WO1997026981A1 - Vakuumdruckwechseladsorptionsverfahren und -vorrichtung - Google Patents

Vakuumdruckwechseladsorptionsverfahren und -vorrichtung Download PDF

Info

Publication number
WO1997026981A1
WO1997026981A1 PCT/EP1997/000154 EP9700154W WO9726981A1 WO 1997026981 A1 WO1997026981 A1 WO 1997026981A1 EP 9700154 W EP9700154 W EP 9700154W WO 9726981 A1 WO9726981 A1 WO 9726981A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorber
vacuum
mbar
swing adsorption
pressure swing
Prior art date
Application number
PCT/EP1997/000154
Other languages
English (en)
French (fr)
Inventor
Matthias Grahl
Paul Leitgeb
Dieter Fersch
Original Assignee
Linde Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde Aktiengesellschaft filed Critical Linde Aktiengesellschaft
Publication of WO1997026981A1 publication Critical patent/WO1997026981A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/0476Vacuum pressure swing adsorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0259Physical processing only by adsorption on solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen
    • C01B21/0405Purification or separation processes
    • C01B21/0433Physical processing only
    • C01B21/045Physical processing only by adsorption in solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/10Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/22Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40058Number of sequence steps, including sub-steps, per cycle
    • B01D2259/40066Six
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40077Direction of flow
    • B01D2259/40081Counter-current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/403Further details for adsorption processes and devices using three beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0446Means for feeding or distributing gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0046Nitrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the invention relates to a vacuum pressure swing adsorption process for separating at least one component from a crude gas mixture consisting of at least two components, comprising at least the process steps adsorption, vacuum regeneration and pressure build-up, these process steps being cyclically offset in at least two adsorbents connected in parallel
  • the invention further relates to a vacuum pressure swing adsorption device comprising at least two adsorbers arranged parallel to one another, at least one vacuum pumping station and gas supply lines to, from, and between the adsorbents and the vacuum pumping station
  • Vacuum pressure swing adsorption processes or devices are used, for example, to obtain oxygen and / or nitrogen from air or to separate carbon dioxide from carbon dioxide-containing, hydrogen and carbon monoxide-rich synthesis gases.
  • Such vacuum pressure swing adsorption processes have at least two adsorbers connected in parallel, which or separation of a raw gas mixture consisting of at least two components
  • adsorber should be understood to mean a container containing at least one adsorbent layer.
  • the choice of the adsorbent (s) used depends on the intended use of the respective vacuum pressure swing adsorption process
  • Such a vacuum pressure swing adsorption process basically includes the process adsorption, vacuum regeneration and pressure build-up.
  • other process steps such as pressure equalization or winding steps, can be integrated
  • pressure equalization takes place in the final phase of the adsorption cycle of a first adsorber with a second, already covered adsorber measure vacuum pressure swing adsorption process continued until in the A pressure between 650 and 800 mbar, in particular between 700 and 750 mbar, is set or reached in the first adsorber. Only then is the evacuation of the first adsorber started.
  • the negative pressure value which is achieved by means of pressure equalization between the first and the second adsorber is achieved by determines the design of the pumping station used for the evacuation
  • an adsorber is preloaded using the product gas (mixed) It has been shown that an advantageous embodiment of the vacuum pressure swing adsorption method according to the invention consists in realizing the evacuation by means of a combination of a roller piston blower and a turbocompressor
  • the low starting pressure of the evacuation step associated with the procedure according to the invention means that the use of a turbocompressor makes sense over the entire pressure range of the evacuation step due to the fact that the turbocompressor can work in the range of favorable efficiencies
  • rotary piston blowers and turbo compressors can be connected in parallel and can only be connected in series after a pressure of 400 to 800 mbar, in particular 500 to 700 mbar, has been reached
  • the evacuation takes place in such a way that the roller piston blower and the turbocompressor are connected in series
  • end pressures between 150 and 450 mbar, in particular between 250 and 350 mbar are energetically sensible
  • the invention further relates to a vacuum pressure swing adsorption device
  • a vacuum pressure swing adsorption device of the generic type in which the vacuum pumping station consists of at least one roller piston blower and at least one turbocompressor
  • the vacuum pressure swing adsorption device is further developed that the roller piston blower and the turbocompressor are connected in this way that allow the realization of both a parallel and a serial connection of the rotary piston blower and the turbocompressor
  • FIG. 1 Process diagram of the vacuum pressure swing adsorption process according to the invention with three adsorbents
  • FIG. 1 shows three adsorbers A1 to A3 arranged in parallel.
  • the raw gas mixture is, if necessary after a pressure increase in the compressor V1, via the line 1 and the correspondingly opened valve 1 1, 21 or 31 one of the three adsorbers A1 to A3 fed at the inlet end.
  • the product gas is drawn off via line 2 when the valve 13, 23 or 33 is open and, if necessary, compressed in the compressor 2.
  • the evacuation of the adsorbers A1 to A3 takes place, with the valve 14, 24 or 34 open accordingly, via line 3 and vacuum pumping station V3
  • the cycle diagram shown in FIG. 2 is now used for a more detailed explanation of the vacuum pressure swing adsorption process according to the invention.
  • the solid lines within a cycle mean that the corresponding valve is fully open, while a broken line stands for a partially open valve
  • valves 11 and 13 When the valves 11 and 13 are open, the crude gas (mixture) is fed to the adsorber A1 via line 1. The component or components not adhering to the adsorbent are removed via line 2.
  • the valve 23 of the adsorber A2 is already partially open, see above that the adsorber A2 is biased by means of a partial flow of the product gas flowing out of the adsorber via line 2 (mixture) from its outlet end, that is to say in countercurrent.
  • valve 11 At the beginning of the second cycle, valve 11 is closed, so that the supply of the raw gas mixture into the adsorber A1 Since the valve 23 is now fully open, a partial stream of the product gas (mixed) flows from the line 2 into the adsorber A2. In the previously evacuated adsorber A2, this leads to an increase in pressure while the pressure in the adsorber A1 drops to 650 to 800 mbar, preferably 700 to 750 mbar
  • valves 11 and 13 are closed and valve 14 is opened. Evacuation of adsorber A1 now takes place via line 3 and vacuum pumping station V3. After the evacuation cycle in adsorber A1 has ended, valve 14 is closed again and valve 13 partially open Now there is a pressure equalization between the adsorber A3 previously in the adsorption phase, in which the opened Valve 33 the product gas (gem ⁇ sch) flows out, and the adsorber A1, into which a partial flow of this product gas (gem ⁇ sch) it flows via the partially open valve 13
  • the cycle diagram shown in FIG. 3 already shows an embodiment of the vacuum pressure swing adsorption method according to the invention.
  • the adsorber A1 first goes through its adsorption phase when the valves 11 and 13 are open, analogously to the cycle diagram 1 shown in FIG. 2.
  • the valve again becomes at the end of the adsorption cycle 11 closed, so that the pressure equalization between the adsorber A1 and A2, the valve 23 of which is now fully open, results in a pressure drop in the adsorber A1.
  • the valve 23 of the adsorber A2 is closed and the valve 33 of the adsorber A3 partially opened
  • the adsorber A3 is evacuated with the valve 34 open, via line 3 and the vacuum pumping station V3.
  • the partial flow of the product gas (mixed) now flowing into the adsorber A3 via line 33 thus serves as purge gas for the gas in the evacuation phase
  • Adsorber A3 Adsorber A3
  • valves 11 and 13 of adsorber A1 are closed and valve 14 is opened.
  • adsorber A1 is evacuated via cycle 3 and vacuum pumping unit V3 when valve 14 is open.
  • valve 13 is partially opened so that a partial flow of the product gas emerging from the adsorber A2 via the open valve 23 (mixed) it can flow into the adsorber A1 as a purge gas
  • valve 14 is closed and product gas (mixed) flows out of line 2 via partially open valve 13 for the purpose of covering into adsorber A1.
  • valve 13 is opened as a whole, so that it closes A further pressure increase in the adsorber A1 due to the incoming partial flow of the product gas (mixed) comes after closing the valve 13 and opening the valve 11, the adsorber A1 is stretched to adsorption pressure with the raw gas flowing in via line 1 (mixed )
  • cycle times of the cycles described in cycle diagram 2 are in the order of 15 to 30 s for cycles 1, 4 and 7, while the cycle times for cycles 2, 5 and 8 are in the order of 2 to 5 s and the cycle times for bars 3, 6 and 9 are of the order of 2 to 10 s
  • the advantages of the vacuum pressure swing adsorption process according to the invention from an energy point of view are illustrated in the table below. Three different 3-adsorber pressure swing adsorption processes for oxygen generation are compared. Process A is a standard vacuum pressure swing adsorption process in which no pressure compensation is provided and the evacuation The starting pressure is approx.
  • Processdure B includes a conventional pressure equalization between the adsorber to be relaxed and the already evacuated, but not yet (pre) covered adsorber.
  • the evacuation starting pressure is 750 mbar.
  • Processdure C is a method as shown in cycle diagram 2 ( Figure 3 ) The evacuation start pressure is also 750 mbar
  • method C according to the invention leads to an energy saving of approximately 10% due to the low desorption pressure when using a combination of roller piston blower and turbocompressor, so that method C according to the invention results in a specific energy requirement of 0.34 kWh / Nm 3 0 2 can be achieved.
  • method B with conventional pressure balances also enables the combination of roller piston blower and turbocompressor to be used economically favorably, the energy requirement for this method is inherently too high for an improvement over the method A could be achieved

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

Vakuumdruckwechseladsorptionsverfahren zur Abtrennung wenigstens einer Komponente aus einem wenigstens aus zwei Komponenten bestehenden Rohgasgemisch, umfassend wenigstens die Verfahrensschritte Adsorption, Vakuumregenerierung und Druckaufbau, wobei diese Verfahrensschritte zyklisch versetzt in wenigstens zwei, parallel geschalteten Adsorbern ablaufen. Hierbei wird: a) in der Endphase des Adsorptionstaktes eines ersten Adsorbers die Zuführung des Rohgasgemisches unterbrochen und; b) wenigstens ein Teil des aus dem im Adsorptionstakt befindlichen ersten Adsorber abgezogenen Produktgas(gemisch)es einem zweiten, bereits vorbespannten, Adsorber zum Zwecke des weiteren Druckaufbaus in diesem zweiten Adsorber zugeführt; c) solange, bis in dem ersten Adsorber ein Druck zwischen 650 und 800 mbar, insbesondere zwischen 700 und 750 mbar, eingestellt ist; und d) sodann erfolgt ein Evakuieren des ersten Adsorbers. Vakuumdruckwechseladsorptionsvorrichtung, umfassend wenigstens zwei parallel zueinander angeordnete Adsorber, wenigstens einen Vakuumpumpstand sowie Gasführungsleitungen zu, von, und zwischen den Adsorbern und dem Vakuumpumpstand, wobei der Vakuumpumpstand aus wenigstens einem Wälzkolbengebläse und wenigstens einem Turboverdichter besteht.

Description

Beschreibung
Vakuumdruckwechseladsorptionsverfahren und -Vorrichtung
Die Erfindung betrifft ein Vakuumdruckwechseladsorptionsverfahren zur Abtrennung wenigstens einer Komponente aus einem wenigstens aus zwei Komponenten be¬ stehenden Rohgasgemisch, umfassend wenigstens die Verfahrensschritte Adsorption, Vakuumregeneπerung und Druckaufbau, wobei diese Verfahrensschritte zyklisch ver¬ setzt in wenigstens zwei, parallel geschalteten Adsorbem ablaufen
Die Erfindung betrifft ferner eine Vakuumdruckwechseladsorptionsvorπchtung, umfas¬ send wenigstens zwei parallel zueinander angeordnete Adsorber wenigstens einen Vakuumpumpstand sowie Gasfuhrungsleitungen zu, von, und zwischen den Adsorbem und dem Vakuumpumpstand
Vakuumdruckwechseladsorptionsverfahren bzw -Vorrichtungen werden z B zur Ge¬ winnung von Sauerstoff und/oder Stickstoff aus Luft oder zur Kohlendioxid-Abtrennung aus Kohlendioxid-haltigen, Wasserstoff und Kohlenmonoxid-reichen Synthesegasen verwendet Derartige Vakuumdruckwechseladsorptionsverfahren weisen wenigstens zwei, parallel geschaltete Adsorber, die der Ab- bzw Auftrennung eines wenigstens aus zwei Komponenten bestehenden Rohgasgemisches dienen, auf
Unter dem Begriff 'Adsorber" sei im folgenden ein, wenigstens eine Adsorptionsmittel- schicht enthaltender Behalter zu verstehen Die Wahl des bzw der verwendeten Ad- sorptionsmittet ist vom Verwendungszweck des jeweiligen Vakuumdruckwechselad- sorptionsverfahrens abhangig
Grundsätzlich beinhaltet ein derartiges Vakuumdruckwechseladsorptionsverfahren die Verfahrensschπtte Adsorption, Vakuumregenerierung und Druckaufbau. Zudem können weitere Verfahreπsschntte, wie z.B Druckausgleichs- oder Spulschritte, eingebunden werden
Bei derartigen Vakuumdruckwechseladsorptionsverfahren, die bestimmte Gaskompo¬ nenten in definierten Reinheiten und Ausbeuten liefern, trachtet der Fachmann danach, den Energiebedarf so weit als möglich zu verringern Insbesondere bei der Gewinnung von Sauerstoff und/oder Stickstoff aus Luft, wo ja das Rohgasgemisch Luft kostenlos zur Verfugung steht, werden die Betriebskosten einer Vakuumdruckwechseladsorp- tionsanlage im wesentlichen von ihrem benotigten Energiebedarf bestimmt
Um den Energiebedarf eines derartigen Vakuumdruckwechseladsorptionsverfahrens zu senken, wurde bereits vorgeschlagen, vor dem Evakuieren eines Adsorbers einen Druckausgleich zwischem dem zu evakuierenden und einem bereits evakuierten Ad¬ sorber durchzufuhren Ein derartiger Druckausgleich fuhrt jedoch zu einer deutlichen Verringerung der Kapazität des Vakuumdruckwechseladsorptionsverfahrens
Aufgabe der vorliegenden Erfindung ist es, ein Vakummdruckwechseladsorptions-ver- fahren der eingangs genannten Art anzugeben, das, ohne daß es zu einer Kapazitats- verschlechterung kommt, eine bessere Energiebilanz als herkömmliche Vakuumdruck- wechseladsorptionsverfahren aufweist
Dies wird erfindungsgemaß dadurch erreicht, daß
a) in der Endphase des Adsorptionstaktes eines ersten Adsorbers die Zufuhrung des Rohgasgemisches unterbrochen und
b) wenigstens ein Teil des aus dem im Adsorptionstakt befindlichen ersten Adsorber abgezogenen Produktgas(gemιsch)es einem zweiten, bereits vorbespannten, Ad¬ sorber zum Zwecke des weiteren Druckaufbaus in diesem zweiten Adsorber zuge¬ führt wird,
c) solange, bis in dem ersten Adsorber ein Druck zwischen 650 und 800 mbar, insbe¬ sondere zwischen 700 und 750 mbar, eingestellt ist, und
d) sodann ein Evakuieren des ersten Adsorbers erfolgt
Im Gegensatz zu dem eingangs erwähnten, zum Stand der Technik zahlenden Vaku- umdruckwechseladsorptionsverfahren erfolgt bei dem erfindungsgemaßen Vakuum- druckwechseiadsorptionsverfahren in der Endphase des Adsorptionstaktes eines ersten Adsorbers ein Druckausgleich mit einem zweiten, bereits bespannten Adsorber Dieser Druckausgleich zwischen den zwei Adsorbem wird gemäß dem erfindungsge¬ maßen Vakuumdruckwechseladsorptionsverfahren solange fortgesetzt, bis in dem ersten Adsorber ein Druck zwischen 650 und 800 mbar, insbesondere zwischen 700 und 750 mbar, eingestellt bzw erreicht ist Erst dann wird mit dem Evakuieren des ersten Adsorbers begonnen Der Unterdruckwert, der mittels des Druckausgleiches zwischen dem ersten und dem zweiten Adsorber erreicht wird, wird durch die Ausle¬ gung des für die Evakuierung verwendeten Pumpstandes bestimmt
Eine vorteilhafte Ausgestaltung des erfindungsgemaßen Vakuumdruckwechseladsorp- tionsverfahrens zeichnet sich dadurch aus, daß
a) nach der Zufuhrung eines Teils des aus dem im Adsorptionstakt befindlichen ersten Adsorber abgezogenen Produktgas(gemιsch)es in einen zweiten, bereits vorbespannten Adsorber zum Zwecke des weiteren Druckaufbaus,
b) bei weiterhin unterbrochener Zufuhrung des Rohgas(gemιsch)es in den ersten Ad¬ sorber, wenigstens ein Teil des aus dem ersten Adsorber abgezogenen Produkt- gas(gemιsch)es, einem dritten, in einem Evakuierungstakt befindlichen Adsorber zum Zwecke des Spuiens dieses dritten Adsorbers zugeführt wird,
c) solange, bis in dem ersten Adsorber ein Druck zwischen 650 und 800 mbar, insbe¬ sondere zwischen 700 und 750 mbar, eingestellt ist, und
d) sodann ein Evakuieren des ersten Adsorbers erfolgt
Den beiden genannten Verfahrensfuhrungen ist gemein, daß der zweite Adsorber, dem ein Teilstrom des Produktgas(gemιsch)es zum Zwecke des weiteren Druckausgleiches zugeführt wird, bereits (vor)bespannt ist Diese Vorbespannung des Adsorbers wirkt sich insbesondere im Hinblick auf die Lebensdauer des Adsorptionsmitteis, das gegen¬ über bekannten Vakuumdruckwechseladsorptionsverfahren mit Druckausgleichsschπt- ten deutlich geringeren Druckstoßen ausgesetzt ist, positiv aus
Gemäß einer weiteren Ausgestaltung des erfindungsgemaßen Vakuumdruckwechsel- adsorptionsvefahrens erfolgt das Vorbespannen eines Adsorbers mittels des Produkt- gas(gemιsch)es Es hat sich gezeigt, daß eine vorteilhafte Ausgestaltung des erfindungsgemaßen Vaku- umdruckwechseladsorptionsverfahren darin besteht, die Evakuierung mittels einer Kombination aus Walzkolbengeblase und Turboverdichter zu realisieren
Der mit der erfindungsgemaßen Verfahrensfuhrung verbundene niedrige Startdruck des Evakuierungsschrittes fuhrt dazu, daß der Einsatz eines Turboverdichters aufgrund der Tatsache, daß der Turboverdichter im Bereich gunstiger Wirkungsgrade arbeiten kann, über den ganzen Druckbereich des Evakuierungsschrittes sinnvoll ist
Hierbei können zu Beginn des Evakuierungsvorgangs Walzkolbengeblase und Turbo¬ verdichter parallel geschaltet sein und erst nach Erreichen eines Druckes von 400 bis 800 mbar, insbesondere von 500 bis 700 mbar, in Serie geschaltet werden
In einer dazu alternativen Ausgestaltung des erfindungsgemaßen Vakuumdruck- wechseladsorptionsverfahren, erfolgt das Evakuieren in der Weise, daß das Walzkol¬ bengeblase und der Turboverdichter in Serie geschaltet sind
Im Prinzip lassen sich mit entsprechend aufwendigen Pumpstanden nahezu beliebig niedπge Enddrucke wahrend des Evakuierungstaktes erreichen Energetisch sinnvoll sind jedoch Enddrucke zwischen 150 und 450 mbar, insbesondere zwischen 250 und 350 mbar
Wie bereits eingangs erwähnt, betrifft die Erfindung ferner eine Vakuumdruckwechsel- adsorptionsvorπchtung
Zur Losung des ebenfalls eingangs erwähnten Problems wird eine Vakuumdruck- wechseladsorptionsvorπchtung der gattungsgemaßen Art vorgeschlagen, bei der der Vakuumpumpstand aus wenigstens einem Walzkolbengeblase und wenigstens einem Turboverdichter besteht
Es hat sich gezeigt, das eine Kombination aus Walzkolbengeblase und Turboverdichter eine optimale Losung darstellt Diese Kombination ermöglicht die Bewältigung großer Volumenstrome bei vergleichsweise geringem Energiebedarf
Die erfindungsgemaße Vakuumdruckwechseladsorptionsvorπchtung weiterbildend wird vorgeschlagen, daß das Walzkolbengeblase und der Turboverdichter so verschaltet werden, die die Realisierung sowohl einer parallelen als auch einer seriellen Verschal- tung des Walzkolbengeblases und des Turboverdichters zulaßt
Das erfindungsgemaße Vakuumdruckwechseladsorptionsverfahren, die erfindungsge¬ maße Vakuumdruckwechseladsorptionsvorπchtung sowie weitere Ausgestaltungen da¬ von, die Gegenstande abhangiger Patentansprüche sind, seien anhand der nachfol¬ genden Figuren 1 bis 3 naher erläutert Hierbei zeigen
Figur 1 Verfahrensschema des erfindungsgemaßen Vakuumdruckwechsel- adsorptionsverfahren mit drei Adsorbem
Figur 2 Taktschema 1
Figur 3 Taktschema 2
Hierbei bedeuten die in den Taktschemata der Figuren 2 und 3 verwendeten Abkür¬ zungen
A Adsorption
E1 Druckabsenkung, bei gleichzeitigem Druckausgleich mit einem Adsorber, der sich im Bespannungs- bzw Druckaufbautakt R1 befindet
PP Druckabsenkung mit Spulgaslieferung an einen Adsorber, der sich im Evakuierungs- und Spultakt EVP befindet
EV Evakuieren
EVP Evakuieren mit gleichzeitigem (Gegenstrom)Spulen
RO Vorbespannen mit Produktgas(gemιsch)
R1 Bespannen über den Druckausgleich mit einem Adsorber, der sich im Drucksenkungstakt E1 befindet
RF Bespannen mit Rohgasgemisch Das erfindungsgemaße Vakuumdruckwechseladsorptionsverfahren sei zunächst an¬ hand der beiden Figuren 1 und 2 beschrieben Hierbei zeigt Figur 1 drei parallel ange¬ ordnete Adsorber A1 bis A3 Das Rohgasgemisch wird, gegebenenfalls nach einer Druckerhohung im Verdichter V1 , über die Leitung 1 sowie das entsprechend geöffnete Ventil 1 1 , 21 oder 31 einem der drei Adsorber A1 bis A3 am Einlaßende zugeführt Am Auslaßende der Adsorber A1 bis A3 wird bei geöffnetem Ventil 13, 23 oder 33 über Leitung 2 das Produktgas(gemιsch) abgezogenen und gegebenenfalls im Verdichter 2 verdichtet Die Evakuierung der Adsorber A1 bis A3 erfolgt, bei entsprechend geöff¬ netem Ventil 14, 24 oder 34, über Leitung 3 und Vakuumpumpstand V3
Zur näheren Erläuterung des erfindungsgemaßen Vakuumdruckwechseladsorptions- verfahrens sei nunmehr das in der Figur 2 dargestellte Taktschema herangezogen Hierbei bedeuten die innerhalb eines Taktes durchgezogenen Linien, daß das ent¬ sprechende Ventil ganz geöffnet ist, wahrend eine unterbrochene Linie für ein teilweise geöffnetes Ventil steht
Bei geöffneten Ventilen 1 1 und 13 wird dem Adsorber A1 über Leitung 1 das Roh- gas(gemιsch) zugeführt Die nicht am Adsorptionsmittel haftende Komponente bzw haftenden Komponenten werden über Leitung 2 abgezogen Das Ventil 23 des Adsor¬ bers A2 ist bereits teilweise geöffnet, so daß der Adsorber A2 mittels eines Teilstromes des aus dem Adsorber über Leitung 2 ausströmenden Produktgas(gemιsch)es von seinem Auslaßende her, also im Gegenstrom, vorbespannt wird Zu Beginn des zweiten Taktes wird Ventil 11 geschlossen, sodaß die Zufuhr des Rohgasgemisches in den Adsorber A1 unterbrochen wird Da das Ventil 23 nunmehr vollständig geöffnet ist, strömt weiterhin ein Teilstrom des Produktgas(gemιsch)es aus der Leitung 2 in den Ad¬ sorber A2 ein In dem zuvor evakuierten Adsorber A2 kommt es dadurch zu einer Druckerhohung, wahrend der Druck im Adsorber A1 auf 650 bis 800 mbar, vorzugs¬ weise 700 bis 750 mbar, fallt
Sobald dieses gewünschte Druckniveau im Adsorber A1 erreicht bzw eingestellt ist, werden die Ventile 11 und 13 geschlossen und Ventil 14 geöffnet Nun erfolgt über Leitung 3 und Vakuumpumpstand V3 ein Evakuieren des Adsorbers A1 Nach Beendi¬ gung des Evakuierungstaktes im Adsorber A1 wird Ventil 14 wieder geschlossen und Ventil 13 teilweise geöffnet Nun kommt es zu einem Druckausgleich zwischen dem zuvor in der Adsorptionsphase befindlichen Adsorber A3, bei dem über das geöffnete Ventil 33 das Produktgas(gemιsch) abströmt, und dem Adsorber A1 , in den über das teilweise geöffnete Ventil 13 ein Teilstrom dieses Produktgas(gemιsch)es strömt
Das in der Figur 3 dargestellte Taktschema zeigt bereits eine Ausgestaltung des erfin¬ dungsgemaßen Vakuumdruckwechseladsorptionsverfahrens Hierbei durchlauft der Adsorber A1 zunächst, analog zu dem in der Figur 2 dargestellten Taktschema 1 , bei geöffneten Ventilen 11 und 13 seine Adsorptionsphase Wiederum wird am Ende des Adsorptionstaktes das Ventil 11 geschlossen, so daß es durch den Druckausgleich zwischem dem Adsorber A1 und A2, dessen Ventil 23 nunmehr ganz geöffnet ist, zu einer Druckabsenkung im Adsorber A1 kommt Wahrend des dritten Taktes wird das Ventil 23 des Adsorbers A2 geschlossen und das Ventil 33 des Adsorbers A3 teilweise geöffnet Der Adsorber A3 wird zu diesem Zeitpunkt bei geöffnetem Ventil 34, über Leitung 3 und Vakuumpumpstand V3 evakuiert Der nunmehr über Leitung 33 in den Adsorber A3 einströmende Teilstrom des Produktgas(gemιsch)es dient somit als Spul¬ gas für den in der Evakuierungsphase befindlichen Adsorber A3
Nach Beendigung dieses Spulgaslieferungstaktes werden die Ventile 11 und 13 des Adsorbers A1 geschlossen und Ventil 14 geöffnet In den Takten 4 und 5 wird der Ad¬ sorber A1 bei geöffnetem Ventil 14 über Leitung 3 und Vakuumpumpstand V3 eva¬ kuiert Im Takt 6 - der Adsorber A1 wird nach wie vor evakuiert - wird Ventil 13 teilweise geöffnet, so daß ein Teilstrom des aus dem Adsorber A2 über das geöffnete Ventil 23 austretenden Produktgas(gemιsch)es in den Adsorber A1 als Spulgas strömen kann
Nach Beendigung der Evakuierungstakte wird Ventil 14 geschlossen und über das teil¬ weise geöffnete Ventil 13 strömt aus der Leitung 2 Produktgas(gemιsch) zum Zwecke des Bespannens in den Adsorber A1 Im vorletzten Takt wird Ventil 13 zur Ganze ge¬ öffnet, so daß es zu einer weiteren Druckerhohung im Adsorber A1 durch den einströ¬ menden Teilstrom des Produktgas(gemιsch)es kommt Nach dem Schließen des Ventils 13 und dem Offnen des Ventils 1 1 , erfolgt das Bespannen des Adsorbers A1 auf Adsorptionsdruck mit dem über Leitung 1 einströmenden Rohgas(gemιsch)
In der Praxis liegen die Taktzeiten der im Taktschema 2 (Figur 3) beschriebenen Takte in der Größenordnung von 15 bis 30 s für die Takte 1 , 4 und 7, wahrend die Taktzeiten für die Takte 2, 5 und 8 in der Größenordnung von 2 bis 5 s und die Taktzeiten für die Takte 3, 6 und 9 in der Größenordnung von 2 bis 10 s hegen Die Vorteile des erfindungsgemaßen Vakuumdruckwechseladsorptionsverfahren in energetischer Hinsicht seien anhand der nachfolgenden Tabelle verdeutlicht In dieser werden drei verschiedene 3-Adsorber-Druckwechseladsorptιonsverfahren zur Sauer- stoffgewinnung verglichen Das Verfahren A ist ein Standardvakuumdruck-wechselad- εorptionsverfahren, bei dem kein Druckausgleich vorgesehen ist und der Evaku- lerungsstartdruck ca 1 bar betragt Das Verfahren B beinhaltet einen konventionellen Druckausgleich zwischen dem zu entspannenden und dem bereits evakuierten, jedoch noch nicht (vor)bespannten Adsorber Der Evakuierungsstartdruck betragt hierbei 750 mbar Das Verfahren C ist ein Verfahren, wie es im Taktschema 2 (Figur 3) darge¬ stellt ist Der Evakuierungsstartdruck betragt ebenfalls 750 mbar
Die in der Tabelle angebenen Werte gelten für eine Produktkonzentration von 93 % Sauerstoff bei Einsatz eines Walzkolbengeblases Es ist deutlich erkennbar, daß mit dem erfindungsgemaßen Verfahren C dieselbe Produktmenge bei gleichem Energie¬ bedarf wie mit dem Standardverfahren A erzielt werden kann
Im Gegensatz zu dem Verfahren A fuhrt das erfindungsgemaße Verfahren C aufgrund des niedrigen Desorptionsdrucks beim Einsatz einer Kombination aus Walzkolbenge¬ blase und Turboverdichter zu einer Energieeinsparung von ca 10 %, so daß sich mit dem erfindungsgemaße Verfahren C ein spezifischer Energiebedarf von 0,34 kWh/Nm3 02 erreichen laßt Zwar ermöglicht auch das Verfahren B mit konventionellen Druck¬ ausgleichen den energetisch gunstigen Einsatz der Kombination aus Walzkolbenge¬ blase und Turboverdichter, doch ist für dieses Verfahren des Energiebedarf von Haus aus zu hoch, als daß eine Verbesserung gegenüber dem Verfahren A erzielt werden konnte
Tabelle
Produktmenge Ausbeute Spez Energiebedarf
INI/kg/Takt] [%] [kWh/Nm3 02]
Verfahren A 0 74 48 0 38
Verfahren B 0 63 53 0 44
Verfahren C 0 74 60 0 38

Claims

Patentansprüche
Vakuumdruckwechseladsorptionsverfahren zur Abtrennung wenigstens einer Komponente aus einem wenigstens aus zwei Komponenten bestehenden Roh¬ gasgemisch, umfassend wenigstens die Verfahrensschritte Adsorption, Vakuumre¬ generierung und Druckaufbau, wobei diese Verfahrensschritte zyklisch versetzt in wenigstens zwei, parallel geschalteten Adsorbem ablaufen, dadurch gekenn¬ zeichnet, daß a) in der Endphase des Adsorptionstaktes eines ersten Adsorbers die Zufuhrung des Rohgasgemisches unterbrochen und b) wenigstens ein Teil des aus dem im Adsorptionstakt befindlichen ersten Adsorber abgezogenen Produktgas(gemιsch)es einem zweiten, bereits vorbespannten, Adsorber zum Zwecke des weiteren Druckaufbaus in diesem zweiten Adsorber zugeführt wird, c) solange, bis in dem ersten Adsorber ein Druck zwischen 650 und 800 mbar, insbesondere zwischen 700 und 750 mbar, eingestellt ist, und d) sodann ein Evakuieren des ersten Adsorbers erfolgt
Vakuumdruckwechseladsorptionsverfahren nach Anspruch 1 , dadurch gekenn¬ zeichnet, daß a) nach der Zufuhrung eines Teils des aus dem im Adsorptionstakt befindlichen ersten Adsorber abgezogenen Produktgas(gemιsch)es in einen zweiten, bereits vorbespannten Adsorber zum Zwecke des weiteren Druckaufbaus, b) bei weiterhin unterbrochener Zufuhrung des Rohgas(gemιsch)es in den ersten Adsorber, wenigstens ein Teil des aus dem ersten Adsorber abgezogenen Produktgas(gemιsch)es, einem dritten, in einem Evakuierungstakt befindlichen Adsorber zum Zwecke des Spulens dieses dritten Adsorbers zugeführt wird, c) solange, bis in dem ersten Adsorber ein Druck zwischen 650 und 800 mbar, insbesondere zwischen 700 und 750 mbar, eingestellt ist, und d) sodann ein Evakuieren des ersten Adsorbers erfolgt Vakuumdruckwechseladsorptionsverfahren nach Anspruch 1 oder 2, dadurch ge¬ kennzeichnet daß das Evakuieren mittels einer Kombination aus Walzkolbenge¬ blase und Turboverdichter erfolgt
Vakuumdruckwechseladsorptionsverfahren nach Anspruch 3 dadurch gekenn¬ zeichnet, daß zu Beginn des Evakuierens Walzkolbengeblase und Turboverdichter parallel geschaltet sind und erst nach Erreichen eines Druckes von 400 bis 800 mbar, insbesondere von 500 bis 700 mbar, in Serie geschaltet werden
Vakuumdruckwechseladsorptionsverfahren nach Anspruch 3 dadurch gekenn¬ zeichnet, daß wahrend des Evakuierens Walzkolbengeblase und Turboverdichter in Serie geschaltet sind
Vakuumdruckwechseladsorptionsverfahren nach einem der vorherigen Ansprüche dadurch gekennzeichnet, daß das Vorbespannen eines Adsorbers mittels des Pro- duktgas(gemιsch)es erfolgt
Vakuumdruckwechseladsorptionsverfahren nach einem der vorherigen Ansprüche dadurch gekennzeichnet, daß der Enddruck wahrend des Evakuierungstaktes zwischen 150 und 450 mbar, insbesondere zwischen 250 und 350 mbar, betragt
Vakuumdruckwechseladsorptionsvorπchtung, umfassend wenigstens zwei parallel zueinander angeordnete Adsorber, wenigstens einen Vakuumpumpstand sowie Gasfuhrungsleitungen zu, von, und zwischen den Adsorbem und dem Vakuum¬ pumpstand, dadurch gekennzeichnet, daß der Vakuumpumpstand aus wenigstens einem Walzkolbengeblase und wenigstens einem Turboverdichter be¬ steht
Vakuumdruckwechseladsorptionsvorπchtung nach Anspruch 8, dadurch gekenn¬ zeichnet, daß das Walzkolbengeblase und der Turboverdichter so verschaltet sind, daß sowohl eine parallele als auch eine serielle Verschaltung des Walzkolbenge¬ blases und des Turboverdichters realisiert werden kann
PCT/EP1997/000154 1996-01-24 1997-01-15 Vakuumdruckwechseladsorptionsverfahren und -vorrichtung WO1997026981A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19602450.1 1996-01-24
DE19602450A DE19602450C1 (de) 1996-01-24 1996-01-24 Vakuumdruckwechseladsorptionsverfahren und -vorrichtung

Publications (1)

Publication Number Publication Date
WO1997026981A1 true WO1997026981A1 (de) 1997-07-31

Family

ID=7783540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/000154 WO1997026981A1 (de) 1996-01-24 1997-01-15 Vakuumdruckwechseladsorptionsverfahren und -vorrichtung

Country Status (2)

Country Link
DE (1) DE19602450C1 (de)
WO (1) WO1997026981A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0847791A1 (de) * 1996-12-11 1998-06-17 SGI-PROZESS-TECHNIK GmbH Druckwechselanlage zur Gewinnung von Sauerstoff aus der Luft und Verfahren zum Betrieb einer solchen

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19627422A1 (de) * 1996-07-08 1998-01-15 Bayer Ag Verfahren zur adsorptiven Trennung von Luft
WO2014056604A1 (de) * 2012-10-09 2014-04-17 Linde Aktiengesellschaft Verfahren zum messen eines temperaturprofils in einem adsorber
CN113880051B (zh) * 2021-10-20 2023-02-10 杭州博大净化设备有限公司 一种船用制氧机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0195388A1 (de) * 1985-03-19 1986-09-24 Air Products And Chemicals, Inc. Herstellung von mit Sauerstoff angereicherter Luft
GB2237220A (en) * 1989-10-25 1991-05-01 Linde Kca Resden Gmbh A method of separation of mixtures of gases by alternating pressure adsorption
US5411578A (en) * 1994-05-10 1995-05-02 Air Products And Chemicals, Inc. Vacuum swing adsorption process with mixed repressurization and provide product depressurization
DE19503007A1 (de) * 1995-01-31 1996-08-01 Linde Ag Druckwechseladsorptionsverfahren

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3144012A1 (de) * 1981-11-05 1983-05-19 Bayer Ag, 5090 Leverkusen Druckwechselverfahren zur trennung von gasgemischen mittels adsorption
JPH0784871B2 (ja) * 1986-06-12 1995-09-13 株式会社日立製作所 真空排気装置
DE3639512A1 (de) * 1986-11-20 1988-06-01 Alcatel Hochvakuumtechnik Gmbh Vakuumpumpsystem mit einer waelzkolbenpumpe
DE4434101C1 (de) * 1994-09-23 1995-08-31 Linde Ag Druckwechsel-Adsorptionsverfahren

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0195388A1 (de) * 1985-03-19 1986-09-24 Air Products And Chemicals, Inc. Herstellung von mit Sauerstoff angereicherter Luft
GB2237220A (en) * 1989-10-25 1991-05-01 Linde Kca Resden Gmbh A method of separation of mixtures of gases by alternating pressure adsorption
US5411578A (en) * 1994-05-10 1995-05-02 Air Products And Chemicals, Inc. Vacuum swing adsorption process with mixed repressurization and provide product depressurization
DE19503007A1 (de) * 1995-01-31 1996-08-01 Linde Ag Druckwechseladsorptionsverfahren

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0847791A1 (de) * 1996-12-11 1998-06-17 SGI-PROZESS-TECHNIK GmbH Druckwechselanlage zur Gewinnung von Sauerstoff aus der Luft und Verfahren zum Betrieb einer solchen
WO1998025686A1 (de) * 1996-12-11 1998-06-18 Sgi-Prozesstechnik Gmbh Druckwechselanlage zur gewinnung von sauerstoff aus der luft und verfahren zum betrieb einer solchen
US5935297A (en) * 1996-12-11 1999-08-10 Sgi-Prozesstechnik Gmbh Method for operating an alternating pressure apparatus for producing oxygen from the air

Also Published As

Publication number Publication date
DE19602450C1 (de) 1997-02-13

Similar Documents

Publication Publication Date Title
DE60030016T2 (de) Druckwechseladsorptionsverfahren und -vorrichtung mit einem einzigem Bett
DE60027338T2 (de) Vorrichtung und Verfahren zur Durchflusssteuerung bei der Druckwechseladsorption
DE2615951C2 (de)
DE2460513C3 (de) Verfahren und Vorrichtung zur Zerlegung von Gasgemischen durch adiabatische Ad- und Desorption
DE69815031T2 (de) Druckwechseladsorptionsverfahren mit gleichzeitiger Evakuierung des Adsorptions-betts an seinem oberen und an seinem unteren Ende
DE19513599C1 (de) Verfahren zur Druckänderungsadsorption mit Hohlraumgas-Rückführung
EP0291975B1 (de) Verfahren zur Heliumanreicherung
DE19528561C2 (de) Druckwechsel-Adsorption für hochreinen Stickstoff unter Verwendung geregelter innerer Ströme
DE2153808A1 (de) Adiabatisches Verfahren zur Trennung von Gasgemischen bei Überdruck
EP0433324B1 (de) Verfahren zur gewinnung von stickstoff aus sauerstoff und stickstoff enthaltenden gasgemischen mittels druckwechseladsorption an kohlenstoff-molekularsieben
DE3716899C1 (de) Verfahren und Vorrichtung zur Heliumgewinnung
DE3402533A1 (de) Verfahren zur gewinnung von sauerstoff mit einem argon-anteil unter o,5 % aus feuchter luft
DE3007427A1 (de) Druckwechsel-adsorptionsverfahren und einrichtung zum abtrennen einer gasgemischkomponente aus einem mindestens zwei gase und wasserdampf enthaltenden gasgemisch
EP0505398B1 (de) Verfahren zur gewinnung von stickstoff aus luft durch druckwechseladsorption an kohlenstoff-molekularsieben
DE3045978A1 (de) Verfahren zum trennen eines gasgemisches
DE3144012C2 (de)
DE3150690A1 (de) Verfahren und vorrichtung zum auftrennen eines gasgemisches, wie luft, durch adsorption
EP0015413B1 (de) Druckwechseladsorptionsverfahren zur Zerlegung oder Reinigung von Gasgemischen
DE2631890A1 (de) Verfahren und vorrichtung zur anreicherung einer hauptkomponente eines mindestens zwei hauptkomponenten enthaltenden gasgemisches
DE60112518T2 (de) Druckwechseladsorptionsverfahren mit Produktgasabgabe bei sinkendem Druck im Adsorptionsbett
DE19602450C1 (de) Vakuumdruckwechseladsorptionsverfahren und -vorrichtung
DE8010651U1 (de) Vorrichtung zur trennung oder fraktionierenden reinigung von gasgemischen
EP2627431B1 (de) Verfahren und vorrichtung zur vakuum-druckwechseladsorption mit zwischenspeicherung
EP0146646A1 (de) Verfahren zur Abtrennung und Gewinnung von relativ stark an Adsorptionsmitteln adsorbierbaren Gasen aus ansonsten im wesentlichen nur schwächer adsorbierbare Gase enthaltenden Gasgemischen
EP0910457A1 (de) Verfahren zur adsorptiven trennung von luft

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase