WO1997021962A1 - Vorrichtung zur temperaturregelung in gebäudeabschliessenden bauelementen mit erdwärme und/oder solarenergie - Google Patents

Vorrichtung zur temperaturregelung in gebäudeabschliessenden bauelementen mit erdwärme und/oder solarenergie Download PDF

Info

Publication number
WO1997021962A1
WO1997021962A1 PCT/DE1996/001648 DE9601648W WO9721962A1 WO 1997021962 A1 WO1997021962 A1 WO 1997021962A1 DE 9601648 W DE9601648 W DE 9601648W WO 9721962 A1 WO9721962 A1 WO 9721962A1
Authority
WO
WIPO (PCT)
Prior art keywords
circulation system
heat
temperature
geothermal
solar cell
Prior art date
Application number
PCT/DE1996/001648
Other languages
English (en)
French (fr)
Inventor
Annette Pelzer
Monika Pelzer
Steffi Pelzer
Bernhard Pelzer
Original Assignee
Annette Pelzer
Monika Pelzer
Steffi Pelzer
Bernhard Pelzer
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Annette Pelzer, Monika Pelzer, Steffi Pelzer, Bernhard Pelzer filed Critical Annette Pelzer
Priority to AU76180/96A priority Critical patent/AU7618096A/en
Priority to DE19681081T priority patent/DE19681081D2/de
Publication of WO1997021962A1 publication Critical patent/WO1997021962A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/006Central heating systems using heat accumulated in storage masses air heating system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/40Solar heat collectors combined with other heat sources, e.g. using electrical heating or heat from ambient air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/60Solar heat collectors integrated in fixed constructions, e.g. in buildings
    • F24S20/66Solar heat collectors integrated in fixed constructions, e.g. in buildings in the form of facade constructions, e.g. wall constructions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/40Geothermal collectors operated without external energy sources, e.g. using thermosiphonic circulation or heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/14Solar energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the invention relates to a device for temperature control in building components with geothermal and / or solar energy.
  • the invention has for its object to show a device for temperature control in building components with geothermal energy and / or solar energy, which basically does not require the use of heat pumps.
  • this object is achieved by a device for temperature control in building components with geothermal energy and / or solar energy, with a closed circulation system arranged in the building components for a heat transfer medium, which is supplied or withdrawn thermal energy in a geothermal heat exchanger and / or in a solar ⁇ cell thermal energy is supplied and which in the circulation system exchanges thermal energy with the surroundings of the building components.
  • geothermal energy or solar energy is introduced as extensively as possible into the building elements, such as outer walls, roof structures, ceilings and floors, where the temperature normally deviates from the temperature level of geothermal energy or solar energy. Such areas are always given when the outside temperature on the outside of the building components is at a significantly lower temperature level than geothermal or solar energy.
  • the temperature is increased or decreased by the geothermal energy or the solar energy in the area of the circulation system.
  • This reduces the temperature gradient between the circulation system and the inside of the building components.
  • This means a lower transfer of thermal energy from the inside of the building components to the outside.
  • the temperature gradient from the circulation system to the outside of the building components is increased, which results in an increased heat transfer.
  • this heat transfer is at the expense of geothermal energy or solar energy, which is available at a relatively low temperature level but on a large scale.
  • the loss of thermal energy via the building elements closing can be reduced by the new device to such an extent that it does not go beyond the loss during the so-called transition period, ie at outside temperatures of around 10 ° C.
  • the transitional period with sufficient thermal insulation, the use of additional building heating can be dispensed with simply through the normal accumulation of waste heat in the building.
  • the new device can also be used to reduce the penetration of thermal energy through the building components in summer.
  • heat energy is extracted from the heat transfer medium in the geothermal heat exchanger, which it tion system.
  • the temperature level in the area of the circulation system in the building components closing is reduced compared to an initial situation without the circulation system.
  • the heat transfer from the outside of the building components to the other inside is markedly reduced.
  • the geothermal heat exchanger or the solar cell is preferably arranged in the lower region of the circulation system.
  • a supply of thermal energy to the heat transfer medium in the geothermal heat exchanger or the solar cell can also be used to circulate the heat transfer medium in the circulation system if its density decreases with temperature.
  • the heated heat carrier rises in the circulation system, and the heat carrier, which has cooled down again due to heat exchange with the surroundings, drops again to the geothermal heat exchanger or the solar cell. This behavior is observed in the case of liquid and in particular gaseous heat transfer media and can also be referred to as the chimney effect.
  • Air is suitable as the simplest gaseous heat carrier.
  • the geothermal heat exchanger For building cooling, it would be interesting to arrange the geothermal heat exchanger in the upper area of the circulation system because the density of the heat transfer medium increases with decreasing temperature. However, this is difficult for design reasons and would in others hinder the function of the geothermal heat exchanger in cold outside temperatures.
  • the heat transfer medium is preferably pumped around, in the case of air, for example, with a fan.
  • a suitable solar cell for the new device can be designed such that the heat transfer medium in the solar cell is passed between a transparent thermal insulation and a blackened surface.
  • the transparent thermal insulation can be two glass panes spaced apart from one another, the intermediate space preferably being finely divided in order to prevent air circulation there and thus heat loss through convection as far as possible.
  • the space between the two glass panes is preferably divided by a layer of a polished, honeycomb-shaped aluminum profile. This aluminum profile has a main direction of light transmission which is perpendicular to the plane of the two glass panes.
  • a particularly large amount of solar energy penetrates into the solar cell when the sun is low, ie precisely when thermal energy is required. Conversely, relatively little solar energy penetrates when the sun is high, so generally no thermal energy is required.
  • the blackened area behind the transparent thermal insulation converts incoming sunlight into thermal energy.
  • the solar cell can preferably be completely decoupled from the circulation system.
  • the geothermal heat exchanger is arranged in the bypass to the circulation system, decoupling is also superfluous if the geothermal heat exchanger would cool the air which was advantageously warmed by the solar cell in high solar radiation and low outside temperatures, since the warmed air due to its low density does not reach down to the earth heat exchanger, in which colder and therefore heavier air rests.
  • the circulation system is arranged as asymmetrically as possible with respect to the outside in the building insulation components.
  • the heat transfer from the environment to the heat transfer medium increases, so that it also makes no sense to arrange the circulation system on the outer surface of the building-insulating components.
  • the internal insulation of the circulation system is preferably at least 1.5 times as large as the external insulation thereof, but a ratio of 4: 1 should never be exceeded.
  • the circulation system in the preferred embodiment has flat circulation chambers the building-closing components, which are arranged parallel to the main extension directions of the components.
  • the building components consist of a total of two shells spaced apart by a continuous circulation chamber, the circulation of the heat carrier automatically occurring in the circulation chamber due to the different densities of the heat carrier, which results in the desired influencing of the heat energy transfer over the entire surface.
  • 1 is a schematic cross section through a house with the device for temperature control
  • FIG. 2 shows a cross section through a wall of the house according to FIG. 1,
  • Fig. 3 shows a cross section through a solar cell of a specific embodiment of the device for temperature control
  • Fig. 4 shows a cross section through a geothermal heat exchanger of the specific embodiment of the device for temperature control.
  • FIG. 1 shows a schematic representation of a house 1, in whose building-closing components 2 to 4, ie a floor 2, walls 3 and a roof structure 4, a closed circulation system 5 for a heat transfer medium 6 is provided.
  • a solar cell 7 and a geothermal heat exchanger 8 are arranged in the lower region of the circulation system 5.
  • sunlight 9 penetrates through a transparent thermal insulation 10 into the circulation system 5 and is converted there into heat energy which is transferred from the heat carrier 6 via da ⁇ entire circulation system 5 is spread.
  • the geothermal heat exchanger 8 is arranged in the bypass to the circulation system 5 and temperature-regulates the heat transfer medium passing through to earth temperature.
  • the geothermal heat exchanger 8 is only active when the temperature of the heat carrier 6 in the circulation system 5 drops below the temperature of the geothermal energy, whereby the heat carrier assumes a greater density than the current filling of the geothermal heat exchanger 8 with the heat carrier 6 and displaces it.
  • the circulation of the heat carrier 6 for the distribution of the thermal energy obtained by the solar cell 7 takes place according to the same principle.
  • the heat transfer medium heated in the solar cell 6 rises.
  • cooled heat carrier 6 falls down and in turn reaches solar cell 7.
  • a temperature of heat carrier 6 is established in the region of circulation system 5, which temperature is only subject to moderate fluctuations. If this temperature deviates from the outside temperature of the house 1, this has a favorable influence on the heat transfer between the inside of the building components 2 to 4 and the outside thereof.
  • FIG. 2 shows a cross section through a wall 3.
  • the wall 3 has a plaster layer 11, an insulation layer 12, for example made of polystyrene, a sheet-like circulation chamber 13 of the circulation system 5, a further insulation layer 14, for example made of mineral wool, and an inner wall closure 15, for example made of plaster, on.
  • a temperature profile 16 is set at an outside temperature of -10 ° C and an inside temperature of + 20 ° C without taking into account the circulation of the heat carrier 6 in the circulation chamber 13, in which the temperature in the circulation chamber is 13-1 ° C . This temperature level is increased by the circulating heat transfer medium 6 to + 8 ° C.
  • the temperature gradient between the circulation chamber 13 and the inside of the wall 3 is reduced, ie the driving force for heat loss from the inside of the wall 3 to the outside has become smaller.
  • the temperature gradient between the circulation chamber 13 and the outside of the wall 3 has increased. This results in an increased heat transfer from the circulation chamber 13 to the outside of the wall 3.
  • This heat transfer is at the expense of the heat transfer medium 6, which is repeatedly heated in the solar cell 7 and / or the geothermal heat exchanger 8.
  • the outside temperature is high, the conditions are reversed, so that the heat transfer medium 6 reduces the penetration of thermal energy from the outside to the inside of the wall 3 or even dissipates all the thermal energy entering the wall 3.
  • Fig. 3 shows the solar cell 8 of a specific embodiment of the house 1 in an enlarged view.
  • the solar cell 8 is arranged directly above a foundation 18 of the house. It has two spaced glass panes 19 and 20, between which a polished, honeycomb-shaped aluminum profile 21 is arranged.
  • the aluminum profile 21 prevents air circulation between the glass panes 19 and 20 and thus an undesirable loss of heat through convection. In order not to suffer any undesired heat loss due to heat conduction through the aluminum profile 21, this is arranged at a distance 22 from the outer glass pane 19.
  • a black surface 23 is provided on a flap 24 behind the glass panes 19 and 20. The flap 24 is shown in two different folding positions about a folding axis 25.
  • the flap 24 closes a space 26 behind the glass panes 19 and 20.
  • the solar cell 8 is deactivated.
  • air serving as heat transfer medium 36 can enter the solar cell 8 from below.
  • the wall 3 has an additional insulation layer 27 made of polystyrene on the inside.
  • the storage of the insulation layer 12 is shown in more detail, which consists of vertical wooden slats 28, on the outer sides of which wood-based panels 29 are fastened.
  • the wood-based panels 29 carry the insulation layer 12.
  • FIG. 3 the structure of the floor 2 of the house 1 can be seen from FIG.
  • This has sub-floor panels 30 and support beams 31, between which the insulating layer 14 made of mineral wool is arranged.
  • the insulating layer 27 made of polystyrene follows. This is followed by the circulation system 5 formed here with a large cross section, followed by the insulation layer 12. Below this is a gravel bed 32.
  • the support beams 31 rest on supports 37 at the ends.
  • Fig. 4 shows the geothermal heat exchanger 8 of the specific embodiment of the new temperature control device.
  • a concrete trough 33 is provided within the foundation 18 and also serves as a basement 34 of the house 1.
  • Pipes 35 extend from the concrete trough 33 into the surrounding soil 36.
  • the pipes have a free cross section with a diameter of at least 100 mm, preferably of at least 120 mm.
  • the tubes 35 are filled with air and fall slightly away from the concrete trough 33.
  • the air in the tubes 35 takes on the temperature of the surrounding soil 36. If this temperature is higher than the temperature in the cellar 34, the air rises from the pipes 35 via the cellar 34 into the circulation system 5. In return, cold air comes from the circulation system 5 via the cellar 34 into the pipes 35.
  • the pipes 35 can be divided in height, or other air guiding means can be provided for the ascending heated or the descending cold air.
  • the geothermal heat exchanger 8 heats the cold air that has fallen into the basement 34 and feeds it back to the circulation system 5. However, this applies only as long as the air in the circulation system 5 is not overall warmer than the soil 36. In this case, the geothermal heat exchanger 8 is out of function.
  • the specific embodiment of the geothermal heat exchanger 8 according to FIG. 4 is also arranged in the bypass to the circulation system 5.
  • the geothermal heat exchanger 8 can only be used if the heat transfer medium 6, ie the air, is blown into the geothermal heat exchanger 8 when it is heated due to its density, contrary to its flow tendency, and is guided around in the circulation system 5 when cooled becomes.
  • the natural circulation of the heat transfer medium 6 due to its density can only be used for cooling the house 1 if the heat transfer medium 6 in the upper region of the circulation system 5 is removed from the heat transfer medium. This can be done, for example, with a heat pump for heating domestic water under the roof ridge of house 1. A comparatively low expenditure of energy is required for this.
  • a cold trap is also created which prevents the condensation of air moisture in the heat exchanger 8. This risk basically exists if the heat exchanger 8 represents the coldest point in the circulation system 5.

Abstract

Eine Vorrichtung zur Temperaturregelung in gebäudeabschließenden Bauelementen (2 bis 4) mit Erdwärme und/oder Solarenergie weist ein in den gebäudeabschließenden Bauelementen (2 bis 4) angeordnetes geschlossenes Zirkulationssystem (5) für einen Wärmeträger (6) auf. Dem Wärmeträger (6) wird in einem Erdwärmetauscher (8) Wärmeenergie zugeführt oder entzogen und/oder in einer Solarzelle (7) Wärmeenergie zugeführt. Der Wärmeträger (6) tauscht in dem Zirkulationssystem (5) Wärmeenergie mit der Umgebung der gebäudeabschließenden Bauelemente (2 bis 4) aus.

Description

Vorrichtung zur Temperaturregelung in gebäudeabschließenden Bauelementen mit Erdwärme und/oder Solarenergie
Die Erfindung bezieht sich auf eine Vorrichtung zur Temperatur¬ regelung in gebäudeabschließenden Bauelementen mit Erdwärme und/oder Solarenergie.
Es ist bekannt, sowohl Erdwärme als auch Solarenergie zu nutzen, um Gebäude zu beheizen. Bei der Verwendung von Erdwärme muß diese zunächst mit einer Wärmepumpe auf ein nutzbares Tempera¬ turniveau angehoben werden. Solarenergie fällt zwar bei direkter Sonneneinstrahlung mit einem für die Beheizung von Gebäuden aus¬ reichenden Temperaturniveau an. Bereits bei Bewölkung ist aber auch zur Nutzbarmachung von Solarenergie eine Wärmepumpe erfor¬ derlich. Zur Nachtzeit fällt überhaupt keine verwertbare Solar¬ energie an.
Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zur Temperaturregelung in gebäudeabschließenden Bauelementen mit Erdwärme und/oder Solarenergie aufzuzeigen, die grundsätzlich ohne den Einsatz von Wärmepumpen auskommt.
Erfindungsgemäß wird diese Aufgabe durch eine Vorrichtung zur Temperaturregelung in gebäudeabschließenden Bauelementen mit Erdwärme und/oder Solarenergie, mit einem in den gebäudeab¬ schließenden Bauelementen angeordneten geschlossenen Zirkula¬ tionssystem für einen Wärmeträger, dem in einem Erdwärmetauscher Wärmeenergie zugeführt oder entzogen und/oder in einer Solar¬ zelle Wärmeenergie zugeführt wird und der in dem Zirkulations- system Wärmeenergie mit der Umgebung der gebäudeabschließenden Bauelemente austauscht. Mit dem Zirkulationssystem wird die Erdwärme bzw. die Solarenergie möglichst flächendeckend in die gebäudeabschließenden Bauelemente, wie Außenwände, Dachkonstruk¬ tionen, Decken und Böden an solchen Stellen eingeführt, an denen die Temperatur normalerweise von dem Temperaturniveau der Erdwärme bzw. Solarenergie abweicht. Solche Bereiche εind immer gegeben, wenn die Außentemperatur auf der Außenseite der gebäudeabschließenden Bauelemente auf einem deutlich niedrigeren Temperaturniveau als die Erdwärme bzw. die Solarenergie liegt. Dann wird die Temperatur durch die Erdwärme bzw. die Solarenergie im Bereich des Zirkulationssystems erhöht bzw. abgesenkt. Damit wird der Temperaturgradient zwischen dem Zirkulationssystem und der Innenseite der gebäudeabschließenden Bauelemente reduziert. Dies bedeutet einen geringeren Übertrag an Wärmeenergie von der Innenseite der gebäudeabschließenden Bauelemente an deren Außenseite. Gleichzeitig wird natürlich der Temperaturgradient von dem Zirkulationssystem bis zur Außenseite der gebäudeabschließenden Bauelemente erhöht, wodurch sich dort ein vergrößerter Wärmeübertrag ergibt. Dieser Wärmeübertrag geht aber zu Lasten der Erdwärme bzw. der Solarenergie, die zwar auf relativ niedrigem Temperaturniveau aber in großem Umfang zur Verfügung steht. Im Ergebnis kann durch die neue Vorrichtung der Verlust von Wärmeenergie über die gebäudeabschließenden Bau¬ elemente so weit reduziert werden, daß er nicht über den Verlust in der sogenannten Übergangszeit, d. h. bei Außentemperaturen um 10°C, hinausgeht. Bekanntlich kann in der Übergangszeit bei ausreichender Wärmedämmung allein durch den normalen Anfall von Abwärme im Gebäude auf den Einsatz einer zusätzlichen Gebäude¬ beheizung verzichtet werden.
Die neue Vorrichtung kann auch genutzt werden, um im Sommer das Eindringen von Wärmeenergie durch die gebäudeabschließenden Bauelemente zu reduzieren. Hierfür wird dem Wärmeträger in dem Erdwärmetauscher Wärmeenergie entzogen, die er in dem Zirkula- tionssystem aufgenommen hat. Hierdurch wird das Temperaturniveau im Bereich des Zirkulationssystems in den gebäudeabschließenden Bauelementen im Vergleich zu einer Ausgangssituation ohne daε Zirkulationssystem reduziert. Im Ergebnis wird der Wärmeübertrag von der Außenseite der gebäudeabschließenden Bauelemente bis anderen Innenseite merklich verringert.
Beide vorher beschriebenen Funktionsweisen setzen voraus, daß das Temperaturniveau der Erdwärme bzw. der Solarenergie jeweilε deutlich von der Temperatur an der Außenseite der Bauelemente abweicht. Dies ist bei einem Temperaturniveau der Erdwärme von ca. 10°C jedoch immer dann der Fall, wenn typischerweise eine Gebäudebeheizung erfolgen müßte oder eine Kühlung wünschenswert wäre. Die Solarenergie kann auch auf höherem Temperaturniveau zur Verfügung stehen. Sie ist zur Gebäudeabkühlung aber ohnehin grundsätzlich ungeeignet.
Vorzugsweise ist der Erdwarmetauscher bzw. die Solarzelle im unteren Bereich deε Zirkulationssystems angeordnet. Hierdurch kann eine Zufuhr von Wärmeenergie zu dem Wärmeträger in dem Erdwärmetauscher bzw. der Solarzelle auch dazu benutzt werden, den Wärmeträger in dem Zirkulationssystem umlaufen zu lassen, wenn dessen Dichte mit der Temperatur abnimmt. So steigt der erwärmte Wärmeträger in dem Zirkulationssystem auf, und der durch Wärmeaustausch mit der Umgebung wieder abgekühlte Wärme- träger sinkt erneut zu dem Erdwärmetauscher bzw. der Solarzelle ab. Dieseε Verhalten wird bei flüssigen und insbesondere bei gasförmigen Wärmeträgern beobachtet und kann auch alε Kamin¬ effekt bezeichnet werden. Als einfachster gasförmiger Wärme¬ träger ist Luft geeignet.
Zur Gebäudekühlung wäre es interessant, den Erdwärmetauscher im oberen Bereich des Zirkulationssystems anzuordnen, weil sich die Dichte des Wärmeträgers mit abnehmender Temperatur erhöht. Dies ist jedoch aus konstruktiven Gründen schwierig und würde im übrigen die Funktion des Erdwärmetauschers bei kalten Außentem¬ peraturen behindern. So wird zum Gebäudekühlen vorzugsweise der Wärmeträger umgepumpt, im Fall von Luft beispielsweise mit einem Ventilator. Es ist aber auch möglich, im oberen Bereich deε Zirkulationssystems dem Wärmeträger Wärmeenergie durch eine Wärmepumpe zu entziehen. Diese kann dann beispielsweise zur Brauchwasseraufbereitung genutzt werden, und es sind nur sehr kleine Leistungen für die Wärmepumpe erforderlich, um die gewünschte Zirkulation des Wärmeträgers auch zum Gebäudekühlen hervorzurufen.
Eine geeignete Solarzelle für die neue Vorrichtung kann so ausgebildet sein, daß der Wärmeträger in der Solarzelle zwischen einer transparenten Wärmedämmung und einer geschwärzten Fläche hindurchgeführt wird. Bei der transparenten Wärmedämmung kann es sich um zwei voneinander beabstandete Glasscheiben handeln, wobei der Zwischenraum vorzugsweise fein unterteilt ist, um dort eine Luftzirkulation und damit einen Wärmeverlust durch Konvek¬ tion möglichst zu verhindern. Die Aufteilung des Zwischenraums zwischen den beiden Glasscheiben erfolgt vorzugsweise durch eine Schicht eines polierten, wabenförmigen Aluminiumprofils. Dieses Aluminiumprofil hat eine Hauptdurchlaßrichtung für Licht, die senkrecht zu der Ebene der beiden Glasscheiben verläuft. Bei vertikal ausgerichteten Glasscheiben dringt so besonderε viel Solarenergie in die Solarzelle ein, wenn die Sonne niedrig steht, also genau dann, wenn Wärmeenergie benötigt wird. Umge¬ kehrt dringt relativ wenig Sonnenenergie ein, wenn die Sonne hoch steht, also in der Regel keine Wärmeenergie benötigt wird.
Die geschwärzte Fläche hinter der transparenten Wärmedämmung wandelt eintretendes Sonnenlicht in Wärmeenergie um.
Das oben beschriebene Regulativ deε wabenförmigen Aluminium¬ profils ist häufig unzureichend, um ein unerwünschtes Aufheizen des Wärmeträgers bei hohen Außentemperaturen vollständig zu verhindern. Aus diesem Grund ist die Solarzelle vorzugsweise aus dem Zirkulationssystem vollständig auskoppelbar.
Wenn der Erdwärmetauscher demgegenüber im Bypass zum Zirkula¬ tionssystem angeordnet ist, ist ein Auskoppeln auch dann über¬ flüssig, wenn der Erdwärmetauscher die durch die Solarzelle bei hoher Sonneneinstrahlung und geringen Außentemperaturen vorteil¬ haft angewärmte Luft wieder abkühlen würde, da die angewärmte Luft aufgrund ihrer geringen Dichte überhaupt nicht bis hinab in den Erdwarmetauscher gelangt, in dem dann kältere und damit schwerere Luft ruht.
Das Zirkulationssystem ist bezüglich der Wärmedämmung möglichst asymmetrisch nach außen in den gebäudeisolierenden Bauelementen angeordnet. Je weiter das Zirkulationssystem nach außen angeord¬ net iεt, desto größer ist sein Einfluß bei besonders niedrigen und besonderε hohen Außentemperaturen auf den unerwünschten Wärmeverlust von der Innenseite auf die Außenseite der Bauele¬ mente bzw. auf das unerwünschte Eindringen von Wärme über die Außenseite an die Innenseite der Bauelemente. Gleichzeitig erhöht sich natürlich der Wärmeübertrag von der Umgebung auf den Wärmeträger, so daß es auch keinen Sinn macht, das Zirkulations- εystem an der Außenoberfläche der gebäudeisolierenden Bauelemen¬ te anzuordnen.
Vorzugsweise ist die Wärmedämmung des Zirkulationssystems nach innen mindestens 1,5 mal so groß wie dessen Wärmedämmung nach außen, wobei aber ein Verhältnis von 4:1 in keinem Fall über¬ schritten werden sollte.
Um möglichst die gesamte Fläche der gebäudeabschließenden Bauelemente mit der neuen Vorrichtung in der gewünschten Weise bezüglich des Wärmeenergieübertrags zwischen der Außenseite und der Innenseite zu beeinflussen, weist das Zirkulationssystem in der bevorzugten Ausführungsform flache Zirkulationskammern in den gebäudeabschließenden Bauelementen auf, die parallel zu den Haupterstreckungsrichtungen der Bauelemente angeordnet sind. Im Idealfall bestehen die gebäudeabschließenden Bauelemente insgesamt aus zwei durch eine durchgängige Zirkulationskammer beabstandete Schalen, wobei sich in der Zirkulationskammer durch die unterschiedlichen Dichten deε Wärmeträgers eine Zirkulation des Wärmeträgers automatisch einstellt, die die gewünschte Beeinflussung des Wärmeenergieübertragε ganzflächig ergibt.
Die Erfindung wird im Folgenden anhand von Ausführungsbeispielen näher erläutert und beschrieben. Dabei zeigt:
Fig. 1 einen schematisierten Querschnitt durch ein Haus mit der Vorrichtung zur Temperaturregelung,
Fig. 2 einen Querschnitt durch eine Wand des Hauses gemäß Fig. 1,
Fig. 3 einen Querschnitts durch eine Solarzelle einer konkreten Ausführungsform der Vorrichtung zur Temperaturregelung und
Fig. 4 einen Querschnitt durch einen Erdwärmetauscher der konkreten Ausführungsform der Vorrichtung zur Temperaturregelung.
Fig. 1 zeigt in schematisierter Darstellung ein Haus l, in dessen gebäudeabschließenden Bauelementen 2 bis 4, d. h. einem Boden 2, Wänden 3 und einer Dachkonstruktion 4, ein geschlos¬ senes Zirkulationssystem 5 für einen Wärmeträger 6 vorgesehen ist. Im unteren Bereich des Zirkulationssystems 5 sind eine Solarzelle 7 und ein Erdwärmetauscher 8 angeordnet. In der Solarzelle 7 dringt Sonnenlicht 9 durch eine transparente Wärmedämmung 10 in das Zirkulationssystem 5 ein und wird dort in Wärmeenergie umgewandelt, die von dem Wärmeträger 6 über daε gesamte Zirkulationssystem 5 verbreitet wird. Der Erdwärme¬ tauscher 8 ist im Bypass zu dem Zirkulationssystem 5 angeordnet und temperiert den hindurchtretenden Wärmeträger auf Erdtempera¬ tur. Der Erdwärmetauscher 8 wird nur dann aktiv, wenn die Temperatur des Wärmeträgers 6 in dem Zirkulationssystem 5 unter die Temperatur der Erdwärme absinkt, wodurch der Wärmeträger eine größere Dichte annimmt als die aktuelle Füllung des Erdwärmetauschers 8 mit dem Wärmeträger 6 und diese verdrängt. Die Umwälzung des Wärmeträgers 6 zur Verteilung der durch die Solarzelle 7 gewonnenen Wärmeenergie erfolgt nach demselben Prinzip. Der in der Solarzelle 6 angewärmte Wärmeträger steigt auf. Im Rücklauf fällt abgekühlter Wärmeträger 6 herab und gelangt wiederum zu der Solarzelle 7. Je nach dem Strömungs¬ widerstand des Zirkulationssystems 5 stellt sich im Bereich des Zirkulationssystems 5 eine Temperatur des Wärmeträgers 6 ein, die nur mäßigen Schwankungen unterworfen ist. Wenn diese Temperatur von der Außentemperatur des Hauses 1 abweicht, hat dies einen günstigen Einfluß auf den Wärmeübertrag zwischen der Innenseite der gebäudeabschließenden Bauelemente 2 bis 4 und deren Außenseite.
Dies ist in Fig. 2 skizziert, die einen Querschnitt durch eine Wand 3 wiedergibt. Von außen beginnend weist die Wand 3 eine Putzschicht 11, eine Dämmschicht 12, beispielsweise auε Poly¬ styrol, eine flächenförmige Zirkulationskammer 13 des Zirkula¬ tionssystems 5, eine weitere Dämmschicht 14, beispielsweise auε Mineralwolle, und einen inneren Wandabschluß 15, beispielsweise aus Gips, auf. Über diesen Wandaufbau stellt sich bei einer Außentemperatur von - 10°C und einer Innentemperatur von + 20°C ohne Berücksichtigung der Zirkulation des Wärmeträgers 6 in der Zirkulationskammer 13 ein Temperaturprofil 16 ein, bei dem die Temperatur in der Zirkulationskammer 13 - 1°C beträgt. Dieseε Temperaturniveau wird durch den zirkulierenden Wärmeträger 6 bei der neuen Vorrichtung zur Temperaturregelung auf + 8°C erhöht, was bei dem für die Erfindung gültigen Temperaturprofil 17 wiedergegeben ist . Hierdurch ist der Temperaturgradient zwischen der Zirkulationskammer 13 und der Innenseite der Wand 3 redu¬ ziert, d. h. die treibende Kraft für einen Wärmeverluεt von der Innenseite der Wand 3 an die Außenseite ist kleiner geworden. Gleichzeitig ist der Temperaturgradient zwischen der Zirkula¬ tionskammer 13 und der Außenseite der Wand 3 größer geworden. Hierdurch ergibt sich zwar ein vergrößerter Wärmeübertrag von der Zirkulationskammer 13 an die Außenseite der Wand 3. Dieser Wärmeübertrag geht aber allein zu Lasten des Wärmeträgers 6, der in der Solarzelle 7 und/oder dem Erdwärmetauscher 8 immer wieder erwärmt wird. Bei hoher Außentemperatur sind die Verhältnisse umgekehrt, so daß der Wärmeträger 6 das Eindringen von Wärme¬ energie von der Außenseite an die Innenseite der Wand 3 redu¬ ziert oder gar sämtliche in die Wand 3 eindringende Wärmeenergie abführt .
Fig. 3 zeigt die Solarzelle 8 einer konkreten Ausführungsform des Hauses 1 in vergrößerter Darstellung. Die Solarzelle 8 ist direkt über einem Fundament 18 des Hauses angeordnet. Sie weist zwei beabstandete Glasscheiben 19 und 20 auf, zwischen denen ein poliertes, wabenförmiges Aluminiumprofil 21 angeordnet iεt. Das Aluminiumprofil 21 verhindert die Luftzirkulation zwischen den Glasscheiben 19 und 20 und damit einen unerwünschten wärmever- lust durch Konvektion. Um keinen unerwünschten Wärmeverlust durch Wärmeleitung durch das Aluminiumprofil 21 zu erleiden, ist dieses in einem Abstand 22 zu der äußeren Glasscheibe 19 ange¬ ordnet. Hinter den Glasscheiben 19 und 20 ist eine schwarze Fläche 23 an einer Klappe 24 vorgesehen. Die Klappe 24 ist in zwei verschiedenen Klappstellungen um eine Klappachse 25 darge¬ stellt . In der rechten Stellung schließt die Klappe 24 einen Raum 26 hinter den Glasscheiben 19 und 20 ab. Im Ergebnis ist die Solarzelle 8 deaktiviert. In der linken Stellung der Klappe 24 kann hingegen als Wärmeträger 36 dienende Luft von unten in die Solarzelle 8 gelangen. Wenn die Luft in der Solarzelle 8 erwärmt wurde und deshalb aufsteigt, gelangt sie in die darüber befindliche Zirkulationskammer 13 und steigt dort weiter in der Wand 3 auf. Die Wand 3 weist gegenüber dem Aufbau gemäß Fig. 2 auf der Innenseite eine zusätzliche Dämmschicht 27 aus Poly¬ styrol auf . Weiterhin ist die Lagerung der Dämmschicht 12 näher dargestellt, die aus vertikalen Holzlatten 28 besteht, auf deren Außenseiten Holzwerkstoffplatten 29 befestigt sind. Die Holz- werkstoffplatten 29 tragen die Dämmschicht 12. Weiterhin ist aus Fig. 3 der Aufbau des Bodens 2 des Hauses 1 zu entnehmen. Dieser weist Unterbodenplatten 30 und Tragbalken 31, zwischen denen die Dämmschicht 14 aus Mineralwolle angeordnet ist, auf. Dann folgt wie bei der Wand 3 gemäß Fig. 3 die Dämmschicht 27 aus Poly¬ styrol. Daran schließt sich das hier mit großem Querschnitt ausgebildete Zirkulationssystem 5 an, gefolgt von der Dämm¬ schicht 12. Darunter befindet sich ein Kiesbett 32. Die Trag¬ balken 31 liegen endseitig auf Trägern 37 auf.
Fig. 4 zeigt den Erdwärmetauscher 8 der konkreten Ausführung der neuen Vorrichtung zur Temperaturregelung. Innerhalb des Funda¬ ments 18 ist eine Betonwanne 33 vorgesehen, die auch als Keller 34 des Hauses 1 dient. Von der Betonwanne 33 reichen Rohre 35 in daε umgebende Erdreich 36. Die Rohre haben einen freien Quer¬ schnitt mit einem Durchmesser von mindestens 100 mm, vorzugs¬ weise von mindestens 120 mm. Die Rohre 35 sind mit Luft gefüllt und fallen von der Betonwanne 33 weg leicht ab. Die Luft in den Rohren 35 nimmt die Temperatur des umgebenden Erdreichs 36 an. Wenn diese Temperatur höher ist als die Temperatur in dem Keller 34, steigt die Luft aus den Rohren 35 über den Keller 34 in daε Zirkulationssystem 5 hinauf. Im Gegenzug gelangt kalte Luft auε dem Zirkulationssystem 5 über den Keller 34 in die Rohre 35. Zur Förderung dieseε Luftaustauscheε können die Rohre 35 der Höhe nach geteilt sein, oder es können auch andere Luftleitmittel für die aufsteigende angewärmte oder die abfallende kalte Luft vorgesehen sein. In jedem Fall ist klar, daß der Erdwarme¬ tauscher 8 die in den Keller 34 abgefallene kalte Luft anwärmt und dem Zirkulationssystem 5 wieder zuführt. Dies gilt jedoch nur solange, wie die Luft in dem Zirkulationssystem 5 nicht insgesamt wärmer ist als das Erdreich 36. In diesem Fall fällt der Erdwärmetauscher 8 außer Funktion. Auch die konkrete Ausführungsform des Erdwärmetauschers 8 gemäß Fig. 4 ist im Bypass zu dem Zirkulationssystem 5 angeordnet. Zum Abkühlen der Luft in dem Zirkulationssystem 5 kann der Erdwärmetauscher 8 nur dann genutzt werden, wenn der Wärmeträger 6, d. h. die Luft, beispielsweise mit Ventilatoren entgegen ihrer Strömungstendenz aufgrund ihrer Dichte erwärmt in den Erdwärmetauscher 8 einge¬ blasen und abgekühlt in dem Zirkulationssystem 5 herumgeführt wird. Die natürliche Zirkulation deε Wärmeträgers 6 aufgrund seiner Dichte kann zum Abkühlen des Hauses 1 nur dann genutzt werden, wenn dem Wärmeträger 6 Wärmeenergie im oberen Bereich des Zirkulationssystems 5 entzogen wird. Dies kann beispiels¬ weise mit einer Wärmepumpe zum Aufheizen von Brauchwasser unter dem Dachfirst des Hauses 1 geschehen. Hierfür ist ein ver¬ gleichsweise geringer Energieaufwand erforderlich. Durch das Abkühlen der Luft im oberen Bereich des Zirkulationssystems wird darüberhinaus eine Kühlfalle geschaffen, die das Auskondensieren von Luftfeuchtigkeit in dem Wärmetauscher 8 verhindert. Diese Gefahr besteht grundsätzlich, wenn der Wärmetauscher 8 den kältesten Punkt in dem Zirkulationssystem 5 darstellt.
B E Z Ü G S Z E I C H E N L I S T E
1 - Haus
2 - Boden
3 - Wand
4 - Dachkonstruktion
5 - Zirkulationssystem
6 - Wärmeträger
7 - Solarzelle
8 - Erdwärmetauscher
9 - Sonnenstrahlung
10 - transparente Wärmedämmung
11 - Putzschicht
12 - Dämmschicht
13 - Zirkulationskammer
14 - Dämmschicht
15 - Gips
16 - Temperaturprofil
17 - Temperaturprofil
18 - Fundament
19 - Glasscheibe
20 - Glasscheibe
21 - wabenförmiges Aluminiumprofil
22 - Abstand
23 - schwarze Fläche
24 - Klappe
25 - Klappachεe
26 - Raum
27 - Dämmschicht
28 - Latte
29 - Holzwerkstoffplatte
30 - Unterbodenplatte 31 Tragbalken
32 Kies
33 Betonwanne
34 Keller
35 Rohr
36 Erdreich
37 Träger
38 Dichtung
39 Kantholz
40 Bodenoberfläche

Claims

P A T E N T A N S P R Ü C H E
1. Vorrichtung zur Temperaturregelung in gebäudeabschließenden Bauelementen (2 bis 4) mit Erdwärme und/oder Solarenergie, mit einem in den gebäudeabschließenden Bauelementen (2 bis 4) ange¬ ordneten geschlossenen Zirkulationssystem (5) für einen Wärme¬ träger (6) , dem in einem Erdwärmetauscher (8) Wärmeenergie zuge¬ führt oder entzogen und/oder in einer Solarzelle (7) Wärme¬ energie zugeführt wird und der in dem Zirkulationssystem (5) Wärmeenergie mit der Umgebung der gebäudeabschließenden Bau¬ elemente (2 bis 4) austauscht.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Erdwärmetauscher (8) bzw. die Solarzelle (7) im unteren Bereich deε Zirkulationssystemε (5) angeordnet iεt.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Wärmeträger (6) flüssig oder gasförmig ist.
4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß der Wärmeträger (6) Luft ist.
5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch ge¬ kennzeichnet, daß der Wärmeträger (6) in der Solarzelle (7) zwischen einer transparenten Wärmedämmung (10) und einer geschwärzten Fläche (23) hindurchgeführt wird.
6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch ge¬ kennzeichnet, daß die Solarzelle (7) aus dem Zirkulationssystem (5) auskoppelbar ist.
7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch ge¬ kennzeichnet, daß der Erdwärmetauscher (8) im Bypass zum Zirkulationssystem (5) angeordnet iεt.
8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch ge¬ kennzeichnet, daß das Zirkulationssystem (5) bezüglich der Wärmedämmung asymmetriεch nach außen in den gebäudeisolierenden Bauelementen (2 bis 4) angeordnet ist.
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß die Wärmedämmung des Zirkulationssystemε (5) nach innen mindestens 1,5 mal so groß ist wie dessen Wärmedämmung nach außen.
10. Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch ge¬ kennzeichnet, daß das Zirkulationssystem (5) flache Zirku¬ lationskammern (13) in den gebäudeabschließenden Bauelementen (2 bis 4) aufweist, die parallel zu den Haupterstreckungεrichtungen der Bauelemente angeordnet εind.
PCT/DE1996/001648 1995-12-11 1996-08-30 Vorrichtung zur temperaturregelung in gebäudeabschliessenden bauelementen mit erdwärme und/oder solarenergie WO1997021962A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU76180/96A AU7618096A (en) 1995-12-11 1996-08-30 Device for controlling the temperature in building closing components with terrestrial heat and/or solar power
DE19681081T DE19681081D2 (de) 1995-12-11 1996-08-30 Vorrichtung zur Temperaturregelung in gebäudeabschließenden Bauelementen mit Erdwärme und/oder Solarenergie

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19546111 1995-12-11
DE19546111.8 1995-12-11

Publications (1)

Publication Number Publication Date
WO1997021962A1 true WO1997021962A1 (de) 1997-06-19

Family

ID=7779745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1996/001648 WO1997021962A1 (de) 1995-12-11 1996-08-30 Vorrichtung zur temperaturregelung in gebäudeabschliessenden bauelementen mit erdwärme und/oder solarenergie

Country Status (5)

Country Link
AU (1) AU7618096A (de)
CZ (1) CZ180598A3 (de)
DE (1) DE19681081D2 (de)
PL (1) PL327179A1 (de)
WO (1) WO1997021962A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1243863A3 (de) * 2001-03-21 2003-12-17 Johannes Dr.-Ing. Schmitz Verfahren zum Führen von Aussenluft in einer Gebäudehülle und in einem Gebäude sowie ein Verfahren zum Temperieren eines Gebäudes
US6843718B2 (en) 2001-03-26 2005-01-18 Johannes Schmitz Method of guiding external air in a building shell and a building; and a method of temperature control of a building
WO2007009504A1 (de) * 2005-07-22 2007-01-25 Krecke Edmond D Gebäudewandung mit fluiddurchführung als energiebarriere
WO2009095232A1 (de) * 2008-02-01 2009-08-06 Krecke Edmond D Niedrigenergiegebäude, insbesondere treibhaus oder stallung
GB2482650A (en) * 2010-03-08 2012-02-15 Samuel Gerard Bailey Exterior cladding panels with climate control
WO2014029895A1 (es) * 2012-08-24 2014-02-27 Castellanos Ortega Jesus Sistema de climatizacion termoactivo por aire con fuentes energeticas multiples e integracion arquitectonica
ES2526941A1 (es) * 2013-07-15 2015-01-16 Antonino Adriano Trimboli Longuetto Edificio termodinámico
AT518454A1 (de) * 2016-03-23 2017-10-15 Harald Gruber Anordnung an einem Gebäude
EP3453985A1 (de) * 2017-09-07 2019-03-13 Sunthalpy Engineering, S.L. Bioklimatisches Gebäude

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ305960B6 (cs) * 2015-04-22 2016-05-18 Vysoké Učení Technické V Brně Pasivní systém větrání opláštění budov

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2266121A1 (de) * 1974-03-27 1975-10-24 Svenska Flaektfabriken Ab
DE2710053A1 (de) * 1976-03-11 1977-09-15 Ind & Tek Forskning Heizverfahren fuer gebaeude sowie gebaeude
US4295415A (en) * 1979-08-16 1981-10-20 Schneider Peter J Jr Environmentally heated and cooled pre-fabricated insulated concrete building
DE3309033A1 (de) * 1983-03-14 1984-09-27 BM CHEMIE Kunststoff GmbH, 5678 Wermelskirchen Wand zur absorption der sonnenstrahlen
WO1992017664A1 (en) * 1991-04-04 1992-10-15 Legabeam Norge As Temperature regulation of various building parts of houses

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2266121A1 (de) * 1974-03-27 1975-10-24 Svenska Flaektfabriken Ab
DE2710053A1 (de) * 1976-03-11 1977-09-15 Ind & Tek Forskning Heizverfahren fuer gebaeude sowie gebaeude
US4295415A (en) * 1979-08-16 1981-10-20 Schneider Peter J Jr Environmentally heated and cooled pre-fabricated insulated concrete building
DE3309033A1 (de) * 1983-03-14 1984-09-27 BM CHEMIE Kunststoff GmbH, 5678 Wermelskirchen Wand zur absorption der sonnenstrahlen
WO1992017664A1 (en) * 1991-04-04 1992-10-15 Legabeam Norge As Temperature regulation of various building parts of houses

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1243863A3 (de) * 2001-03-21 2003-12-17 Johannes Dr.-Ing. Schmitz Verfahren zum Führen von Aussenluft in einer Gebäudehülle und in einem Gebäude sowie ein Verfahren zum Temperieren eines Gebäudes
US6843718B2 (en) 2001-03-26 2005-01-18 Johannes Schmitz Method of guiding external air in a building shell and a building; and a method of temperature control of a building
US8677706B2 (en) 2005-07-22 2014-03-25 Edmond D. Krecké Building wall with fluid ducts as energy barriers
JP2009503286A (ja) * 2005-07-22 2009-01-29 クレケ,エドモンド,デー. 流体貫流路を有するエネルギーのバリアとしての建物の壁
WO2007009504A1 (de) * 2005-07-22 2007-01-25 Krecke Edmond D Gebäudewandung mit fluiddurchführung als energiebarriere
WO2009095232A1 (de) * 2008-02-01 2009-08-06 Krecke Edmond D Niedrigenergiegebäude, insbesondere treibhaus oder stallung
CN101960225A (zh) * 2008-02-01 2011-01-26 埃德蒙·D·克雷克 低能耗建筑物,特别是温室或者厩棚
GB2482650A (en) * 2010-03-08 2012-02-15 Samuel Gerard Bailey Exterior cladding panels with climate control
GB2482650B (en) * 2010-03-08 2013-04-10 Samuel Gerard Bailey Exterior Cladding Panels with climate control
WO2014029895A1 (es) * 2012-08-24 2014-02-27 Castellanos Ortega Jesus Sistema de climatizacion termoactivo por aire con fuentes energeticas multiples e integracion arquitectonica
ES2526941A1 (es) * 2013-07-15 2015-01-16 Antonino Adriano Trimboli Longuetto Edificio termodinámico
AT518454A1 (de) * 2016-03-23 2017-10-15 Harald Gruber Anordnung an einem Gebäude
EP3453985A1 (de) * 2017-09-07 2019-03-13 Sunthalpy Engineering, S.L. Bioklimatisches Gebäude

Also Published As

Publication number Publication date
DE19681081D2 (de) 1998-11-26
CZ180598A3 (cs) 1998-11-11
AU7618096A (en) 1997-07-03
PL327179A1 (en) 1998-11-23

Similar Documents

Publication Publication Date Title
EP0850388B1 (de) Energieanlage für gebäude
DE2231972C2 (de) Anordnung zum Lüften eines Aufenthaltsraumes
EP0016337B1 (de) Anordnung bzw. Verfahren zur Klimatisierung eines Gebäudes
DE2721467C2 (de) Vorfabriziertes Fassadenelement mit einem auf der Innenseite angeordneten Heizkörper
DE19827511A1 (de) Vorrichtung und Verfahren zur Lüftung und Wärmeenergieversorgung für Niedrig-Energie-Gebäude oder Passivhäuser
WO1997021962A1 (de) Vorrichtung zur temperaturregelung in gebäudeabschliessenden bauelementen mit erdwärme und/oder solarenergie
EP0455184B1 (de) Verfahren zum Heizen und/oder Kühlen eines Gebäudes mit Solarenergie unter Verwendung von transparenter Wärmedämmung und Anlage zur Durchführung des Verfahrens
EP3430317B1 (de) System zum temperieren eines gebäudes sowie verfahren zum temperieren eines gebäudes mit einem solchen system
EP0028800B1 (de) Vorrichtung zur Nutzung der Wärmeeinstrahlung der Sonne
DE2542348A1 (de) Waermeanlage
EP0005499B1 (de) Fenster mit Sonnenkollektor
EP0582730A1 (de) Plattenelement
DE3007981A1 (de) Solarheizanlage fuer ein gebaeude
EP1330579A1 (de) Niedrigenergiegebäude
DE10115035B9 (de) Niedrigenergiegebäude, insbesondere einergie-Autarkes Gebäude
DE3943405A1 (de) Anlage zur gebaeude- oder behaelterisolierung mittels sonnenenergie oder abwaerme
DE2940830A1 (de) Gebaeudekonstruktion
WO1999042766A1 (de) Anordnung zum aufnehmen von solarenergie an gebäuden
DE2628442A1 (de) Vorrichtung zur solaren erwaermung von wasser
DE102006003361A1 (de) Verfahren und Vorrichtung für eine energiesparende Klima- und Lüftungsanlage
DE202006001087U1 (de) Energiesparende Klima- und Lüftungsanlage
DE3124021C2 (de) Wärmespeicher für eine Heizungsanlage
EP0932799B1 (de) Gebäude mit einem beheizungssystem
EP0358041B1 (de) Verfahren zum Beheizen eines Gebäudes und Heizungsanlage
DE3204219A1 (de) Betonlamellensolarabsorber

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: PV1998-1805

Country of ref document: CZ

NENP Non-entry into the national phase

Ref document number: 97521591

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: PV1998-1805

Country of ref document: CZ

REF Corresponds to

Ref document number: 19681081

Country of ref document: DE

Date of ref document: 19981126

WWE Wipo information: entry into national phase

Ref document number: 19681081

Country of ref document: DE

122 Ep: pct application non-entry in european phase
WWR Wipo information: refused in national office

Ref document number: PV1998-1805

Country of ref document: CZ