WO1997030186A1 - Procede et dispositif pour la regulation de processus de revetement sous vide enrichis au plasma - Google Patents

Procede et dispositif pour la regulation de processus de revetement sous vide enrichis au plasma Download PDF

Info

Publication number
WO1997030186A1
WO1997030186A1 PCT/DE1997/000265 DE9700265W WO9730186A1 WO 1997030186 A1 WO1997030186 A1 WO 1997030186A1 DE 9700265 W DE9700265 W DE 9700265W WO 9730186 A1 WO9730186 A1 WO 9730186A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical discharge
force
coating
plasma
cathode
Prior art date
Application number
PCT/DE1997/000265
Other languages
German (de)
English (en)
Inventor
Bert Scheffel
Klaus Goedicke
Christoph Metzner
Volker Kirchhoff
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Publication of WO1997030186A1 publication Critical patent/WO1997030186A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/543Controlling the film thickness or evaporation rate using measurement on the vapor source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/3299Feedback systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/31Processing objects on a macro-scale
    • H01J2237/3132Evaporating
    • H01J2237/3137Plasma-assisted co-operation

Definitions

  • the invention relates to a method for controlling plasma-assisted vacuum coating processes by atomizing or evaporating
  • Coating material in which an electrical discharge for generating a plasma is maintained and in which the cathode of the electrical discharge is used as the coating source and a device for carrying out the method.
  • a large number of vacuum coating processes are known in which plasmas generated by electrical discharges are used.
  • Cathode sputtering processes are vacuum coating processes in which a glow discharge or magnetron discharge is ignited and material is atomized from the cathode by the bombardment of ions from the plasma onto the cathode.
  • plasmas are used in vacuum coating processes to ionize and excite the steam generated by other processes.
  • These vacuum coating processes include in particular the processes of plasma-activated evaporation.
  • the properties of the deposited layers depend to a large extent on the state of the plasma generated by the electrical discharge. For example, plasmas with a high charge density result in a high proportion of the vapor being ionized or excited. This results in a flow of high-energy particles to the substrate, which leads to the required layer properties, in particular to very dense layers.
  • the use of plasmas in reactive vacuum coating processes increases the reactivity between vapor particles and reactive gas particles considerably. This leads to a change in the vapor density distribution in the space between the location of the vapor generation and the location of the vapor separation. This leads to a change in the layer thickness profile on the substrate.
  • the plasma parameters eg ion density, energy of the ions, electron density, with their influences on the layer formation monitor and keep constant via control processes or change them according to a coating technology.
  • the floating potential of an electrically insulated, conductive substrate is determined by voltage measurement, or the current to the substrate is evaluated after application of a voltage to the substrate (Schade, K. et al .; plasma technology: application in electronics, Verlagtechnik Berlin, 1990, p 96ff).
  • These methods have the disadvantage that they cannot be used with electrically insulating substrates or electrically insulating layers, since no voltage can be measured with electrically insulating substrates or layers.
  • a method with probe measurement is also known in which a small electrical probe of defined geometry is arranged in the plasma (Janzen, G .; Plasma Technology - Fundamentals, Applications, Diagnostics, Heidelberg: Weg, 1992, pp. 255ff). The current-voltage characteristic is evaluated and the plasma parameters are calculated. It is disadvantageous that the probe in the plasma is subject to a high vapor and temperature load, that the measurement results are falsified and that, in particular in coating processes with a high coating rate, only a short operating time of the probes is achieved.
  • a method is also known in which the emission of the plasma, in particular a defined line of the plasma emission, is used to characterize the electrical discharge and to regulate the plasma-assisted vacuum coating process (DD 239 810 A1).
  • a light guide cable is guided in the vicinity of the plasma and largely protected from coating with a collimator.
  • the light is fed through a filter to an amplifier, for example a secondary electron multiplier, which drives a control loop.
  • an amplifier for example a secondary electron multiplier
  • Vacuum coating process are often calibrated, so that the implementation of this method is very expensive.
  • the invention has for its object to provide a method and a device for controlling plasma-assisted vacuum coating processes by atomizing or evaporating the coating material with direct current plasma or pulsed plasma in order to produce layers with defined layer properties.
  • the method is intended to enable the regulation of the proportion of ions in the vapor space of the plasma-assisted vacuum coating process. It should be independent of the electrical conductivity of the layers and / or the substrates produced and in a simple manner be feasible over long periods of time.
  • the device should be simple in terms of equipment.
  • the object is achieved according to the features of patent claim 1. Further advantageous embodiments are described in claims 2 to 6.
  • the device for performing the method is described in claims 7 and 8.
  • the essence of the invention is that a method has been found to use the known force of ions of a plasma during ion bombardment on a cathode to utilize a signal to be obtained therefrom for process control. This knowledge makes it possible to record the force of the ions of the plasma during ion bombardment on the coating source and to process it further as a signal.
  • the coating source is an atomization source, preferably of the magnetron type, or an evaporator, preferably an evaporator heated by an electron beam.
  • This force of the ions results from the potential difference between the cathode surface and the plasma, through which the ions receive a correspondingly high energy, which is expressed in a high ion pulse depending on the ion mass.
  • this force on the cathode is determined by the number of ions accelerated to the cathode per unit of time.
  • An advantage of the invention is that by determining this force acting on the cathode, a measured variable is determined from which a signal is obtained with which it is possible to use a control circuit known per se to determine the effect of the electrical discharge on the flow of particles to To regulate the substrate in a defined manner and thus to influence the properties of the layer applied to the substrate. Further advantages of the invention are that by averaging the signal, plasma-assisted vacuum coating processes with pulsed plasmas with any pulse shape of the electrical parameters are controlled in such a way that coated substrates with the required layer properties can be produced.
  • this process can separate the effect of the discharge for each individual cathode and use the signals from the individual cathodes to regulate the entire vacuum coating process, for example by superimposing a direct voltage on the electrical discharge on average is equally distributed over the two cathodes.
  • This is particularly advantageous if the individual cathodes have different properties - for example different magnetizations or different sizes - have, and thereby, for example, an AC voltage deviates from the sinusoidal shape or is distributed unevenly.
  • each cathode with load cells as sensors is arranged in the vacuum chamber.
  • the load cells are preferably elastic elements with applied strain gauges. All supply lines are connected in such a way that no force bypass occurs or the resulting errors are negligible. If the cathode surface is arranged vertically during sputtering, ie if the preferred direction of ion bombardment on the cathode is horizontal, the force of the electrical discharge on the cathode is measured directly in the horizontal direction.
  • this force is superimposed on the weight of the cathode and during evaporation, for example electron beam evaporation, the recoil force of the vaporized particles.
  • the weight of the cathode changes over time due to atomization or evaporation. Consequently, the weight force must be separated from the force of the electrical discharge by measurement.
  • the recoil force is usually negligible, or it is separated from the force of the electrical discharge together with the weight.
  • This metrological separation is achieved according to the invention in that a parameter which determines the force of the electrical discharge which the ions exert on the cathode is changed in size so quickly that the rate of change of the force of the electrical discharge is large compared to the rate of change of the Weight of the cathode.
  • This can be done, for example, by briefly switching the electrical discharge off and on again, or by briefly changing the electrical parameters of the electrical discharge (eg current, electrical power).
  • the change in force of the total force during the switch-on or switch-off phase or change phase is then a measure of the force of the electrical discharge on the cathode.
  • the device for carrying out the method has the advantage that existing devices can also be retrofitted without great effort, since the coating sources are no longer directly connected to the vacuum chamber, but instead force measuring cells are arranged between the coating source and the vacuum chamber. Furthermore, a conventional control loop is necessary, which in the simplest case consists of a filter and a controller with which the signal is processed and the corresponding parameters for controlling the vacuum coating process are controlled.
  • Magnetron sputtering sources Figure 2 a section through a device for performing the method with an electron beam evaporator
  • Fig. 3 a diagram of the force, the current of the electrical discharge and the
  • two magnetron sputtering sources 2 are arranged vertically on the side walls of a vacuum chamber 1 by means of two load cells 3, which are elastic elements with applied strain gauges.
  • a substrate 4 to be coated on both sides is arranged between the two magnetrons 2.
  • the magnetrons 2 are connected to the outputs of an AC voltage source 5 and are thereby alternately connected as a cathode or anode of the electrical discharge with a frequency of 50 kHz and a peak voltage Us.
  • a DC voltage source 6 is connected to the magnetrons 2 in such a way that the AC voltage is superimposed on the DC voltage in such a way that the mean value over a period of the AC voltage can be shifted to values from -V 2 Us to + V 2 Us. If the electrical discharge burns between the magnetrons 2, they are switched on
  • Magnetrons 2 horizontally acting forces measured with the load cells 3.
  • the signals obtained in this way are fed to a known control circuit in that the signals are each smoothed by a filter 7.
  • the output signals of the filters 7 are then fed to a subtraction element 8, in which the two smoothed signals are subtracted from one another.
  • the output signal of the subtractor 8, the Differential signal is fed to a controller 9. This influences the superimposed DC voltage until the deviation of the difference signal from zero becomes minimal.
  • an electron gun 10 of the axial type is arranged on one side of a vacuum chamber 1, the electron beam 11 of which acts on an evaporator 12 filled with titanium.
  • the evaporator 12 is fastened horizontally in the vacuum chamber 1 by means of load cells 3, consisting of elastic elements with applied strain gauges.
  • a substrate 13 to be coated is arranged above the evaporator 12.
  • the outputs of a direct current source 14 for arc power supply to maintain the electrical discharge are connected to the vacuum chamber 1 and the evaporator 12, which is connected as a cathode, in such a way that the electrical discharge burns.
  • the electron gun 10 operates at a constant voltage and variable power. First, a certain power of the electron gun 10 and a fixed value of the current lar C of the electrical discharge are set so that sufficient titanium evaporates.
  • the control procedure using force measurement is carried out cyclically in the phases of changing the substrate.
  • the electron beam power Pe b the current intensity of the electrical discharge l arc and the force F as the sum of the signals from the load cell 3 are shown as a function over time t. Evaporation takes place with the electron beam power P, *,.
  • the force F- is measured, which is composed of the force of the electrical discharge, the recoil force of the evaporating titanium and the weight of the molten titanium and the evaporator 12.
  • the force F 2 is measured at time t 2 (t 2 > t ⁇ ).
  • the signals determined before and after the process of reducing the current intensity I arc from the measured forces are smoothed by a filter 7.
  • the output signals of the filter 7 are then fed to a controller 9.
  • the force of the electrical discharge is determined in the controller 9 from the difference between the forces Fi and F 2 measured at the times t 2 and t 2 .
  • the controller 9 compares this determined force with predetermined target values.
  • the force of the electric discharge from the difference between the time t 3 and t 4 measured forces F 3 and F 4 is determined for control purposes.
  • Electron gun 10 changed so that the deviation of the force of the electrical discharge from the predetermined target value is minimal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Dans les procédés connus permettant de réguler des processus de revêtement sous vide, des variables mesurables telles que l'émission de plasma et la vitesse de revêtement sont mesurées dans le plasma ou la vapeur afin de réguler le processus de revêtement sous vide à l'aide de paramètres de processus de la vaporisation ou de la pulvérisation cathodique. Les capteurs sont soumis à de fortes sollicitations, et leur longévité s'en trouve affectée. A l'aide de l'intensité de la décharge électrique comme variable mesurable, le processus de revêtement sous vide enrichi au plasma est régulé par la mesure de l'intensité de la décharge électrique sur la source de revêtement. Cette source de revêtement est disposée dans la chambre à vide à l'aide de transducteurs de force (3), et le signal émanant de ces transducteurs de force sert à réguler, par exemple, l'énergie électrique pour chauffer le matériau de vaporisation, la déflection du faisceau ou la répartition de la décharge électrique sur plusieurs sources de revêtement, sans que les capteurs viennent en contact avec le plasma ou la vapeur. Ce procédé et ce dispositif permettent de réguler les processus de revêtement sous vide enrichis au plasma, notamment pour revêtir des outils et des substrats laminaires avec des couches fonctionnelles.
PCT/DE1997/000265 1996-02-14 1997-02-07 Procede et dispositif pour la regulation de processus de revetement sous vide enrichis au plasma WO1997030186A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1996105316 DE19605316C1 (de) 1996-02-14 1996-02-14 Verfahren und Einrichtung zur Regelung von plasmagestützten Vakuumbeschichtungsprozessen
DE19605316.1 1996-02-14

Publications (1)

Publication Number Publication Date
WO1997030186A1 true WO1997030186A1 (fr) 1997-08-21

Family

ID=7785303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1997/000265 WO1997030186A1 (fr) 1996-02-14 1997-02-07 Procede et dispositif pour la regulation de processus de revetement sous vide enrichis au plasma

Country Status (2)

Country Link
DE (1) DE19605316C1 (fr)
WO (1) WO1997030186A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19715647C2 (de) * 1997-04-15 2001-03-08 Ardenne Anlagentech Gmbh Verfahren und Vorrichtung zur Regelung der reaktiven Schichtabscheidung auf Substraten mittels längserstreckten Magnetrons
DE102004018435A1 (de) * 2004-04-06 2005-10-27 Carl Zeiss Vorrichtung zum beidseitigen Beschichten von Substraten mit einer hydrophoben Schicht
DE102010003106B4 (de) * 2010-03-22 2013-11-21 Von Ardenne Anlagentechnik Gmbh Verfahren, Vorrichtung und Beschichtungsanlage zur langzeitstabilen Verdampfung
DE102013011068A1 (de) * 2013-07-03 2015-01-08 Oerlikon Trading Ag, Trübbach Targetalter-Kompensationsverfahren zur Durchführung von stabilen reaktiven Sputterverfahren

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597467A (en) * 1979-01-18 1980-07-24 Citizen Watch Co Ltd Ion plating equipment
JPS57169088A (en) * 1981-04-09 1982-10-18 Olympus Optical Co Ltd Crucible
JPH04116166A (ja) * 1990-09-04 1992-04-16 Hitachi Ltd 蒸着装置及び蒸着膜生成方法並びに蒸着装置に用いられる測定装置
DE4336681A1 (de) * 1993-10-27 1995-05-04 Fraunhofer Ges Forschung Verfahren und Einrichtung zum plasmaaktivierten Elektronenstrahlverdampfen

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD239810A1 (de) * 1985-07-31 1986-10-08 Ardenne Forschungsinst Einrichtung zur kontrolle einer plasmatronquelle
DD252205B5 (de) * 1986-09-01 1993-12-09 Fraunhofer Ges Forschung Zerstaeubungseinrichtung
DE4336680C2 (de) * 1993-10-27 1998-05-14 Fraunhofer Ges Forschung Verfahren zum Elektronenstrahlverdampfen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597467A (en) * 1979-01-18 1980-07-24 Citizen Watch Co Ltd Ion plating equipment
JPS57169088A (en) * 1981-04-09 1982-10-18 Olympus Optical Co Ltd Crucible
JPH04116166A (ja) * 1990-09-04 1992-04-16 Hitachi Ltd 蒸着装置及び蒸着膜生成方法並びに蒸着装置に用いられる測定装置
DE4336681A1 (de) * 1993-10-27 1995-05-04 Fraunhofer Ges Forschung Verfahren und Einrichtung zum plasmaaktivierten Elektronenstrahlverdampfen

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 004, no. 151 (C - 028) 23 October 1980 (1980-10-23) *
PATENT ABSTRACTS OF JAPAN vol. 007, no. 011 (C - 145) 18 January 1983 (1983-01-18) *
PATENT ABSTRACTS OF JAPAN vol. 016, no. 362 (C - 0971) 5 August 1992 (1992-08-05) *

Also Published As

Publication number Publication date
DE19605316C1 (de) 1996-12-12

Similar Documents

Publication Publication Date Title
DE3700633C1 (de) Verfahren und Vorrichtung zum schonenden Beschichten elektrisch leitender Gegenstaends mittels Plasma
DE4441206C2 (de) Einrichtung für die Unterdrückung von Überschlägen in Kathoden-Zerstäubungseinrichtungen
EP0755461B1 (fr) Procede et dispositif de revetement par evaporation sous vide par voie ionique
DE1295310B (de) Aufdampfsteuerverfahren
EP2795657B1 (fr) Dispositif pour décharge de plasma avec un cathode creuse
WO1996026302A1 (fr) Procede de pulverisation reactive
DE112008001001B4 (de) Verfahren zur Steuerung von Massenspektrometern und Massenspektrometer
EP2585622B1 (fr) Source d'évaporation par arc présentant un champ électrique défini
DE1790094B1 (de) Verfahren zum aufbringen von duennen nichtleitendenschichten
EP3289113A1 (fr) Procédé de fabrication de substrats revêtus
DE4420951C2 (de) Einrichtung zum Erfassen von Mikroüberschlägen in Zerstäubungsanlagen
DE4242633C2 (de) Verfahren zur Durchführung von stabilen Niederdruck-Glimmprozessen
DE4324683C1 (de) Verfahren zur Anpassung des Generators bei bipolaren Niederdruck-Glimmprozessen
DE19546827A1 (de) Einrichtung zur Erzeugung dichter Plasmen in Vakuumprozessen
EP0620868B1 (fr) Procede et dispositif d'ionisation de vapeurs de materiaux produites par voie thermique
DE19605316C1 (de) Verfahren und Einrichtung zur Regelung von plasmagestützten Vakuumbeschichtungsprozessen
EP2562784A2 (fr) Agencement de capteur destiné à caractériser les processus de revêtement par plasma, gravure par plasma et traitement plasma ainsi que le procédé de détermination de grandeurs de référence dans ces processus
DE4328586A1 (de) Verfahren zur Regelung des Reaktionsgrades sowie Beschichtungsanlage
DE19605315C1 (de) Verfahren und Einrichtung zur Regelung eines Vakuumbeschichtungsprozesses
DE1648808B2 (de) Verfahren und vorrichtung zum ueberwachen einer dampfdichte
DE2624005C2 (de) Verfahren und Vorrichtung zum Aufbringen von dünnen Schichten auf ein Substrat nach dem "Ion-plating"-Verfahren.
DE19605335C1 (de) Verfahren und Einrichtung zur Regelung eines Vakuumbedampfungsprozesses
DE102005033515A1 (de) Verfahren und Vorrichtung zur Beschichtung von Substraten
DE4304613C1 (de) Verfahren zur Stabilisierung der Plasmaerzeugung mittels Elektronenstrahlverdampfer
DE19605314C2 (de) Verfahren zum Bearbeiten von Substraten in einem bipolaren Niederdruck-Glimmprozeß

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase