WO1997024158A1 - Dispositif de stimulation electrique pour accroitre la force musculaire - Google Patents

Dispositif de stimulation electrique pour accroitre la force musculaire Download PDF

Info

Publication number
WO1997024158A1
WO1997024158A1 PCT/JP1996/003876 JP9603876W WO9724158A1 WO 1997024158 A1 WO1997024158 A1 WO 1997024158A1 JP 9603876 W JP9603876 W JP 9603876W WO 9724158 A1 WO9724158 A1 WO 9724158A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
switching element
signal
output
muscle
Prior art date
Application number
PCT/JP1996/003876
Other languages
English (en)
French (fr)
Inventor
Kazusada Imai
Original Assignee
Kabushiki Kaisya Advance
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisya Advance filed Critical Kabushiki Kaisya Advance
Publication of WO1997024158A1 publication Critical patent/WO1997024158A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36003Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of motor muscles, e.g. for walking assistance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/3603Control systems
    • A61N1/36031Control systems using physiological parameters for adjustment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/3603Control systems
    • A61N1/36034Control systems specified by the stimulation parameters

Definitions

  • the present invention relates to an electrical stimulator for muscle building.
  • muscle-building means There are various types of equipment as muscle-building means, but these are mainly equipment for applying a mechanical load to the human body, and training is conducted spontaneously to exert a force against this load. It is common that muscle strengthening is achieved only by this.
  • the present invention provides an efficient and effective muscle enhancement without applying unnecessary load to a living body by applying electrical stimulation based on a biological signal such as a pulse wave to the vicinity of a muscle to be enhanced.
  • the purpose is to make it possible.
  • the time for applying electrical stimulation to the living body is several hours continuously or intermittently, preferably 3 hours or more, and effectively about 8 hours.
  • examples of the biological signal include a pulse wave, an electrocardiogram, and a heart sound.
  • the present invention can strengthen muscles by simply wearing it without any training, so that it can be used for various sports. It is used effectively for maintenance, rehabilitation, etc. of muscles for long-term bedridden patients.
  • FIG. 1 shows the configuration of an embodiment of the present invention.
  • FIG. 2 shows the configuration of one embodiment of the present invention.
  • FIG. 3A shows a stimulating pulse waveform having a rising acute angle portion
  • FIG. 3B shows a stimulating pulse waveform of the circuits of FIGS. 1 and 2 from which the rising high-frequency component has been deleted.
  • FIG. 4 is a diagram illustrating the operation of the circuit of FIG.
  • Fig. 5 is a diagram for explaining the biological signal pulses of the circuits of Figs. 1 and 2.
  • Figure 6 illustrates the operation of the circuit of Figure 2.
  • FIG. 7 shows an example when the present invention is used.
  • FIG. 8A and FIG. 8B are diagrams for explaining the effect of the present invention.
  • FIG. 1 is a diagram showing one embodiment of the present invention.
  • Reference numeral 1 denotes a light emitting diode which outputs, for example, visible light, infrared light, or laser light.
  • Reference numeral 2 denotes a light receiving element, which receives light from the light emitting diode 1 reflected or transmitted through a living body and converts the light into an electric signal.
  • 3 is a signal processing means for inputting an electric signal related to a biological signal from an AS IC such as a gate array or a microphone computer, processing the electric signal, and outputting a pulse mainly in a diastolic period. It is.
  • Reference numeral 4 denotes an inductor, which is formed by a coil and a transformer.
  • 5, 9, 10, 11, 12 are switching elements, mainly transistors. However, in some cases, FET (field effect transistor) may be used.
  • 9 and 11 are PNP-type transistors, and the others are NPN-type transistors.
  • Capacitor 8 combines four capacitors to ensure sufficient capacity.
  • the stimulus buffer circuit 13 is a stimulus buffer circuit that has a series connection of a capacitor and a resistor, and mainly removes a high voltage generated at the rise of a stimulus pulse and cuts a DC component. . This softens the stimulus so that it can withstand prolonged use, and eliminates discomfort to the stimulus.
  • the configuration of this portion is not particularly limited as long as it has an electrical filtering function.
  • the position of the stimulus buffer circuit 13 is not limited to this, and may be on the output terminal OA side.
  • Reference numeral 22 denotes a biological signal pulse forming unit which forms a biological signal pulse from the output biological electric signal of the light receiving element 2.
  • the biological signal obtained by the light receiving element is a pulse wave electric signal
  • the peak near the peak is picked up and a systolic pulse is formed and output.
  • the combination of the light emitting diode 1 and the light receiving element 2 is a pulse wave sensor used by being attached to an earlobe, a wrist, a fingertip, or the like.
  • a pulse wave optical signal obtained by reflection, transmission, or the like is converted from a living body part MM, which is attached and sandwiched or the like, into an electric signal and output to the biological signal pulse forming means 22.
  • the biological signal pulse forming means 22 shapes and outputs a pulse corresponding to a systole or a diastole from the input pulse wave electric signal shown in FIG. 5 (a).
  • the signal processing means 3 to which the systolic pulse is input is used to calculate and extract the diastolic period from the systolic pulse. This is the action that causes
  • the signal processing means 3 outputs a pulse to the switching means 5, 10, 12 during the extension period based on the pulse from the biological signal pulse forming means 22
  • the signal processing means 3 outputs a pulse to the switching means 5 as shown in FIG.
  • the pulse in Fig. 4 (a) has a rectangular shape.
  • the switching means 5 is turned on when the input pulse is at a high level. At this time, an exciting current flows through the inductor 4, while the diode 6 is turned off.
  • the switching means 5 is turned off when the input pulse becomes low level, and at this time, the inductor 4 generates a boosting pulse, and this boosting pulse is supplied to the capacitor via the diode 6. Store to 8.
  • This operation is intermittently repeated at several KHz to several tens KHz, and the boosted voltage is set to, for example, a battery voltage of about 5 (V) and a maximum of about 300V.
  • the signal processing means 3 outputs a pulse for turning on the switching element 12 as shown in FIG. 4 (b).
  • a current flows through the base of the switching element 9 and turns on.
  • the accumulated charge of the capacitor 8 is discharged through the path of the switching element 9, the output terminal 0A, the load R of the human body, the stimulus buffer circuit 13, and the output terminal 0B switching means 12, and FIG. 4
  • the stimulation pulse shown in (c) is output.
  • the stimulus buffer circuit 13 removes the high-frequency component at the rising edge of the stimulus pulse and removes the DC component, as shown in FIG. 3B Such a pulse is formed.
  • FIG. 3A shows a stimulus pulse waveform when the stimulus buffer circuit 13 is not provided.
  • the sharp edge of the rising edge in Fig. 3A is the high-frequency component.
  • the frequency of the pulse for turning on the switching means 12 is several Hz to several tens of Hz, and the signal processing means 3 performs the pulses in groups and intermittently.
  • an amplitude modulation operation is performed in which the amplitude of the stimulus pulse is gradually increased and then gradually decreased.
  • the signal processing means 3 outputs the pulses shown in FIG. 4 (b) and at the same time, outputs the different number of pulses as shown in FIG. 4 (a) to the switching means 5 within the pulse interval.
  • the number of boosting pulses accumulated by the capacitor 8 between discharges corresponds to the number of pulses output by the signal processing means 3.
  • the capacitor 8 When the capacitor 8 accumulates the boost pulse, it is not shown as the capacitor 8, but it depends on the number of accumulated pulses within a range that affects the CR self-constant of a DC resistance component latent in a diode, a capacitor, or the like. Thus, the discharge voltage can be made different.
  • the pulse amplitude modulation of the stimulation pulse is performed by changing the number of boosting pulses.
  • the resistor 7 connected in parallel with the capacitor promotes the discharge of the capacitor in order to stabilize the amplitude of the next stimulation pulse.
  • the signal processing means 3 outputs a pulse for turning on the switching element 10 as shown in FIG. 4 (b).
  • the switching element 10 When the switching element 10 is turned on, a current flows to the base of the switching element 11 and the switching element 11 is turned on.
  • the accumulated charge of the capacitor 8 is discharged through the path of the switching element 11, the stimulation buffer circuit 13, the output terminal 0 B, the load R of the human body, the output terminal 0 A, and the switching means 10. 4 A stimulus pulse of the opposite polarity to the stimulus pulse shown in (c) is output.
  • the electrical stimulation signal shown in FIG. 5 (b) is output during the extension period of the pulse wave signal shown in FIG. 5 (a).
  • the output time of one stimulus pulse group is about 500 ms e c, and the frequency of the stimulus pulse constituting the group is, for example, about 50 Hz.
  • Fig. 2 The basic operation in Fig. 2 is the same as in Fig. 1, except that after the stimulation pulse is output, a function to discharge the residual charge generated in the living body due to the application of the stimulation pulse during the pause of the pulse is loaded. Things.
  • Reference numerals 16, 17, 20, and 21 denote speed-up circuits for speeding up the switching operation of the switching element provided at the subsequent stage.
  • Reference numeral 14 denotes a switching element for turning on and off the switching element 9 at the subsequent stage.
  • Reference numeral 15 denotes a switching element for turning on and off the switching element 11 at the subsequent stage.
  • Reference numerals 18 and 19 denote inverters for inverting the pulses output by the signal processing means 3.
  • portions having the same functional structure as in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.
  • FIG. 6A shows a pulse output from the signal processing means 3 to the switching element 5, which is the same as that shown in the above-described embodiment.
  • the signal processing means 3 includes a speed-up circuit 16 and an The pulse shown in Fig. 6 (b) is output to the inverter 18.
  • the inverter 18 outputs an inverted pulse as shown in FIG. 6 (c).
  • the pulse input to the switching element 14 via the speed-up circuit 16 turns on when the signal is at a high level, and turns on the switching element 9 at the same time.
  • the output from the signal processing means 3 to the inverter 19 and the speed-up circuit 17 remains at a low level, and the output of the inverter 19 is at a high level. Since the output of the inverter 19 is high, the switching element 12 is in the ON state, so that the accumulated charge of the capacitor 8 is changed to the switching element 9 and the output terminal 0A. , The load R of the human body, etc., the output terminal 0B, the stimulus buffer circuit 13, and the switching element 12 are discharged, and the stimulus pulse is output to the human body.
  • this stimulus pulse is temporarily stored.
  • the switching element 10 By the rise of the output of the inverter 18, the switching element 10 is turned on.
  • an electrical closed circuit is formed by the load, output terminal 0A, switching element 10 and switching element 12 and stimulus buffer circuit 13 and output terminal 0B.
  • the residual charge is discharged o
  • the signal processing means 3 When changing the output polarity of the stimulus pulse, the signal processing means 3 outputs the same pulse as the pulse output to the switching element 14 to the switching element 15.
  • the signal processing means 3 Since the signal processing means 3 outputs a one-level signal in the direction of the inverter 18, the output of the inverter 18 maintains the high level and the switch 18 Ching element 10 is turned on.
  • electrodes or conductors are attached to the output terminals OA and OB, and these electrodes or conductors are brought into contact with muscle parts to be strengthened.
  • a band such as a band or abdomen because it will be used for a long time.
  • Figure 7 shows an example of its use.
  • 71 is a tire sensor
  • 72 is a stimulator main body.
  • 73 and 74 are conductors, which are connected to the output terminals OA and 0B shown in the embodiment mainly through electric leads.
  • Reference numeral 75 denotes an abdominal band, which holds the guides 73 and 74 and also presses around the stimulation site.
  • FIG. 8A and FIG. 8B are mimic views of the abdominal cross section of the subject D before and after use by the CT scanner.
  • FIG. 8A is before use
  • FIG. 8B is after use.
  • the muscle part is indicated by 81.
  • the present invention has an enormous effect on muscle strength training and rehabilitation of various sports, because the abdominal muscles can be strengthened only by wearing.

Description

明 細 書 筋肉増強用電気刺激装置 技術分野
本発明は、 筋肉増強用の電気刺激装置に関する。 背景技術
筋肉増強手段と して様々な器具機器があるが、 これらは主に人体 に機械的な負荷を与える為の機器であり、 この負荷に抗する力を発 揮させるという訓練を自発的におこなう こ とによってはじめて筋肉 強化が図られるものが一般的である。
この様な訓練機器は、 継続した使用を行わなければ筋力の低下は 避けられないものであって、 体調を整えた状態で且つ時間と労力を 要するものであった。 発明の開示
上記に鑑み本発明は、 脈波等の生体信号に基づいた電気刺激を、 増強しょう とする筋肉近傍に加えることにより、 生体に対し無用な 負荷を与えることなく、 効率的且つ効果的な筋肉増強を可能とする ことを目的とするものである。
本発明において、 生体に対し電気刺激を加える時間は、 連続或い は間欠して数時間、 好ま しく は 3時間以上で効果的には 8時間程度 を示す。
又、 生体信号と しては、 脈波、 心電図、 心音等が例示される。 本発明は、 特に ト レーニングを行わなくても単に装着するだけで 、 筋肉增強をなし得るものであることから、 各種スポーツの為の鍛 練、 長期寝たきりの患者の為の筋肉の維持、 リハビリ等に有効に利 用 れ O o 図面の簡単な説明
図 1 は本発明の一実施例の構成を示す。
図 2 は本発明の一実施例の構成を示す。
図 3 Aは、 立上りの鋭角部分を有する刺激パルス波形を表わし、 図 3 Bは図 1及び図 2の回路の、 立上りの高周波成分を削除した刺 激パルス波形を表わす図である。
図 4 は、 図 1 の回路の動作を説明する図である。
図 5 は .図 1 及び図 2の回路の生体信号パルスを説明する図であ る o
図 6 は 図 2の回路の動作を説明する図である
図 7 は 本発明を使用 した場合の 1例を示す。
図 8 A及び図 8 Bは、 本発明の効果を説明する為の図である。 発明を実施するための最良の形態
図 1 は、 本発明の一実施例を示す図である。
1 は、 発光ダイオー ドであり、 例えば可視光、 赤外光、 レーザー 光を出力する。 2 は受光素子であり、 生体を反射又は透過した発光 ダイオー ド 1 からの光を受光し、 電気信号に変換する為の素子であ る o
3 は、 信号処理手段であり、 ゲー トアレイ等の様な AS I C、 マイク 口コンピュータ等の生体信号に関する電気信号を入力し、 その電気 信号を処理して、 主に拡張期にパルスを出力するものである。
4 は、 イ ンダク タであり、 コイル、 ト ラ ンスで形成されている。 5 , 9 , 1 0, 1 1 , 12は、 スィ ッチング素子であり、 主に トランジ スタよりなるが、 場合によっては、 F ET (電界効果 トラ ンジスタ) を 用いる場合もある。 9 , 1 1は、 PNP 型の トラ ンジスタであり、 その 他は NPN 型の トラ ンジスタである。
7 は、 補助抵抗であり、 8 は、 コ ンデンサである。 コ ンデンサ 8 は、 その容量を充分に確保するために 4 つのコ ンデンサを組み合わ せている。
1 3は、 刺激緩衝回路であり、 コ ンデンサと抵抗の直列接続構成を 有し、 主な動作と しては刺激パルスの立ち上がりに発生する高い電 圧を除去し且つ直流成分をカ ッ トする。 このこ とによ り刺激を柔ら かく して、 長時間の使用にも耐え得る様にし、 刺激に対する違和感 を排除する ものである。 この部分の構成は、 特に限定されず、 電気 的フ ィ ルタ機能を有する ものであればよい。 又刺激緩衝回路 1 3の位 置は、 これに限らず出力端 OAの側にあつてもよい。
22は、 生体信号パルス形成手段であり、 受光素子 2 の出力生体電 気信号から生体信号パルスを形成するものであって、 例えば、 受光 素子で得られる生体信号が脈波電気信号の場合は、 そのピーク近傍 をピッ クア ップして収縮期パルスを形成出力する ものである。 具体 的回路の一例と して特開平 5 — 337 196号公報に記載されている公知 技術を示すものである。
次に、 図 1 の動作について図 4 〜図 5 を参照して詳細に説明する 発光ダイオー ド 1 と受光素子 2からなる組み合わせは、 耳たぶ、 手首、 指先等に装着して使用される脈波センサを構成し、 挟持等し て装着された生体部位 MMから、 反射、 透過等して得られた脈波光信 号を電気信号に変換して生体信号パルス形成手段 22に出力する。 生体信号パルス形成手段 22は、 入力された図 5 ( a ) で示す脈波 電気信号から収縮期或いは拡張期に相当するパルスを成形出力する 尚、 この場合収縮期に相当するパルスを生体信号パルス形成手段 22が出力する場合は、 この収縮期パルスを入力 した信号処理手段 3 で、 この収縮期パルスから、 拡張期間を算出等して抽出する動作を させる ものである。
信号処理手段 3 は、 生体信号パルス形成手段 22からのパルスに基 づいて拡張期間に、 スイ ッ チ ング手段 5, 1 0, 12にパルスを出力す る
信号処理手段 3 は、 スィ ッチング手段 5 に対し図 4 ( a ) でしめ す様なパルスを出力する。 図 4 ( a ) のパルスは、 矩形状をしてい る。 スイ ッチング手段 5 は、 入力パルスがハイ レベルの時オ ンする 。 この時イ ンダク タ 4 に励磁電流が流れ、 一方でダイオー ド 6 は、 オフ状態を形成する。
スイ ッ チング手段 5 は、 入力パルスがローレベルになった時、 ォ フ し、 この時イ ンダク タ 4 は、 昇圧パルスを発生させ、 この昇圧パ ルスは、 ダイォ一 ド 6 を介してコ ンデンサ 8 へ蓄積する。
この動作は、 間欠的に数 KH z 〜数十 KH z で繰り返され、 その昇圧 電圧は、 例えば、 電池電圧約 5 ( V ) 程度で最高 300V程度まで設定 されている。
次に、 信号処理手段 3 は、 図 4 ( b ) で示す様なスイ ッ チ ング素 子 12をォンさせる為のパルスを出力する。 スィ ッチ ング素子 1 2がォ ンすると、 スイ ッチング素子 9 のベースに電流が流れ、 オ ンする。 このオン動作により、 コ ンデンサ 8 の蓄積電荷は、 スイ ッ チング 素子 9 、 出力端 0A、 人体等の負荷 R、 刺激緩衝回路 13、 出力端 0Bス イ ッチング手段 1 2の経路で放電し、 図 4 ( c ) で示す刺激パルスを 出力する。 その際、 刺激緩衝回路 13は、 刺激パルスの立ち上がりの 高周波成分を削除すると と もに、 直流成分を除去し、 図 3 Bで示す ようなパルスを形成させる。 図 3 Aは、 刺激緩衝回路 1 3が無い場合 の刺激パルス波形である。 図 3 Aの立ち上がりの鋭角部分が高周波 成分である。
このスイ ッチング手段 1 2をオンさせる為のパルスの周波数は、 数 Hz〜数十 H zであり、 信号処理手段 3 は、 このパルスを群状に且つ間 欠的に行う。
本実施例では、 図 4 ( c ) 及び図 5 ( b ) で示すよう に刺激パル スの振幅を徐々 に上げ、 徐々に下げるという振幅変調動作を行って いる。
この具体的動作について説明する。
信号処理手段 3 は、 図 4 ( b ) のパルスを出力する と同時にその パルス間隔下に於いて、 図 4 ( a ) の様な、 個数の異なるパルスを スィ ッチング手段 5へ出力している。
コ ンデンサ 8が放電間で蓄積する昇圧パルスの数は、 信号処理手 段 3が出力するパルスの数に相当する。
コ ンデンサ 8 が昇圧パルスを蓄積する際、 コ ンデンサ 8 と図示さ れていないが、 ダイオー ド、 コ ンデンサ等に潜在する直流抵抗成分 の CR自定数に影響の範囲の中でその蓄積個数によ って、 放電電圧を 異ならせるこ とができる。
この特徴に基づき、 昇圧パルスの個数を変えて刺激パルスのパル ス振幅変調を施すものである。
尚、 この際、 コ ンデンサに並列に接続した抵抗 7 は、 つぎの刺激 パルス振幅を安定させるために、 コ ンデンサの放電を促進させる も のである。
次に、 信号処理手段 3 は、 図 4 ( b ) で示す様なスイ ッチング素 子 10をオンさせる為のパルスを出力する。 スィ ツチング素子 1 0がォ ンすると、 スイ ッチング素子 1 1のベースに電流が流れ、 オンする。 このオン動作により、 コ ンデンサ 8 の蓄積電荷は、 スイ ッチング 素子 1 1、 刺激緩衝回路 13、 出力端 0B、 人体等の負荷 R、 出力端 0A、 スイ ッチング手段 1 0の経路で放電し、 図 4 ( c ) で示す刺激パルス とは、 逆極性の刺激パルスを出力する。
以上の動作により、 図 5 ( a ) で示す脈波信号にたい し、 その拡 張期間に於いて図 5 ( b ) で示す電気刺激信号を出力する ものであ る。 1 つの刺激パルス群の出力時間は、 約 500ms e c で、 群を構成す る刺激パルスの周波数は、 50H z程度が例示される。
次に第 2 の実施例と しては図 2 に示すものと し、 その説明を行う 。 図 2 の基本的動作は、 図 1 と同一であるが、 刺激パルスを出力し た後、 パルスの休止時期に刺激パルスの印加によって生体に生じた 残留電荷を放電させるための機能を負荷させたものである。
16, 17, 20 , 21は、 スピー ドア ップ回路であり、 後段に設けたス ィ ツチング素子のスィ ツチング動作のスピー ドア ップを図るための ものである。
14は、 スイ ッチング素子であり、 後段のスイ ッチング素子 9 をォ ンオフさせるためのものである。
15は、 スィ ッチング素子であり、 後段のスイ ツチング素子 1 1をォ ンオフさせるためのものである。
18, 19は、 イ ンバ一タであり、 信号処理手段 3 が出力するパルス を反転させるためのものである。
その他、 図 1 と同一の機能構造を有する箇所は同一符号と し説明 を省略する。
次に動作を図 6 を参照して説明する。 図 6 ( a ) は、 信号処理手 段 3 がスィ ツチング素子 5へ出力するパルスを示すものであり、 上 述した実施例で示すものと同じである。
信号処理手段 3 は、 拡張期間においてスピー ドア ップ回路 16、 ィ ンバータ 18に図 6 ( b ) で示すパルスを出力する。 イ ンバータ 18は 、 図 6 ( c ) で示すよう に反転したパルスを出力する。
スピー ドア ップ回路 1 6を経てスィ ッチング素子 1 4に入力されたパ ルスは、 ハイ レベルの時オン し、 同時にスイ ッチング素子 9 をオン させる。
このとき信号処理手段 3 からイ ンバータ 1 9及びスピ一 ドア ップ回 路 1 7への出力はロー レベルの状態が続き、 ィ ンバータ 1 9の出力は、 ハイの状態となっている。 イ ンバータ 19の出力がハイの為、 スイ ツ チ ング素子 1 2は、 オ ンの状態とな っているこ とから、 コ ンデンサ 8 の蓄積電荷は、 スイ ッ チ ング素子 9、 出力端 0A、 人体等の負荷 R、 出力端 0B、 刺激緩衝回路 1 3、 スイ ッ チ ング素子 1 2の経路で放電され 、 人体に対し刺激パルスが出力された状態となる。
人体は、 等価的にキ ャパシタ成分を有するこ とから、 この刺激パ ルスを一時的に蓄えた状態となっている。
次に、 信号処理手段 3 から、 スイ ッ チ ング素子 1 4方向へ出力され たパルスが立ち下がる とスイ ッチング素子 9 はオフ し、 イ ンバータ 1 8の出力が図 6 ( c ) で示すよう に立ち上がる。
このイ ンバータ 1 8の出力の立ち上がりにより、 スィ ツチング素子 1 0は、 オンする。 スイ ッチング素子 1 0のオンにより、 負荷、 出力端 0A、 スイ ッ チング素子 1 0、 スイ ッ チ ング素子 1 2、 刺激緩衝回路 1 3、 出力端 0Bで電気的閉回路が形成され、 負荷の残留電荷は、 放電され o
刺激パルスの出力極性を変更する場合、 信号処理手段 3 は、 スィ ツチング素子 1 5へ、 スィ ツチング素子 14に出力したパルスと同様の パルスを出力する。
信号処理手段 3 は、 イ ンバータ 1 8方向へ、 口一 レベルの出力を行 う こ とから、 イ ンバータ 1 8の出力は、 ハイ レベルを維持し、 スイ ツ チング素子 1 0はオンの状態となる。
本実施例の使用方法と しては、 出力端 OA, 0 Bに電極又は導子を装 着し、 増強を目的とする筋肉部位にこれら電極又は導子を当接する 。 当接する際、 長時間使用することから、 バン ド、 腹帯等の帯状物 等で保持することが好ま しい、
又この場合電極又は導子に粘着性があれば、 帯状物は不用である が、
実際、 筋肉の効率のよい増強の為に、 電極を含むその周囲を帯状 物等で押さえつけることが好ま しいものである。
図 7 は、 その一使用例である。 71は、 ィヤーセンサであり、 72は 、 刺激装置本体である。 73, 74は、 導子であり、 実施例で示す出力 端 OA, 0Bに主に電気リー ド線を介して接続する。 75は、 腹帯であり 、 導子 73, 74を保持させる他、 刺激箇所周辺を押圧する。
次に上記実施例を用いた実験例を示す。
それぞれ、 6人の被験者に上述した実施例に基づく 装置を図 7で 示すような態様となるように装着させ、 平均 8時間/日で、 数週間 使用 してもらい使用前後の腹筋部の面積を CTスキャナーを使用 して 測定した。
結果を表 1及び図 8 A、 図 8 Bに示す。 図 8 A、 図 8 Bは、 被験 者 Dの使用前と使用後の CTスキャナーによる腹部断面図の模写図で ある。 図 8 Aが使用前であり、 図 8 Bが使用後である。 図中、 筋肉 の部分を 8 1で示す。 〔表 1 〕
Figure imgf000011_0001
これらの表、 図から明らかな様に体重に反しながら腹筋の面積の 増加が認められる ものである。
以上詳述のごと く 本発明は、 装着するだけで腹筋の増強を可能と するこ とから、 各種スポーツの筋力 ト レーニングや、 リハビリ、 に 絶大なる効果を有するものである。

Claims

請 求 の 範 囲
1. 生体信号検出手段、 前記生体信号から特定の部位を検出する 特定部位検出手段、 前記特定部位において電気刺激を出力する電気 刺激出力手段よりなる筋肉増強用電気刺激装置。
2. 前記生体信号は、 脈波信号又は心電図信号又は心音信号であ り、 前記特定部位は、 拡張期であることを特徵とする請求項 1 に記 載の筋肉増強用電気刺激装置。
3. 前記電気刺激は、 立ち上がりの高周波成分を削除したパルス であることを特徵とする請求項 1 に記載の筋肉増強用電気刺激装置
PCT/JP1996/003876 1995-12-28 1996-12-27 Dispositif de stimulation electrique pour accroitre la force musculaire WO1997024158A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7352314A JPH09182805A (ja) 1995-12-28 1995-12-28 筋肉増強用電気刺激装置
JP7/352314 1995-12-28

Publications (1)

Publication Number Publication Date
WO1997024158A1 true WO1997024158A1 (fr) 1997-07-10

Family

ID=18423217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/003876 WO1997024158A1 (fr) 1995-12-28 1996-12-27 Dispositif de stimulation electrique pour accroitre la force musculaire

Country Status (2)

Country Link
JP (1) JPH09182805A (ja)
WO (1) WO1997024158A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110152189A (zh) * 2018-02-13 2019-08-23 广州市新博电子科技有限公司 能逐渐增加刺激强度的电疗装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101032673B1 (ko) * 2010-04-19 2011-05-06 윤종규 근육의 생체전기 신호 분석을 통한 3차원적 자세 재활 시스템
JP5643436B2 (ja) * 2011-10-14 2014-12-17 株式会社ホーマーイオン研究所 電気刺激信号生成装置及び筋運動代謝促進装置
EP3263173A4 (en) * 2015-02-27 2019-02-20 MTG Co., Ltd. DEVICE FOR ELECTRIC MUSCLE STIMULATION
EP3251723B1 (en) * 2016-06-03 2019-05-08 West & Berg Holding AB Motion training aid with stimulator
JP6893289B2 (ja) 2018-10-01 2021-06-23 亮嗣 桑畑 生体刺激装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01223976A (ja) * 1988-03-02 1989-09-07 Advance Co Ltd 生体刺激装置
JPH06455U (ja) * 1992-06-12 1994-01-11 株式会社アドバンス 電気刺激装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01223976A (ja) * 1988-03-02 1989-09-07 Advance Co Ltd 生体刺激装置
JPH06455U (ja) * 1992-06-12 1994-01-11 株式会社アドバンス 電気刺激装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110152189A (zh) * 2018-02-13 2019-08-23 广州市新博电子科技有限公司 能逐渐增加刺激强度的电疗装置

Also Published As

Publication number Publication date
JPH09182805A (ja) 1997-07-15

Similar Documents

Publication Publication Date Title
JP5725562B2 (ja) 電気刺激装置
US6526319B2 (en) Living body stimulating apparatus
US4846178A (en) Electric field therapeutic apparatus
EP0314078A1 (en) Ramped waveform non-invasive pacemaker
EP2510875A3 (en) Treatment apparatus for applying electrical impulses to the body of a patient
WO1997024158A1 (fr) Dispositif de stimulation electrique pour accroitre la force musculaire
Basumatary et al. A Microcontroller based charge balanced trapezoidal stimulus generator for FES system
JP2021137481A (ja) 電気信号生成装置
JP4389036B2 (ja) 電気刺激装置
JP3600862B2 (ja) 電気刺激装置
CN1065777C (zh) 人体生物电仿真治疗仪
Sanguantrakul et al. Comparison Between Integrated Circuit and Transistor Pulse Generators for Functional Electrical Stimulation
JP2600406Y2 (ja) 電気刺激装置
Turk et al. The alternation of paraplegic patients muscle properties due to electrical stimulation exercising
JPH05337200A (ja) 電気刺激装置
JP3443777B1 (ja) 電気刺激装置
CN110785206A (zh) 生物体刺激装置
Sato et al. New functional electrical system using magnetic coils for power transmission and control signal detection
JP3496044B2 (ja) 電気刺激装置
JP7114104B2 (ja) 電気信号生成装置
JPH05337201A (ja) 電気刺激装置
RU1806778C (ru) Устройство регул ции эмоционального напр жени
JP3711684B2 (ja) 低周波治療器
CN2217435Y (zh) 骨折治疗仪
Lee et al. Design and Implementation of Salivary Electrical Stimulator for xerostomia

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase