke und in der bzw. den Meßstrecken ein phasengleiches Signal verwendet wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Laufzei¬ ten am Ende der Referenzstrecke und der Meßstrecke(n) durch Messung der Pha¬ senverschiebungen des bzw. der empfangenen Signale gegenüber dem Ausgangs¬ signal ermittelt werden.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn¬ zeichnet, daß die Frequenz des ausgesandten Ultraschallsignals durch das Signal¬ verarbeitungsgerät so geregelt wird, daß in der Referenzstrecke keine Phasenver¬ schiebung zwischen dem ausgesandten und dem empfangenen Ultraschallsignal besteht.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß das Stellsignal der Regelstrecke des Signalverarbeitungsgerätes gleichzeitig als Maß für die Tempera¬ tur des Mediums verarbeitet wird.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn¬ zeichnet, daß der Schallgeber in seinem Resonanzbereich betrieben wird.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die Resonanzfre¬ quenz des Schallgebers durch Rückkopplung eines empfangenen Signals auf den Schallgeber eingestellt wird.
8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß die Reso¬ nanzfrequenz des Schallgebers gemessen und bei Abweichung von vorgegebenen Toleranzwerten ein Fehlersignal ausgelöst wird.
9. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Laufzei¬ ten am Ende der Referenzstrecke und der Meßstrecke(n) durch Messung der Fre¬ quenz des jeweils empfangenen Signals ermittelt werden, bei der die Phasenver¬ schiebung zwischen dem in seiner Frequenz in Grenzen veränderbaren Ausgangs- signal und dem jeweils empfangenen Signal zu Null wird.
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn¬ zeichnet, daß mit einem kontinuierlichen Ultraschallsignal gemessen wird.
11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn¬ zeichnet, daß die Länge der Referenzstrecke und der Meßstrecken vor Beginn einer Messung in einem ruhenden Medium mittels Vergleich der Laufzeiten bzw. der Pha¬ senverschiebungen der am Ende der Referenzstrecke und der Meßstrecken emp¬ fangenen Signale kalibriert wird.
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn¬ zeichnet, daß die Amplituden der am Ende der Referenzstrecke und der Meßstrek- ken empfangenen Signale miteinander verglichen werden und bei Abweichen der Amplitude eines Signals gegenüber einem Mittelwert der empfangenen Signale oder einem vorgegebenen Wert ein Fehlersignal ausgelöst wird.
13. Verfahren zur Messung der Strömungsgeschwindigkeit von gasförmigen oder flüssigen Medien mittels Ultraschall, bei dem innerhalb einer oder mehrerer von dem Medium durchströmten Meßstrecken und in einer Referenzstrecke die Laufzeiten eines von einem Ultraschallgeber ausgesendeten Signals ermittelt und anschlie¬ ßend in einem Signalverarbeitungsgerät daraus die Strömungsgeschwindigkeit des Mediums in der jeweiligen Signalrichtung abgeleitet werden, dadurch gekennzeich¬ net, daß aus gesonderten Temperatur-, Feuchte- und Druckmessungen die Laufzeit eines Ultraschallsignals in einer virtuellen, als mit einer bestimmten Strömungsge¬ schwindigkeit und den gleichen physikalischen Randbedingungen wie in der oder den Meßstrecken unterliegend angenommenen Referenzstrecke elektronisch simu- liert und die Strömungsgeschwindigkeit des Mediums aus der Differenz der Rezi¬ prokwerte der nur in einer Signalrichtung gemessenen Laufzeiten der jeweiligen Meßstrecke und der simulierten Laufzeit der Referenzstrecke abgeleitet wird.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß die Laufzeit am Ende der Referenzstrecke durch Simulation und die Laufzeit am Ende der Meß- strecke(n) durch Messung der Phasenverschiebung(en) des bzw. der empfangenen Signale gegenüber dem Referenzsignal ermittelt werden.
15. Zur Durchführung des Verfahrens nach einem der vorhergehenden Ansprü- ehe geeignetes Meßgerät, dadurch gekennzeichnet, daß es mindestens einen
Schallgeber (4), mindestens eine mit einem Empfänger (1 , 2, 3) ausgerüstete, von dem Medium durchströmte Meßstrecke (L1 , L2, L3) und eine mit einem Empfänger (8) ausgerüstete, mit dem Medium in Verbindung stehende, aber von diesem nicht durchströmte Referenzstrecke (LR) aufweist.
16. Meßgerät nach Anspruch 15, dadurch gekennzeichnet, daß die Meßstrecken (L1, L2, L3) und die Referenzstrecke (LR) die gleiche Länge aufweisen.
17. Meßgerät nach Anspruch 15 oder 16, dadurch gekennzeichnet, daß ein ein¬ ziger, für alle Meßstrecken (L1 , L2, L3) und die Referenzstrecke (LR) wirksamer Schaiigeber (4) verwendet ist.
18. Meßgerät nach Anspruch 17, dadurch gekennzeichnet, daß der Schallgeber (4) in den Richtungen der Meßstrecken (L1 , L2, L3) und der Referenzstrecke (LR) eine phasengleiche Abstrahlcharakteristik aufweist.
19. Meßgerät nach einem der Ansprüche 15 bis 18, dadurch gekennzeichnet, daß die Empfänger (1 , 2, 3) der Meßstrecken (L1 , L2, L3) und der Schallgeber (4) an den Eckpunkten eines gedachten Tetraeders angeordnet sind.
20. Meßgerät nach einem der Ansprüche 15 bis 19, dadurch gekennzeichnet, daß die Referenzstrecke (LR) als monomodaler akustischer Leiter ausgebildet ist.
21. Meßgerät nach einem der Ansprüche 15 bis 20, dadurch gekennzeichnet, daß die Referenzstrecke (LR) als Hohizylinder (7) ausgebildet ist.
22. Meßgerät nach Anspruch 21 , dadurch gekennzeichnet, daß der Hohizylinder (7) mit Öffnungen (11) versehen ist.
23. Meßgerät nach einem der Ansprüche 15 bis 22, dadurch gekennzeichnet, daß der Schallgeber (4) durch eine ultraschalldurchlässige Membran (12) abgedeckt ist.
PCT/DE1997/000907 1996-05-06 1997-05-06 Verfahren zur messung der strömungsgeschwindigkeit von gasförmigen oder flüssigen medien mittels ultraschall sowie zur durchführung des verfahrens geeignetes messgerät WO1997042509A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU29504/97A AU2950497A (en) 1996-05-06 1997-05-06 Method of measuring the rate of flow of gaseous or liquid media using ultrasound, and measuring device suitable for carrying out said process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19617961.0 1996-05-06
DE1996117961 DE19617961C2 (de) 1996-05-06 1996-05-06 Verfahren zur Messung der Strömungsgeschwindigkeit von gasförmigen oder flüssigen Medien mittels Ultraschall sowie zur Durchführung des Verfahrens geeignetes Meßgerät

Publications (1)

Publication Number Publication Date
WO1997042509A1 true WO1997042509A1 (de) 1997-11-13

Family

ID=7793353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1997/000907 WO1997042509A1 (de) 1996-05-06 1997-05-06 Verfahren zur messung der strömungsgeschwindigkeit von gasförmigen oder flüssigen medien mittels ultraschall sowie zur durchführung des verfahrens geeignetes messgerät

Country Status (3)

Country Link
AU (1) AU2950497A (de)
DE (1) DE19617961C2 (de)
WO (1) WO1997042509A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109425752A (zh) * 2017-08-23 2019-03-05 高雄应用科技大学 超声波风速测量装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6571643B1 (en) * 1998-08-13 2003-06-03 Electronics For Imaging, Inc. Ultrasound speed measurement of temperature and pressure effects
DE10311878A1 (de) * 2003-03-17 2004-09-30 Endress + Hauser Flowtec Ag, Reinach Vorrichtung zur Bestimmung und/oder Überwachung des Volumen- und/oder Massendurchflusses eines Mediums
DE102008020765B4 (de) * 2008-04-21 2012-08-02 Helmholtz Zentrum München Deutsches Forschungszentrum Für Gesundheit Und Umwelt (Gmbh) Vorrichtung und Verfahren zum berührungslosen Ermitteln physikalischer Eigenschaften
DE102014216157A1 (de) * 2014-08-14 2016-02-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anemometer und Verfahren zur Bestimmung einer Strömungsgeschwindigkeit
WO2021142419A1 (en) 2020-01-11 2021-07-15 Anemoment Llc Wind sensor devices, systems, and methods

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1264836B (de) * 1964-11-24 1968-03-28 Decca Ltd Geschwindigkeitsmessvorrichtung
JPS58184513A (ja) * 1982-04-23 1983-10-28 Honda Motor Co Ltd 超音波流量計
EP0141564A2 (de) * 1983-10-14 1985-05-15 Glasdon Limited Fussstück zum Halten eines aufrechtstehenden Elementes
FR2628216A1 (fr) * 1988-03-03 1989-09-08 Simecsol Anemometre ultrasonore
EP0407676A1 (de) * 1989-07-14 1991-01-16 Haiges Elektronik Gmbh Verfahren zur Messung eines zeitlichen Versatzes einander zugeordneter Ultraschallsignale und zugehöriger Messanordnungen
GB2259571A (en) * 1991-09-16 1993-03-17 British Gas Plc Flowmeter eliminating transducer delay errors
DE4241226A1 (de) * 1992-12-08 1994-06-09 Abb Patent Gmbh Durchflußmeßvorrichtung
US5343744A (en) * 1992-03-06 1994-09-06 Tsi Incorporated Ultrasonic anemometer
US5392645A (en) * 1993-11-15 1995-02-28 Scientific Engineering Instruments, Inc. Method and apparatus for flow rate measurement

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2651142C2 (de) * 1976-11-09 1982-04-29 Panametrics Inc., Waltham, Mass. Akustischer Strömungsgeschwindigkeitsmesser
DE3146477C2 (de) * 1981-11-24 1983-12-08 Gründer & Hötten GmbH, 4300 Essen Schaltungsanordnung zur Messung der Geschwindigkeit von strömenden Medien
DE3843678A1 (de) * 1988-12-23 1990-06-28 Flowtec Ag Verfahren und anordnung zur durchflussmessung mittels ultraschallwellen
US5277070A (en) * 1991-08-01 1994-01-11 Xecutek Corporation Ultrasonic gas flow measurement method and apparatus
KR960013251B1 (ko) * 1993-08-25 1996-10-02 주식회사 창민물산 초음파 유량측정 방법과 장치
KR960003645B1 (ko) * 1993-08-25 1996-03-21 주식회사창민테크놀러지 하천 국부(局部) 유속측정방법 및 장치
DE4422367C1 (de) * 1994-06-27 1996-02-01 Siemens Ag Ultraschall-Durchflußmesser mit kontinuierlicher Nullfluß-Kalibrierung

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1264836B (de) * 1964-11-24 1968-03-28 Decca Ltd Geschwindigkeitsmessvorrichtung
JPS58184513A (ja) * 1982-04-23 1983-10-28 Honda Motor Co Ltd 超音波流量計
EP0141564A2 (de) * 1983-10-14 1985-05-15 Glasdon Limited Fussstück zum Halten eines aufrechtstehenden Elementes
FR2628216A1 (fr) * 1988-03-03 1989-09-08 Simecsol Anemometre ultrasonore
EP0407676A1 (de) * 1989-07-14 1991-01-16 Haiges Elektronik Gmbh Verfahren zur Messung eines zeitlichen Versatzes einander zugeordneter Ultraschallsignale und zugehöriger Messanordnungen
GB2259571A (en) * 1991-09-16 1993-03-17 British Gas Plc Flowmeter eliminating transducer delay errors
US5343744A (en) * 1992-03-06 1994-09-06 Tsi Incorporated Ultrasonic anemometer
DE4241226A1 (de) * 1992-12-08 1994-06-09 Abb Patent Gmbh Durchflußmeßvorrichtung
US5392645A (en) * 1993-11-15 1995-02-28 Scientific Engineering Instruments, Inc. Method and apparatus for flow rate measurement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 008, no. 031 (P - 253) 9 February 1984 (1984-02-09) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109425752A (zh) * 2017-08-23 2019-03-05 高雄应用科技大学 超声波风速测量装置

Also Published As

Publication number Publication date
DE19617961C2 (de) 2001-05-23
AU2950497A (en) 1997-11-26
DE19617961A1 (de) 1997-11-13

Similar Documents

Publication Publication Date Title
EP2356408B1 (de) Verfahren und vorrichtung zur kalibrierung von messumformern von ultraschall-durchflussmessgeräten
DE69624696T2 (de) System zur ermittlung der eigenschaften einer gas- oder flüssigkeitströmung
DE69504989T2 (de) Rauschunterdrückungsfiltersystem für einen coriolisdurchflussmesser
DE2144050C3 (de) Ultraschall-Alarmanlage zum Melden eines Eindringlings
EP2817588B1 (de) Verfahren und vorrichtung zur bestimmung von eigenschaften einer rohrleitung, insbesondere der position eines abzweigs einer abwasserrohrleitung
DE2107586A1 (de) Ultraschall Durchflußmesser
EP3283890B1 (de) Ultraschallwindmesser und verfahren zur ermittlung wenigstens einer komponente eines windgeschwindigkeitsvektors oder der schallgeschwindigkeit in der atmosphäre
EP0797105A2 (de) Verfahren zur Laufzeitmessung eines elektrischen, elektromagnetischen oder akustischen Signals
DE102008035423A1 (de) Resonanter Strömungssensor sowie Verwendung und Herstellverfahren desselben
WO2016142071A1 (de) Ultraschallwindmesser
DE102005037458B4 (de) Ultraschall-Strömungssensor mit Driftkompensation
DE2517533B2 (de) Stroemungsmesser mit einem wirbel erzeugenden element
DE69620752T2 (de) System zur erkennung und vermessung von bewegungen der atmosphäre
DE2245166A1 (de) Automatische anordnung zur dynamischen einhaltung der position und zum steuern eines wasser- oder unterwasserfahrzeugs
DE4430230A1 (de) Verfahren und Vorrichtung zum Messen der örtlichen Strömungsgeschwindigkeit eines Flusses
WO1997042509A1 (de) Verfahren zur messung der strömungsgeschwindigkeit von gasförmigen oder flüssigen medien mittels ultraschall sowie zur durchführung des verfahrens geeignetes messgerät
DE102015007641B4 (de) Verfahren zur Messung der Entfernung eines Objektes mittels Ultraschallsensor
DE102006013809B3 (de) Verfahren und Vorrichtung zur Messung von Betriebsdichte und/oder Betriebsschallgeschwindigkeit in einem gasförmigen Medium
DE69505383T2 (de) Verwendung eines strömungsmessgerätes als mikrofon und system mit einem solchen mikrofon
DE2943810C2 (de) Meßanordnung für die Geschwindigkeit von strömungsfähigen Medien mittels Laufzeitbestimmung von Schallwellen
EP0138017B1 (de) Verfahren zur Ultraschall-Durchflussmessung nach dem Dopplerprinzip mit verbesserter Ortsauflösung
EP1480019B1 (de) Verfahren und Vorrichtung zur Messung eines Massestroms
DE102016112679A1 (de) Verfahren und Anordnung zur Analyse von Gaseigenschaften
DE102015003196B4 (de) Vorrichtung und Verfahren zur Restwertverarbeitung bei der Ansteuerung eines Sensors
DE2131847C3 (de) Anordnung zur Messung bzw. Erfassung der Relativbewegung eines flüssigen und/oder gasförmigen Mediums gegenüber einer Meßsonde

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AU BA BB BG BR CA CN CU CZ EE GE GH HU IL IS JP KP KR LC LK LR LT LV MG MK MN MX NO NZ PL RO SG SI SK TR TT UA US UZ VN YU AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 97539431

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA