WO1997012997A1 - Procede de fusion de dechets - Google Patents

Procede de fusion de dechets Download PDF

Info

Publication number
WO1997012997A1
WO1997012997A1 PCT/JP1996/001184 JP9601184W WO9712997A1 WO 1997012997 A1 WO1997012997 A1 WO 1997012997A1 JP 9601184 W JP9601184 W JP 9601184W WO 9712997 A1 WO9712997 A1 WO 9712997A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulverized coal
combustion
oxygen
furnace
synthetic resin
Prior art date
Application number
PCT/JP1996/001184
Other languages
English (en)
French (fr)
Inventor
Tatsuro Ariyama
Takanori Inoguchi
Hidetoshi Noda
Masahiro Matsuura
Tsutomu Shikada
Takeshi Konishi
Ryota Murai
Original Assignee
Nkk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP27844695A external-priority patent/JPH0995724A/ja
Priority claimed from JP27844595A external-priority patent/JP3293430B2/ja
Priority claimed from JP27844795A external-priority patent/JP3293431B2/ja
Application filed by Nkk Corporation filed Critical Nkk Corporation
Priority to CA 2205812 priority Critical patent/CA2205812C/en
Priority to KR1019970703588A priority patent/KR100259970B1/ko
Priority to AU55154/96A priority patent/AU722145B2/en
Priority to DE1996625037 priority patent/DE69625037T2/de
Priority to US08/849,233 priority patent/US6053962A/en
Priority to EP19960912286 priority patent/EP0792938B1/en
Publication of WO1997012997A1 publication Critical patent/WO1997012997A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/20Arrangements of devices for charging
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B11/00Making pig-iron other than in blast furnaces
    • C21B11/02Making pig-iron other than in blast furnaces in low shaft furnaces or shaft furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0066Preliminary conditioning of the solid carbonaceous reductant
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • C21B5/003Injection of pulverulent coal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/02Making special pig-iron, e.g. by applying additives, e.g. oxides of other metals
    • C21B5/023Injection of the additives into the melting part
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/02Making special pig-iron, e.g. by applying additives, e.g. oxides of other metals
    • C21B5/023Injection of the additives into the melting part
    • C21B5/026Injection of the additives into the melting part of plastic material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/466Charging device for converters
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/56Manufacture of steel by other methods
    • C21C5/562Manufacture of steel by other methods starting from scrap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/16Arrangements of tuyeres
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/466Charging device for converters
    • C21C2005/4666Charging device for converters for charging with organic contaminated scrap
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C2200/00Recycling of waste material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a scrap melting method, specifically, a method in which scrap is used as an iron source, pulverized coal is used as a main heat source and a high-pressure or high-pressure exhaust gas source, and high-calorie exhaust gas is used.
  • hot metal can be produced using synthetic resin as waste as a part of the heat source, and high-value exhaust gas with high utility value can be obtained as fuel gas. It relates to a scrap melting method. Background art
  • a scrap melting method using a shaft furnace is performed in which scrap, which is an iron source, and blast furnace coke are placed in the shaft furnace.
  • scrap which is an iron source
  • blast furnace coke are placed in the shaft furnace.
  • high temperature oxygen-enriched air and pulverized coal at normal temperature are blown from the tuyere to burn, and the sensible heat of the combustion gas dissolves the risk trap, and from the shaft.
  • a scrap melting method has been proposed in which the combustion gas is secondarily burned by blowing air to accelerate the melting of the scrap (iron and steel Vol. 79, No. 2, P. 139-I46).
  • a combustion furnace for pulverized coal combustion is provided outside the shaft furnace, and a large amount of pulverized coal is burned in the combustion furnace.
  • the gas is introduced into the shaft furnace and the oxygen-containing gas is replenished during the introduction to make the combustion gas secondary, and the sensible heat of the combustion gas dissolves the risk trap.
  • a scrap dissolving method has been proposed (Japanese Unexamined Patent Publication No. 1-195225).
  • the scrubbing method proposed by these proposals uses pulverized coal as a part of the heat source, and can use inexpensive blast furnace coke as a cost to be charged into the furnace. Operation may be realized.
  • both of the two scrap melting methods mentioned above are low-fuel ratio energy-minimum-oriented technologies. Therefore, the fuel ratio is kept low (fuel ratio: less than 300 kg / t ⁇ pig). And a secondary combustion by blowing oxygen-containing gas such as air into the combustion gas generated by the combustion of pulverized coal. The dissolution is promoted.
  • the aim of these conventional scrap melting methods is to reduce the fuel ratio and use pulverized coal as a part of the heat source.
  • pulverized coal is used as a part of the heat source in order to reduce the production cost, but the supply amount is the weight ratio of [pulverized coal ratio / coke ratio].
  • the conventionally proposed scrubbing melting technology basically aims at an energy minimum by reducing the fuel ratio, so that the exhaust gas has a small heat streak and a small amount of emission.
  • the pulverized coal ratio cannot be sufficiently increased with respect to the coke ratio because highly efficient combustion of pulverized coal cannot be realized.
  • the cost has not been sufficiently reduced by using charcoal.
  • plastics which are high-molecular hydrocarbon compounds, generate a large amount of heat during combustion and damage the incinerator when incinerated, making mass treatment difficult, and most of them are dumped in landfills. This is the current situation.
  • discarding plastics and the like is not preferable in terms of environmental measures, and there is an urgent need to develop a large-scale treatment method.
  • dust In so-called integrated steelworks, a large amount of dust is emitted from various facilities. Such dust includes, for example, blast furnace dust, converter dust, electric furnace dust, cupola dust, mill scale, Schletter dust, zinc dust, etc. Emissions. Many of these dusts have a relatively high degree of zinc.
  • the zinc-containing dust is pelletized. Since it requires a process, it is not suitable for mass processing of dusts in terms of processing cost.
  • the furnace top temperature is about 200 to 250 ° C. Therefore, the temperature range where metallic zinc vapor condenses in the furnace (400 ° C to 400 ° C). 800 ° C) exists in the shaft well below the furnace top. This Therefore, in any of the above-mentioned conventional methods, most of the metallic zinc vapor condenses before reaching the furnace top, and there is a problem that the zinc adheres to and collects on the furnace inner wall to peel off the refractory.
  • scrap which is the main raw material for the scrap melting method
  • scrap also contains a large amount of zinc-containing material in the form of a steel plate with zinc plating, etc., and the zinc in this raw material accumulates in the furnace.
  • problems such as deposition and deposition of metal zinc on the inner wall of the furnace or metallic zinc vapor being discharged to the outside of the furnace along with the exhaust gas, which is condensed and deposited on the inner wall of the exhaust gas pipe and the like. Therefore, in scrap melting technology, a major issue is to properly recover zinc contained in raw materials without accumulating it in the furnace.
  • an object of the present invention is to provide a high calorie exhaust gas which has high utility value as a fuel gas, as well as being capable of producing molten iron by melting a scrap with high efficiency in comparison with the conventional scrub melting technology as described above.
  • a high calorie exhaust gas which has high utility value as a fuel gas, as well as being capable of producing molten iron by melting a scrap with high efficiency in comparison with the conventional scrub melting technology as described above.
  • synthetic resins as a part of calorie exhaust gas sources and / or heat sources, a completely new type of scrubbing that enables large-scale processing and effective use of synthetic resins as waste To provide the law.
  • Another object of the present invention is to enable the large-scale treatment and effective use of dusts discharged from steelworks, etc., and to remove zinc contained in scraps and dusts in the furnace.
  • An object of the present invention is to provide a scrap melting method capable of appropriately recovering from a furnace in a state where the temperature is high without accumulating in a furnace. Disclosure of the invention The purpose of the present inventors was to carry out the production of hot metal from scrubbing as a raw material and the production of high-strength exhaust gas at a low cost, with the aim of achieving a high fuel ratio and high fine powder by injecting a large amount of pulverized coal. It has been found that the following methods (1) to (3) can be achieved while operating at the coal ratio.
  • Pulverized coal and oxygen are blown into a specific method such that they are brought into contact with each other and mixed quickly, thereby realizing rapid combustion of pulverized coal.
  • Particularly preferably, most of the pulverized coal combustion is performed inside the tuyere combustion burner, thereby achieving stable and efficient combustion of pulverized coal without being affected by the conditions inside the furnace. Let it.
  • the present inventors examined the use of synthetic resins inside the furnace as part of the heat source and part of the high-strength gas exhaust gas source for scrap melting.
  • the scrap melting method which is characterized by its composition
  • the synthetic resin material is blown into the furnace together with pulverized coal through the combustion burner, or the synthetic resin material is charged into the furnace top, or both.
  • the synthetic resin material can be efficiently combusted or gaseously decomposed, and a large amount of synthetic resin material can be treated as waste and a high-strength port Or, it can be used effectively as a heat source.
  • this scrap melting method there is a problem due to the synthetic resin material being put into the furnace as expected at the beginning.
  • the dust is collected in the system while controlling the furnace top temperature within a predetermined range.
  • the zinc-containing dust (zinc-containing dust collected from the flue gas in the furnace) is repeatedly introduced from the tuyere to recover the zinc contained in the scrap and dust. It was found that the zinc in the furnace could be concentrated and recovered in a highly concentrated state without adhering and accumulating zinc in the furnace walls.
  • the present invention has been made based on such knowledge, and has the following features.
  • the present invention relates to a scrub melting method which is carried out using a shaft furnace having a tuyere provided with a combustion panner, and the inside of the furnace of the shaft furnace is provided with a scrap which is at least an iron source from the furnace top.
  • pulverized coal and oxygen are supplied at least through the combustion parner provided at the tuyere, but pulverized coal and oxygen are supplied from the tuyere.
  • pulverized coal (pulverized coal, etc. may be blown in as a fuel in addition to pulverized coal as fuel), but here, these are collectively referred to as “pulverized coal, etc.” There are following ways to inject the element.
  • a combustion parner provided with a pre-combustion chamber inside the opening of the tip of the parner is provided at the tuyere.
  • a combustion burner is used. Pulverized coal and the like are blown into the pre-combustion chamber ⁇ ⁇ from or near the center in the burner radial direction, and oxygen is blown from the surroundings to mix the two, so that pulverized coal and the like are mixed in the pre-combustion chamber. Is burned rapidly, and the combustion gas is introduced into the furnace through the opening at the end of the burner.
  • a combustion burner provided with a pre-combustion chamber inside the opening at the tip of the parner is provided at the tuyere, and combustion is performed when pulverized coal etc. and oxygen are blown in using this combustion parner.
  • Oxygen is blown into the pre-combustion chamber of the burner from or near the center in the burner radial direction, and pulverized coal is blown from around the burner, and oxygen is blown from the surroundings to mix oxygen with the pulverized coal etc.
  • pulverized coal is rapidly burned in the combustion zone formed at the tuyere tip.
  • the method for charging the synthetic resin material into the furnace has the following modes.
  • the present invention provides various embodiments in which any of the above-described embodiments (A) to (D) relating to the method of injecting pulverized coal or the like and oxygen and the above-described embodiments (1) to (3) relating to the method of inserting synthetic resin into the furnace are included. Can be obtained.
  • the above-mentioned combustion parner including a combustion parner having a pre-combustion chamber inside
  • other blowing means of the tuyere and the tuyere part is used. Dusts are blown into the furnace through the furnace. Therefore, the present invention can adopt various modes in which the modes (A) to (D) and the modes (1) to (3), and the above-mentioned dusts are arbitrarily combined.
  • a basic mode composed of a combination of the above (A) to (D) and the above (1) to (3) is as follows.
  • Scrap and coke which are iron sources, are charged into a shaft furnace, and pulverized coal, granular or flake-shaped synthetic resin material and oxygen are fed into the furnace from a combustion parner provided at the tuyere.
  • pulverized coal and synthetic resin material are injected from or near the burner radial center, and oxygen is injected from the surrounding area to mix oxygen with pulverized coal and synthetic resin material.
  • the pulverized coal and at least part of the synthetic resin material are rapidly burned in a combustion zone formed at the tuyere tip, and the sensible heat of the combustion gas melts the scrub to produce hot metal.
  • the scrap melting method is characterized in that the combustion gas is recovered as a fuel gas without significant secondary combustion in the furnace.
  • Scrap and coke which are iron sources, are charged into a shaft furnace, and pulverized coal, powdery or flake-shaped synthetic resin material and oxygen are supplied from a combustion parner provided at the tuyere. Oxygen is blown from inside or near the center of the burner in the radial direction, pulverized coal and synthetic resin material are blown from the surroundings, and oxygen is blown from the surroundings.
  • pulverized coal and at least part of the synthetic resin material are rapidly burned in the combustion zone formed at the tuyere, and the sensible heat of this combustion gas
  • a scrap melting method that melts scrap to produce hot metal and collects combustion gas as fuel gas without significant secondary combustion in the furnace.
  • Scrap and coke which are iron sources, are charged into the combustion furnace, and pulverized coal and oxygen are blown into the pre-combustion chamber of the combustion parner, and synthetic resin material in the form of granules, flakes, or lump is also blown.
  • At the time of these injections at least pulverized coal is injected from or near the center of the burner in the radial direction, and oxygen is injected from the surroundings to mix the two.
  • a scrap melting method characterized by producing hot metal and collecting the combustion gas as a fuel gas without significant secondary combustion in the furnace.
  • a scrap melting method using a shaft furnace equipped with a tuyere with a combustion burner provided with a pre-combustion chamber inside the opening at the tip of the parner Scrap and coke, which are iron sources, are charged into the furnace, and pulverized coal and oxygen are blown into the pre-combustion chamber of the combustion parner, and a granular or flake-like or massive synthetic resin material is blown into the pre-combustion chamber.
  • oxygen is blown from the center or near the burner radial direction, and at least pulverized coal is blown from the surroundings, and oxygen is blown from the surroundings.
  • Pulverized coal is blown from the center of or near the burner radial direction, and oxygen is blown from the surroundings to mix the two, and pulverized coal is formed at the tuyere. Rapid combustion in the combustion zone, melting of the scrub with the sensible heat of the combustion gas to produce hot metal, and heat of the synthetic resin material without significant secondary combustion of the combustion gas in the furnace
  • a scrap melting method characterized in that the gas generated by decomposition is recovered as a fuel gas.
  • Iron, scrap, coke, and synthetic resin material are placed in the top of the furnace in the shaft furnace, and pulverized coal and oxygen are supplied to the furnace from the combustion parner provided at the tuyere.
  • pulverized coal is blown from around or near the center of the burner in the radial direction, pulverized coal is blown from the surroundings, and oxygen is blown from the surroundings to mix the pulverized coal with oxygen.
  • pulverized coal is rapidly burned in a combustion zone formed at the tip of the tuyere, the scrap is melted with the sensible heat of the combustion gas to produce hot metal, and the combustion gas is significantly converted in the furnace.
  • a scrubbing method characterized by recovering as a fuel gas together with gas generated by thermal decomposition of synthetic resin material without secondary combustion.
  • Scrap, coke, and synthetic resin which are iron sources, are introduced into the furnace at the top of the furnace, and pulverized coal, pulverized or flakes are synthesized from the combustion parner provided at the tuyere.
  • Resin material and oxygen are blown into the furnace, and pulverized coal and synthetic resin are blown from the center of or near the radius of the pana at the time of these blows.
  • pulverized coal and at least part of the synthetic resin material are rapidly burned in the combustion zone formed at the tuyere tip, and the scrap is melted by the sensation of this combustion gas.
  • the hot metal is manufactured by the synthetic resin material without significant secondary combustion of the combustion gas in the furnace.
  • a scrub dissolution method characterized by recovering the fuel gas as well as the gas generated by the ripening of the cracking.
  • Scrap, coke and synthetic resin which are iron sources, are placed in the top of the furnace in the shaft furnace, and pulverized coal, pulverized or fine particles are obtained from the combustion parner provided in the tuyere.
  • the synthetic resin material and oxygen are blown into the furnace, and at the same time, oxygen is blown from or near the center of the burner in the radial direction, and pulverized coal and synthetic resin are blown from the surroundings. Further, by blowing oxygen from the surroundings to mix the pulverized coal and the synthetic resin material with oxygen, the pulverized coal and at least a part of the synthetic resin material are rapidly burned in a combustion zone formed at the tuyere tip.
  • the scrub is melted with the sensible heat of the combustion gas to produce hot metal, and the combustion gas is not significantly burned in the furnace, and the gas generated by the thermal decomposition of the synthetic resin material is removed. Together with fuel gas And a scrub dissolution method.
  • Scraps, coke and synthetic resin, which are the sources, are charged to the furnace top, and pulverized coal and oxygen are blown into the pre-combustion chamber of the combustion parner, where pulverized coal is blown.
  • the pulverized coal is rapidly burned in the pre-combustion chamber by blowing oxygen from or near the center of the burner in the vicinity of the burner, and by blowing oxygen from the surrounding area to mix the two.
  • the molten gas is introduced into the furnace through the opening, the scrap is melted by ripening of the combustion gas to produce hot metal, and the synthetic gas is used without significantly burning the combustion gas in the furnace.
  • scrap, coke and synthetic resin material which are iron sources, are charged, and pulverized coal and oxygen are blown into the pre-combustion chamber of the combustion parner, and oxygen is blown during these blows.
  • the pulverized coal is blown from the center of or near the radial direction, pulverized coal is blown from the surroundings, and oxygen is blown from the surroundings to mix the pulverized coal with oxygen.
  • a scrap melting method characterized by recovering as a fuel gas together with a gas generated by thermal decomposition of a synthetic resin material without significant secondary combustion.
  • Scraps, coke and synthetic resin material which are iron sources, are charged to the furnace top, and pulverized coal and oxygen are blown into the pre-combustion chamber of the combustion parner, and powder or granules are added.
  • pulverized coal is blown from or near the center of the burner in the radial direction of the burner, and oxygen is injected. Pulverized coal and at least a portion of the synthetic resin material are rapidly burned in the pre-combustion chamber ⁇ ⁇ by injecting air from the surroundings and mixing the two.
  • the combustion gas is introduced into the furnace through the opening of the tip of the parner.
  • the hot gas is produced by melting the scrub with the sensible heat of the combustion gas.
  • the scrubber is characterized in that the combustion gas is recovered as a fuel gas together with the gas generated by the thermal decomposition of the synthetic resin material without significant secondary combustion in the furnace. Dissolution method.
  • a scrap dissolving method characterized by recovering as a fuel gas together with a gas generated by the ripening of a synthetic resin material.
  • the synthetic resin material is blown or burned with a combustion burner.
  • the blowing or charging into the room may be performed discontinuously or intermittently, and the blowing or charging of the synthetic resin material may be performed together with the blowing of pulverized coal.
  • it may be performed temporarily instead of pulverized coal injection (that is, pulverized coal injection is temporarily stopped). That is, in the method of the present invention, blowing or charging a synthetic resin material through a combustion parner includes such cases.
  • the furnace temperature is controlled to 400 to 600X.
  • a blast furnace coke is used as the coater to be charged into the shaft furnace. be able to.
  • pulverized coal supplied from the combustion the ratio PC (kg / t - pig) and the oxygen flow rate 0 2. (NmV t - pig ) ratio preferably in the [P CZOz] a 0.
  • the fuel ratio is 300 kg Z t 'pig or more, the pulverized coal ratio (kg g t-pig) when only pulverized coal is supplied from the combustion parner, and the coke ratio (kg / t-pig) and the pulverized coal ratio (kgZt-pig) and the composition when pulverized coal and synthetic resin material are supplied from a combustion burner.
  • the weight ratio of the resin material ratio (kg / t-pig) and the coke ratio charged into the furnace top (kgZt-pig) ((pulverized coal ratio + synthetic resin material ratio) Z coke ratio) is 1.0. It is preferable that the above process be carried out, whereby the rescue club can be dissolved with high efficiency, and a stable production and supply of a large amount of high calorie exhaust gas can be achieved.
  • oxygen is blown from around the pulverized coal or around the pulverized coal and synthetic resin material injection section (hereinafter referred to as solid fuel injection section)
  • oxygen may be blown from an oxygen blowing section which annularly surrounds the periphery of the solid fuel blowing section, or may be arranged at an appropriate interval around the circumference of the solid fuel blowing section.
  • Oxygen may be blown from a plurality of oxygen blowing sections.
  • the position of the solid fuel injection section in the burner radial direction may be deviated to some extent from the center of the burner.
  • pulverized coal or pulverized coal and synthetic resin material are placed at or near the burner radial center. It is only necessary that oxygen be blown from the surroundings.
  • a solid fuel injection unit that annularly surrounds the periphery of the oxygen injection unit is used.
  • Pulverized coal or pulverized coal and synthetic resin material may be injected, or pulverized coal or pulverized coal may be injected from a plurality of solid fuel injection sections arranged at appropriate intervals around the oxygen injection section.
  • a synthetic resin material may be blown.
  • oxygen when oxygen is further blown from the periphery of the solid fuel injection part, oxygen may be blown from an oxygen injection part which annularly surrounds the periphery of the solid fuel injection part, or Oxygen may be blown out from a plurality of oxygen blowing portions arranged at appropriate intervals around the fuel blowing portion.
  • the position of the oxygen injection section in the burner radial direction (the position of the oxygen injection section inside the solid fuel injection section) may be deviated to some extent from the center of the burner. Oxygen is injected from the center or the vicinity thereof, and pulverized coal or pulverized coal and a synthetic resin material are injected from the vicinity thereof.
  • the solid fuel injection section is closed.
  • Oxygen may be blown from an oxygen blowing section surrounding the solid fuel blowing section, or oxygen may be blown from a plurality of oxygen blowing sections arranged at appropriate intervals around the solid fuel blowing section. You may.
  • the position of the solid fuel injection section in the burner radial direction may be deviated to some extent from the center of the burner. In short, it is synthesized with pulverized coal or pulverized coal from or near the burner radial center.
  • the resin material is blown, and oxygen is blown from around the resin material.
  • pulverized coal is introduced into the pre-combustion chamber of the combustion burner from around oxygen injected from or near the burner radial center.
  • pulverized coal or pulverized coal and synthetic resin material should be injected from a solid fuel injection section that annularly surrounds the oxygen injection section. Or it may be placed at appropriate intervals around the oxygen Alternatively, pulverized coal or pulverized coal and a synthetic resin material may be injected from a plurality of solid fuel injection sections.
  • oxygen when oxygen is further blown from the periphery of the solid fuel injection section, oxygen may be blown from an oxygen injection section which annularly surrounds the periphery of the solid fuel injection section, or solid fuel injection may be performed.
  • Oxygen may be blown out from a plurality of oxygen blowing sections arranged at appropriate intervals around the section.
  • the position of the oxygen injection section in the burner radial direction (the position of the oxygen injection section inside the solid fuel injection section) may be deviated to some extent from the center of the burner. Oxygen is injected from or near the center, and pulverized coal or pulverized coal and a synthetic resin material are injected from around the center.
  • the particle size of the pulverized coal to be blown is not particularly limited.
  • pulverized coal having a particle size of 74 or less and containing 80% or more is preferable.
  • the powdery or granular synthetic resin material to be blown is obtained by pulverizing a lump-shaped (including plate-like or the like) synthetic resin material, or a film-shaped synthetic resin material is finely divided into small pieces.
  • the material obtained by crushing into pieces, the synthetic resin material is once melted or semi-molten, and then processed (pulverized or cut) into powder and granules, and the synthetic resin material is semi-molten and quenched. Including those condensed and solidified in the form of powder.
  • the particle size is not particularly limited, and may be relatively coarse. However, usually, the particle size is preferably 10 mm or less, more preferably 6 mm or less.
  • the synthetic resin material has good flammability due to the use of a combustion parner equipped with a pre-combustion chamber. Therefore, a lump of synthetic resin material can be charged into the pre-combustion chamber of the combustion parner.
  • dusts can be blown into the furnace through other blowing means of the tuyere.
  • dust includes, for example, blast furnace dust, converter dust, electric furnace dust, cubola dust, mill scale, shredder dust, zinc dust, and dust collected in the furnace. Dust that contains one or more of the listed dusts.
  • the furnace top temperature is controlled to be 400 to 800, and at least one part of the dust containing zinc collected from the exhaust gas in the furnace is blown into the furnace. It is preferable to use it as
  • Dusts can be blown into the furnace either discontinuously or intermittently.
  • FIG. 1 is a conceptual diagram showing an example of a configuration of a shaft furnace used for carrying out the scrap melting method of the present invention.
  • FIG. 2 is an explanatory diagram showing one configuration example (cross-sectional structure) of a tuyere portion of a shaft furnace and a method of injecting pulverized coal and oxygen according to the method of the present invention.
  • FIG. 3 is an explanatory view showing another configuration example (cross-sectional structure) of a tuyere portion of a shaft furnace, and a method of injecting pulverized coal, a synthetic resin material, and oxygen according to the method of the present invention.
  • FIG. 4 is an explanatory view showing another configuration example (cross-sectional structure) of a tuyere portion of a shaft furnace and a method of injecting pulverized coal or the like and oxygen by the method of the present invention.
  • FIG. 5 is an explanatory diagram showing an example of a mode of blowing pulverized coal and the like and oxygen in the burner radial direction in the combustion parner shown in FIGS. 2 and 3.
  • FIG. 6 is an explanatory diagram showing another example of the manner of blowing pulverized coal and the like and oxygen in the burner radial direction in the combustion parners shown in FIGS. 2 and 3.
  • FIG. 7 is an explanatory diagram showing an example of an aspect of blowing pulverized coal and the like and oxygen in the burner radial direction in the combustion parner shown in FIG.
  • FIG. 8 is an explanatory view showing another example of the mode of blowing pulverized coal or the like and oxygen in the burner radial direction in the combustion parner shown in FIG.
  • FIG. 9 is an explanatory diagram showing another example of the mode of blowing pulverized coal or the like and oxygen in the burner radial direction in the combustion burner shown in FIG.
  • FIG. 10 is an explanatory diagram showing another configuration example (cross-sectional structure) of the tuyere portion of the shaft furnace, and a method of injecting pulverized coal and the like and oxygen by the method of the present invention.
  • Fig. 11 is an explanatory view showing another example of the configuration of the tuyere portion of the shaft furnace (cross-sectional structure) and a method of injecting pulverized coal and the like and oxygen by the method of the present invention.
  • FIG. 12 is an explanatory diagram showing an example of a manner of blowing pulverized coal or the like and oxygen in the burner radial direction in the combustion parner shown in FIG.
  • FIG. 13 is an explanatory diagram showing another example of the mode of blowing pulverized coal and the like and oxygen in the burner radial direction in the combustion parner shown in FIG.
  • FIG. 14 is an explanatory diagram showing an example of a mode of blowing pulverized coal and the like and oxygen in the burner radial direction in the combustion parner shown in FIG. 11.
  • FIG. 15 is an explanatory diagram showing another example of the manner of blowing pulverized coal and the like and oxygen in the burner radial direction in the combustion parner shown in FIG. 11.
  • FIG. 16 is an explanatory diagram showing another example of the manner of blowing pulverized coal and the like and oxygen in the burner radial direction in the combustion parner shown in FIG. 11.
  • FIG. 17 is a graph showing the relationship between the furnace top temperature and the tar concentration in the furnace gas in the method of the present invention.
  • FIG. 18 is a graph showing the pulverized coal combustion rate over time when pulverized coal and oxygen are blown in according to the method of the present invention.
  • FIG. 19 shows the vicinity of the tuyere when pulverized coal and oxygen were blown according to the method of the present invention.
  • FIG. 4 is an explanatory diagram showing an ideal combustion situation in FIG.
  • FIG. 20 is a graph showing a relationship between a furnace top temperature and a zinc recovery rate based on zinc in dust in the method of the present invention.
  • Fig. 21 shows the amount of pulverized coal pulverized PC (kg X h) in Example 1 for the method of the present invention of the injection method according to Figs. 2, 4 and 10 and the comparison method of the injection method according to Fig. 22. and is a graph showing the relationship between C concentration Roitadakiinui gas and the ratio [PCZ 0 2] oxygen flow rate 0 2 (N m 3 / h ).
  • FIG. 22 is an explanatory view showing a cross-sectional structure of a tuyere portion of a conventional method.
  • the scrap melting method of the present invention increases the fuel ratio by supplying pulverized coal or a large amount of pulverized coal + synthetic resin material in order to actively obtain high-strength coal exhaust gas during scrubbing. It is also assumed that the operation will be performed with the ratio of pulverized coal or the ratio of pulverized coal + synthetic resin to the coke ratio increased. For this reason, pulverized coal or pulverized coal supplied in large quantities or pulverized coal + synthetic resin material is efficiently burned and the pulverized coal is pulverized through the tuyere combustion burner in order to reduce the low power component in the exhaust gas.
  • oxygen substantially pure oxygen
  • pulverized coal or synthetic resin material is injected together with pulverized coal or synthetic resin material, and pulverized coal or pulverized coal + synthetic resin material and oxygen are quickly contacted and mixed.
  • Combustion gasification and highly efficient combustion of pulverized coal or pulverized coal + synthetic resin material especially, stable and efficient combustion of pulverized coal or pulverized coal + synthetic resin material that is not affected by furnace conditions, etc.
  • the combustion gas generated by this process (including synthetic resin material pyrolysis gas in the case of synthetic resin material injection) ) Can be discharged outside the furnace without significant secondary combustion.
  • the dissolution of the scrub and the recovery of high calorie exhaust gas can be realized at low cost.
  • the synthetic resin material is supplied into the furnace as a part of the heat source and part of the high-strength exhaust gas, and the large-scale processing of synthetic resin material, which is mainly waste, is effective. Utilization and further reduction of scrap melting by reducing the amount of pulverized coal will be realized.
  • one or more dusts that can be used as an iron source, a heat source or an auxiliary raw material source are blown from the tuyere, thereby realizing mass treatment and effective use of the dusts. They use the dust containing zinc recovered from the flue gas of the furnace as at least a part of the dust blown from the tuyere, and re-introduce the flue gas recovery dust into the furnace As a result, the zinc contained in scraps and dusts is reduced in the recovery dust, and this is recovered in the form of dust containing a high concentration of zinc, thereby realizing recycling of zinc. Let it.
  • FIG. 1 is a conceptual diagram showing an example of the configuration of a shaft furnace used in the scrap melting method of the present invention, wherein 1 is a shaft furnace main body, 2 is a tuyere, and 3 is a furnace top.
  • a raw material charging device 4 is connected to the upper part of the furnace top 3 of the shaft furnace 1, and the raw material charging device 4 and the furnace ⁇ ⁇ ⁇ have a structure that can be shut off by a switchgear 5, and a high temperature The furnace top gas can be completely recovered through duct 6.
  • scrap and coke which are iron sources, are charged by the raw material charging device 4, and from the tuyere 2 through the combustion parner.
  • Pulverized coal and oxygen are supplied into the furnace.
  • general coke for blast furnace usually particle size of 20 to 80 mm
  • the coke charged into the furnace serves to maintain the scrap filled in the furnace and also serves as a heat source for melting the scrap. However, in the present invention, it is blown from the tuyere.
  • the pulverized coal (pulverized coal and synthetic resin when blowing synthetic resin) occupies a large specific gravity as a heat source.
  • the synthetic resin material is supplied into the furnace from the tuyere 2 or the furnace top 3 or both, and the synthetic resin supplied from the tuyere 2 is used as a heat source and a high-strength outlet gas source.
  • the synthetic resin material supplied from the furnace top 3 is mainly consumed as a high-calorie source.
  • the synthetic resin material supplied from the tuyere through a combustion parner powdery or granular material is used in order to enhance flammability.
  • the shape and mode of the synthetic resin material charged from the furnace top are arbitrary.
  • FIG. 2 shows an example of a method of injecting pulverized coal and oxygen into a furnace through a combustion burner 8 A provided in the tuyere portion 2, and 7 denotes a furnace wall.
  • a combustion burner 8 A provided in the tuyere portion 2
  • 7 denotes a furnace wall.
  • pulverized coal PC from combustion fuel burner 8 A provided in tuyere 2 from solid fuel injection part a at or near the center of the burner radial direction, and oxygen from surrounding oxygen injection part b. 0 2 (may be cold oxygen) is blown into ⁇ .
  • the pulverized coal PC oxygen contact is extremely good, such Li for blown into Te furnace Unishi I surrounded the periphery thereof with oxygen 0 2, the pulverized coal and oxygen pulverized coal is mixed with tuyere It burns rapidly and forms a combustion zone and raceway at the tuyere.
  • blowing a unit amount of oxygen per Li large amount of pulverized coal, [PCZ 0 2] pulverized coal be sufficiently high to burn gasified at a high efficiency.
  • a small amount of N 2 or the like is usually used as a gas for blowing when pulverized coal PC is blown.
  • FIG. 3 shows an example of a method in which pulverized coal + synthetic resin material and oxygen are blown into a furnace through a combustion parner provided in the tuyere portion 2.
  • a pulverized coal PC and a powdery or particulate synthetic resin material are supplied from a solid fuel injection part a at or near the center in the burner radial direction.
  • S scale is the oxygen 0 2 from the oxygen blow portion b of the surrounding (or cold oxygen) is blown into each furnace.
  • pulverized coal PC and the synthetic resin material SR is the contact of ambient oxygen 0 2 oxygen for blown inside the furnace by letting you enclosed very satisfactorily such Li, pulverized coal and the synthetic resin material and oxygen Is mixed at the tuyere and rapidly burns pulverized coal and at least part of the synthetic resin material, forming a combustion zone and a raceway at the tuyere ⁇ Therefore, blowing a unit amount of oxygen per Li large amount of pulverized coal + synthetic ⁇ material, [(PC + SR) / 0 2] pulverized coal and the synthetic resin material be sufficiently high combustion gasification at a high efficiency I do.
  • a small amount of N 2 or the like is usually used as a pneumatic gas when pulverized coal PC and synthetic resin SR are blown.
  • Pulverized coal or pulverized coal + synthetic resin injected with oxygen rapidly burns, a high-temperature combustion zone of about 2000 is formed at the tuyere tip, The clap melts and is taken out of the furnace as hot metal.
  • Pulverized coal or pulverized coal + reductive combustion gas generated by rapid combustion of synthetic resin material rises up the shaft furnace while melting and preheating the scrub with its sensible heat, and is discharged from the furnace top as exhaust gas
  • the combustion gas generated by the combustion of pulverized coal or pulverized coal + synthetic resin material is discharged outside the furnace without significant secondary combustion. In other words, it is not possible to supply air or oxygen-enriched air to the shaft as in the prior art to perform the secondary combustion of the combustion gas.
  • the injection of the synthetic resin material from the solid fuel injection part a may be performed continuously, discontinuously or intermittently. , Even if it goes with pulverized coal injection, or temporarily It may be performed instead. This is the same in the methods shown in FIGS. 4, 10, 10 and 11 described later.
  • the furnace top temperature in the range of 400 to 600 ° C. That is, when the furnace top temperature is less than 400, thermal decomposition of the synthetic resin material in the upper part of the furnace does not proceed smoothly and quickly, and the above-described problem may occur. On the other hand, if the furnace top temperature exceeds 600, the production of tar-like substances becomes remarkable, and the tar-like substances may cause problems such as blockage of exhaust gas piping and the like.
  • Figure 17 shows the relationship between the top temperature and the tar concentration in the top gas.If the top gas temperature is less than 600 ° C, the tar concentration in the top gas can be reduced. It is shown.
  • the synthetic resin material is smoothly and quickly thermally decomposed at the upper part of the furnace, and mainly composed of gaseous lower hydrocarbons. High calorie gas can be generated.
  • the gas blown from the tuyere for combustion is oxygen (substantially pure oxygen).
  • oxygen substantially pure oxygen
  • a large amount of pulverized coal per unit oxygen can be efficiently burned and gasified, and a high calorie gas can be obtained by pyrolyzing the synthetic resin material charged in the furnace top.
  • high calorie gas can be obtained by combustion or thermal decomposition, and secondary combustion of combustion gas is not performed as described above.
  • CO and H 2 a lower-containing organic index of the high calorie ingredient of hydrocarbons is very high (and therefore, C 0 is very small 2 and N 2 of the content) high Caro rie exhaust gas ( 2700 kca 1 / N m 2 or more).
  • FIG. 4 is an explanatory view showing another example of a method of injecting pulverized coal (or pulverized coal + synthetic resin material) and oxygen in the scrap melting method of the present invention.
  • PANA 8 B bar one Na radial center Wakashi Ku oxygen blower unit b 'or et oxygen 0 2 in the vicinity (which may be cold oxygen), pulverized coal PC from the solid fuel blower unit a surrounding, it is found in the oxygen 0 2 from the oxygen blow portion b of the surrounding (or cold oxygen) is blown into each furnace. That Li, pulverized coal PC is blown to the inside and outside with oxygen 0 2 Te San Doi Tchisa'll be Unishi.
  • Li pulverized coal PC and the oxygen 0 2 due to this pulverized coal is rapidly burned were mixed in a tuyere, to form a combustion zone and raceway at the tuyere.
  • pulverized coal and oxygen are better contacted as compared with the methods in Figs. 2 and 3; therefore, pulverized coal (pulverized coal and There is an advantage that the combustion efficiency of synthetic resin material can be improved.
  • a granular or flake-shaped synthetic resin SR can be blown from the solid fuel injection section a, and at least the synthetic resin SR is used. Some rapidly burn with pulverized coal.
  • FIGs. 5 and 6 show the pulverized coal PC (pulverized coal PC and synthetic resin material when blowing synthetic resin material) in the combustion burner radial direction in the scrap melting method shown in Figs. 2 and 3.
  • SR pulverized coal PC
  • the solid fuel blower unit a circumferential re a ⁇ example was by Unishi blowing oxygen 0 2 from the oxygen blow unit b UNA by surrounding the annular Li
  • FIG. 6 is suitably circumferential Li solid fuel blower unit a This is an example in which oxygen o 2 is blown from a plurality of oxygen blowing sections b arranged at intervals.
  • Fig. 7 to Fig. 9 show the pulverized coal PC (pulverized coal PC and synthetic resin material SR when the synthetic resin material is blown) and oxygen in the combustion burner radial direction in the scrap melting method shown in Fig. 4.
  • 0 2 blow per cent Li illustrates aspects of circumference of of this Chi 7 burner radial direction toward the center Wakashi Ku is 'blowing oxygen O 2 from the oxygen-blown write section b' oxygen blowing part b in the vicinity thereof
  • Pulverized coal PC (or pulverized coal PC + synthetic resin material SR) is blown from the solid fuel injection section a which surrounds the ring in a ring, and oxygen is injected from the oxygen injection section b which surrounds the ring in a ring.
  • Figure 8 shows the pulverized coal PC (or pulverized coal PC + synthetic resin SR) from the solid fuel injection section a that annularly surrounds the oxygen injection section b 'at or near the center of the burner in the radial direction. blowing an example was by Unishi blowing oxygen 0 2 know more oxygen blowing unit disposed at appropriate intervals in the circumferential Li solid fuel blower unit a of the Furthermore, the child.
  • Fig. 9 shows the center of the burner in the radial direction. Blows pulverized coal PC (or pulverized coal PC + synthetic resin material SR) from a plurality of solid fuel injection sections a arranged at appropriate intervals around the oxygen injection section b 'in the vicinity. an example was by Unishi blowing the solid fuel blower unit oxygen 0 2 from a plurality of oxygen blowing portion b disposed at appropriate intervals in the circumferential Li of a.
  • FIGS. 10 and 11 are explanatory diagrams showing another example of a method of blowing pulverized coal (or pulverized coal + synthetic resin material) and oxygen in the scrap melting method of the present invention.
  • the method is able to stably obtain high-efficiency combustion of pulverized coal (pulverized coal and synthetic resin material when synthetic resin is injected). There are advantages that can be achieved.
  • the tuyere part 2 is provided with a combustion parner 8 C having a pulverized coal pre-combustion chamber 9 inside the parner tip opening part 10.
  • pulverized coal PC or pulverized coal PC + synthetic resin material SR
  • oxygen blower unit b from oxygen 0 2 (which may be cold oxygen) is Ru, respectively blown rare.
  • pulverized coal PC becomes the periphery oxygen 0 2 O surrounded by the blown Te Unishi contact because of the pulverized coal and oxygen are very good, the pulverized coal and oxygen rapidly mixed with the pre-combustion chamber 9 Then, it is rapidly ignited and burned in the pulverized coal pre-combustion chamber 9.
  • the combustion gas generated by this is introduced into the furnace through the burner tip opening 8, and the sensible heat melts the ris-crap and is taken out of the furnace as hot metal. Further, as described above, the combustion gas is discharged out of the furnace as a fuel gas without significant secondary combustion.
  • the pulverized coal is burned inside the combustion burner, so that the pulverized coal can be stably burned with high efficiency without being affected by the condition in the furnace.
  • a tuner 2 is provided with a combustion parner 8D having a pulverized coal pre-combustion chamber 9 inside the burner tip opening 10.
  • the burner is disposed at or near the center in the burner radial direction.
  • Oxygen 0 2 from the oxygen blow portion b ' which is also pulverized coal PC from the solid fuel blower unit a arranged around it (or pulverized coal PC + Synthesis ⁇ material SR) were further distribution therearound oxygen 0 2 is blown from each of the oxygen blow unit b.
  • the pulverized coal PC is blown in such a manner that the inside and the outside thereof are sandwiched by oxygen O 2 , so that the contact state between the pulverized coal and oxygen is higher than in the method of FIG. This has the advantage that the combustion efficiency of pulverized coal can be further improved.
  • the parner main body 12 of the combustion parner 8 C shown in FIG. is composed of a jacket 13 and a solid fuel supply pipe 14 and an oxygen supply pipe 15 penetrating it.
  • the end of each supply pipe is the front of the parner body 12 (the front of the water-cooled jacket 13).
  • the solid fuel injection part a and the oxygen injection part b are formed by opening the openings.
  • the pre-combustion chamber 9 is formed in a tubular shape between the parner main body 12 and the parner tip opening 10 and has a nonmetallic refractory 16 lined on its inner wall. As described above, during use of the wrench, the refractory 16 is glowed red and the radiant heat ignites the pulverized coal and synthetic resin supplied into the pre-combustion chamber.
  • the pre-combustion chamber 9 is configured such that the burner tip side is tapered in order to secure the gas flow velocity of the combustion gas injected into the furnace.
  • a water-cooled jacket 17 is provided outside the pre-combustion chamber 9, and a tuyere 18 having a water-cooled structure is provided at the tip of the wrench.
  • the tuyere 18 is provided to protect the tip of the wrench from the high-temperature atmosphere in the furnace, but may not be provided in some cases.
  • the solid fuel injection section a and the oxygen injection section b are extended line axes of both holes. Is located at the end of the outlet of the pre-combustion chamber 9 or inside the wrench. It is configured.
  • the entire combustion parner is attached to the furnace wall 7 with its axis lined at an inclination angle 0 such that the tip side of the parner is downward with respect to the horizontal direction.
  • the reason why the inclination angle is set to 0 is to smoothly discharge slag generated by melting ash such as pulverized coal into the furnace from the opening 10 at the tip of the parner.
  • the inclination angle 0 is set so that the taper on the inner surface of the pre-combustion chamber is horizontal or the tip side is downward so that the slag in the pre-combustion chamber 9 flows down smoothly toward the burner tip opening 10. It is preferable that the size is such that it is inclined.
  • each of the blowing sections a, b, b ' is provided with a solid fuel supply pipe 14 and an oxygen supply pipe 15, 15 through a water-cooled socket 13, respectively. It is formed in the 5 'tip opening.
  • the other configuration is the same as that of FIG. 10, so the same reference numerals are given and detailed description is omitted.
  • a granular or flake-shaped synthetic resin material SR can be blown from the solid fuel injection section a. At least part of it burns rapidly with pulverized coal.
  • FIGs 12 and 13 show the pulverized coal PC in the direction of the combustion burner diameter in the scrubbing method shown in Figure 10 (pulverized coal PC and synthetic resin in the case of blowing synthetic resin).
  • Material SR) and oxygen 0 2 blow per cent Li illustrates aspects of these
  • FIG 1 2 bar one is Na radial center or pulverized coal PC from the solid fuel blower unit a in the vicinity thereof (or pulverized coal PC + synthesis ⁇ fat material SR) blowing
  • the circumferential Li of the solid fuel blower unit a an example was by Unishi blowing oxygen 0 2 from the oxygen blow unit b UNA by surrounds annularly, also Figures 1 to 3 the solid fuel blower unit a
  • FIG. 14 to 16 show pulverized coal PC in the combustion burner radial direction in the scrub melting method shown in Fig. 11 (when pulverized synthetic resin is used, pulverized coal PC and Formed ⁇ member SR) and oxygen 0 2 blow per cent Li illustrates aspects of these, FIG. 1-4 Ku Wakashi bar burner radial center blowing oxygen O 2 from an oxygen blower unit b 'in the vicinity thereof, The pulverized coal PC flows from the solid fuel injection section a which surrounds the periphery of the oxygen injection section b 'in an annular shape.
  • FIG. 16 shows the pulverized coal PC (or pulverized coal PC +) from a plurality of solid fuel injection sections a arranged at appropriate intervals around the oxygen injection section b 'at or near the center in the burner radial direction.
  • This is an example in which synthetic resin material SR) is blown, and oxygen O 2 is blown from a plurality of oxygen blowing portions b arranged at appropriate intervals around the solid fuel blowing portion a.
  • a combustion parner provided with a pre-combustion chamber 9 as shown in FIGS. 10 and 11, instead of or together with the blowing of the synthetic resin material in the form of powder or granules.
  • a massive synthetic resin material can be charged into the pre-combustion chamber 9 and at least a part thereof can be burned. In this case, the massive synthetic resin material is charged into the pre-combustion chamber 9 through a charging port separately provided in the combustion parner.
  • an ignition burner (not shown) that uses oil, LPG, etc. as fuel should always be used.
  • the inner wall of the pre-combustion chamber 9 may be made of refractory material, and the interior of the parner may be preheated or pulverized coal may be ignited and burned using an ignition wrench (pilot bar) only during the initial operation.
  • pulverized coal and the like can be ignited spontaneously by the radiant heat of the refractory that has been heated red.
  • the blowing of the synthetic resin material or the blowing or charging of the synthetic resin material into the pre-combustion chamber 9 by the combustion burners 8A to 8D is performed discontinuously or intermittently.
  • the synthetic resin material may be blown or charged at the same time as the pulverized coal is blown, or may be temporarily replaced with the pulverized coal blow (i.e., (Pulverized coal injection may be temporarily stopped).
  • the pulverized coal and synthetic resin injected from combustion burners 8A to 8D can be injected from separate injection sections (injection holes).
  • Pulverized coal in 2 kg / N m 3 The figure shows the results of examining the combustion rate over time. According to this method, a high pulverized coal combustion rate is generally obtained by any of the methods. However, in the method shown in Fig. 2, the combustion rate tends to fluctuate a little over time. This is because the condition of the charge (for example, coke packed bed) in the combustion space at the tuyere tip fluctuates. This is considered to be due to the influence on the flammability of pulverized coal. On the other hand, according to the method shown in FIG.
  • Fig. 19 shows the ideal combustion situation of pulverized coal near the tuyere for the method shown in Fig. 2 and the method shown in Fig. 10.
  • a large amount of pulverized coal can be efficiently combusted and gasified by the method of the present invention as described above, and therefore, it is possible to operate with a coke ratio relatively lower than the pulverized coal ratio.
  • most of the supplied oxygen is rapidly consumed in the pre-combustion chamber, so that little or no combustion zone is formed at the tuyere tip. It is formed only in a very limited narrow area. As a result, the consumption (combustion) of coke at the tuyere tip is suppressed, which also contributes to a reduction in coke ratio.
  • dust is blown into the furnace from the tuyere through a combustion burner and a nozzle or other blowing means, and an iron source, a heat source, an auxiliary material source, and a high It can be used as a source of waste gas.
  • iron (iron oxide) contained in many dusts is used as an iron source for furnaces
  • synthetic resins contained in shredder dust and the like are used as heat sources or high-strength exhaust gas sources. Is done.
  • the dusts blown into the furnace include, for example, blast furnace dust, converter dust, electric furnace dust, cupola dust, minole scale, Schletter dust, zinc dust (zinc dust).
  • Dust from the crotch zinc-containing dust collected from the exhaust gas of the furnace, etc., and dust containing one or more of these can be blown from the tuyere.
  • the zinc in the furnace is concentrated in the recovered dust by repeatedly introducing the dust containing zinc recovered from the exhaust gas of the furnace into the furnace. And zinc can be recovered in a highly concentrated state. This will be described in detail later.
  • the burner may be blown into the furnace with a burner that burns pulverized coal, etc. (burners 8 A to 8 D shown in FIGS. 2 to 16), or other blowing means may be used.
  • a burner that burns pulverized coal, etc. burners 8 A to 8 D shown in FIGS. 2 to 16
  • dust may be blown from the solid fuel blowing section a in addition to the pulverized coal PC, or may be provided separately.
  • the blowing may be performed through the blowing unit.
  • the dusts may be injected into the furnace discontinuously or intermittently.
  • the injection is performed by pulverized coal and dust.
  • the injection of the synthetic resin material may be performed, and the blowing of the pulverized coal and / or the synthetic resin material may be temporarily replaced with the blowing of the pulverized coal and / or the synthetic resin material. May be stopped).
  • blowing dusts through a combustion burner and a nozzle or other blowing means includes such cases.
  • pulverized coal is used by using the above-mentioned burner to secure the combustibility of the synthetic resin and unburned charcoal. It is preferable to blow it in the same way as above.
  • a synthetic resin material is charged into the furnace top, and if necessary, a synthetic resin material is blown or charged by a specific method through a combustion parner provided in the tuyere.
  • a combustion parner provided in the tuyere.
  • the ratio of vinyl chloride in synthetic resin material as general waste or industrial waste is about 20%, but such synthetic resin material is blown into the furnace. If it does so, a large amount of HC 1 will be generated by the combustion of the chlorinated butyl chloride material, which will mix into the exhaust gas and significantly degrade the fuel gas quality.
  • the synthetic resin material can be introduced into the furnace without causing the above-mentioned problems. That is, first, with respect to the above point (1), in the method of the present invention, the HC 1 concentration in the exhaust gas is effectively reduced for the following reasons. First, in order to reduce the concentration in the exhaust gas of HC 1, C a O contained Dust in the exhaust gas, N a 2 ⁇ most effective to be caught the HC 1 to HC 1 capture component such as F e It is. According to the method of the present invention, pulverized coal can be burned with high efficiency.
  • the method of the present invention in which a large amount of pulverized coal is injected has a relatively large amount of HC 1 trapping components in the top gas.
  • the capture rate of HC 1 by the above HC 1 capture component is high.
  • the amount of unburned char in the exhaust gas is relatively small for the amount of pulverized coal injected. It contains a considerable amount of unburned char. Since the unburned char has a function of strongly and strongly adsorbing (physical adsorption) HC 1 in the exhaust gas, the HC 1 concentration in the gas is reduced by a very short contact with the exhaust gas. HC 1 was physically adsorbed on the surface of the unburned Chiya scratch, fixed gradually HC 1 capture component contained in the Dust (C a O, N a 2 0, F e , etc.) to the reaction to Dust Is done.
  • the unburned fuel that should adsorb HC1 is not lost through the furnace part and the furnace top part.
  • the adsorption of HC 1 by the unburned channel is performed effectively, and the HC 1 once adsorbed on the unburned channel does not transfer to the gas side again.
  • the amount of synthetic resin material supplied to the furnace (or more precisely, the amount of vinyl chloride material) HCI trapping component and one amount of unburned char according to the supply amount), and therefore, inject a considerable amount of pulverized coal according to the amount of synthetic resin material charged to the furnace top + the amount of injection thing Is preferred.
  • the furnace top gas contains hydrogen at a concentration of 5% or more. The presence of the hydrogen stabilizes the decomposed product of the synthetic resin material, so that the decomposed product is prevented from reacting with each other to form a tar precursor, thereby reducing piping. It is possible to prevent the generation of tar-like or box-like substances that cause troubles such as blockage.
  • the present invention employs a special blowing method (the blowing method based on the above-mentioned configurations (1) and (2)) that enables highly efficient combustion of pulverized coal.
  • the synthetic resin material is also basically burned efficiently by this method, so that a considerable amount of the injected synthetic resin material burns rapidly at the tuyere or at the tuyere tip. . For this reason, the ratio of unburned synthetic resin material remaining in the lower part of the furnace is reduced, and the problem that the synthetic resin material is fused by the coaxial rod and hinders the air permeability in the furnace is caused. Absent.
  • the problem of a large bottleneck when the synthetic resin material is blown into the furnace in the molten iron manufacturing method does not cause any problem according to the scrap melting method of the present invention. Therefore, the in-furnace injection of synthetic grease in scrap melting requires low-cost production of hot metal and high-strength port leakage from scrap and pulverized coal or pulverized coal + synthetic resin.
  • the present invention has the object of implementing the above method by means of the above (1) to (3) under an operation at a high fuel ratio by injecting a large amount of pulverized coal or pulverized coal + synthetic resin material. It is no exaggeration to say that it became possible for the first time under the law.
  • the present invention is based on the premise that the fuel ratio is higher than in the conventional method and that pulverized coal or pulverized coal + synthetic resin is injected in a large amount.
  • the range of fuel consumption is based on actual operation.
  • oxidation ⁇ for pulverized coal consumes rapidly oxygen is sufficiently small in tuyere, also Thus oxidation of the yo Una hot metal slag is not a big problem c, in particular FIG. 1
  • the pulverized coal rapidly consumes oxygen in the pre-combustion chamber, so that the combustion zone is hardly formed or formed at the tuyere tip.
  • it is only formed in a very limited narrow area, and therefore, oxidation of the molten iron slag as described above hardly causes a problem.
  • the combustion gas obtained by rapidly burning pulverized coal (and synthetic resin material) is blown to the tuyere to dissolve the risk trap smoothly.
  • No special material coke is required for temperature distribution control.
  • a coke is required to make a raceway at the lower part of the melting zone and hold the filled scrap, but coke for a blast furnace can be used for this.
  • slag mainly composed of coal ash generated during the combustion and gasification of pulverized coal is easily melted and separated from hot metal at the lower part of the furnace and accumulates at the upper part thereof. It can be discharged outside and does not hinder operation.
  • the purity of the oxygen gas blown from the combustion parner is preferably as high as possible, but the purity of the oxygen gas generally used for industrial purposes is preferably at least 99%.
  • the purity of industrial oxygen gas that is generally sold is about 99.8% to 99.9%, and the purity of oxygen gas obtained from oxygen brands at steelworks is around 99.5%. This purity is sufficient.
  • oxygen gas having a purity of less than 95% cannot sufficiently secure contact between pulverized coal (and synthetic resin material) and oxygen to be blown. It is difficult to achieve the object of the present invention, because the combustion efficiency of charcoal (and synthetic resin material) is poor and low calorie gas components in the exhaust gas are added. Therefore, the oxygen blown from the tuyere in the present invention refers to oxygen gas having a purity of 95% or more.
  • dust injected from the tuyere in the method of the present invention is used as an iron source, a heat source, an auxiliary material source, or a high-calorie exhaust gas source in the furnace.
  • Many of the dusts discharged from steelworks contain a large amount of metal oxides (mainly iron oxide).
  • metal oxides mainly iron oxide.
  • the tuyere tip temperature was 20 to 30 ° C. It has been confirmed that the degree of reduction is reduced.
  • part of pulverized coal is made of synthetic resin. Substitution is particularly advantageous for mass injection of dust (when dust is injected through the same combustion burner). In other words, when a large amount of dust, which is basically non-combustible, is blown into the pre-combustion chamber, a large amount of this dust and molten slag generated by the ash of the pulverized coal are present in the pre-combustion chamber.
  • the combustibility of pulverized coal and the like may be adversely affected, but the synthetic resin is used as a partial substitute for pulverized coal or temporarily as a substitute for all pulverized coal.
  • the production of molten slag due to the combustion of pulverized coal is reduced or eliminated at one time. Large amounts of dust can be blown.
  • the zinc concentration in the raw material be at least about 50 wt%.
  • zinc contained in dusts discharged from furnaces and the like contains only about 20% of the cuboladast, which is considered to have the highest zinc concentration.Therefore, zinc is directly removed from these dusts. It is difficult to recover.
  • the dust containing zinc recovered from the exhaust gas in the furnace is blown into the furnace.
  • the dust containing zinc recovered from the exhaust gas in the furnace is blown into the furnace.
  • zinc is converted into the collected dust and included in scrap and dust. It is possible to recover zinc in a high-concentration state (in other words, as a dust containing high-concentration zinc).
  • Zinc is introduced into the furnace through scrub dusts and evaporates in the furnace in a temperature range of about 800 to ⁇ 900 "(a boiling point of 907 is slightly lower than that of the castle).
  • the metal zinc vapor is generated in the furnace together with the gas flow inside the furnace, and condenses in a temperature range of about 400 to 800 °.
  • zinc metal can be condensed on the dust surface at the furnace top, and zinc can be captured in the dust.
  • the amount of exhaust gas is smaller than that of the method of blowing air or oxygen-enriched air.
  • the dust concentration at the furnace top is high and the gas flow velocity is low, so that the dust As a result, the zinc metal vapor can be efficiently contacted with the dust at the furnace top, and together with the control of the furnace top temperature described above, the dust is extremely effectively captured. be able to.
  • furnace top temperature is less than 400, a temperature range in which metal zinc vapor will condense exists in the furnace shaft, so that zinc condenses in the furnace shaft and adheres and deposits on the inner wall and other surfaces. I will.
  • furnace top temperature exceeds 800, gold-zinc vapor is released outside the furnace without condensing, condensed in the exhaust gas pipe, and zinc adheres and accumulates on the inner wall of the pipe, causing blockage of the pipe. Causes trouble.
  • Figure 20 shows the relationship between the furnace top temperature and the zinc recovery rate through the dust. A high zinc recovery rate was obtained when the furnace top temperature was in the range of 400 to 800. Five
  • the furnace top temperature in the range of 400 to 800 ° C, preferably in the range of 450 to 750.
  • the secondary combustion in the furnace as in the conventional scrub melting method is not performed, so that the furnace top temperature is easily controlled in the range of 400 to 800 ° C. can do.
  • zinc contained in the furnace is recovered by collecting the zinc-containing dust from the exhaust gas and introducing the dust from the tuyere into the reflow furnace. Therefore, the zinc in the furnace ⁇ can be efficiently recovered in a high concentration state by appropriately removing a part of the recovery dust outside the system. Therefore, by implementing such a method of the present invention, even a scrap material containing high concentration of zinc can be used as an iron source without any problem.
  • the dust from the exhaust gas is collected by installing a bag filter and a cyclone in the exhaust gas conduit of the furnace top gas, and at least a part of the collected zinc-containing dust is repeated at the tuyere. From the furnace and part of it is taken out of the system as a high-concentration zinc-containing dust, and used as a raw material for zinc.
  • the scrub not only can the scrub be dissolved to efficiently produce the melt, but also a large amount of high-power exhaust gas having high utility value can be obtained as a fuel gas.
  • Fig. 22 shows a method in which pulverized coal is blown into oxygen-enriched hot air through a lance 20 based on the known cuvola method, and the amount of pulverized coal and the amount of pulverized coal are adjusted using hot air at a temperature of 800. changing the [PC / 0 2] and.
  • Figure 21 shows the results.
  • Figure 21 1 shows pulverized coal input! : Shows the relationship between C concentration ratio [P CZ0 2] and Roitadakiinui Das middle of a PC (kg / h) and the oxygen flow rate 0 2 (Nm 3 / h) , the comparative method [P CZ0 C concentration the value becomes 0. 7 k gZNm 3 or more in the furnace top Dust 2] is increasing rapidly. This indicates that when [P czo 2 ] is in this area, the pulverized coal is not sufficiently burned at the tuyere tip and is discharged from the furnace top without being burned. Are not fully utilized as fuel.
  • the scrap was melted using each of the test furnaces with tuyeres shown in Fig. 2 to produce hot metal.
  • the pulverized coal and coke used were the same as in Example 1, and the granular synthetic resin material used had an average particle size of 0.2 to 1 mm.
  • some comparative examples were introduced into the shaft, and the combustion gas was subjected to secondary combustion. Tables 2 to 10 show the production conditions and the results of each example.
  • No. 1 is an example of an operation in which pulverized coal and synthetic grease were not injected (only oxygen was injected from the tuyere) and all heat sources were coke (pulverized coal ratio).
  • No. 2 to ⁇ ⁇ ⁇ 4 blow oxygen and pulverized coal and a small amount of particulate synthetic resin material from the combustion parner, and No. 2 ⁇ No.
  • This is an operation example in which the ratio of pulverized coal + synthetic resin is increased in the order of 4.
  • No. 5 and No. 6 have a tuyere with a tuyere having the structure shown in FIG. 4, and No. 7 and No. 8 have a tuyere with a structure shown in FIG.
  • oxygen, pulverized coal, and a small amount of particulate synthetic resin were injected from the combustion parner under conditions almost corresponding to No. 3 and No.
  • the flammability of pulverized coal and synthetic resin material is enhanced as compared with No. 3 and No. 4, and as a result, The coke ratio was reduced by a small margin, and the amount of furnace dust generated was reduced.
  • No. 9 to No. 15 indicate the ratio of synthetic resin material blown from the tuyere as compared with No. 3 and No. 4, and in the order of No. 9—No. This is an example of an operation in which the ratio of chlorinated vinyl resin contained in synthetic resin was increased, and in each case, the HC1 concentration in the exhaust gas was kept low.
  • No. 16 to No. 18 indicate a test furnace having a tuyere having the structure shown in FIG. 4, and No. 19 to No. 21 indicate a tuyere having the structure shown in FIG.
  • the HC1 concentration in the exhaust gas is kept low.
  • No. 22 to No. 24 are operation examples in which the ratio of synthetic resin material was significantly increased relative to the ratio of pulverized coal, and these were the effects of reducing the HC1 concentration in exhaust gas due to the injection of a large amount of pulverized coal. Is relatively lower, so that the HC 1 concentration in the exhaust gas is higher than that of No. 10 to No 21.
  • No. 25 is an example of an operation in which pulverized coal and an appropriate amount of synthetic resin (hereinafter referred to as pulverized coal) and oxygen are injected using a conventional injection tuyere, and combustion of perilla, pulverized coal, etc.
  • [(P C + SR) zo 2 ] cannot be increased due to low efficiency, so a large amount of coke is required compared to pulverized coal, etc., and the production cost is high.
  • the FeO in the slag is high, resulting in lower quality of hot metal and lower iron yield.
  • No. 26 is an operation example in which oxygen-enriched air was blown together with pulverized coal using a conventional injection tuyere, and in this operation example, a conventional injection tuyere was used.
  • oxygen-enriched air is used as the gas to be blown in, so that sufficient contact between oxygen and pulverized coal cannot be ensured. .25 is even lower, so the coke ratio must be increased. High manufacturing cost.
  • No. 27 is an example of operation using a conventional injection tuyere, injecting oxygen-enriched air together with pulverized coal, etc., and introducing air for secondary combustion into the shaft.
  • the fuel ratio can be lower than that of No. 26, but for the same reason as in No. 26, the combustion efficiency of pulverized coal is low and the coke ratio is high. Cost is high.
  • the oxygen enriched air (6 6% 0 2) combustion Nyo Li resulting combustion gases and the like pulverized coal used was secondary combustion, very low calorie exhaust gas (1 8 00 kca 1 ZNm 3 not available).
  • the contact between oxygen and pulverized coal is not sufficiently ensured, so that the FeO in the slag is high, and the quality of the hot metal deteriorates and the iron yield decreases.
  • No. 28 employs a tuyere injection method equivalent to the method of the present invention, in which oxygen-enriched air is blown from around pulverized coal or the like.
  • the blow gas is used.
  • the use of oxygen-enriched air makes it impossible to ensure sufficient contact between oxygen and pulverized coal, etc., and therefore, the combustion efficiency of pulverized coal, etc. is low, and the coke ratio must be increased. High manufacturing cost.
  • the exhaust gas calorie is also low (24 00 kcal ZNm 3 Not ⁇ ).
  • oxygen-enriched air since oxygen-enriched air is used, the contact between oxygen and pulverized coal etc. is not sufficiently ensured, so the FeO in the slag is higher than that of No. 3 and No. The quality and yield have been reduced.
  • No. 29 adopts a tuyere blowing method equivalent to the method of the present invention, in which oxygen-enriched air is blown from around pulverized coal and the like, and air for secondary combustion is blown into the shaft.
  • the fuel ratio can be lower than in No. 28 in this operation example.
  • the production cost is high because the combustion efficiency of pulverized coal is low and the coke ratio is high.
  • the oxygen enriched air (6 2% 0 2) combustion gas generated and Li by the combustion of such pulverized coal used was secondary combustion, very low calorie exhaust gas (1 8 0 0 kcal ZNni less than 3 ).
  • the contact between oxygen and pulverized coal etc. is not sufficiently ensured as in No. 28, the FeO in the slag is higher than in No. 3 and No. 4, and the quality of the hot metal deteriorates. And a decrease in iron yield.
  • No. 30 and No. 31 are examples of operation with a low fuel ratio.
  • No. 30 employs a tuyere injection method equivalent to the present invention method, and is used from around pulverized coal.
  • This is an example of an operation that blows oxygen-enriched air.
  • oxygen-enriched air is used as the blowing gas, so that sufficient contact between oxygen and pulverized coal or the like cannot be ensured. Therefore, the combustion efficiency of pulverized coal or the like is low.
  • the manufacturing cost is high because the cost li must be increased.
  • No. 31 employs a tuyere blowing method equivalent to the method of the present invention, in which oxygen-enriched air is blown from around pulverized coal and the like, and air for secondary combustion is blown into the shaft.
  • the fuel ratio can be lower than that of No.30, the combustion efficiency of pulverized coal etc. is low and the coke ratio is low for the same reason as No.30. Cost is high due to high cost.
  • the oxygen enriched air (6 3% 0 2) combustion gas generated and Li by the combustion of such pulverized coal used was secondary combustion calorie of the exhaust gas is very low (1 8 0 0 kcal ZNm less than 3 ) and low combustion ratio Since the operation is performed at the site, the amount of exhaust gas is small.
  • No. 30 since sufficient contact between oxygen and pulverized coal etc. is not ensured, FeO in the slag is higher than No. 3 and No. Iron yield is decreasing.
  • No. 32 and No. 33 adopt a tuyere injection method equivalent to the method of the present invention, and pulverized coal and a relatively large amount of synthetic resin material are blown from the tuyere portion, and the shaft portion is blown.
  • the unburned fuel in the exhaust gas was lost due to the secondary combustion, resulting in the HC 1 adsorbed on the unburned fuel.
  • Most of the methane is desorbed and re-entered into the exhaust gas, so the HC 1 concentration in the exhaust gas is extremely high. (Example 3)
  • the scrap was melted using the same test furnace as in Example 2 to produce hot metal.
  • the same pulverized coal and coke were used as in Example 1, and the powdery synthetic resin blown from the tuyere was used.
  • the material used had an average particle size of 0.2 to 1 mm.
  • air for secondary combustion was introduced into the shaft portion to combust combustion.
  • the gas was subjected to secondary combustion, and the production conditions and results of each example are shown in Tables 11 to 24.
  • No. 1 and No. 2 do not inject pulverized coal or synthetic resin (only oxygen is blown in from tuyeres), and all heat sources are coke.
  • No. 1 was an operation example in which the synthetic resin material was not charged into the furnace top, and No. 2 was a synthetic resin material furnace top. This is an example of the operation that was performed.
  • the furnace top is charged with synthetic resin material, and pulverized coal is blown together with oxygen from the combustion parner to obtain No. 3—No.
  • the furnace top was charged with synthetic resin material, and both oxygen and oxygen from the combustion parner were used.
  • No. 9 to No. 12 indicate a test furnace having a tuyere having the structure shown in FIG. 4, and No. 13 to No. 16 indicate a tuyere having a structure shown in FIG.
  • air was blown from the tuyere compared to No. 4, No. 5, No. 7, and No. 8.
  • the flammability of pulverized coal and synthetic resin material was enhanced, resulting in a slight decrease in coke ratio and a reduction in furnace dust.
  • No. 17 to No. 19 are operating examples in which the ratio of synthetic resin charged into the furnace top is increased by No. 4, No. 9, No. 13 Higher calorie exhaust gas is obtained than No.4, No.9, No.13.
  • No. 20 to No. 22 set the furnace top temperature higher than No. 4, No. 9, No. 13 Although the concentration of tar in the gas at the top decreases due to the low furnace temperature, the thermal decomposition property of the synthetic resin material charged at the top decreases at the upper part of the furnace.
  • the calorific value is also lower than No. 4 etc.
  • No. 23 to No. 25 are operation examples in which the furnace top temperature is lower than No. 17 to No. 19, and the same tendency is observed.
  • No. 26 to No. 28 are based on the method of blowing pulverized coal + synthetic resin from the tuyere, and the furnace top temperature is set to No. 7, No. 11 and No. 15 The same tendency can be seen in the operation examples where the operation was also low.
  • No. 29 to No. 31 are examples of operations in which a synthetic resin material charged into the furnace top contains butyl chloride resin.In each case, the HC 1 concentration in the exhaust gas was kept low. I have.
  • No. 32 to No. 35 are examples of operations in which the total amount of synthetic resin material injected into the furnace top and injected into the tuyere was significantly increased with respect to the pulverized coal ratio.
  • the HC 1 concentration in the exhaust gas is higher than that of 15 No. 16 but is at a level that does not cause any problems.
  • No. 36 and No. 37 are examples of operations in which pulverized coal or pulverized coal + synthetic resin material (hereinafter referred to as pulverized coal etc.) and oxygen are blown using a conventional blowing tuyere.
  • pulverized coal or pulverized coal + synthetic resin material (hereinafter referred to as pulverized coal etc.) and oxygen are blown using a conventional blowing tuyere.
  • Li due to the low combustion efficiency of pulverized coal, such as [PC + 0 2], [ (PC + SR) / 0 2] can not be raised, and require a large amount of coke compared to this for pulverized coal, etc., High manufacturing cost.
  • the FeO in the slag is high, resulting in lower quality of hot metal and lower iron yield ⁇ No. 38 and No.
  • No. 40 and No. 41 use conventional blowing tuyeres, blow oxygen-enriched air with pulverized coal, etc., and provide secondary combustion air to the shaft.
  • the fuel ratio can be lower than No. 38 and No. 39, the same reason as in No. 38 and No. 39
  • the production cost is high because the combustion efficiency of pulverized coal is low and the coke ratio is high.
  • the oxygen enriched air (6 6% 0 2) combustion gas generated and Li by the combustion of such pulverized coal used was secondary combustion, very low calorie exhaust gas (2 000 kcal ZNm less than 3 ).
  • the contact between oxygen and pulverized coal is not sufficiently ensured, so that the FeO in the slag is high, and the quality of the hot metal and the iron yield are reduced. Has occurred.
  • No. 42, No. 43 is an operation example in which a tuyere blowing method equivalent to the present invention method is adopted, and oxygen-enriched air is blown from around pulverized coal or the like.
  • oxygen-enriched air is used as the gas to be blown, so that sufficient contact between oxygen and pulverized coal cannot be ensured, so that the combustion efficiency of pulverized coal or the like is low, and thus the coex ratio
  • the production cost is high because the cost must be increased.
  • the oxygen-enriched sky Because it uses air (69% 0 2 ), the calories in the exhaust gas are also low (less than 290 kcal ZNm 3 ).
  • No.44 and No.45 adopt a tuyere injection system equivalent to the method of the present invention, in which oxygen is blown from around pulverized coal and the like, and air for secondary combustion is introduced into the shaft.
  • the unburned fuel in the exhaust gas was lost due to the secondary combustion, and as a result, most of the HC1 adsorbed on the unburned fuel was desorbed and again HC1 in the exhaust gas is high compared to the amount of vinyl chloride charged because it shifts into the exhaust gas.
  • No. 46 and No. 47 adopt a tuyere blowing method equivalent to the method of the present invention, in which oxygen-enriched air is blown from around pulverized coal or the like, and the air is blown into the shaft.
  • the fuel ratio can be lower than that in No. 42 and No. 43, but in this operation example, the No. 42 and No. 4
  • the combustion efficiency of pulverized coal etc. is low and the production cost is high due to the high coke ratio.
  • oxygen-enriched air (62% 0 2 ) is used and the combustion gas generated by the combustion of pulverized coal and the like is subjected to secondary combustion, the calorie of the exhaust gas is extremely low (1).
  • No. 48 to No. 51 are examples of operation with a low fuel ratio.
  • No. 48 and No. 49 employ a tuyere blowing method equivalent to the method of the present invention.
  • This is an operation example in which oxygen-enriched air is blown from around pulverized coal.
  • oxygen-enriched air is used as the blowing gas, the contact between oxygen and pulverized coal etc. is sufficient.
  • the combustion efficiency of pulverized coal and the like is low, and therefore the coke ratio must be increased, resulting in high production costs.
  • oxygen-enriched air (63% 0 2 ) results in low calories in exhaust gas (less than 2700 kca 1 / Nm 3 ), and furthermore, the operation at a low combustion ratio Therefore, the amount of exhaust gas is small.
  • oxygen-enriched air since oxygen-enriched air is used, the contact between oxygen and pulverized coal is not sufficiently ensured, so that FeO in the slag is reduced to No.4, No.5, and No.7. , No. 8, the hot metal quality is reduced and the yield is reduced.
  • No. 50 and No. 51 adopt a tuyere blowing method equivalent to the method of the present invention, in which oxygen-enriched air is blown from around pulverized coal and the like, and two In the operation example in which air for the next combustion was introduced, the fuel ratio could be lower than in No. 48 and No. 49, but the No. 48 and No. 4 For the same reason as in 9, the combustion cost of pulverized coal is low and the cost of production is high due to the high coke ratio.
  • Scraps were melted using the same test furnaces as in Example 2 to produce hot metal.
  • the pulverized coal and coke used were the same as in Example 1, and the powdery and granular synthetic resin material blown from the tuyere had an average particle size of 0.2 to 1 mm. Dusts were injected from the same tuyere as pulverized coal, etc., and blast furnace dust having the composition shown in Table 25 was used as the dust. Further, in this example, in some comparative examples, air for secondary combustion was introduced into the shaft portion, and the combustion gas was subjected to secondary combustion. Manufacturing conditions for each example Tables 26 to 46 show the results.
  • No. 1 and No. 2 are operation examples where pulverized coal or synthetic resin material is not injected (only oxygen is injected from the tuyere) and coke is used as the heat source (pulverized coal ratio: 0).
  • No. 1 is an operation example in which synthetic resin material was not charged to the furnace top
  • No. 2 was an operation example in which synthetic resin material was charged to the furnace top.
  • No. 3 to No. 25 are examples of the present invention in which synthetic resin material is tuyere-injected, and No. 26 to No. 58 are synthetic resin material furnace top charging or furnace top charging + This is an example of the present invention in which tuyere blowing is performed.
  • No. 6 and No. 7 are test furnaces with tuyeres having the structure shown in FIG.
  • a test furnace equipped with tuyeres having the structure shown in FIG. 10 was used, and oxygen and pulverized coal and This is an operation example in which a small amount of powdery synthetic resin material was injected.
  • the flammability of the pulverized coal and the synthetic resin material was improved as compared with No. 4 and No. 5.
  • the coke ratio decreased slightly, and the amount of furnace dust generated further decreased.
  • No. 10 to No. 16 indicate the ratio of synthetic resin material blown from the tuyere portion as compared with No. 4 and No. 5, and No. 10—No. 16
  • the ratio of vinyl chloride resin contained in the synthetic resin material was increased in this order, and the HC1 concentration in the exhaust gas was kept low in each case.
  • No. 17 to No. 19 indicate a test furnace provided with a tuyere having the structure shown in FIG. 4, and No. 20 to No. 22 indicate a blade having the structure shown in FIG.
  • Each of the operation examples was conducted using a test furnace equipped with a mouth and operating under conditions that were almost the same as those of No. 11, No. 13 and No. 15 above. However, the HC 1 concentration in the exhaust gas is kept low.
  • No. 23 to No. 25 are operation examples in which the ratio of synthetic resin is significantly increased compared to the ratio of pulverized coal, and these are the reductions in HC1 concentration in exhaust gas due to the injection of a large amount of pulverized coal. Since the effect is relatively reduced, the HCl concentration in the exhaust gas is higher than in No. ll to No22.
  • No. 32 to No. 35 indicate a test furnace having a tuyere having the structure shown in FIG. 4, and No. 36 to No. 39 indicate a tuyere having the structure shown in FIG.
  • Using a test furnace with a mouth oxygen and pulverized coal were obtained from the combustion parner under conditions almost corresponding to No. 27, No. 28, No. 30 and No. 31. Or, in operation examples where pulverized coal and synthetic resin material were injected, these operation examples were compared with No. 27, No. 28, No. 30 and No. 31.
  • the flammability of the pulverized coal and synthetic resin injected from the tuyere is further enhanced, resulting in a slight decrease in the coke ratio and a reduction in the amount of furnace dust.
  • No. 40 to No. 42 are examples of operation in which the ratio of synthetic resin charged into the furnace top was increased by No. 27, No. 32, and No. 36. No. 27, No. 32, No.
  • No. 43 to No. 45 are operation examples in which the furnace top temperature was lower than that of No. 27, No. 32, and No. 36. Although the tar concentration in the top gas is reduced, the decomposability of the synthetic resin material charged at the top of the furnace at the upper part of the furnace is reduced, and the calorific value of the exhaust gas is also reduced as compared with No. 27 etc. ing. Also, No. 46 to No.
  • Reference numeral 48 denotes an operation example in which the furnace top temperature was lower than that of No. 40 to No. 42. A similar tendency can be seen in these groups.
  • No. 49 to No. 51 are based on the method of blowing pulverized coal + synthetic resin from the tuyere, and the furnace top temperature is controlled to N 0.30, No. 34 and No. 38. The same tendency can be seen in the operation examples with lower operating rates.
  • No. 52 to ⁇ ⁇ ⁇ 54 are examples of operations in which the synthetic resin material charged into the furnace section contains butyl chloride resin.In each case, the HC1 concentration in the exhaust gas is kept low. I have.
  • No. 55 to ⁇ ⁇ 58 is an operation example in which the total amount of synthetic resin material charged into the furnace top and injected into the tuyere with respect to the pulverized coal ratio was greatly increased. Since the effect of reducing the concentration of HC1 in the exhaust gas due to the large amount of pulverized coal is relatively reduced, these are no. 30, No. 31, No. 34, No. 35, N The HC 1 concentration in the exhaust gas is higher than in o.38 and No.39, but at a level that does not cause any problem.
  • No. 59 and No. 60 are examples of operations in which pulverized coal or pulverized coal + synthetic resin material (hereinafter referred to as pulverized coal etc.) and oxygen are blown using a conventional blowing tuyere.
  • [PC + 0 2 ] and [(PC + SR) ⁇ 2 ] cannot be increased due to low combustion efficiency of pulverized coal, etc., which requires a large amount of coke compared to pulverized coal, etc., and the production cost is high .
  • the FeO in the slag is high, and the quality of the hot metal is reduced and the yield of iron is reduced.
  • No. 61 and No. 62 are operation examples in which oxygen-enriched air is blown together with pulverized coal using a conventional blowing tuyere.
  • the oxygen-enriched air is used as the gas to be blown, so that sufficient contact between oxygen and pulverized coal cannot be ensured.
  • the combustion efficiency of charcoal etc. is even lower at No. 59 and No. 60, and the cost ratio is high because the coke ratio must be increased.
  • oxygen-enriched air (66% O 2) is used, the calories of the exhaust gas are also low (less than 3 000 kca 1 ZN m 3 ). Since the contact with coal etc. is not sufficiently ensured, the FeO in the slag is high, and the quality of hot metal deteriorates and the iron yield decreases. You.
  • No. 63 and No. 64 use conventional injection tuyere, blow oxygen-enriched air together with pulverized coal, etc., and apply secondary air to the shaft for secondary combustion.
  • the fuel ratio can be lower than that of No. 61 and No. 62, but the same as in No. 61 and No. 62.
  • the combustion efficiency of pulverized coal is low, and the coke ratio is high, so the production cost is high.
  • the oxygen enriched air (6 6% 0 2) combustion Nyo Li resulting combustion gases and the like pulverized coal used was secondary combustion, very low calorie exhaust gas (2 00 0 kcal ZNm less than 3 ).
  • the contact between oxygen and pulverized coal is not sufficiently ensured, so that the FeO in the slag is high and the quality of the hot metal and the iron yield are reduced. Has occurred.
  • No. 65 and No. 66 are operating examples in which the air-enriched air is blown from the surroundings of pulverized coal etc. by adopting a tuyere blowing method equivalent to the method of the present invention. Since oxygen-enriched air is used as the blowing gas, sufficient contact between oxygen and pulverized coal or the like cannot be secured, and the combustion efficiency of pulverized coal or the like is low. The manufacturing cost is high because the ratio must be increased. Moreover, due to the use of oxygen-enriched air (6 9% 0 2), the exhaust gas calorie is also low (less than 2 9 00 kca 1 / Nm 3 ). In addition, since oxygen-enriched air is not used, sufficient contact between oxygen and pulverized coal is not ensured, so that FeO in the slag is reduced to No. 27, No.
  • No. 67 and No. 68 adopt a tuyere injection system equivalent to the method of the present invention, in which oxygen is blown from around pulverized coal and the like, and air for secondary combustion is introduced into the shaft.
  • the unburned fuel in the exhaust gas was lost due to the secondary combustion, and as a result, most of the HC1 adsorbed on the unburned fuel was desorbed and again Exhaust gas
  • the HC1 concentration in the exhaust gas is high compared to the charging fi of chloride chloride material.
  • No. 69, No. 70 adopts a tuyere injection method equivalent to the method of the present invention, in which oxygen-enriched air is blown from around pulverized coal and the like, and secondary air is injected into the shaft.
  • air for combustion was introduced.
  • the fuel ratio could be lower than that of No. 65 and No. 66, but No. 65 and No. 66.
  • the combustion efficiency of pulverized coal is low, and the cost ratio is high, so the production cost is high.
  • No. 71 to No. 74 are examples of operation with a low fuel ratio.
  • No. 71 and No. 72 adopt a tuyere blowing method equivalent to the method of the present invention.
  • This is an operation example in which oxygen-enriched air is blown from around charcoal and the like.
  • oxygen-enriched air is used as the blowing gas, so that sufficient contact between oxygen and pulverized coal or the like cannot be ensured. Therefore, the combustion efficiency of pulverized coal or the like is low, and therefore, the coke ratio is low.
  • the manufacturing cost is high because the cost must be increased.
  • oxygen-enriched air (6 3% 0 2)
  • calorie of the exhaust gas is low (less than 2 700 kcal ZNm 3)
  • the amount of exhaust gas because it is operating at a low combustion ratio is less.
  • oxygen-enriched air since oxygen-enriched air is used, the contact between oxygen and pulverized coal is not sufficiently ensured, so that FeO in the slag is reduced to No. 27, No. 28 and No. .30, No.31, which lowers the quality of hot metal and lowers the yield.
  • No. 73 and No. 74 adopt a tuyere blowing method equivalent to the method of the present invention, in which oxygen-enriched air is blown from around pulverized coal or the like, and secondary fuel is injected into the shaft.
  • the fuel ratio can be lower than that of No. 71 and No. 72, but the fuel ratio is No. 71 and No. 72.
  • the production cost is high because the combustion efficiency of pulverized coal is low and the coke ratio is high.
  • the recovery dust furnace The Zn concentration in the top dust
  • the blowing dust blast furnace dust
  • Oxygen flow fi (Nm 3 / t-pig)
  • PC Pulverized coal ratio (kg / pig) SR: Synthetic resin material injection ratio ('pig) o 2 Oxygen flow rate (mVt -pig)
  • PC Pulverized coal ratio (ig / 'Pig) SR Plastic resin injection ratio' pig) 0 2 : Oxygen flow! : ( ⁇ 3 ⁇ ' ⁇ )
  • PC Pulverized coal ratio (kg / pig)
  • SR Synthetic resin injection ratio (kg / pig)
  • Oxygen flow Nm 3 / I lig
  • a38 to a43 and a46 to Na51 indicate the amount of oxygen added to air.
  • PC Pulverized coal ratio (kg 'pig)
  • SR Synthetic resin material injection ratio (kg / pig) 0 2 : Oxygen flow rate ((1 ⁇ 2 3 ⁇ ⁇ ⁇ ⁇ )
  • PC pulverized coal ratio (/ t 'pig)
  • SR synthetic resin blow ratio (kg / I' pig)
  • oxygen flow fi Nm 3/1 -Pii
  • PC pulverized coal ratio (kg / have pig)
  • SR synthetic resin blow ratio (kg / There pig)
  • 0 2 oxygen flow fi (Nm 3 / have PU)
  • PC pulverized coal ratio (kg / have pig)
  • SR synthetic resin blow ratio (kg ⁇ ⁇ ) 0 2: oxygen flow rate (Nm 3 'pig)
  • Ne 2 ⁇ 38 to ⁇ 43 and ⁇ 46 to ⁇ 51 show oxygen fi added to air.
  • Table 24
  • PC pulverized coal ratio (kg / t 'pig)
  • SR synthetic resin blow ratio (ig' pig) 0 2: Oxygen flow rate ( ⁇ 1 ⁇ 2 3 ⁇ ⁇ ⁇ )
  • PC pulverized coal ratio
  • SR synthetic resin material ratio (! Kg / have)
  • ig) 0 2 oxygen flow rate (Nm 3 / have pig)
  • PC pulverized coal ratio (kg / i 'pig)
  • SR synthetic resin ratio (, P) 0 2: oxygen flow i (Nm 3 / have pig)
  • PC pulverized coal ratio (kg / have pig)
  • SR synthetic resin ratio (kg / There pig)
  • 0 2 oxygen flow i (Nm 3 / have pig)
  • PC pulverized coal ratio (kg / ⁇ pig)
  • SR synthetic resin ratio (kg / There Pig)
  • 0 2 oxygen flow rate (Nm 3 / have pig)
  • PC Pulverized coal ratio (kg / pig)
  • SR Synthetic resin ratio (/ pig) 0 2 : Oxygen flow! : ( ⁇ 3 / i pig)
  • PC pulverized coal ratio (U / have Pig)
  • SR synthetic resin ratio (kg 'pig)
  • 0 2 oxygen flow rate (Nm 3 / l' pig)
  • PC Pulverized coal ratio (kg / pig)
  • SR Synthetic resin ratio ('pig) 0 2 : Oxygen flow i (Nni 3 / pig)
  • PC pulverized coal ratio / have P ig
  • SR synthetic resin ratio (/ have P i «) 0 2: oxygen flow rate (Nm 3 / p ig)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacture Of Iron (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

明 糸田 寄 スクラッブ溶解法 技術分野
本発明はスクラップ溶解法、 ょ リ詳細には、 スク ラ ップを鉄源と し且つ微粉炭 を主要な熱源及びノまたは高力口 リー排ガス源とすると と もに、 高カロ リー排ガ ス源さ らには熱源の一部と して廃棄物たる合成樹脂類を用いて溶銑を製造し、 し かも燃料用ガスと して高い利用価値のある高カロ リ一排ガスを得るこ とができる スクラップ溶解法に関する。 背景技術
近年スクラ ップ (銑屑、 鉄屑) の供給が增加の一途を迪つておリ、 そのリサィ クルが資源の有効利用の面で重要な課題となリつつある。 このためスクラ ップを 原料と して低コス トに高い生産性で溶銑を製造できる技術の開発が強く望まれて いる。
従来、 スクラ ップから溶銑を製造するために電気炉が用いられているが、 電気 炉法は莫大な電気を必要とするためコス 卜が高く 、 製造コス ト面での要求を満足 できない。
また、 キュボラ法によ リ スクラ ッブを原料と した铸物銑の製造が行われている が、 このキュボラ法では燃料と して踌物用の高品位大塊コ一クスを使用する必要 がぁリ、 この铸物用コークスは高炉用コ一クスの 4倍程度の価格であるため製造 コス トの面で汎用化は難しい。 キュボラ法ではスクラ ップの円滑な溶解を促すた めに、 羽口から吹き込まれた熱風中の酸素を羽口先のコ一クスによって急速に消 费させず、 炉の下部に形成されるコ一タスべッ ト上部のスク ラ ッブ溶解帯付近で 消費させるよ うにし、 この部分で最高温度になるよ うな温度分布にすることが必 要でぁリ、 このためコ一クスは高炉用コークスょ リ も反応性が低く、 燃焼しにく いものを使用する必要がある。 このため、 高炉用コークスょ リ も粒度が大きく反 応性の低い特殊な铸物用コークスを用いることが不可欠である。
以上のよ うな従来の電気炉法ゃキュボラ法に対して、 シャフ ト炉を用いたスク ラ ップ溶解法と して、 シャフ ト炉内に鉄源であるスクラップと高炉用コ一クスと を装入すると と もに、 羽口部から常温の高酸素富化空気と微粉炭を吹き込んで燃 焼させ、 この燃焼ガスの顕熱によ リスクラ ップを溶解すると と もに、 シャフ ト部 から空気を吹き込むこ とで燃焼ガスを二次燃焼させてスクラ ッブの溶解を促進さ せるよ うにしたスクラ ップ溶解法が提案されている (鉄と鋼 Vo l . 79,No . 2, P . 1 3 9〜I 46 ) 。
また、 他の方法と して、 シャフ ト炉の外部に微粉炭燃焼用の燃焼炉を設けてこ の燃焼炉で微粉炭を多量に燃焼させ、 発生した高温の燃焼ガスをスクラ ップと コ 一クスが装入されたシャフ ト炉に導入すると ともに、 この導入の際に酸素含有ガ スを補給して燃焼ガスを二次燃焼させ、 この燃焼ガスの顕熱によ リスクラ ップを 溶解するよ うにしたスクラ ップ溶解法が提案されている (特開平 1 — 1 9 5 2 2 5号公報) 。
これらの提案によるスクラ ッブ溶解法は、 熱源の一部と して微粉炭を使用し且 っ炉内に装入するコ一タスと して安価な高炉用コ一クスを使用できるため、 経済 的な操業を実現できる可能性がある。
しかし、 上述した 2つのスクラップ溶解法はいずれも低燃料比によるエネルギ —ミニマムを指向した技術でぁリ、 このため燃料比を低く抑えた操業 (燃料比 : 3 0 0 k g / t · p i g未満) を行ない、 且つ微粉炭の燃焼によ リ生成した燃焼ガ スにさ らに空気等の酸素含有ガスを吹き込んで二次燃焼させるこ とによ リ、 低燃 料比の下でのスクラ ップ溶解の促進を図っている。 すなわち、 これら従来のスク ラッブ溶解法の狙いは、 燃料比の低減化と熱源の一部と して微粉炭を使用するこ とによ リスクラッブ溶解の低コス ト化を実現しょ う とするものでぁリ、 したがつ て、 微粉炭の大量供給を行なって高燃料比の操業を行い、 大 i供給された微粉炭 を積極的に燃焼ガス化して大量の排ガス (燃料ガス) を得るという よ うな意図は なく 、 また、 これが可能となるよ うな操業条件や手段を備えてもいない。
また、 上記のスクラッブ溶解法では製造コス 卜の低減化のために熱源の一部と して微粉炭を用いているが、 その供給量は [微粉炭比/コークス比] の重量比で
1. 0に満たず (せいぜい高くても 0. 9程度) 、 燃料比を低く抑えてはいるも のの、 コ一クス比が相対的に高いという意味で低コス 卜化が十分に図られている とは言い難い。
また、 これらのスクラ ップ溶解法では、 低燃料比による操業を可能とするため に微粉炭の燃焼ガスにさらに空気等の酸素含有ガスを吹き込んで二次燃焼させて ぉリ、 また、 微粉炭の燃焼や二次燃焼のために空気若しく は酸素富化された空気 を用いているため、 排出される排ガスには必然的に窒素や co2等が多量に含ま れるこ とになる。 したがって、 これら従来技術のスクラ ップ溶解法において炉か ら排出される排ガスは、 燃料ガスと してそれなリの利用価値はあるものの、 例え ば高効率な発電を行なうための燃料ガスや加熱炉用燃料ガスと して利用できるよ うな熱量を有する高カロ リーガスではない。
例えば、 前者の従来技術を述べた文献 (鉄と鋼 Vol.79, No.2, P.139〜146) で は、 キュボラ法に較べて高カロ リーの排ガスが得られ、 これを燃料ガスと して有 効利用できると しているが、 その排ガス力口 リ一は約 200 0 k c a 1 / N m 3 (約 S O O k j ZNm3) 程度に過ぎない。 また、 同文献では試験的に二次燃 焼を実施しないで行った実験例のデータも示されているが、 本発明者らが試算し た結果では、 この場合でも排ガスのカロ リーは高々 2 300 k c a l ZNm3程 度に過ぎない。 一般に、 加熱炉用ゃ高効率発電用の燃料ガスと しては 2 5 00 k c a l ZNm3以上の高カロ リーガスが使用されておリ、 したがって、 従来技術 で得られる排ガスは加熱炉用ゃ高効率発電用と しては適さず、 利用価値の低いも のと言わざるを得ない。 また、 低燃料比での操業であるために発生する排ガス量 も少なく、 排ガスカロ リーが低いこと も相俟って高品質の燃料ガスを大量に安定 供給できるよ うな技術ではない。
また、 後者の従来技術 (特開平 1— 1 9 5 2 2 5号公報) では、 溶解炉とは另 ij に微粉炭燃焼用の燃焼炉が必要であるため設備コス トが高く 、 また、 燃焼炉で生 成した高温ガスをガス導管によ リシャフ ト炉に導く途中でガス顕熱の一部が失わ れるため、 経済性の面でも問題がある。
なお、 先に述べたキュボラ法の改良技術と して、 羽口から酸素富化熱風を微粉 炭と と もに吹き込むよ うにした方法も提案 ( Klaus Scheiding : Proceedings o f the Eighth Japan - Germany Seminar, Oc t . , 6, 7 , 1993 ( Sendai, Japan ) , .22 Hoi Me i a 1 Production Based on Scrap, Coal and Oxy gen " ) されてレゝる力 この方法では高炉用コークスのなかでも大径のコークスを使用しなければならず. 製造コス トが高く なる問題がある。 また、 先に述べた従来技術と同様、 この技術 にも微粉炭を大量に供給してその燃焼ガス化を図るという よ うな意図はなく 、 ま た、 これが可能となるよ うな操業条件や手段を備えてもおらず、 さ らに窒素を含 む熱風の吹き込みを行なっていること等からしても、 高カロ リーの排ガスを得る ことは到底望めない。
このよ うに従来提案されているスクラ ッブ溶解技術は、 基本的に燃料比の低減 化によるエネルギーミニマムを指向しているが故に、 その排ガスは熱暈が小さ く 且つ排出量も少なく 、 利用価値の低いものであった。 また、 熱源の一部と して微 粉炭を用いているが、 微粉炭の高効率な燃焼を実現することができないためコー クス比に対して微粉炭比を十分に高めることができず、 微粉炭使用による低コス ト化が十分に図られていない。
一方、 近年、 産業廃棄物や一般廃棄物と してプラスチック等の合成樹脂類が急 增しておリ、 その処理が大きな問題となっている。 なかでも高分子系の炭化水素 化合物であるブラスチックは燃焼時に発生する熱量が高く 、 焼却処理した場合に 焼却炉を傷めるために大量処理が困難であリ、 その多く がごみ埋立地等に投棄さ れているのが現状である。 しかし、 プラスチック等の投棄は環境対策上好ま しく なく 、 その大量処理方法の開発が切望されている。
また、 所謂一貫製鉄所では種々の設備から大量のダス ト類が排出される。 この ようなダス ト類と しては、 例えば高炉ダス ト、 転炉ダス ト、 電気炉ダス ト、 キュ ポラダス ト、 ミルスケール、 シュ レッターダス ト、 亜鉛ダス ト等がぁリ 、 製鉄所 全体では膨大な排出量となる。 これらのダス 卜の多く には比較的高溏度の亜鉛
(高炉ダス トの場合で 1 〜 2。/0、 キュポラダス 卜で約 2 0 % ) が含まれているた め、 環境汚染の問題から埋立地等に投棄することができず、 その大量処理法の開 発が望まれている。
従来、 亜鉛含有ダス 卜を処理する方法と して、 亜鉛含有ダス トをペレツ 卜化し てシャフ ト炉に装入し、 炉内で亜鉛を還元 · 揮発化させた後、 排ガス中の亜鉛を 酸化させて酸化亜鉛の形で回収する方法が特開昭 5 3— 2 5 2 2 1号公報及び特 開昭 5 5— 1 2 5 2 1 1 号公報で提案されている。 また、 キュボラで発生する亜 鉛含有ダス 卜等の金属含有粉体を羽口等からキュボラ内に繰リ返し導入するこ と によ リ金属含有粉体中に亜鉛を濃縮化する方法が特開平 2 - 2 6 3 0 8 8号公報 で提案されている。
しかし、 これら従来法のうち前者の方法 (特開昭 5 3— 2 5 2 2 1 号公報及び 特開昭 5 5— 1 2 5 2 1 1 号公報) では亜鉛含有ダス トをペレツ ト化する工程が 必要であるため、 処理コス 卜の面でダス ト類の大量処理には不向きである。
また、 従来法が対象とするよ うな一般の高炉ゃキュボラでは炉頂温度が 2 0 0 〜 2 5 0 程度でぁリ、 したがって、 炉内の金属亜鉛蒸気が凝縮する温度域 ( 4 0 0〜 8 0 0 °C ) は炉頂部よ リ もかなり下方のシャフ ト部に存在している。 この ため上記のいずれの従来法でも、 金属亜鉛蒸気の多く は炉頂部に達する前に凝縮 してしまい、 この亜鉛が炉内壁に付着 · 堆穣して耐火物を剥離させる等の問題を 生じる。
—方、 スクラップ溶解法の主原材料であるスクラ ップ中にも亜鉛めつき鋼板等 の形で多量の亜鉛含有材が含まれておリ、 この原材料中の亜鉛が炉内に蓄積して 上記と同様に炉内壁に付着 · 堆積したリ、 或いは金属亜鉛蒸気が排ガスに随伴し て炉外に放出され、 これが排ガス管等の内壁に凝縮して付着 · 堆積する等の問題 を生じ易い。 したがって、 スク ラ ップ溶解技術においては, 原材料に含まれる亜 鉛を炉内に蓄積させることなく、 適切に回収することが大きな課題となる。
しかし、 先に述べた従来のスクラ ップ溶解法では、 このよ うな亜鉛の処理につ いては何ら特別な対策は採られていない。
したがって本発明の目的は、 上記のよ うな従来のスクラッブ溶解技術に対し、 スクラ ップを高効率に溶解して溶銑を製造できるだけでなく 、 燃料用ガスと して 利用価値の高い高カロ リー排ガスを大量に製造することができると と もに、 高力 口 リ一排ガスの利用価値を考慮した場合に従来技術に較べて相当程度に低い製造 コス トで操業を行なう こ とができ、 しかも高カロ リ一排ガス源及び または熱源 の一部と して合成樹脂類を利用することによ リ、 廃棄物たる合成樹脂類の大量処 理と有効利用を可能とする、 全く新たなタイプのスクラッブ溶解法を提供するこ とにある。
また本発明の他の目的は、 製鉄所等において排出されるダス ト類についてもそ の大量処理と有効利用が可能であると と もに、 スクラ ップやダス ト類に含まれる 亜鉛を炉内に蓄積させることなく 、 これを高澳度化した状態で炉內から適切に回 収するこ とができるスクラ ップ溶解法を提供するこ とにある。 発明の開示 本発明者らは、 上述したスクラッブを原料とする溶銑の製造と高力口 リー排ガ スの製造を低コス 卜で実施するという 目的が、 微粉炭の大量吹き込みによる高燃 料比、 高微粉炭比での操業の下で下記の①〜③の手段を採るこ とにょ リ達成でき るこ とを見い出した。
① 羽口部の燃焼パーナから微粉炭と と もに酸素を吹き込む。
② 微粉炭と酸素とを、 両者が速かに接触して混合するよ う な特定の方法にょ リ 吹き込むこ とによ リ微粉炭の急速燃焼を実現させる。 特に好ま しく は、 微粉炭 の燃焼の大部分を羽口部の燃焼パーナの内部で行わしめるこ とによ リ、 炉内状 況に影響されることなく微粉炭の安定した高効率燃焼を実現させる。
③ 微粉炭の燃焼による燃焼ガスを有意に二次燃焼させない。
同時に、 本発明者らはスクラ ップ溶解において熱源及び高力口 リ一排ガス源の 一部と して合成樹脂類を炉内装入するこ とについて検討を行い、 その結果、 上記 ①〜③の構成を特徴とするスクラ ップ溶解法において、 燃焼バ一ナを通じて微粉 炭と と もに合成樹脂材を炉内に吹き込むこと、 または合成樹脂材を炉頂装入する こと、 若しく はその両方を行う ことによ リ 、 合成樹脂材を効率的に燃焼ガス化若 しく は熟分解させるこ とができ、 廃棄物と しての合成樹脂材の大量処理と高力口 リ一排ガス源及びノまたは熱源と しての有効利用を図ることができること、 一方、 このスクラ ップ溶解法では当初予想されていたよ うな合成樹脂材の炉内装入によ る問題、 すなわち、 一般の廃棄物において合成樹脂材の約 2 0 %を占めると も言 われる塩化ビュル材の燃焼によって生じる H C 1 の排出や、 合成樹脂材の分解物 によって生成するタール状物質による排ガス配管の閉塞等の問題を適切に回避し つつ、 合成樹脂材の大量装入と処理が可能でぁリ、 実際上の面でも合成樹脂材を 高カロ リー排ガス源及びノまたは熱源の一部と して大量利用できるこ とが判明し た。
さらに、 上記のスクラ ッブ溶解法においては羽口部から大量のダス ト類を吹き 込んでも何ら問題はなく、 ダス ト類をそのままの形で鉄源、 熱源或いは副原料源 等と して大量利用できること、 また特に、 炉頂温度を所定範囲に制御しつつ、 系 内で回収された亜鉛含有ダス ト (当該炉で排ガス中から回収された亜鉛含有ダス ト) を羽口部から繰リ返し導入することによ リ、 スクラップ及びダス ト類に含ま れる亜鉛を回収ダス 卜中に濃化させ、 炉内の亜鉛を炉内壁等に付着 · 堆積させる ことなく高濃度な状態で回収できるこ とが判った。
本発明はこのよ うな知見に基づきなされたもので、 以下に述べるよ うな特徴を 有している。
本発明は羽口部に燃焼パーナを備えたシャフ ト炉を用いて実施されるスクラ ッ ブ溶解法であリ、 シャフ ト炉の炉内には炉頂部から少なく と も鉄源であるスクラ ップとコ一クスが供給され、 また、 羽口部に設けられた燃焼パーナを通じて少な く と も微粉炭と酸素とが供給されるが、 羽口部から微粉炭等と酸素を供給するた めの方法と合成榭脂材を炉内に装入する方法にはそれぞれ複数の態様があリ、 し たがって、 それら組み合せによ リ種々の発明の態様を採リ得る。
まず、 羽口部から微粉炭等 (燃料と しては、 微粉炭以外に合成樹脂材等が吹き 込まれる場合があるが、 ここでは、 これらを総称して "微粉炭等" という) と酸 素を吹き込む方法には、 次のよ うな態様がある。
(A) 羽口部に設けられた燃焼パーナから微粉炭等と酸素を炉内に吹き込むに当 リ、 バーナ径方向中心若しく はその近傍から微粉炭等を吹き込むと と もに、 その周囲から酸素を吹き込んで微粉炭等と酸素を混合させることにょ リ、 微 粉炭等を羽口先に形成される燃焼帯で急速燃焼させる。
(B) 羽口部に設けられた燃焼パーナから微粉炭等と酸素を炉内に吹き込むに当 リ、 バ一ナ径方向中心若しく はその近傍から酸素を吹き込むと と もに、 その 周囲から微粉炭等を吹き込み、 さ らにその周囲から酸素を吹き込んで微粉炭 等と酸素を混合させることによ り 、 微粉炭等を羽口先に形成される燃焼帯で 急速燃焼させる。
(c) パーナ先端開口部の内方に予燃焼室が設けられた燃焼パーナを羽口部に設 け、 この燃焼パーナを用いて微粉炭等と酸素の吹き込みを行うに当り、 燃焼 バ一ナの予燃焼室內にバーナ径方向中心若しく はその近傍から微粉炭等を吹 き込むと と もに、 その周囲から酸素を吹き込んで両者を混合させることによ り 、 予燃焼室内で微粉炭等を急速燃焼させ、 その燃焼ガスをバ一ナ先端開口 部から炉內に導入する。
(D) パーナ先端開口部の内方に予燃焼室が設けられた燃焼バ一ナを羽口部に設 け、 この燃焼パーナを用いて微粉炭等と酸素の吹き込みを行うに当 リ、 燃焼 パーナの予燃焼室内にバーナ径方向中心若しく はその近傍から酸素を吹き込 むと と もに、 その周囲から微粉炭等を吹き込み、 さらにその周囲から酸素を 吹き込んで微粉炭等と酸素を混合させるこ とによ リ、 微粉炭等を羽口先に形 成される燃焼帯で急速燃焼させる。
次に、 炉内に合成樹脂材を装入するための方法には次のよ うな態様がある。
① 合成樹脂材を炉頂部から装入する。
② 微粉炭と同様に、 合成樹脂材を羽口部に設けられた燃焼パーナから炉内に 吹き込む。
③ 上記(C)、 (D)で述べたよ うな予燃焼室を有する燃焼バ一ナを用いる場合に は、 微粉炭と同様に予燃焼室内に合成樹脂材を吹き込むか、 或いは予燃焼室 内に任意の装入部から合成樹脂材を装入する。
したがって本発明は、 微粉炭等と酸素の吹き込み方法に関する上記(A)〜(D)の 態様と合成榭脂材の炉内装入方法に関する上記①〜③の態様とを任意に組み合せ た種々の態様を採リ得る。
さらに、 本発明においてダス ト類の処理も行う場合、 上述した燃焼パーナ (内 部に予燃焼室を有する燃焼パーナも含む) またはノ及び羽口部の他の吹込手段を 通じてダス ト類が炉内に吹き込まれる。 したがって、 本発明は上記(A)〜(D)の態 様と上記①〜③の態様、 さらにはこれに上記ダス ト類の吹込みを任意に組み合せ た種々の態様を採リ得る。
本発明において、 上記(A) ~ (D)と上記①〜③との組合せからなる基本的な態様 は、 以下の通リである。
( 1 ) シャフ ト炉内に鉄源であるスクラップとコークスを装入し、 羽口部に設け られた燃焼パーナからは微粉炭、 粉粒状または細片状の合成樹脂材及び酸素 を炉内に吹き込み、 これらの吹き込みに当たっては微粉炭と合成樹脂材をバ —ナ径方向中心若しく はその近傍から吹き込むと と もに、 酸素をその周囲か ら吹き込んで微粉炭及び合成樹脂材と酸素を混合させるこ とにょ リ、 微粉炭 と少なく と も合成樹脂材の一部を羽口先に形成される燃焼帯で急速燃焼させ、 この燃焼ガスの顕熱でスクラッブを溶解して溶銑を製造すると と もに、 燃焼 ガスを炉内で有意に二次燃焼させることなく燃料用ガスと して回収するこ と を特徴とするスクラ ップ溶解法。
(2) シャフ ト炉内に鉄源であるスクラ ップと コークスを装入し、 羽口部に設け られた燃焼パーナからは微粉炭、 粉粒状または細片状の合成樹脂材及び酸素 を炉内に吹き込み、 これらの吹き込みに当たってはバーナ径方向中心若しく はその近傍から酸素を吹き込むと と もに、 その周囲から微粉炭と合成樹脂材 を吹き込み、 さ らにその周囲から酸素を吹き込んで微粉炭及び合成樹脂材と 酸素を混合させるこ とによ リ、 微粉炭と少なく と も合成樹脂材の一部を羽口 先に形成される燃焼帯で急速燃焼させ、 この燃焼ガスの顕熱でスク ラ ップを 溶解して溶銑を製造すると と もに、 燃焼ガスを炉内で有意に二次燃焼させる ことなく燃料用ガスと して回収することを特徴とするスクラ ップ溶解法。
(3) バ一ナ先端開口部の内方に予燃焼室が設けられた燃焼パーナを羽口部に備 えたシャフ ト炉を用いて行われるスクラ ップ溶解法であって、 シャフ ト炉内 に鉄源であるスクラップと コークスを装入し、 前記燃焼パーナの予燃焼室内 には微粉炭と酸素を吹き込むと と もに、 粉粒状または細片状若しく は塊状の 合成榭脂材を吹き込み若しく は装入し、 これらの吹き込みに当たっては、 少 なく と も微粉炭をバーナ径方向中心若しく はその近傍から吹き込むと と もに 酸素をその周囲から吹き込んで両者を混合させることによ リ、 予燃焼室内で 微粉炭と少なく と も合成樹脂材の一部を急速燃焼させ、 その燃焼ガスをバー ナ先端開口部から炉内に導入し、 該燃焼ガスの顕熟でスクラ ップを溶解して 溶銑を製造すると と もに、 燃焼ガスを炉内で有意に二次燃焼させることなく 燃料用ガスと して回収することを特徴とするスクラ ップ溶解法。
(4 ) パーナ先端開口部の内方に予燃焼室が設けられた燃焼バ一ナを羽口部に備 えたシャフ ト炉を用いて行われるスクラ ップ溶解法であって、 シャフ ト炉内 に鉄源であるスクラップとコークスを装入し、 前記燃焼パーナの予燃焼室内 には微粉炭と酸素を吹き込むと と もに、 粉粒状または細片状若しく は塊状の 合成樹脂材を吹き込み若しく は装入し、 これらの吹き込みに当たっては、 酸 素をバーナ径方向中心若しく はその近傍から吹き込むと と もに、 少なく と も 微粉炭をその周囲から吹き込み、 さらにその周囲から酸素を吹き込んで微粉 炭と酸素を混合させるこ とによ り、 予燃焼室内で微粉炭と少なく と も合成樹 脂材の一部を急速燃焼させ、 その燃焼ガスをパーナ先端開口部から炉内に導 入し、 該燃焼ガスの顕熱でスクラッブを溶解して溶銑を製造すると と もに、 燃焼ガスを炉内で有意に二次燃焼させることなく燃料用ガスと して回収する ことを特徴とするスクラ ップ溶解法。 (5) シャフ ト炉内に鉄源であるスクラ ップ、 コ一クス及び合成榭脂材を炉頂装 入し、 羽口部に設けられた燃焼パーナからは微粉炭と酸素を炉内に吹き込み これらの吹き込みに当たっては微粉炭をバーナ径方向中心若しく はその近傍 から吹き込むと と もに、 酸素をその周囲から吹き込んで両者を混合させるこ とにょ リ、 微粉炭を羽口先に形成される燃焼帯で急速燃焼させ、 この燃焼ガ スの顕熱でスクラ ッブを溶解して溶銑を製造すると と もに、 燃焼ガスを炉内 で有意に二次燃焼させることなく 、 合成樹脂材の熱分解にょ リ生成したガス と と もに燃料用ガスと して回収することを特徴とするスク ラップ溶解法。
(6) シャフ ト炉内に鉄源であるスク ラ ップ、 コ一クス及び合成樹脂材を炉頂装 入し、 羽口部に設けられた燃焼パーナからは微粉炭と酸素を炉内に吹き込み. これらの吹き込みに当たってはバーナ径方向中心若しく はその近傍から酸素 を吹き込むと と もに、 その周囲から微粉炭を吹き込み、 さ らにその周囲から 酸素を吹き込んで微粉炭と酸素を混合させることにょ リ、 微粉炭を羽口先に 形成される燃焼帯で急速燃焼させ、 この燃焼ガスの顕熱でスクラ ップを溶解 して溶銑を製造すると と もに、 燃焼ガスを炉内で有意に二次燃焼させること なく、 合成樹脂材の熱分解によ リ生成したガスと と もに燃料用ガスと して回 収するこ とを特徴とするスクラ ッブ溶解法。
(7 ) シャフ ト炉内に鉄源であるスクラップ、 コ一クス及び合成樹脂材を炉頂装 入し、 羽口部に設けられた燃焼パーナからは微粉炭、 粉粒状または細片状の 合成樹脂材及び酸素を炉内に吹き込み、 これらの吹き込みに当たっては微粉 炭と合成榭脂材をパーナ径方向中心若しく はその近傍から吹き込むと と もに. 酸素をその周囲から吹き込んで微粉炭及び合成樹脂材と酸素を混合させるこ とにょ リ、 微粉炭と少く と も合成樹脂材の一部を羽口先に形成される燃焼帯 で急速燃焼させ、 この燃焼ガスの顕熟でスクラ ップを溶解して溶銑を製造す ると と もに、 燃焼ガスを炉内で有意に二次燃焼させるこ となく 、 合成樹脂材 の熟分解によ リ生成したガスと と もに燃料用ガスと して回収することを特徴 とするスクラッブ溶解法。
(8) シャフ ト炉内に鉄源であるスク ラ ップ、 コ一クス及び合成樹脂材を炉頂装 入し、 羽口部に設けられた燃焼パーナからは微粉炭、 粉粒状または細片状の 合成樹脂材及び酸素を炉内に吹き込み、 これらの吹き込みに当たってはバ一 ナ径方向中心若しく はその近傍から酸素を吹き込むと と もに、 その周囲から 微粉炭と合成榭脂材を吹き込み、 さらにその周囲から酸素を吹き込んで微粉 炭及び合成樹脂材と酸素を混合させることによ り 、 微粉炭と少なく と も合成 樹脂材の一部を羽口先に形成される燃焼帯で急速燃焼させ、 この燃焼ガスの 顕熱でスクラッブを溶解して溶銑を製造すると と もに、 燃焼ガスを炉内で有 意に二次燃焼させることなく 、 合成樹脂材の熱分解によ リ生成したガスと と もに燃料用ガスと して回収するこ とを特徴とするスク ラ ッブ溶解法。
(9) パーナ先端開口部の内方に予燃焼室が設けられた燃焼パーナを羽口部に備 えたシャフ ト炉を用いて行われるスクラ ップ溶解法であって、 シャフ ト炉内 に鉄源であるスク ラ ップ、 コ一クス及び合成樹脂材を炉頂装入し、 前記燃焼 パーナの予燃焼室内には微粉炭と酸素を吹き込み、 これらの吹き込みに当た つては、 微粉炭をバーナ径方向中心若しく はその近傍から吹き込むと と もに、 酸素をその周囲から吹き込んで両者を混合させるこ とによ リ、 予燃焼室内で 微粉炭を急速燃焼させ、 その燃焼ガスをパーナ先端開口部から炉内に導入し、 該燃焼ガスの顕熟でスクラ ップを溶解して溶銑を製造すると と もに、 燃焼ガ スを炉内で有意に二次燃焼させるこ となく 、 合成樹脂材の熱分解にょ リ生成 したガスと と もに燃料用ガスと して回収することを特徴とするスクラ ップ溶 解法。
( 10) パーナ先端開口部の內方に予燃焼室が設けられた燃焼パーナを羽口部に備 えたシャフ ト炉を用いて行われるスクラ ップ溶解法であって、 シャフ ト炉内 に鉄源であるスクラ ップ、 コークス及び合成樹脂材を炉頂装入し、 前記燃焼 パーナの予燃焼室内には微粉炭と酸素を吹き込み、 これらの吹き込みに当た つては、 酸素をバ一ナ径方向中心若しく はその近傍から吹き込むと と もに、 その周囲から微粉炭を吹き込み、 さらにその周囲から酸素を吹き込んで微粉 炭と酸素を混合させることによ リ、 予燃焼室内で微粉炭を急速燃焼させ、 そ の燃焼ガスをパーナ先端開口部から炉内に導入し、 該燃焼ガスの顕熱でスク ラ ップを溶解して溶銑を製造すると と もに、 燃焼ガスを炉内で有意に二次燃 焼させることなく 、 合成樹脂材の熱分解によ り生成したガスと と もに燃料用 ガス と して回収するこ とを特徴とするスク ラ ップ溶解法。
( 1 1 ) パーナ先端開口部の内方に予燃焼室が設けられた燃焼パーナを羽口部に備 えたシャフ ト炉を用いて行われるスクラ ップ溶解法であって、 シャフ ト炉内 に鉄源であるスク ラ ップ、 コ一クス及び合成樹脂材を炉頂装入し、 前記燃焼 パーナの予燃焼室内には微粉炭と酸素を吹き込むと と もに、 粉粒状または細 片状若しく は塊状の合成樹脂材を吹き込み若しく は装入し、 これらの吹き込 みに当たっては、 少なく と も微粉炭をバ一ナ径方向中心若しく はその近傍か ら吹き込むと と もに、 酸素をその周囲から吹き込んで両者を混合させること によ り、 予燃焼室內で微粉炭と少なく と も合成樹脂材の一部を急速燃焼させ. その燃焼ガスをパーナ先端開口部から炉内に導入し、 該燃焼ガスの顕熱でス クラ ッブを溶解して溶銑を製造すると と もに、 燃焼ガスを炉内で有意に二次 燃焼させることなく 、 合成樹脂材の熱分解によ リ生成したガスと と もに燃料 用ガスと して回収することを特徴とするスクラ ップ溶解法。
( 1 2) バ一ナ先端開口部の内方に予燃焼室が設けられた燃焼パーナを羽口部に備 えたシャフ ト炉を用いて行われるスクラ ップ溶解法であって、 シャフ ト炉内 に鉄源であるスクラ ップ、 コークス及び合成樹脂材を炉頂装入し、 前記燃焼 パーナの予燃焼室内には微粉炭と酸素を吹き込むと と もに、 粉粒状または細 片状若しく は塊状の合成樹脂材を吹き込み若しく は装入し、 これらの吹き込 みに当たっては、 酸素をバーナ径方向中心若しく はその近傍から吹き込むと と もに、 少なく と も微粉炭をその周囲から吹き込み、 さ らにその周囲から酸 素を吹き込んで微粉炭と酸素を混合させることによ り、 予燃焼室內で微粉炭 と少なく と も合成樹脂材の一部を急速燃焼させ、 その燃焼ガスをパーナ先端 開口部から炉内に導入し、 該燃焼ガスの顕熱でスク ラ ップを溶解して溶銑を 製造すると と もに、 燃焼ガスを炉内で有意に二次燃焼させるこ となく 、 合成 樹脂材の熟分解によ リ生成したガスと と もに燃料用ガスと して回収するこ と を特徴とするスクラ ップ溶解法。
上記(】)~ (4 )、 (7 )、 (8)、 (Π )及び(1 2)のスク ラ ップ溶解法においては、 燃焼 パーナによる合成樹脂材の吹き込み或いは合成樹脂材の予燃焼室内への吹き込み 若しく は装入は、 非連続的若しく は間欠的に実施してもよく 、 また、 その際の合 成樹脂材の吹き込みまたは装入は、 微粉炭の吹込みと と もに行っても、 また一時 的に微粉炭の吹込みに代えて (つま り、 微粉炭の吹込みを一時的に停止して) 行 つてもよい。 すなわち、 本発明法において燃焼パーナを通じて合成樹脂材を吹き 込み若しく は装入するというのは、 このよ うな各ケースを含むものとする。
また、 上記(5 )〜(1 2)のスクラ ップ溶解法において、 炉項温度は 4 0 0〜 6 0 0 X に制御されるこ とが好ま しい。
また、 特に上記(3 )、 (U )のスク ラ ップ溶解法においては、 粉粒状または細片 状の合成樹脂材をバーナ径方向中心若しく はその近傍から予燃焼室内に吹き込む こ とが、 また、 上記(4 )、 (】2 )のスクラップ溶解法においては、 粉粒状または細 片状の合成樹脂材を、 バーナ径方向中心若しく はその近傍から吹き込まれる酸素 の周囲から予燃焼室内に吹き込むこ とが、 それぞれ合成樹脂材を高効率に燃焼さ せる上で好ま しい。
本発明では、 シャフ ト炉に装入されるコータスと して高炉用コ一クスを用いる ことができる。 また、 微粉炭または微粉炭 +合成榭脂材の大 i吹き込みとその高 効率燃焼を意図する本発明においては、 燃焼パーナから微粉炭だけを供給する場 合には、 燃焼パーナから供給する微粉炭比 P C ( k g / t - pig) と酸素流量 02 (NmV t - pig) との比 [P CZOz] を 0. 7 k gZNm3以上とすることが 好ましく 、.また、 燃焼パーナから微粉炭と合成樹脂材を供給する場合には、 燃焼 パーナから供給する微粉炭比 P C ( k g / t - pig) 及び合成樹脂材比 S R ( k g / t - pig) と酸素流量 02 (NmV t - pig) との比 [ (P C+ S R) /02] を 0. 7 k g ZN m3以上とするこ とが好ま しい。
また、 本発明では燃料比を 300 k g Z t ' pig以上、 燃焼パーナから微粉炭 だけを供給する場合の微粉炭比 (k gZ t - pig) と炉頂装入されるコ一クス比 ( k g / t - pig) との重量比 [微粉炭比 コークス比] を 1. 0以上、 燃焼バ —ナから微粉炭と合成樹脂材を供給する場合の微粉炭比 (k gZ t - pig) 及び 合成樹脂材比 (k g/ t - pig) と炉頂装入されるコークス比 (k gZ t - pig) との重量比 [ (微粉炭比 +合成榭脂材比) Zコークス比] を 1. 0以上とするこ とが好ま しく 、 これによ リ スクラ ッブを高効率に溶解することができると と もに、 大量の高カロ リー排ガスの安定した製造 · 供給が可能となる。
上記(】)、 (5)及び(7)のスク ラ ップ溶解法において、 微粉炭若しく は微粉炭と 合成樹脂材の吹込部 (以下、 固体燃料吹込部という) の周囲から酸素を吹き込む に当っては、 固体燃料吹込部の周リ を環状に囲むよ うな酸素吹込部から酸素を吹 き込むよ うにしてもよいし、 或いは固体燃料吹込部の周リに適宜間隔をおいて配 された複数の酸素吹込部から酸素を吹き込むよ うにしてもよい。 また、 バーナ径 方向における固体燃料吹込部の位置はパーナの中心から或る程度偏位してもよく . 要はバーナ径方向の中心若しくはその近傍から微粉炭若しく は微粉炭と合成樹脂 材が吹き込まれ、 その周囲から酸素が吹き込まれるよ うにすればよい。
また、 上記(2)、 (6)及び(8)のスクラ ップ溶解法において、 バーナ径方向の中 心若しく はその近傍から吹き込まれる酸素の周囲から微粉炭若しく は微粉炭と合 成榭脂材を吹き込むに当っては、 酸素吹込部の周リ を環状に囲むよ うな固体燃料 吹込部から微粉炭若しくは微粉炭と合成樹脂材を吹き込むよ うにしてもよいし、 或いは酸素吹込部の周リに適宜間隔をおいて配された複数の固体燃料吹込部から 微粉炭若しく は微粉炭と合成樹脂材を吹き込むよ うにしてもよい。 また、 固体燃 料吹込部の周囲からさらに酸素を吹き込むに当っても、 固体燃料吹込部の周 リ を 環状に囲むよ うな酸素吹込部から酸素を吹き込むよ うにしてもよいし、 或いは固 体燃料吹込部の周 リに適宜間隔をおいて配された複数の酸素吹込部から酸素を吹 出すよ うにしてもよい。 また、 バ一ナ径方向における酸素吹込部の位置 (固体燃 料吹込部の内側の酸素吹込部の位置) はパーナの中心から或る程度偏位してもよ く、 要はバーナ径方向の中心若しく はその近傍から酸素が吹き込まれ、 その周囲 から微粉炭若しく は微粉炭と合成樹脂材が吹き込まれるよ うにすればよい。 上記(3)、 (9)及び(1 1 )のスクラ ップ溶解法において、 燃焼パーナの予燃焼室內 において固体燃料吹込部の周囲から酸素を吹き込むに当っては、 固体燃料吹込部 の周リ を環状に囲むよ うな酸素吹込部から酸素を吹き込むよ うにしてもよいし、 或いは固体燃料吹込部の周リ に適宜間隔をおいて配された複数の酸素吹込部から 酸素を吹き込むよ うにしてもよい。 また、 バーナ径方向における固体燃料吹込部 の位置はパーナの中心から或る程度偏位してもよ く 、 要はバーナ径方向の中心若 しく はその近傍から微粉炭若しく は微粉炭と合成樹脂材が吹き込まれ、 その周囲 から酸素が吹き込まれるよ うにすればよい。
また、 上記(4 )、 (10)及び(1 2)のスクラ ップ溶解法において、 燃焼パーナの予 燃焼室内にバーナ径方向の中心若しく はその近傍から吹き込まれる酸素の周囲か ら微粉炭若しく は微粉炭と合成樹脂材を吹き込むに当っては、 酸素吹込部の周リ を環状に囲むよ うな固体燃料吹込部から微粉炭若しく は微粉炭と合成樹脂材を吹 き込むよ うにしてもよいし、 或いは酸素吹込部の周りに適宜間隔をおいて配され た複数の固体燃料吹込部から微粉炭若しく は微粉炭と合成樹脂材を吹き込むよ う にしてもよい。 また、 固体燃料吹込部の周囲からさらに酸素を吹き込むに当って も、 固体燃料吹込部の周リを環状に囲むよ うな酸素吹込部から酸素を吹き込むよ うにしてもよいし、 或いは固体燃料吹込部の周リに適宜間隔をおいて配された複 数の酸素吹込部から酸素を吹出すよ うにしてもよい。 また、 バ一ナ径方向におけ る酸素吹込部の位置 (固体燃料吹込部の内側の酸素吹込部の位置) はパーナの中 心から或る程度偏位してもよく 、 要はバーナ径方向の中心若しく はその近傍から 酸素が吹き込まれ、 その周囲から微粉炭若しく は微粉炭と合成樹脂材が吹き込ま れるよ うにすればよレ、。
また、 上記(1)〜(4)、 (7)、 (8)、 (11)及び(12)の各スクラ ップ溶解法において. 燃焼パーナから吹き込む微粉炭と合成榭脂材は、 別々の吹込部 (吹込孔) から吹 き込むことができる。
吹き込まれる微粉炭の粒度等は特に限定しないが、 例えば、 粒度 74 以下 が 8 0 %以上含まれるよ うな微粉炭が好適である。
また、 吹き込まれる粉粒状または細片状の合成樹脂材には、 塊状 (板状等を含 む) の合成樹脂材を粉砕処理して得られたもの、 フィルム状の合成樹脂材を細か い小片に破碎処理して得られたもの、 合成樹脂材を一旦溶融または半溶融化し、 これを粉粒状に加工処理 (粉砕処理または裁断処理) したもの、 合成樹脂材を半 溶融化一急冷処理することによ り粉粒状に凝縮固化させたもの等を含む。 その粒 度は特に限定されず、 比較的粗粒のものでもよいが、 通常は粒径 1 0 mm以下、 望ま しく は 6 mm以下のものが好ましい。 また、 上記(3)、 (4)、 (11)及び(12)の スクラ ップ溶解法では、 予燃焼室を備えた燃焼パーナを用いるため合成樹脂材の 燃焼性が良好でぁリ、 このため、 塊状の合成樹脂材を燃焼パーナの予燃焼室に装 入するこ とができる。
上記(1) ~ (12)のいずれのス クラ ップ溶解法においても、 燃焼パーナ及び/ま たは羽口部の他の吹込み手段を通じて炉内にダス ト類を吹き込むことができる。 このダス ト類と しては、 例えば、 高炉ダス ト、 転炉ダス ト、 電気炉ダス ト、 キ ュボラダス ト、 ミルスケール、 シュ レッダ一ダス ト、 亜鉛ダス ト及び当該炉で排 ガスから回収されたダス トのうちの 1種または 2種以上を含んでいるダス トが挙 げられる。 また特に、 炉頂温度を 4 0 0〜 8 0 0 に制御すると と もに、 当該炉 で排ガスから回収された亜鉛含有ダス 卜を、 炉内に吹き込まれるダス 卜類の少な く と も 1部と して用いるよ うにすることが好ま しい。
また、 ダス ト類の炉内への吹き込みは非連続若しく は間欠的に実施するこ とが できる。
なお、 本発明においては、 炉内にスクラップと と もに他の鉄源及び装入物を装 入するこ とを妨げるものではない。 図面の簡単な説明
図 1 は、 本発明のスクラ ップ溶解法の実施に供されるシャフ 卜炉のー構成例を 示す概念図である。
図 2は、 シャフ ト炉の羽口部の一構成例 (断面構造) 並びに本発明法による微 粉炭と酸素の吹込み方法を示す説明図である。
図 3は、 シャフ ト炉の羽口部の他の構成例 (断面構造) 並びに本発明法による 微粉炭及び合成樹脂材と酸素の吹込み方法を示す説明図である。
図 4は、 シャフ ト炉の羽口部の他の構成例 (断面構造) 並びに本発明法による 微粉炭等と酸素の吹込み方法を示す説明図である。
図 5は、 図 2及び図 3に示す燃焼パーナにおいて、 バ一ナ径方向における微粉 炭等と酸素の吹き込みの態様の一例を示す説明図である。
図 6は、 図 2及び図 3に示す燃焼パーナにおいて、 バーナ径方向における微粉 炭等と酸素の吹き込みの態様の他の例を示す説明図である。 図 7は、 図 4に示す燃焼パーナにおいて、 バーナ径方向における微粉炭等と酸 素の吹き込みの態様の一例を示す説明図である。
図 8は、 図 4に示す燃焼パーナにおいて、 バ一ナ径方向における微粉炭等と酸 素の吹き込みの態様の他の例を示す説明図である。
図 9は、 図 4に示す燃焼バ一ナにおいて、 バ一ナ径方向における微粉炭等と酸 素の吹き込みの態様の他の例を示す説明図である。
図 1 0は、 シャフ ト炉の羽口部の他の構成例 (断面構造) 並びに本発明法によ る微粉炭等と酸素の吹込み方法を示す説明図である。
図 1 1 は、 シャ フ ト炉の羽口部の他の構成例 (断面構造) 並びに本発明法によ る微粉炭等と酸素の吹込み方法を示す説明図である。
図 1 2は、 図 1 0に示す燃焼パーナにおいて、 バーナ径方向における微粉炭等 と酸素の吹き込みの態様の一例を示す説明図である。
図 1 3は、 図 1 0に示す燃焼パーナにおいて、 バ一ナ径方向における微粉炭等 と酸素の吹き込みの態様の他の例を示す説明図である。
図 1 4は、 図 1 1 に示す燃焼パーナにおいて、 バーナ径方向における微粉炭等 と酸素の吹き込みの態様の一例を示す説明図である。
図 1 5は、 図 1 1 に示す燃焼パーナにおいて、 バーナ径方向における微粉炭等 と酸素の吹き込みの態様の他の例を示す説明図である。
図 1 6は、 図 1 1 に示す燃焼パーナにおいて、 バ一ナ径方向における微粉炭等 と酸素の吹き込みの態様の他の例を示す説明図である。
図 1 7は、 本発明法における炉頂温度と炉頂ガス中のタール濃度との関係を示 すグラフである。
図 1 8は、 本発明法によ リ微粉炭と酸素の吹き込みを行った場合の微粉炭燃焼 率を経時に示すグラフである。
図 1 9は、 本発明法によ リ微粉炭と酸素の吹き込みを行った場合の羽口部近傍 における理想的な燃焼状況を示した説明図である。
図 2 0は、 本発明法における炉頂温度とダス ト中亜鉛に基づく亜鉛回収率との 関係を示すグラフである。
図 2 1 は、 実施例 1 において図 2、 図 4及び図 1 0による吹込み方式の本発明 法と図 2 2による吹込み方式の比較法について、 投入した微粉炭量 P C ( k g X h ) と酸素流量 0 2 ( N m 3 / h ) の比 [ P C Z 0 2 ] と炉頂乾ガス中の C濃度と の関係を示したグラフである。
図 2 2は、 従来方式の羽口部の断面構造を示す説明図である。 発明を実施するための最良の形態
本発明のスクラ ップ溶解法は、 スクラ ッブ溶解において高力口 リー排ガスを積 極的に得るために、 微粉炭若しく は微粉炭 +合成樹脂材の大量供給によ リ燃料比 を高め且つコークス比に対して微粉炭比若しく は微粉炭比 +合成樹脂材比を高め た操業を行う こ とを前提と している。 このため、 大量に供給される微粉炭若しく は微粉炭 +合成樹脂材を効率的に燃焼させ且つ排ガス中の低力口 リ一成分を低減 させるべく 、 羽口部の燃焼パーナを通じて微粉炭若しく は微粉炭十合成樹脂材と と もに酸素 (実質的な純酸素) を吹込むと と もに、 微粉炭若しく は微粉炭 +合成 樹脂材と酸素とが速かに接触 · 混合して燃焼ガス化し、 微粉炭若しく は微粉炭 + 合成樹脂材の高効率燃焼 (特に好ま しく は、 炉內状況等に影響されない微粉炭若 しく は微粉炭 +合成樹脂材の安定した高効率燃焼) を可能なら しめる特定の吹き 込み及び燃焼方法を実施し、 さらに、 これによ リ生じた燃焼ガス (合成樹脂材吹 込みの場合には、 一部の合成樹脂材の熱分解生成ガスを含む) を有意に二次燃焼 させるこ となく炉外に排出するこ とによ リ、 スクラ ッブの溶解と高カロ リ一排ガ スの回収とを低コス 卜で実現させる。
加えて、 高カロ リー排ガス源の一部と して合成樹脂材を炉頂装入し、 その熱分 解ガスを微粉炭等の燃焼ガスと と もに回収することによ リ、 排ガスのさ らなる高 カロ リ一化を図る。
そして、 上記のよ うに熱源及び高力口 リ一排ガス源の一部と して合成榭脂材を 炉内に供給することにょ リ、 主と して廃棄物たる合成樹脂材の大量処理と有効利 用、 さ らには微粉炭量の低減化によるスクラップ溶解のさらなる低コス 卜化を実 現させる。
さらに、 鉄源、 熱源或いは副原料源等となリ得る各種ダス ト類の 1種または 2 種以上を羽口部から吹き込むことにょ リ、 ダス ト類の大量処理と有効利用を実現 させ、 さ らには当該炉の排ガスから回収された亜鉛含有ダス 卜を羽口部から吹き 込まれるダス 卜類の少なく と も一部と して用い、 この排ガス回収ダス トを炉内に リ返し導入することによ り、 スク ラ ップやダス ト類に含まれる亜鉛を回収ダス ト中に澹化させ、 これを亜鉛高濃度含有ダス 卜の形で回収することによ リ亜鉛の リサイ クルを実現させる。
以下、 本発明の詳細を図面に基づいて説明する。
図 1 は本発明のスクラ ップ溶解法に使用されるシャフ 卜炉のー構成例を示す概 念図であり、 1 はシャフ ト炉本体、 2は羽口部、 3は炉頂部である。 このシャフ ト炉 1 の炉頂部 3の上部には原料装入装置 4が連設されているが、 この原料装入 装置 4 と炉內とは開閉装置 5によ り遮断できる構造と し、 高温の炉頂ガスをダク ト 6を通じて完全に回収できるよ うにしてある。
シャフ ト炉 1 の炉頂部 3からは原料装入装置 4によ リ鉄源であるスク ラ ップ及 びコ一クスが装入されると と もに、 羽口部 2からは燃焼パーナを通じて微粉炭と 酸素が炉内に供給される。 炉頂部から装入されるコ一ク スと しては、 一般の高炉 用コークス (通常、 粒度が 2 0 ~ 8 0 m m ) を用いることができる。 炉内に装入 されたコークスは、 炉内に充填されたスク ラ ップを保持する作用をすると と もに スクラ ップ溶解のための熱源の一部となる。 但し、 本発明では羽口部から吹き込 まれる微粉炭 (合成樹脂材の吹き込みを行う場合には、 微粉炭と合成榭脂材) が 熱源と してよ リ大きな比重を占めている。
合成樹脂材の炉内への供給は羽口部 2または炉頂部 3若しく はその両方から行 われ、 羽口部 2から供給された合成樹脂材は熱源及び高力口 リーガス源と して、 また、 炉頂部 3から供給された合成樹脂材は主と して高カロ リー源と して消費さ れる。
一般に、 羽口部から燃焼パーナを通じて供給される合成榭脂材と しては、 燃焼 性を高めるために粉粒状また細片状のものが用いられる。 これに対し、 炉頂部か ら装入される合成榭脂材の形状、 態様は任意である。
図 2は、 羽口部 2に設けられた燃焼バ一ナ 8 Aを通じて微粉炭と酸素を炉内に 吹き込む方法の一例を示してぉリ、 7は炉壁である。 このよ うに羽口部 2から微 粉炭と酸素のみを吹き込む場合には、 合成樹脂材は炉頂部 3から炉内に装入され ることになる。
図 2において、 羽口部 2に設けられた燃焼バーナ 8 Aからは、 バーナ径方向中 心またはその近傍の固体燃料吹込部 a から微粉炭 P Cが、 またその周囲の酸素吹 込部 bから酸素 0 2 (冷酸素でよい) がそれぞれ^内に吹き込まれる。 この際、 微粉炭 P Cはその周囲を酸素 0 2で囲まれるよ うにして炉内に吹き込まれるため 酸素の接触が極めて良好になリ、 微粉炭と酸素は羽口先で混合して微粉炭が急速 燃焼し、 羽口先で燃焼帯及びレースウェイを形成する。 したがって、 単位酸素量 当たリ大量の微粉炭を吹き込み、 [ P C Z 0 2 ] を十分に高く しても微粉炭は高 効率で燃焼ガス化する。 なお、 微粉炭 P Cを吹き込む際の気送用ガスと しては、 通常少量の N 2等が用いられる。
図 3は、 羽口部 2に設けられた燃焼パーナを通じて微粉炭 +合成樹脂材と酸素 を炉内に吹き込む方法の一例を示している。
図 3において、 羽口部 2に設けられた燃焼パーナ 8 Aからは、 バーナ径方向中 心またはその近傍の固体燃料吹込部 a から微粉炭 P Cと粉粒状または細片状の合 成榭脂材 S 尺が、 またその周囲の酸素吹込部 bから酸素 0 2 (冷酸素でよい) が それぞれ炉内に吹き込まれる。 この際、 微粉炭 P C及び合成樹脂材 S Rはその周 囲を酸素 0 2で囲まれるよ うにして炉内に吹き込まれるため酸素の接触が極めて 良好になリ、 微粉炭及び合成樹脂材と酸素は羽口先で混合して微粉炭と少なく と も合成樹脂材の一部が急速燃焼し、 羽口先で燃焼帯及びレースウェイを形成する < したがって、 単位酸素量当たリ大量の微粉炭 +合成榭脂材を吹き込み、 [ ( P C + S R ) / 0 2 ] を十分に高く しても微粉炭及び合成樹脂材は高効率で燃焼ガス 化する。 微粉炭 P Cと合成榭脂材 S Rを吹き込む際の気送用ガスと しては、 通常 少量の N 2等が用いられる。
このよ うな図 2、 図.3に示す本発明の吹込み方法に対して、 図 2 2に示すよ う な公知のランス方式で微粉炭または微粉炭 +合成樹脂材を吹込んだ場合や、 酸素 ガスではなく熱風や酸素富化空気を吹込んだ場合には、 酸素と微粉炭または微粉 炭 +合成樹脂材との接触が十分に確保されないため、 微粉炭または微粉炭 +合成 榭脂材を高効率に燃焼させることができず、 微粉炭または微粉炭 +合成樹脂材の 大量吹込み (高微粉炭比) が実現できない。
酸素と と もに吹き込まれた微粉炭または微粉炭 +合成樹脂材が急速燃焼するこ とにょ リ、 羽口先には約 2 0 0 0で程度の高温の燃焼帯が形成され、 その熱でス クラ ップが溶解し、 溶銑と して炉外に取リ出される。 微粉炭または微粉炭 +合成 樹脂材の急速燃焼で生成した還元性の燃焼ガスは、 その顕熱でスクラ ッブを溶解 及び予熱しつつシャフ ト炉を上昇し、 排ガスと して炉上部から排出されるが、 本 発明では微粉炭または微粉炭 +合成樹脂材の燃焼によ リ生成した燃焼ガスを有意 に二次燃焼させることなく炉外に排出する。 すなわち、 従来技術のよ うにシャフ ト部に空気や酸素富化空気を供給して燃焼ガスを二次燃焼させることはしなレ、。 また、 合成樹脂材は微粉炭に較べて燃焼性が劣るため、 通常は合成樹脂材の総 てを燃焼帯で燃焼させるこ とはできないが、 このよ うな未燃焼の合成樹脂材は炉 内で速やかに熱分解することによ リガス化し、 この高カロ リ一ガスは上記燃焼ガ スと と もに炉外に排出され、 燃料用ガスと して回収される。
なお、 固体燃料吹込部 a からの合成樹脂材の吹き込みは、 連続的に実施しても 或いは非連続的若しく は間欠的に実施してもよく 、 また、 その際の合成樹脂材の 吹き込みは、 微粉炭の吹込みと と もに行っても、 また一時的に微粉炭の吹込みに 代えて行ってもよい。 この点は、 後述する図 4 , 図 1 0 , 図 1 1等に示す方法に おいても同様である。
一方、 合成樹脂材を炉頂部 3から装入した場合、 炉頂装入された合成樹脂材は 燃焼ガスの顕熱によ り大部分が炉上部で分解してガス化し、 高カロ リーガスが生 成される。 この高カロ リーガスは上記燃焼ガスと と もに炉外に排出され、 燃料用 ガスと して回収される。
こ こで、 比較的大量の合成樹脂材を炉頂装入した場合、 合成樹脂材の分解物に ょ リ タール状物質が生成し、 これが排ガス配管等に付着、 堆積して配管閉塞の原 因になるという問題がぁリ、 また、 装入された合成樹脂材が炉上部で円滑、 迅速 に熱分解しないと排ガスの高カロ リ一化が阻害されると と もに、 合成樹脂材がべ ッ トコークス内で融着して炉内のガス流れを著しく阻害し、 またミ ス 卜状となつ た合成樹脂材が炉外に排出され、 これが配管等に凝縮して配管閉塞の原因になる という問題がある。
このよ うな問題を回避するためには、 炉頂温度を 4 0 0〜 6 0 0 °Cの範囲に制 御するこ とが好ま しい。 すなわち、 炉頂温度が 4 0 0で未満では炉上部での合成 樹脂材の熱分解が円滑、 迅速に進行せず、 先に述べたよ うな問題を生じるおそれ がある。 一方、 炉頂温度が 6 0 0でを超えるとタール状物質の生成が顕著となり このタール状物質による排ガス配管等の閉塞等の問題が生じるおそれがある。 図 1 7は炉頂温度と炉頂ガス中のタール濃度との関係を示しており、 炉頂ガス温度 が 6 0 0 °C以下であれば炉頂ガス中のタール瀵度を低減させ得ることが示されて いる。
そして、 炉頂温度を 4 0 0〜 6 0 0での範囲に制御することによ リ、 合成樹脂 材を炉上部にて円滑、 迅速に熱分解させ、 ガス状の低級炭化水素を主体とする高 カロ リ ーガスを生成させることができる。
本発明では、 羽口部から燃焼用に吹き込まれるガスが酸素 (実質的な純酸素) であること、 単位酸素量当たリ大量の微粉炭を効率的に燃焼ガス化するこ とがで きること、 炉頂装入された合成樹脂材を熱分解して高カロ リーガスが得られるこ と、 また、 微粉炭と と もに合成樹脂材の吹き込みを行う場合にはその燃焼または 熱分解によ リ高カロ リーガスが得られること、 さ らに上記のよ うに燃焼ガスを二 次燃焼させないこ とによ リ、 C Oや H2、 低級炭化水素等の高カロ リー成分の含 有率が極めて高い (したがって、 C 02や N 2の含有率が非常に少ない) 高カロ リ ー排ガス ( 2 7 0 0 k c a 1 /N m2以上) が得られる。
本発明では微粉炭または微粉炭 +合成樹脂材を高効率で燃焼させることができ るため、 [ P C Z02] または [ ( P C + S R ) /02] が 0. 7 k g /N m3以 上 (いずれも好ま しく は 1 . O k g /N m3以上) においても安定した操業が可 能でぁリ、 [ P CZ02] または [ ( P C + S R ) ノ 02] のほぼ化学量論的な燃 焼限界である [ P C /02] = 1 . 4 k g /N m [ ( P C + S R ) /02] = 1 . 4 k g ZN m 3程度まで微粉炭または微粉炭 +合成樹脂材を吹き込むこ とが できる。 したがって、 大量供給された微粉炭または微粉炭 +合成樹脂材を効率的 に燃焼させて大量の高カロ リ ー排ガスを得るこ とができ と と もに、 微粉炭比また は微粉炭比 +合成榭脂材比に対してコークス比を相対的に低めた操業が可能であ る。
図 4は、 本発明のスクラ ップ溶解法における微粉炭 (または微粉炭 +合成樹脂 材) と酸素の吹き込み方法の他の例を示す説明図でぁリ、 羽口部 2に設けられた 燃焼パーナ 8 Bからは、 バ一ナ径方向中心若しく はその近傍の酸素吹込部 b ' か ら酸素 02 (冷酸素でよい) が、 その周囲の固体燃料吹込部 a から微粉炭 P Cが、 さ らにその周囲の酸素吹込部 bから酸素 02 (冷酸素でよい) がそれぞれ炉内に 吹込まれる。 つま リ、 微粉炭 P Cはその内側と外側を酸素 02でサン ドイ ッチさ れるよ うにして吹き込まれる。 これによ リ微粉炭 P C と酸素 02は羽口先で混合 して微粉炭が急速燃焼し、 羽口先で燃焼帯及びレースウェイを形成する。 この方 法では、 図 2や図 3の方法に較べて微粉炭と酸素の接触がよ リ良好となるため、 微粉炭 (後述するよ うに微粉炭 +合成樹脂材を吹込む場合には、 微粉炭及び合成 樹脂材) の燃焼効率がょ リ高められる利点がある。
また、 この方法でも図 3 と同様、 固体燃料吹込部 aからは微粉炭 P Cに加えて 粉粒状または細片状の合成榭脂材 S Rを吹き込むことができ、 この合成樹脂材 S Rの少なく と も一部が微粉炭と と もに急速燃焼する。
図 5及び図 6は、 図 2及び図 3に示すスクラ ップ溶解法において燃焼バ一ナ径 方向における微粉炭 P C (合成樹脂材の吹き込みを行う場合には、 微粉炭 P C及 び合成樹脂材 S R ) と酸素 0 2の吹き込みの態様を示しており、 このう ち図 5は バーナ径方向中心またはその近傍の固体燃料吹込部 a から微粉炭 P C (または微 粉炭 P C +合成樹脂材 S R ) を吹き込み、 この固体燃料吹込部 aの周リ を環状に 囲むよ うな酸素吹込部 bから酸素 0 2を吹き込むよ うにした例でぁリ、 また、 図 6は固体燃料吹込部 aの周 リに適宜間隔をおいて配された複数の酸素吹込部 bか ら酸素 o 2を吹き込むよ うにした例である。
図 7〜図 9は、 図 4に示すスクラ ップ溶解法において燃焼バーナ径方向におけ る微粉炭 P C (合成樹脂材の吹き込みを行う場合には、 微粉炭 P C及び合成樹脂 材 S R ) と酸素 0 2の吹き込みの態様を示してぉリ、 このう ち図 7はバーナ径方 向中心若しく はその近傍の酸素吹込部 b ' から酸素 O 2を吹き込み、 この酸素吹 込部 b ' の周 リ を環状に囲むよ うな固体燃料吹込部 aから微粉炭 P C (または微 粉炭 P C +合成樹脂材 S R ) を吹き込み、 さ らにその周リを環状に囲むよ うな酸 素吹込部 bから酸素 0 2を吹き込むよ うにした例である。 図 8はバ一ナ径方向中 心若しく はその近傍の酸素吹込部 b ' の周リ を環状に囲むよ うな固体燃料吹込部 aから微粉炭 P C (または微粉炭 P C +合成樹脂材 S R ) を吹き込み、 さらにこ の固体燃料吹込部 aの周 リに適宜間隔をおいて配された複数の酸素吹込部わから 酸素 0 2を吹き込むよ うにした例である。 また、 図 9はバ一ナ径方向中心若しく はその近傍の酸素吹込部 b ' の周リに適宜間隔をおいて配された複数の固体燃料 吹込部 a から微粉炭 P C (または微粉炭 P C +合成樹脂材 S R ) を吹き込み、 さ らにこの固体燃料吹込部 a の周リに適宜間隔をおいて配された複数の酸素吹込部 bから酸素 0 2を吹き込むよ うにした例である。
次に、 図 1 0及び図 1 1 は本発明のスクラ ップ溶解法における微粉炭 (または 微粉炭 +合成樹脂材) と酸素の吹き込み方法の他の例を示す説明図であり、 これ らの方法は図 2〜図 4に示すスクラ ップ溶解法に較べて微粉炭 (合成樹脂材を吹 き込む場合には、 微粉炭及び合成樹脂材) の高効率燃焼を安定的に得るこ とがで きる利点がある。
図 1 0に示す吹き込み方法において、 羽口部 2にはパーナ先端開口部 1 0の内 方に微粉炭の予燃焼室 9を備えた燃焼パーナ 8 Cが設置されておリ、 この燃焼バ ーナ 8 Cの予燃焼室 9内にはバ一ナ径方向中心またはその近傍に配された固体燃 料吹込部 a から微粉炭 P C (または微粉炭 P C +合成樹脂材 S R ) 、 またその 周囲に配された酸素吹込部 bから酸素 0 2 (冷酸素でよい) がそれぞれ吹込まれ る。 この際、 微粉炭 P Cがその周囲を酸素 0 2で囲まれるよ うにして吹き込まれ るため微粉炭と酸素の接触が極めて良好になり 、 微粉炭と酸素は予燃焼室 9内で 速やかに混合して微粉炭予燃焼室 9内で急速着火燃焼する。 これによ リ生成した 燃焼ガスはバ一ナ先端開口部 8から炉内に導入され、 その顕熱によ リ ス クラ ップ が溶解し、 溶銑と して炉外に取リ出される。 また、 先に述べたよ うに燃焼ガスに ついては有意に二次燃焼させるこ とこ となく 、 燃料用ガスと して炉外に排出され る。 したがって、 この方法では微粉炭を燃焼バ一ナ内部で燃焼させるため、 炉内 状況に影響されることなく微粉炭を安定して高効率に燃焼させるこ とができる。 また、 図 1 1 に示す吹き込み方法において、 羽口部 2にはバ一ナ先端開口部 1 0の内方に微粉炭の予燃焼室 9を備えた燃焼パーナ 8 Dが設置されておリ、 この 燃焼パーナ 8 Dの予燃焼室 9内には、 バーナ径方向中心若しく はその近傍に配さ れた酸素吹込部 b ' から酸素 0 2が、 またその周囲に配された固体燃料吹込部 a から微粉炭 P C (または微粉炭 P C +合成榭脂材 S R ) が、 さらにその周囲に配 された酸素吹込部 bから酸素 0 2がそれぞれ吹き込まれる。 この方法では、 微粉 炭 P Cはその内側と外側を酸素 O 2でサン ドイ ッチされるよ うにして吹き込まれ るため、 微粉炭と酸素の接触状態が図 1 0の方法に較べてよ り良好になリ、 これ によ リ微粉炭の燃焼効率がよ リ高められる利点がある。
ここで、 図 1 0及び図 1 1 の方法で用いられる燃焼パーナの構造について、 そ の概略を説明すると、 まず、 図 1 0に示す燃焼パーナ 8 Cのパーナ本体 1 2は、 筒状の水冷ジャケッ ト 1 3 と これを貫通する固体燃料供給管 1 4及び酸素供給管 1 5等から構成され、 前記各供給管の端部がパーナ本体 1 2の前面 (水冷ジャケ ッ ト 1 3の前面) に開口するこ とで、 固体燃料吹込部 a及び酸素吹込部 bが形成 されている。
前記予燃焼室 9は、 パーナ本体 1 2 とパーナ先端開口部 1 0 との間に筒状に形 成されるもので、 その内壁には非金属製の耐火物 1 6が内張リ されており、 先に 述べたよ うにパーナの使用中はこの耐火物 1 6 を赤熱させ、 その輻射熱にょ リ予 燃焼室内に供給された微粉炭及び合成榭脂材を着火させるよ うにしている。 また 炉内に噴射する燃焼ガスのガス流速を確保するため、 予燃焼室 9はバーナ先端側 がテーパ状に構成されている。
予燃焼室 9の外側には水冷ジャケッ 卜 1 7が設けられると と もに、 パーナ先端 には水冷構造の羽口 1 8が設けられている。 この羽口 1 8は高温の炉内雰囲気か らパーナ先端を保護するために設けられるものであるが、 場合によっては設けな く てもよい。
また、 予燃焼室 9内での微粉炭と酸素との混合を迅速化し、 微粉炭を効率的に 急速燃焼させるため、 前記固体燃料吹込部 a と酸素吹込部 bは、 両者の孔軸延長 線の交点 Pが予燃焼室 9の出口先端またはそれよ り もパーナ内方に位置するよ う 構成されている。
さらに、 燃焼パーナ全体は、 その軸線に水平方向に対してパーナ先端側が下向 き となるよ うな傾き角 0 を付して炉壁 7に取付けられている。 このよ うに傾き角 0 を付けるのは、 微粉炭等の灰分が溶融して生じたスラグをパーナ先端開口部 1 0から炉內に円滑に排出するためである。 この傾き角 0は、 予燃焼室 9内のスラ グをバ一ナ先端開口部 1 0方向へ円滑に流下させるために、 予燃焼室内面のテー パ部が水平若しく はその先端側が下向きに傾斜するよ うな大き さ とするこ とが好 ましい。
また、 図 1 1 に示す燃焼パーナの場合には、 各吹込部 a , b, b ' は、 それぞ れ水冷ジケッ ト 1 3を貫通する固体燃料供給管 1 4及び酸素供給管 1 5, 1 5 ' の先端開口にょ リ形成されている。 なお、 その他の構成は図 1 0の構造と同様で あるので、 同一の符号を付し、 詳細な説明は省略する。
また、 図 1 0及び図 1 1 に示す方法でも、 固体燃料吹込部 a からは微粉炭 P C に加えて粉粒状または細片状の合成樹脂材 S Rを吹き込むこ とができ、 この合成 樹脂材の少なく と も一部が微粉炭と と もに急速燃焼する。
図 1 2及び図 1 3は、 図 1 0に示すスクラ ッブ溶解法において燃焼バ一ナ径方 向における微粉炭 P C (合成榭脂材の吹き込みを行う場合には、 微粉炭 P C及び 合成樹脂材 S R ) と酸素 0 2の吹き込みの態様を示してぉリ、 このうち図 1 2は バ一ナ径方向中心またはその近傍の固体燃料吹込部 aから微粉炭 P C (または微 粉炭 P C +合成榭脂材 S R ) を吹き込み、 この固体燃料吹込部 a の周 リを環状に 囲むよ うな酸素吹込部 bから酸素 0 2を吹き込むよ うにした例であり、 また、 図 1 3は固体燃料吹込部 a の周リに適宜間隔をおいて配された複数の酸素吹込部 b から酸素 O 2を吹き込むよ うにした例である。
図 1 4〜図 1 6は、 図 1 1 に示すスクラ ッブ溶解法において燃焼バーナ径方向 における微粉炭 P C (合成榭脂材の吹き込みを行う場合には、 微粉炭 P C及び合 成榭脂材 S R ) と酸素 0 2の吹き込みの態様を示してぉリ、 このうち図 1 4はバ ーナ径方向中心若しく はその近傍の酸素吹込部 b ' から酸素 O 2を吹き込み、 こ の酸素吹込部 b ' の周リを環状に囲むよ うな固体燃料吹込部 a から微粉炭 P C
(または微粉炭 P C +合成樹脂材 S R ) を吹き込み、 さらにその周リを環状に囲 むよ うな酸素吹込部 bから酸素 0 2を吹き込むよ うにした例である。 図 1 5はバ ーナ径方向中心若しく はその近傍の酸素吹込部 b ' の周 リを環状に囲むよ うな固 体燃料吹込部 a から微粉炭 P C (または微粉炭 P C +合成樹脂材 S R ) を吹き込 み、 さ らにこの固体燃料吹込部 aの周 リに適宜間隔をおいて配された複数の酸素 吹込部 bから酸素 0 2を吹き込むよ うにした例である。 また、 図 1 6はバーナ径 方向中心若しく はその近傍の酸素吹込部 b ' の周リに適宜間隔をおいて配された 複数の固体燃料吹込部 a から微粉炭 P C (または微粉炭 P C +合成樹脂材 S R ) を吹き込み、 さらにこの固体燃料吹込部 aの周リに適宜間隔をおいて配された複 数の酸素吹込部 bから酸素 O 2を吹き込むようにした例である。
また、 図 1 0、 図 1 1 に示すよ うな予燃焼室 9を備えた燃焼パーナでは、 粉粒 状または細片状の合成榭脂材の吹き込みに代えて、 或いはその吹き込みと と もに. 塊状の合成樹脂材を予燃焼室 9に装入し、 少なく と もその一部を燃焼させるよ う にすることができる。 この場合には、 塊状の合成樹脂材は燃焼パーナに別途設け られる装入口を通じて予燃焼室 9内に装入される。
予燃焼室 9内で微粉炭 P C (または微粉炭 P C +合成樹脂材 S R〉 を着火燃焼 させるには、 油や L P G等を燃料とする図示しない着火バ一ナを常時用いるよ う にするこ と もできる し、 また、 予燃焼室 9の内壁を耐火物で構成し、 操業初期に のみ着火パーナ (パイ ロ ッ トバ一ナ) を用いてパーナ内部を予熱若しく は微粉炭 等を着火燃焼させ、 以降の定常操業では赤熱した耐火物の輻射熱によ り微粉炭等 を自然着火させるよ うにすること もできる。
本発明において、 燃焼パーナ 8 A〜 8 Dによる合成樹脂材の吹き込み或いは合 成榭脂材の予燃焼室 9内への吹き込み若しく は装入は、 非連続的若しく は間欠的 に実施してもよ く 、 また、 その際の合成樹脂材の吹き込みまたは装入は、 微粉炭 の吹込みと と もに行っても、 また一時的に微粉炭の吹込みに代えて (つま リ 、 微 粉炭の吹込みを一時的に停止して) 行ってもよい。
また、 燃焼パーナ 8 A〜 8 Dから吹き込む微粉炭と合成樹脂材は、 別々の吹込 部 (吹込孔) から吹き込むことができる。
図 1 8は、 図 2に示す方法と図 1 0に示す方法によ リそれぞれ微粉炭を急速燃 焼させた場合について、 [ P C / 0 2 ] = 1 . 2 k g / N m 3における微粉炭の燃 焼率を経時に調べた結果を示している。 これによればいずれの方法でも全体的に 高い微粉炭燃焼率が得られている。 但し、 図 2に示す方法では燃焼率が経時に若 千変動する傾向がみられ、 これは羽口先の燃焼空間における装入物 (例えば、 コ —クス充填層) 等の状況が変動し、 これが微粉炭の燃焼性に影響を与えることに よるものと考えられる。 これに対して図 1 0に示す方法によれば、 供給された微 粉炭の大部分が予燃焼室で燃焼ガス化するため、 微粉炭の燃焼が炉內状況等にほ とんど影饗されず、 このため高レベルの微粉炭燃焼率が安定的に得られている。 図 1 9は、 図 2に示す方法と図 1 0に示す方法について、 それぞれの羽口部近 傍における微粉炭の理想的な燃焼状況を示したものである。
これによれば、 図 2の方法の場合には羽口先に燃焼帯が形成され、 その外側に 所謂レースウェイが形成される。 これに対して図 1 0の方法の場合には、 予燃焼 室 9内に吹き込まれた酸素のほぼ全量が予燃焼室 9内で急速消費され、 この結果, 炉内には微粉炭の燃焼ガス (燃焼バーナ內では C〇2が発生するものの、 炉内に 導入される燃焼ガス中の C 0 2は極く わずかでぁリ、 大部分は C〇である) が導 入されることになる。 これによ リ羽口先には図 2のよ うな燃焼帯 (酸化帯) がほ とんど形成されず、 レースウェイのみが形成されることになる。
先に述べたよ うに本発明法では大量の微粉炭を高効率に燃焼ガス化することが でき、 このため微粉炭比に対してコークス比を相対的に低めた操業が可能である が、 特に図 1 0及び図 1 1 に示す方法では供給された酸素の大部分が予燃焼室内 で急速消費されるため、 羽口先には燃焼帯がほとんど形成されないか、 若しく は 形成されると しても極く 限られた狭い領域にしか形成されない。 このため羽口先 でのコークスの消費 (燃焼) が抑えられ、 このこ と もコークス比の低減に寄与す る。
また本発明のスクラ ップ溶解法では、 羽口部からは燃焼パーナおよびノまたは 他の吹込み手段を通じてダス ト類を炉内に吹き込み、 炉內で鉄源、 熱源、 副原料 源、 高カロ リー排ガス源等と して利用することができる。 例えば多く のダス トに 含まれる鉄分 (酸化鉄) は炉の鉄源と して、 また、 シュ レッターダス 卜等に含ま れている合成樹脂類は熱源または高力口 リー排ガス源等と して利用される。 炉内 に吹き込まれるダス ト類には、 例えば高炉ダス ト、 転炉ダス 卜、 電気炉ダス ト、 キュポラダス ト 、 ミ ノレスケール、 シュ レッターダス ト、 亜鉛ダス ト (亜鉛めつ き 股備から排出されるダス ト) 、 当該炉の排ガスから回収された亜鉛含有ダス ト等 がぁリ、 これらの 1種または 2種以上を含むダス ト類を羽口部から吹き込むこ と ができる。 また、 これらのダス ト類のうち、 当該炉の排ガスから回収された亜鉛 含有ダス トを繰リ返し炉内に導入するこ とによ リ、 炉内の亜鉛を回収ダス ト中に 濃化させることができ、 亜鉛を高濩度な状態で回収することができる。 これにつ いては、 後に詳述する。
ダス ト類の多く は燃焼性に対する配慮が微粉炭や粉粒状若しく は細片状の合成 榭脂材の場合よ リ も小さ く て済むため、 羽口部からの吹込みの態様は任意でぁリ, したがって微粉炭等の吹込みを行う燃焼パーナ (図 2〜図 1 6に示す燃焼パーナ 8 A〜 8 D ) で炉内に吹き込んでもよいし、 或いは他の吹込み手段を用いてもよ レ、。 また、 例えば図 2に示す燃焼バ一ナを用いる場合でも、 固体燃料吹込部 a か ら微粉炭 P Cの吹込みに加えてダス ト類の吹き込みを行ってもよいし、 或いは別 途設けられた吹込部を通じて吹き込みを行ってもよい。
ダス ト類の炉内への吹込みは非連続的または間欠的に行ってもよく 、 また、 上 記燃焼バ一ナ 8 A〜 8 Dを通じて吹き込む場合には、 その吹き込みは微粉炭およ び または合成樹脂材の吹込みと と もに行っても、 また一時的に微粉炭およびノ または合成樹脂材の吹込みに代えて (つま り、 微粉炭および/または合成樹脂材 の吹込みを一時的に停止して) 行ってもよい。 すなわち、 本発明法において燃焼 パーナおよびノまたは他の吹込み手段を通じてダス ト類を吹き込むというのは、 このよ うな各ケースを含むものとする。
また、 合成樹脂類や未燃チヤ一 (微粉炭) を比較的多く含むダス トの場合には、 合成樹脂類や未燃チヤ一の燃焼性を確保するために上記燃焼パーナを用いて微粉 炭等と同様の方法で吹き込むことが好ま しい。
次に、 本発明法において合成樹脂材を炉頂装入するこ と、 及び微粉炭 +合成樹 脂材を羽口部から吹き込むこ とによる作用と影響について詳細に説明する。 本発明では合成樹脂材を炉頂装入し、 さらに必要に応じて合成榭脂材を羽口部 に設けられた燃焼パーナを通じて特定の方法で吹き込み或いは装入することによ リ、 合成樹脂材を高カロ リー排ガス源、 さらには熱源の一部と して利用するもの であるが、 このよ うな合成樹脂材の利用が可能となるのは、 スクラップ溶解法と して先に述べた①〜③の構成を採ること、 また、 比較的大量の微粉炭を吹き込む ことに依ると ころが大きい。
すなわち、 一般に比較的大量の合成樹脂材を炉頂装入し或いは羽口部からシャ フ ト炉内に吹き込む場合、 以下のよ うな問題点が考えられる。
( 1 ) 一般廃棄物や産業廃棄物と しての合成樹脂材中に占める塩化ビニルの割合 は約 2 0 %にも達すると言われているが、 このよ うな合成樹脂材を炉内に吹 き込んだ場合、 塩化ビュル材の燃焼によって多量の H C 1 が生じ、 これが排 ガス中に混入して燃料ガスと しての品質を著しく低下させる。
( 2) 未燃焼の合成樹脂材は一旦炉内で熱分解するが、 この分解物 (ガス) どう しが炉頂部ゃ排ガス管系內で二次的に反応してタール前駆体を生成し、 これ によって生じるタール状物質が排ガス配管内面に付着 · 堆積して管を閉塞さ せてしま う。
(3) 吹き込まれた合成樹脂材のうちの十分な量が羽口部或いは羽口先で急速燃 焼しないと、 未燃焼の合成樹脂材がべッ トコークス内で融着して炉内の通気 性を著しく阻害し、 この結果シャフ ト炉の操業に支障をきたす。
しかし、 本発明のスクラッブ溶解法によれば上記のよ うな問題を生じることな く合成樹脂材の炉内装入が可能となる。 すなわち、 まず上記 ϋ )の点に関しては、 本発明法では次のよ うな理由によ り排ガス中の H C 1 濃度が効果的に低減する。 まず、 H C 1 の排ガス中の濃度を低減させるには、 排ガス中のダス トに含まれる C a O、 N a 2〇、 F e等の H C 1 捕捉成分に H C 1 を捕捉させるのが最も有効 である。 本発明法では微粉炭を高効率に燃焼させることができるため、 微粉炭の 大 i吹き込みを行なった場合でもその吹込量の割には排ガス中に含まれる未燃チ ヤーの量は少なく、 したがって炉頂ガス中のダス トの量も比較的少ない。 しかし 炉頂ガス中の HC 1捕捉成分の量は微粉炭吹き込み量に比例するため、 微粉炭大 量吹き込みを行なう本発明法では炉頂ガス中の H C 1捕捉成分の量が比較的多く このため上記 HC 1捕捉成分による HC 1 の捕捉率が高い。
また、 上述したよ うに本発明法では微粉炭の燃焼効率が高いため、 微粉炭の吹 込量の割には排ガス中の未燃チヤ一の量が相対的に少ないが、 それでも排ガス中 には相当程度の未燃チヤ一が含まれている。 そして、 この未燃チヤ一は排ガス中 の HC 1 を大量且つ強固に吸着 (物理的吸着) する作用があるため、 排ガス との 極く短時間の接触でガス中の H C 1濃度を低減させる。 未燃チヤ一の表面に物理 的に吸着した HC 1 は、 徐々にダス ト中に含まれる H C 1捕捉成分 (C a O、 N a 20、 F e等) と反応してダス トに固定される。 つま リ、 未燃チヤ一に物理的 に吸着していた H C 1 は、 時間の経過と と もに化学的な反応によ リ H C 1捕捉成 分に吸収され、 最終的に C a C l 2、 N a C l 、 F e C l 2等の塩化物と して固定 される。 そして、 これらの塩化物はダス トの一部と して排ガスから分離除去され るこ とになる。
特に本発明法では、 シャフ ト部ゃ炉頂部での有意の二次燃焼を行なわないため、 HC 1 を吸着すべき未燃チヤ一が炉シャフ ト部及び炉頂部を通じてが失なわれる ことがないという利点がある。 このため未燃チヤ一による HC 1 の吸着が効果的 に行なわれると と もに、 一旦未燃チヤ一に吸着された H C 1 が再びガス側に移行 すること もない。
以上のよ うな HC 1 を低減化する機構から して、 排ガス中の HC 1 を効果的に 低減させるためには、 合成樹脂材の炉内への供給量 (ょ リ正確には塩化ビニル材 の供給量) に応じた HC I捕捉成分及び未燃チヤ一量が確保されること、 したが つて、 合成樹脂材の炉頂装入量 +吹込み量に応じた相当量の微粉炭を吹込むこと が好ましい。
具体的には、 合成樹脂材の [炉頂装入量 +吹込み量] に対して、 その 1 1 0 以上の重量の微粉炭を吹き込むことが好ましく 、 且つこの微粉炭の吹込み量 (重 fi ) は塩化ビュル材の [炉頂装入量 +吹込み量] 以上であるこ とが好ま しい。 また上記(2)の点に関しては、 本発明法では比較的多量の微粉炭を羽口部から 吹き込むため、 通常、 炉頂ガス中には水素が 5 %以上の濃度で含まれる。 そして, この水素の存在によ リ合成樹脂材の分解物が安定化されるため、 分解物どう しが 二次的に反応してタール前駆体を生成することが抑制され、 これによつて配管閉 塞等の トラブルの原因となるタール状あるいはヮ ックス状物質の発生を防止する こ とが可能となる。
さ らに、 上記(3)の点に関しては、 本発明では微粉炭の高効率燃焼を可能とす るよ うな特別な吹き込み方法 (先に述べた①, ②の構成による吹き込み方法) を 採用し、 合成樹脂材も基本的にこの方法によ リ吹き込まれるために効率的に燃焼 し、 したがって、 吹き込まれた合成樹脂材のうちの相当量が羽口部または羽口先 で急速燃焼することになる。 このため、 炉下部において未燃焼の合成樹脂材が残 存する割合が減少し、 合成樹脂材がコ一クスべッ 卜內で融着して炉内の通気性を 阻害するという問題を生じることはない。
このよ うに溶銑製造法において合成樹脂材の炉內吹き込みを行った場合に大き なネック となる問題についても、 本発明のスクラ ップ溶解法によれば全く 問題と ならない。 したがって、 スクラ ップ溶解における合成榭脂材の炉内吹き込みは、 スクラ ップと微粉炭若しく は微粉炭 +合成樹脂材を主原料とする溶銑と高力口 リ ー排ガスの製造を低コス 卜で実施するという 目的を有し、 これを微粉炭若しく は 微粉炭 +合成樹脂材の大量吹き込みによる高燃料比での操業の下で上記①〜③の 手段によ リ達成するという本発明法にょ リはじめて可能となった言っても過言で はない。 先に述べたよ うに本発明は従来法に較べて燃料比を高く し、 且つ微粉炭若しく は微粉炭 +合成榭脂材の大 i吹き込みを行なう ことを前提と しているが、 その狙 いとする範囲は実操業ベースで、 燃料比 : 300 k gZ t · pig以上、 燃焼バー ナから微粉炭だけを吹込む場合の微粉炭比 (k gZ t - pig) と炉頂装入される コークス比 (k gZ t - pig) との重量比 [微粉炭比ノコークス比] : 1 . 0以 上、 燃焼パーナから微粉炭 +合成樹脂材を吹き込む場合の微粉炭比 (k gZ t . ig) 及び合成樹脂材比 (k gZ t - pig) と炉頂装入されるコークス比 (k g, ΐ - Pig) との重量比 [ (微粉炭比 +合成樹脂材比) Zコ一ク ス比] : 1 . 0以 上でぁリ、 これによ リ溶銑を高効率に製造することができると と もに、 上述した よ うな高カロ リー排ガスを大量に安定供給するこ とが可能となる。 また、 これら の上限は操業度、 燃料コス ト と必要回収ガスバランス等によって決まるが、 一般 には燃料比 : 500 k g Z t - pig, [微粉炭比/コークス比] 及び [ (微粉炭 比 +合成樹脂材比) ノコ一クス比] は 2. 5程度が実質的な上限となると考えら れる。
このよ うに本発明では、 従来法に較べて燃料比を相対的に高めた操業を行う こ とを前提と しているため、 従来法に較べて燃料費自体は高く なるが、 一方におい て燃料と してコークスに較べてはるかに安価な微粉炭を大量に使用するこ と (並 びに燃料の一部と して合成樹脂材を使用すること) でコ一クス比を相対的に低減 させるこ とができ、 しかも安価な微粉炭と廃棄物たる合成樹脂材を原料と して利 用価値の高い高カロ リー排ガスを大量に製造するこ とができるため、 全体と して は従来法に較べて相当程度に低い製造 · 操業コス トで実施することができる。 また、 微粉炭 (及び合成樹脂材) と酸素を本発明のよ うな方式で同時に吹き込 むことは、 溶銑の歩留リ及び品質を確保するこ とにも役立つ。 すなわち、 熱源と してコ一クスのみを炉内に装入して羽口部から酸素のみを吹き込む方式を想定し た場合、 羽口先に酸素帯が奥行き方向に長く形成され、 その近傍を流れる溶銑が 酸化され易いため、 鉄が F e Oと してスラグ中に移行して鉄の歩留ま リ を低下さ せ、 また、 溶銑の成分中に酸化物を懸滴させることによ リ溶銑の品質を劣化させ ることになる。
これに対して本発明法では、 羽口先で微粉炭が急速に酸素を消費するため酸化 带が十分に小さく 、 このため上記のよ うな溶銑滓の酸化は大きな問題とならない c また、 特に図 1 0及び図 1 1に示す本発明法では、 予燃焼室内で微粉炭が急速に 酸素を消費するため、 羽口先には燃焼帯が殆んど形成されないか、 若しく は形成 されると しても極く 限られた狭い領域に形成されるだけであリ、 このため上記の よ うな溶銑滓の酸化は殆ど問題とならない。 以上のよ うな作用は、 特に [ P CZ 02] または [ (P C+ S R) /02] を 0. 7 k gZNm3以上、 ょ リ好ま しく は 1. 0 k gZNm3以上とすることによ リ効果的に得られる。
また本発明法では、 微粉炭 (及び合成樹脂材) を急速燃焼させて得られた燃焼 ガスを羽口先に送風することによ リスクラ ップが円滑に溶解するため、 キュボラ 法のよ うな炉内の温度分布制御のための特殊な铸物用コークスを必要と しない。 本発明法では、 溶解帯下部にレースウェイを作リ、 充填されたスクラ ップを保持 するためにコ一クスが必要であるが、 これには高炉用コークスを利用するこ とが できる。
また、 微粉炭の燃焼ガス化に伴って発生する主に石炭灰分から成るスラグは、 容易に溶融して炉下部の溶銑と分離してその上部に蓄積し、 出銑と と もに容易に 炉外に排出でき、 操業に支障を与えない。
なお、 本発明法では燃焼パーナによる微粉炭 (及び合成樹脂材) と酸素の吹き 込みに加え、 同じ燃焼バーナ等を通じて燃焼温度調整用の水蒸気や窒素等を冷却 剤と して適宜吹き込むことができる。
本発明において燃焼パーナから吹き込まれる酸素ガスの純度は可能な限リ高い 方が好ましいが、 一般に工業用と して使用されている酸素ガスの純度は 9 9 %以 上 (通常、 一般に販売されている工業用酸素ガスの純度は約 9 9 . 8 %〜 9 9 . 9 %程度、 製鉄所の酸素ブラン トから得られる酸素ガスの純度は 9 9 . 5 %前後 である) であリ、 この程度の純度があれば十分である。 また、 本発明にょ リ得ら れる作用効果の面から言う と、 純度が 9 5 %未満の酸素ガスでは吹き込まれる微 粉炭 (及び合成樹脂材) と酸素との接触が十分に確保できないため、 微粉炭 (及 び合成樹脂材) の燃焼効率が悪く なリ、 また、 排ガス中の低カロ リーガス成分も 增加するこ とになリ、 本発明の目的を達成することが困難となる。 したがって、 本発明で羽口部から吹き込まれる酸素とは、 純度が 9 5 %以上の酸素ガスを指す ものとする。
次に、 本発明法においてダス ト類を羽口部から吹き込むことによる作用と影饗 について説明する。
先に述べたよ うに本発明法において羽口部から吹込まれたダス ト類は、 炉内に おいて鉄源、 熱源、 副原料源或いは高カロ リー排ガス源等と して利用されるが、 一貫製鉄所において排出されるダス ト類の多く は金属酸化物 (主に酸化鉄) を多 く含んでいる。 このよ うな金属酸化物を多く含むダス トを羽口部から炉内に吹き 込んだ場合、 金属酸化物の還元作用にょ リ羽口先温度が低下し、 微粉炭等の燃焼 性を低下させるおそれがある。 本発明者らの実験によれば、 或る操業条件におい て羽口部から酸化鉄を主成分とするダス トを 5 0 k g / t 吹き込んだ場合、 羽口 先温度が 2 0〜 3 0 ¾程度低下することが確認できた。
このよ うなダス ト類の吹込みによる羽口先温度の低下を補償するためには、 羽 口先に供給する酸素量 (0 2 ) を増大させる必要がある。 しかし、 従来技術のス クラ ップ溶解法のよ うに羽口部から空気や酸素富化空気を吹き込む方法では、 羽 口先に供給する酸素量を確保するために大量の空気 (若しく は酸素富化空気) を 吹き込む必要がぁリ、 この結果、 回収される排ガスのカロ リーをよ リー層低下さ せる結果となリ、 また、 排ガス量そのものが増大するため操業変動も大き く なる。 この点、 本発明のスクラップ溶解法では、 羽口部において酸素のみの吹込みを行 うため、 羽口先における酸素量の確保が容易でぁリ、 また排ガス!:を過度に増大 させること もない。
また、 合成樹脂材は微粉炭のよ うに灰分による溶融スラグを生成することがな いため、 予燃焼室を備えた燃焼パーナを用いる方法においては、 微粉炭の一部を 合成榭脂材によ り代替することがダス ト類の大量吹込み (ダス トを同じ燃焼バー ナを通じて吹き込む場合) に特に有利である。 つま り 、 基本的に非燃焼性である ダス ト類を予燃焼室に大量に吹き込んだ場合、 このダス ト と微粉炭の灰分によ リ 生成した溶融スラグとが予燃焼室内に大量に存在することになリ、 この結果、 微 粉炭等の燃焼性に悪影響を与えるおそれがあるが、 合成榭脂材を微粉炭の一部代 替と して或いは一時的に微粉炭全部の代替と して予燃焼室に吹き込んだ場合には. 微粉炭の燃焼による溶融スラグの生成がそれだけ減少或いは一時になく なるため. その分ダス ト類の大量吹込みが可能となる。
次に、 ダス ト類の吹込みにょ リ、 炉内に存在する亜鉛を高濃度な状態で回収す る方法について説明する。
亜鉛を含む原材料から金属亜鉛を精鍊するためには、 経済性の観点から原材料 中の亜鉛濃度が少なく と も 5 0 w t %程度あることが必要である。 一般に炉等か ら排出されるダス ト類に含まれる亜鉛は、 亜鉛濃度が最も高いと されているキュ ボラダス トですら 2 0 %程度に過ぎず、 したがって、 これらのダス トから直接亜 鉛を回収することは困難である。
—方、 スク ラ ッブ溶解の主原材料であるスク ラ ッブ中には亜鉛が比較的高瀵度 に含まれてぉリ、 先に述べたよ うにスクラ ップ溶解技術においては、 この亜鉛を 炉内に蓄積させることなく 、 適切に炉外に回収する必要がある。
本発明のスクラ ッブ溶解法においては炉頂温度を 4 0 0〜 8 0 0 °Cに制御しつ つ、 当該炉で排ガスから回収された亜鉛含有ダス 卜を炉内に吹き込まれるダス 卜 類の少なく とも一部と して用いること、 すなわち回収ダス トを躲リ返し炉內に導 入することによ リ、 回収ダス ト中に亜鉛を «化させ、 スクラップやダス ト中に含 まれていた亜鉛を高濃度な状態で回収 (つま り、 亜鉛高濃度含有ダス ト と して回 収) することができる。
このよ うな亜鉛の濃化を達成するには、 炉内でスクラ ッブゃダス ト類等から蒸 発して生成した金属亜鉛蒸気を炉頂部においてダス ト表面に効率的に凝縮させる 必要がある。
亜鉛はスクラッブゃダス ト類を通じて炉内に導入され、 炉内の 8 0 0 \:超〜 9 0 0 " 程度の温度領域 (沸点の 9 0 7でょ リ も若干低い温度城) で蒸発し、 金属 亜鉛蒸気が生成する。 この金属亜鉛蒸気は炉内ガス流と と もに炉内を上昇し、 4 0 0〜 8 0 0 ° 程度の温度領域で凝縮するものでぁリ、 したがって、 炉頂温度を この 4 0 0〜 8 0 0 ^の温度範囲に制御することによ り金属亜鉛蒸気を炉頂部で ダス ト表面に凝縮させ、 亜鉛をダス トに捕捉するこ とができる。 特に本発明法で は羽口部から酸素の吹込みを行っているため、 空気や酸素富化空気を吹き込む方 式に較べて排ガス量が少なく、 このため空気や酸素富化空気を吹き込む方式に較 ベて炉頂部におけるダス ト濃度が高く 、 しかもガス流速が小さいために炉頂部で のダス トの滞留時間が長いという特徴がある。 したがって、 炉頂部において金属 亜鉛蒸気がダス ト と効率的に接触でき、 上述した炉頂温度の制御と相俟ってダス トによる亜鉛の捕捉を極めて効果的に行う ことができる。
炉頂温度が 4 0 0で未満では、 金属亜鉛蒸気の凝縮が生じる温度域が炉シャフ ト部に存在することになるため、 亜鉛が炉シャフ ト部で凝縮して内壁面等に付着 堆積してしま う。 一方、 炉頂温度が 8 0 0でを超えると金厲亜鉛蒸気が凝縮する ことなく炉外に放出され、 排ガス管内で凝縮して亜鉛が管内壁面等に付着 · 堆積 し、 配管の閉塞等の トラブルを生じる。
図 2 0は炉頂温度とダス トを通じての亜鉛回収率との関係を示したもので、 炉 頂温度が 4 0 0〜 8 0 0での範囲において高い亜鉛回収率が得られ、 また、 4 5
0〜 7 5 の範囲で特に高い亜鉛回収率が得られることが判る。 したがって、 炉頂温度は 4 0 0 ~ 8 0 0 ¾、 望ましく は 4 5 0 - 7 5 0 の範囲に制御するこ とが好ま しい。
なお、 先に述べたよ うに本発明法では従来のスクラッブ溶解法のよ うな炉内で の二次燃焼を実施しないため、 炉頂温度を 4 0 0〜 8 0 0 °Cの範囲に容易に制御 することができる。 このよ うに本発明法によれば、 亜鉛含有ダス トを排ガス中から回収し、 これを 羽口部から橾リ返し炉内に導入することによ リ、 炉内に存在する亜鉛を回収ダス トに濃化させることができ、 したがって、 回収ダス トの一部を適宜系外に取り出 すことによ リ、 炉內の亜鉛を高濃度な状態で効率的に回収できる。 したがって、 このよ うな本発明法を実施すれば、 高濃度の亜鉛を含むスク ラップ材であっても 何ら問題なく鉄源と して使用することができる。
排ガスからのダス 卜の回収は、 炉頂ガスの排ガス導管途中にバグフィルタゃサ イク ロンを設けて行い、 回収された亜鉛含有ダス トは、 その少なく と も一部が繰 リ返し羽口部から炉内に吹き込まれると と もに、 一部が高濃度亜鉛含有ダス 卜 と して適宜系外に取リ出され、 亜鉛の原材料と して利用される。
以上述べた本発明によれば、 スクラ ッブを溶解して溶铣を効率的に製造できる だけでなく 、 燃料用ガスと して利用価値の高い高力口 リ一の排ガスを大量に得る ことができ、 しかも、 主要熱源と して一般炭を粉砕した安価な微粉炭を使用でき るこ と、 高カロ リ ー排ガス源さらには熱源の一部と して合成樹脂材を利用できる こと、 [ P C Z 0 2 ] 若しく は [ ( P C + S R ) / 0 2 ] を高めることができるた め少ない酸素量で大量の微粉炭及び合成樹脂材を燃焼ガス化できるこ と、 簡易な 設備で実施できるこ と等から、 スクラ ッブと微粉炭及び合成樹脂材を主原料と し た溶銑及び高力口 リ一燃料用ガスの製造を低コス トで実施することができる。 特 に、 微粉炭比 +合成樹脂材比を高めることができ且つ利用価値の高い高カロ リー 排ガスを大悬に製造できることを考慮した場合に、 従来技術に較べて相当程度に 低い製造 · 操業コス 卜で実施するこ とができ、 しかも廃棄物たる合成樹脂類の大 量処理と有効利用を図るこ とができる。 さらに、 製鉄所等において排出されるダ ス 卜類についてもその大量処理と有効利用が可能であると と もに、 スクラ ッブゃ ダス ト類に含まれる亜鉛を炉内に蓄積させることなく 、 これを高濃度化した状態 で炉内から適切に回収するこ とができる。 実施例
[実施例 1〕
図 1の炉体に図 2に示す構造の羽口部を有するスクラ ッブ溶解用試験炉 (炉內 容積 : 2. 5 m3, 銑鉄生産量 : 1 0 tノ日) 、 図 1の炉体に図 4に示す構造の 羽口部を有するスクラップ溶解用試験炉 (炉內容積 : 2. 5 m3, 銑鉄生産量 : 1 0 t / 0 ) 及び図 1の炉体に図 1 0に示す構造の羽口部を有するスクラ ップ溶 解用試験炉 (炉内容積 : 2. 5 m2, 銑鉄生産量 : 1 0 t /日) を用い、 本発明 法にょ リ [P CZ02] を変化させてスク ラ ップを溶解し、 溶銑を製造した。 本 実施例では燃焼パーナから炉内に若しく は燃焼パーナの予備燃焼室内に微粉炭と 常温の酸素 (冷酸素) を吹き込むと と もに、 羽口先の燃焼温度を 2000でに調 整するために窒素及び または水蒸気を冷却剤と して吹き込んだ。 本実施例では 微粉炭の燃焼性を調べるため羽口部からは微粉炭のみを吹込み、 合成樹脂材を 1 0 k g / t · pigの割合で炉頂装入した。
また、 比較法と して図 1の炉体に図 2 2に示す羽口部を備えた試験炉を用い、 [ P C/02] を変化させてスク ラ ップを溶解し、 溶銑を製造した。 図 2 2は公 知のキュボラ法に基づき酸素富化した熱風にランス 20を通じて微粉炭を吹き込 む方式でぁリ、 温度 8 00での熱風を用い、 酸素富化量及び微粉炭量を調整して [ P C/02] を変化させた。
なお、 本実施例においては、 粒度が 74 /i m以下 7 5 %、 表 1に示す工業分析 値を有する微粉炭を吹き込み用と して用い、 また、 コ一クスと しては高炉用コー クスを用いた。
本発明法及び比較法における微粉炭の吹き込み限界を見るために、 炉頂ガス中 のダス トを逐次採取し、 ダス ト中の C濃度 (%) を測定した。 その結果を図 2 1 に示す。 図 2 1は投入微粉炭!: P C ( k g / h ) と酸素流量 02 (Nm3/h ) の比 [P CZ02] と炉頂乾ダス ト中の C濃度との関係を示したもので、 比較法では [P CZ02] の値が 0. 7 k gZNm3以上になると炉頂ダス ト中に C濃度が急増し ている。 これは、 [ P czo2] がこの領域になると微粉炭が羽口先で十分に燃 焼し切れず、 炉頂から未燃焼のまま排出されていることを示してぉリ 、 吹き込ま れた微粉炭が燃料と して十分に利用されていないことになる。
—方、 図 2の方式による本発明法①では [P CZ02〕 が 1 . 4 k gZNm3の 近傍まで炉頂乾ガス中の C濃度は低く 、 微粉炭を大量に吹き込んでも高効率に燃 焼して炉内で燃焼ガス化されていることが判る。 また、 図 4の方式による本発明 法②では微粉炭がょ リ高効率に燃焼し、 さらに、 図 1 0の方式による本発明法③ では微粉炭が最も高効率に燃焼していることが判る。 なお、 [ P CZ02] は化 学量論的に 1. 4 k g ZNm3がほぼ上限であリ、 本発明法において [ P CZOz]
: 1. 4 k gZNm3近傍で炉頂乾ガス中の C濃度が急増しているのは本発明法 の限界を示すものではない。
本実施例から明らかなように、 本発明法によれば羽口部から吹き込まれた微粉 炭と酸素とが羽口先で急速に混合して微粉炭が急速燃焼するため、 [ P czo2] を十分に高めても微粉炭を効率的に燃焼させ、 燃焼ガス化させることができる。 また、 本発明法ではスク ラ ップの溶解及び溶銑の生産に関しても、 全く支障がな いことが確認できた。
〔実施例 2〕
実施例 1 と同じ図 2及び図 3に示す羽口部を備えた試験炉、 図 4に示す羽口部 を備えた試験炉、 図 1 0に示す羽口部を備えた試験炉及び図 2 2に示す羽口部を 備えた試験炉をそれぞれ用いてスクラ ップを溶解し、 溶銑を製造した。 微粉炭及 びコ一クスは実施例 1 と同様のものを用い、 また、 粉粒状合成樹脂材と しては平 均粒径が 0. 2〜 1 mmのものを用いた。 また、 この実施例では、 一部の比較例 においてシャフ ト部に二次燃焼用の空気を導入し、 燃焼ガスを二次燃焼させた。 各実施例の製造条件及びその結果を表 2〜表 1 0に示す。
表 2〜表 1 0において N o . 1は微粉炭及び合成榭脂材を吹き込まず (羽口か らは酸素のみを吹き込み) 、 熱源をすベてコ一クスと した操業例 (微粉炭比 : 0) であリ、 一方、 N o . 2〜Ν ο · 4は燃焼パーナから酸素と と もに微粉炭と少量 の粉粒状合成樹脂材の吹き込みを行ない、 N o . 2→N o . 4の順に微粉炭比 + 合成樹脂材比を増加させた操業例である。
微粉炭及び合成樹脂材の吹き込みを行わない N 0. 1では、 レースウェイ内の 酸化帯が拡大した影響によ リ スラグ中の F e Oが高く なリ、 溶銑の品質低下及び 鉄歩留リの低下を生じている。 また、 この N o . 1は熱源をすベてコークスと し ているため当然に製造コス 卜が高い。
N o . 2は、 微粉炭吹き込みを行ってはいるが [ (P C+ S R) /02] が低 いため、 N o . 1ほどではないがスラグ中の F e Oが高く なつている。 また、 こ の操業例では [ (微粉炭比 +合成樹脂材比) コークス比] が 0. 3 6程度であ リ 、 コ一クス比が相対的に高いため製造コス 卜の面で問題がある。
これに対して N o . 3, N o . 4においては、 スラグ中の F e Oが低く 、 溶銑 の品質及び鉄歩留リは良好である。 また、 これら N o . 3, N o . 4ではコーク ス比を超える大量の微粉炭 +合成樹脂材を吹き込んでいるにも拘らず、 それらの 燃焼が効率的に行なわれているため、 2 7 00 k c a l ZNm3以上の高カロ リ ー排ガスが大量に得られている。
N o . 5, N o . 6は図 4に示す構造の羽口部を備えた試験炉を、 また、 N o . 7, N o . 8は図 1 0に示す構造の羽口部を備えた試験炉をそれぞれ用い、 上記 N o . 3, N o . 4にほぼ対応した条件で燃焼パーナから酸素と微粉炭及び少量 の粉粒状合成樹脂材の吹込みを行った操業例であリ、 これらの操業例では N o . 3, N o . 4に較べて微粉炭と合成樹脂材の燃焼性がょ リ高められ、 この結果、 コークス比が若千減少し、 さらに炉頂ダス トの発生量が滅少した。
N o . 9 ~N o . 1 5は、 羽口部から吹き込む合成榭脂材比を N o . 3, N o 4に較べて增し、 且つ N o . 9— N o . 1 5の順で合成榭脂材中に含まれる塩化 ビュル榭脂の比率を高めた操業例であリ、 いずれも排ガス中の HC 1濃度は低く 抑えられている。
N o . 1 6〜N o . 1 8は図 4に示す構造の羽口部を備えた試験炉を、 また、 N o . 1 9〜N o . 2 1は図 1 0に示す構造の羽口部を備えた試験炉をそれぞれ 用い、 上記 N o . 1 0, N o . 1 2 , N o . 1 4 とほぼ対応した条件で操業を行 つた操業例であリ、 いずれの操業例でも排ガス中の H C 1濃度は低く抑えられて いる。
N o . 2 2〜N o . 24は微粉炭比に対し合成樹脂材比を大幅に增大させた操 業例であり、 これらは微粉炭の大量吹込に伴う排ガス中 HC 1濃度の低減効果が 相対的に低下するため、 N o . 1 0〜N o 2 1に較べて排ガス中の H C 1濃度が 上昇している。
N o . 2 5は従来型の吹き込み羽口を用いて微粉炭及び適量の合成榭脂材 (以 下、 微粉炭等という) と酸素とを吹き込んだ操業例でぁリ、 微粉炭等の燃焼効率 が低いため [ (P C+ S R) zo2]が上げられず、 このため微粉炭等に較べて 大量のコ一クスを必要と し、 製造コス 卜が高い。 また、 羽口先における微粉炭等 と酸素との接触が十分に確保されていないため、 スラグ中の F e Oが高く 、 溶銑 の品質低下及び鉄歩留リの低下を生じている。
N o . 2 6は従来型の吹き込み羽口を用いて酸素富化された空気を微粉炭等と と もに吹き込んだ操業例でぁリ、 この操業例では、 従来型の吹き込み羽口を用い ていることに加えて、 吹き込みガスと して酸素富化された空気を用いているため に酸素と微粉炭等との接触が十分に確保できず、 このため微粉炭等の燃焼効率が N o . 2 5ょ リ もさらに低く 、 したがってコークス比を高くせざるを得ないため 製造コス トが高い。 また、 酸素富化された空気 (6 6 %02) を使用しているた め、 排ガスのカロ リーも低く ( 2 5 00 k c a l ZNm3未满) 、 さらに、 上記 のよ うに酸素と微粉炭等との接触が十分に確保されないため、 スラグ中の F e O が高く、 溶銑の品質低下及び鉄歩留リの低下を生じている。
N o . 2 7は従来型の吹き込み羽口を用い、 酸素富化された空気を微粉炭等と と もに吹き込むと と もに、 シャフ ト部に二次燃焼用の空気を導入した操業例であ リ、 この操業例では N o . 2 6に較べて燃料比は低く できるものの、 N o . 2 6 と同様の理由によ リ微粉炭等の燃焼効率が低く 、 コークス比が高いため製造コス 卜が高い。 また、 酸素富化された空気 (6 6 %02) を使用し且つ微粉炭等の燃 焼にょ リ生じた燃焼ガスを二次燃焼させているため、 排ガスのカロ リーが極めて 低い ( 1 8 00 k c a 1 ZNm3未满) 。 また、 N o . 26と同様に酸素と微粉 炭等との接触が十分に確保されないため、 スラグ中の F e Oが高く 、 溶銑の品質 低下及び鉄歩留リの低下を生じている。
N o . 2 8は本発明法に相当する羽口吹き込み方式を採用し、 微粉炭等の周囲 から酸素富化された空気を吹き込んだ操業例であリ、 この操業例では吹き込みガ スと して酸素富化された空気を用いているために酸素と微粉炭等との接触が十分 に確保できず、 このため微粉炭等の燃焼効率が低く 、 したがってコークス比を高 くせざるを得ないため製造コス トが高い。 また、 酸素富化された空気 (6 9 %0 2) を使用しているため、 排ガスのカロ リーも低い (24 00 k c a l ZNm3未 满) 。 さらに、 酸素富化された空気を用いているために酸素と微粉炭等の接触が 十分に確保されないため、 スラグ中の F e Oが N o . 3 , N o . 4に較べて高く 溶銑の品質低下及び歩留低下を生じている。
N o . 2 9は本発明法に相当する羽口吹き込み方式を採用し、 微粉炭等の周囲 から酸素富化された空気を吹き込むと と もに、 シャフ ト部に二次燃焼用の空気を 導入した操業例でぁリ、 この操業例では N o . 2 8に較べて燃料比は低く できる ものの、 N o . 2 8 と同様の理由にょ リ微粉炭等の燃焼効率が低く 、 コ一クス比 が高いため製造コス トが高い。 また、 酸素富化された空気 ( 6 2 %02) を使用 し且つ微粉炭等の燃焼によ リ生じた燃焼ガスを二次燃焼させているため、 排ガス のカロ リーが極めて低い ( 1 8 0 0 k c a l ZNni3未満) 。 また、 N o . 2 8 と同様に酸素と微粉炭等との接触が十分に確保されないため、 スラグ中の F e O が N o . 3, N o . 4に較べて高く 、 溶銑の品質低下及び鉄歩留リの低下を生じ ている。
N o . 3 0 と N o . 3 1 は低燃料比による操業例であり、 このう ち N o . 3 0 は本発明法に相当する羽口吹き込み方式を採用 し、 微粉炭等の周囲から酸素富化 された空気を吹き込んだ操業例である。 この操業例では吹き込みガスと して酸素 富化された空気を用いているために酸素と微粉炭等との接触が十分に確保できず、 このため微粉炭等の燃焼効率が低く 、 したがってコ一クス liを高くせざるを得な いため製造コス トが高い。 また、 酸素富化された空気 ( 6 3 %02) を使用して いるため、 排ガスのカロ リーも低く ( 2 3 0 0 k c a l ZNm3未満) 、 さらに、 低燃焼比での操業であるため排ガス量も少ない。 また、 酸素富化された空気を用 いているために酸素と微粉炭等との接触が十分に確保されないため、 スラグ中の F e Oが N o . 3, N o . 4 に較べて高く 、 溶銑の品質低下及び歩留低下を生じ ている。
N o . 3 1 は本発明法に相当する羽口吹き込み方式を採用し、 微粉炭等の周囲 から酸素富化された空気を吹き込むと と もに、 シャフ ト部に二次燃焼用の空気を 導入した操業例であり、 この操業例では N o . 3 0に較べて燃料比は低く できる ものの、 N o . 3 0 と同様の理由にょ リ微粉炭等の燃焼効率が低く、 コ一クス比 が高いため製造コス トが高い。 また、 酸素富化された空気 ( 6 3 %02) を使用 し且つ微粉炭等の燃焼によ リ生じた燃焼ガスを二次燃焼させているため、 排ガス のカロ リーが極めて低く ( 1 8 0 0 k c a l ZNm3未満) 、 さらに、 低燃焼比 での操業であるため排ガス量も少ない。 また、 N o . 30と同様に酸素と微粉炭 等との接触が十分に確保されないため、 スラグ中の F e Oが N o . 3, N o . 4 に較べて高く 、 溶銑の品質低下及び鉄歩留リの低下を生じている。
N o . 3 2, N o . 3 3は本発明法に相当する羽口吹込方式を採用して羽口部 から微粉炭と比較的大量の合成樹脂材を吹き込むと と もに、 シャフ ト部に二次燃 焼用の空気を導入した操業例であり、 これらの操業例では二次燃焼によって排ガ ス中の未燃チヤ一が失われる結果、 未燃チヤ一に吸着していた HC 1 の大部分が 脱離して再び排ガス中に移行するため、 排ガス中の HC 1 濃度が著しく高い。 〔実施例 3〕
実施例 2と同じ試験炉をそれぞれ用いてスクラ ップを溶解し、 溶銑を製造した ( 微粉炭及びコ ークスは実施例 1 と同様のものを用い、 また、 羽口部から吹き込む 粉粒状合成樹脂材と しては平均粒径が 0. 2〜 1 mmのものを用いた。 また、 こ の実施例でも、 一部の比較例においてシャフ ト部に二次燃焼用の空気を導入し、 燃焼ガスを二次燃焼させた。 各実施例の製造条件及びその結果を表 1 1〜表 2 4 に示す。
表 1 1〜表 2 4において N o . 1及び N o . 2は微粉炭や合成樹脂材の吹き込 みを行わず (羽口からは酸素のみを吹き込み) 、 熱源をすベてコ ーク スと した操 業例 (微粉炭比 : 0 ) であり、 このうち N o . 1は合成樹脂材の炉頂装入を行わ なかった操業例、 N o . 2は合成樹脂材の炉頂装入を行った操業例である。 一方. N o . 3〜N o . 5は合成樹脂材の炉頂装入を行う と と もに、 燃焼パーナから酸 素と と もに微粉炭の吹き込みを行ない、 N o . 3— N o . 5の順に微粉炭比を增 加させた操業例、 また、 N o . 6〜N o . 8は合成樹脂材の炉頂装入を行う と と もに、 燃焼パーナから酸素と と もに微粉炭と合成樹脂材の吹き込みを行ない、 N o . 6—N o . 8の順に微粉炭比 +合成樹脂材比を増加させた操業例である。 羽口部から微粉炭や合成樹脂材の吹き込みを行わない N o . 1、 N o . 2では レースウェイ内の酸化帯が拡大した影響によ リ スラグ中の F e Oが高く なリ、 溶 铣の品質低下及び鉄歩留りの低下を生じている。 また、 熱源をすベてコークスと しているため当然に製造コス トが高い。 さ らに、 N o . 1は合成樹脂材の炉頂装 入を行っていないため、 排ガスの発熱量が相対的に低い。
N o . 3及び N o . は、 微粉炭吹き込みを行ってはいるが [ P CZ02] 、 [ (P C+ S R) /02] が低いため、 N o . 1や N o . 2ほどではないがスラ グ中の F e Oが高く なつている。 また、 この操業例では [微粉炭比 Zコークス比] 、 [ (微粉炭比 +合成樹脂材比) ノコ一クス比] が 0. 4 2〜 0. 4 3程度であ リ、 コ一クス比が相対的に高いため製造コス 卜の面で問題がある。
これに対して N o . 4 , N o . 5及び N o . 7, N o . 8においては、 スラグ 中の F e Oが低く 、 溶銑の品質及び鉄歩留リは良好である。 また、 これらの操業 例ではコ一クス比を超える大量の微粉炭若しく は微粉炭 +合成樹脂材を吹き込ん でいるにも拘らず、 それらの燃焼が効率的に行なわれているため、 4 000 k c a 1 ノ Nm3以上の高カロ リー排ガスが大量に得られている。
N o . 9〜N o . 1 2は図 4に示す構造の羽口部を備えた試験炉を、 また、 N o . 1 3〜N o . 1 6は図 1 0に示す構造の羽口部を備えた試験炉をそれぞれ用 い、 上記 N o . 4 , N o . 5, N o . 7, N o . 8にほぼ対応した条件で燃焼バ ーナから酸素と微粉炭若しく は微粉炭 +合成樹脂材の吹込みを行った操業例であ リ、 これらの操業例では N o . 4 , N o . 5, N o . 7, N o . 8に較べて羽口 部から吹き込まれる微粉炭と合成樹脂材の燃焼性がょ リ高められ、 この結果、 コ —クス比が若干低下し、 さ らに炉頂ダス トの発生量が減少した。
N o . 1 7〜N o . 1 9は、 炉頂装入される合成樹脂材比を N o . 4 , N o . 9, N o . 1 3ょ リ も高めた操業例でぁリ、 N o . 4 , N o . 9, N o . 1 3に 較べよ り高カロ リーの排ガスが得られている。
N o . 2 0〜N o . 2 2は炉頂温度を N o . 4, N o . 9, N o . 1 3よ り も 低く した操業例でぁリ、 炉頂温度が低いため炉頂ガス中のタール濃度は低下する ものの、 炉頂装入された合成樹脂材の炉上部での熱分解性が低下するため、 排ガ ス発熱量も N o . 4等と比較して低下している。 また、 N o . 2 3〜N o . 2 5 は N o . 1 7〜N o . 1 9に較べて炉頂温度を低く した操業例でぁリ、 これらも 同様の傾向がみられる。 さらに、 N o . 2 6〜N o . 2 8は羽口部から微粉炭 + 合成樹脂材を吹き込む方式において、 炉頂温度を N o . 7 , N o . 1 1, N o . 1 5よ リ も低く した操業例でぁリ、 これらも同様の傾向がみられる。
N o . 2 9〜N o . 3 1 は、 炉頂装入される合成樹脂材中に塩化ビュル樹脂を 含ませた操業例でぁリ、 いずれも排ガス中の H C 1濃度は低く抑えられている。
N o . 3 2〜N o . 3 5は微粉炭比に対して炉頂装入及び羽口吹込みされる合 成樹脂材比の合計量を大幅に増大させた操業例であリ、 これらは微粉炭の大量吹 込に伴う排ガス中 H C 1濃度の低減効果が相対的に低下するため、 N o . 7 , N o . 8 , N o . 1 1, N o . 1 2 , N o . 1 5, N o . 1 6に較べて排ガス中の H C 1濃度が上昇しているが、 問題ないレベルである。
N o . 3 6, N o . 3 7は従来型の吹き込み羽口を用いて微粉炭若しく は微粉 炭 +合成樹脂材 (以下、 微粉炭等という) と酸素とを吹き込んだ操業例でぁリ 、 微粉炭等の燃焼効率が低いため [ P C + 02] 、 [ (P C + S R) /02] が上げ られず、 このため微粉炭等に較べて大量のコ ークスを必要と し、 製造コス トが高 い。 また、 羽口先における微粉炭等と酸素との接触が十分に確保されていないた め、 スラグ中の F e Oが高く 、 溶銑の品質低下及び鉄歩留りの低下を生じている < N o . 3 8, N o . 3 9は従来型の吹き込み羽口を用いて酸素富化された空気 を微粉炭等と ともに吹き込んだ操業例でぁリ、 この操業例では、 従来型の吹き込 み羽口を用いていることに加えて、 吹き込みガスと して酸素富化された空気を用 いているために酸素と微粉炭等との接触が十分に確保できず、 このため微粉炭等 の燃焼効率が N o . 3 6 , N o . 3 7ょ リ もさらに低く 、 したがってコークス比 を高くせざるを得ないため製造コス トが高い。 また、 酸素富化された空気 ( 6 6 %02) を使用しているため、 排ガスのカロ リーも低く ( 3 0 0 0 k c a I ZN m3未満) 、 さらに、 上記のよ うに酸素と微粉炭等との接触が十分に確保されな いためスラグ中の F e Oが高く 、 溶銑の品質低下及び鉄歩留りの低下を生じてい る。
N o . 4 0, N o . 4 1は従来型の吹き込み羽口を用い、 酸素富化された空気 を微粉炭等と と もに吹き込むと と もに、 シャフ 卜部に二次燃焼用の空気を導入し た操業例でぁリ、 この操業例では N o . 3 8, N o . 3 9に較べて燃料比は低く できるものの、 N o . 3 8, N o . 3 9と同様の理由にょ リ微粉炭等の燃焼効率 が低く 、 コークス比が高いため製造コス トが高い。 また、 酸素富化された空気 ( 6 6 %02) を使用し且つ微粉炭等の燃焼によ リ生じた燃焼ガスを二次燃焼さ せているため、 排ガスのカロ リーが極めて低い ( 2 000 k c a l ZNm3未満) 。 また、 N o . 3 8, N o . 3 9と同様に酸素と微粉炭等との接触が十分に確保 されないため、 スラグ中の F e Oが高く 、 溶銑の品質低下及び鉄歩留りの低下を 生じている。
N o . 4 2, N o . 4 3は本発明法に相当する羽口吹き込み方式を採用し、 微 粉炭等の周囲から酸素富化された空気を吹き込んだ操業例であリ、 この操業例で は吹き込みガスと して酸素富化された空気を用いているために酸素と微粉炭等と の接触が十分に確保できず、 このため微粉炭等の燃焼効率が低く 、 したがってコ 一クス比を高くせざるを得ないため製造コス トが高い。 また、 酸素富化された空 気 (6 9%02) を使用しているため、 排ガスのカロ リーも低い (2 9 00 k c a l ZNm3未満) 。 さらに、 酸素富化された空気を用いているために酸素と微 粉炭等の接触が十分に確保されないため、 スラグ中の F e Oが N o . 4, N o . 5や N o . 7, N o . 8に較べて高く 、 溶銑の品質低下及び歩留低下を生じてい る。
N o . 4 4 , N o . 4 5は本発明法に相当する羽口吹込方式を採用し、 微粉炭 等の周囲から酸素を吹き込むと と もに、 シャフ ト部に二次燃焼用の空気を導入し た操業例であリ、 これらの操業例では二次燃焼によって排ガス中の未燃チヤ一が 失われる結果、 未燃チヤ一に吸着していた H C 1 の大部分が脱離して再び排ガス 中に移行するため、 塩化ビニル材の装入量の割に排ガス中の H C 1澳度が高い。
N o . 4 6 , N o . 4 7は本発明法に相当する羽口吹き込み方式を採用し、 微 粉炭等の周囲から酸素富化された空気を吹き込むと と もに、 シャフ ト部に二次燃 焼用の空気を導入した操業例でぁリ、 この操業例では N o . 4 2, N o . 4 3に 較べて燃料比は低く できるものの、 N o . 4 2, N o . 4 3と同様の理由によ り 微粉炭等の燃焼効率が低く 、 コ一クス比が高いため製造コス トが高い。 また、 酸 素富化された空気 (6 2 %02) を使用し且つ微粉炭等の燃焼にょ リ生じた燃焼 ガスを二次燃焼させているため、 排ガスのカロ リ ーが極めて低い ( 1 500 k c a 1 ZNm3未満) 。 また、 N o . 4 2, N o . 4 3と同様に酸素と微粉炭等と の接触が十分に確保されないため、 スラグ中の F e Oが N o . 4, N o . 5や N o . 7 , N o . 8に較べて高く 、 溶銑の品質低下及び鉄歩留りの低下を生じてい る。
N o . 4 8〜N o . 5 1は低燃料比による操業例でぁリ、 このうち N o . 4 8 , N o . 4 9は本発明法に相当する羽口吹き込み方式を採用し、 微粉炭等の周囲か ら酸素富化された空気を吹き込んだ操業例である。 この操業例では吹き込みガス と して酸素富化された空気を用いているために酸素と微粉炭等との接触が十分に 確保できず、 このため微粉炭等の燃焼効率が低く 、 したがってコークス比を高く せざるを得ないため製造コス トが高い。 また、 酸素富化された空気 ( 6 3 %02) を使用しているため、 排ガスのカロ リーも低く ( 2 7 0 0 k c a 1 /Nm3未満) 、 さらに、 低燃焼比での操業であるため排ガス量も少ない。 また、 酸素富化され た空気を用いているために酸素と微粉炭等との接触が十分に確保されないため、 スラグ中の F e Oが N o . 4, N o . 5や N o . 7, N o . 8に較べて高く 、 溶 銑の品質低下及び歩留低下を生じている。
N o . 5 0, N o . 5 1 は本発明法に相当する羽口吹き込み方式を採用 し、 微 粉炭等の周囲から酸素富化された空気を吹き込むと と もに、 シャフ ト部に二次燃 焼用の空気を導入した操業例でぁリ、 この操業例では N o . 4 8, N o . 4 9に 較べて燃料比は低くできるものの、 N o . 4 8 , N o . 4 9 と同様の理由にょ リ 微粉炭等の燃焼効率が低く 、 コークス比が高いため製造コス トが高い。 また、 酸 素富化された空気 ( 6 3 %02) を使用し且つ微粉炭等の燃焼にょ リ生じた燃焼 ガスを二次燃焼させているため、 排ガスのカロ リーが極めて低く ( 1 7 0 0 k c a l ZNin3未満) 、 さ らに、 低燃焼比での操業であるため排ガス量も少ない。 また、 N o . 4 8 , N o . 4 9 と同様に酸素と微粉炭等との接触が十分に確保さ れないため、 スラグ中の F e Oが N o . 4 , N o . 5や N o . 7 , N o . 8に較 ベて高く 、 溶銑の品質低下及び鉄歩留りの低下を生じている。
〔実施例 4〕
実施例 2 と同じ試験炉をそれぞれ用いてスクラ ップを溶解し、 溶銑を製造した。 微粉炭及びコークスは実施例 1 と同様のものを用い、 また、 羽口部から吹き込む 粉粒状合成樹脂材と しては平均粒径が 0. 2〜 1 mmのものを用いた。 ダス ト類 の吹込みは微粉炭等と同じ羽口部から行い、 ダス 卜 と しては表 2 5に示す組成の 高炉ダス トを用いた。 また、 この実施例では、 一部の比較例においてシャフ ト部 に二次燃焼用の空気を導入し、 燃焼ガスを二次燃焼させた。 各実施例の製造条件 及びその結果を表 2 6〜表 4 6に示す。
N o . 1及び N o . 2は微粉炭や合成樹脂材の吹き込みを行わず (羽口からは 酸素のみを吹き込み) 、 熱源をすベてコークスと した操業例 (微粉炭比 : 0 ) で ぁリ、 このう ち N o . 1は合成樹脂材の炉頂装入を行わなかった操業例、 N o . 2は合成榭脂材の炉頂装入を行った操業例である。
微粉炭及び合成樹脂材の吹き込みを行わない N o . 1、 N o . 2では、 レース ウェイ内の酸化帯が拡大した影饗によ リ スラグ中の F e Oが高く なリ、 溶銑の品 質低下及び鉄歩留りの低下を生じている。 また、 この N o . 1 、 N o . 2は熱源 をすベてコ一クスと しているため当然に製造コ ス 卜が高い。
N o . 3〜N o . 2 5は合成樹脂材の羽口吹き込みを行なった本発明例、 N o 2 6〜N o . 5 8は合成樹脂材の炉頂装入または炉頂装入 +羽口吹込みを行なつ た本発明例である。
まず、 N o . 3〜N o . 5は燃焼パーナから酸素と と もに微粉炭と少量の粉粒 状合成榭脂材の吹き込みを行ない、 N o . 3— N o . 5の順に微粉炭比 +合成樹 脂材比を増加させた操業例である。
N o . 3は、 微粉炭吹き込みを行ってはいるが [ (P C + S R) /02] が低 いため、 N o . 1ほどではないがスラグ中の F e Oが高く なつている。 また、 こ の操業例では [ (微粉炭比 +合成樹脂材比) ノコーク ス比] が 0. 3 6程度であ り 、 コークス比が相対的に高いため製造コ ス 卜の面で問題がある。
これに対して N o . 4, N o . 5においては、 スラグ中の F e Oが低く 、 溶銑 の品質及び鉄歩留リは良好である。 また、 これら N o . 4 , N o . 5ではコーク ス比を超える大量の微粉炭 +合成樹脂材を吹き込んでいるにも拘らず、 それらの 燃焼が効率的に行なわれているため、 2 7 00 k c a l ZNm3以上の高カロ リ —排ガスが大量に得られている。
N o . 6, N o . 7は図 4に示す構造の羽口部を備えた試験炉を、 また、 Ν ϋ 8, N o . 9は図 1 0に示す構造の羽口部を備えた試験炉をそれぞれ用い、 上記 N o . 4, N o . 5にほぼ対応した条件で燃焼パーナから酸素と微粉炭及び少量 の粉粒状合成樹脂材の吹込みを行った操業例であリ、 これらの操業例では N o . 4, N o . 5に較べて微粉炭と合成樹脂材の燃焼性がょ リ高められ、 この結果、 コークス比が若干減少し、 さらに炉頂ダス 卜の発生量が減少した。
N o . 1 0〜N o . 1 6は、 羽口部から吹き込む合成樹脂材比を N o . 4 , N o . 5に較べて增し、 且つ N o . 1 0— N o . 1 6の順で合成樹脂材中に含まれ る塩化ビニル樹脂の比率を高めた操業例であり、 いずれも排ガス中の H C 1濃度 は低く抑えられている。
N o . 1 7〜N o . 1 9は図 4に示す構造の羽口部を備えた試験炉を、 また、 N o . 2 0〜N o . 2 2は図 1 0に示す構造の羽口部を備えた試験炉をそれぞれ 用い、 上記 N o . 1 1 , N o . 1 3, N o . 1 5とほぼ対 ffeした条件で操業を行 つた操業例であリ、 いずれの操業例でも排ガス中の HC 1濃度は低く抑えられて いる。
N o . 2 3〜N o . 2 5は微粉炭比に対し合成樹脂材比を大幅に増大させた操 業例であリ、 これらは微粉炭の大量吹込に伴う排ガス中 H C 1濃度の低減効果が 相対的に低下するため、 N o . l l〜N o 2 2に較べて排ガス中のHC l 濃度が 上昇している。
一方、 N o . 2 6〜N o . 2 8は合成榭脂材の炉頂装入を行う と と もに、 燃焼 パーナから酸素と と もに微粉炭の吹き込みを行ない、 N o . 2 6→N o . 2 8の 順に微粉炭比を增加させた操業例、 また、 N o . 2 9〜N o . 3 1は合成樹脂材 の炉頂装入を行う と と もに、 燃焼パーナから酸素と と もに微粉炭と合成樹脂材の 吹き込みを行ない、 N o . 2 9→N o . 3 1の順に微粉炭比 +合成榭脂材比を増 加させた操業例である。
N o . 2 6及び N o . 2 9は、 微粉炭吹き込みを行ってはいるが [P CZ02] 、 [ (P C+ S R) /02] が低いため、 N o . 2ほどではないがスラグ中の F e Oが高くなつている。 また、 この操業例では [微粉炭比 コークス比] 、 [ (微粉炭比 +合成樹脂材比) ノコ一クス比] が 0. 4 2〜0. 4 3程度でぁリ、 コークス比が相対的に高いため製造コス トの面で問題がある。
これに対して N o . 2 7, N o . 2 8及び N o . 3 0, N o . 3 1においては. スラグ中の F e Oが低く 、 溶銑の品質及び鉄歩留リは良好である。 また、 これら の操業例ではコークス比を超える大量の微粉炭若しく は微粉炭 +合成樹脂材を吹 き込んでいるにも拘らず、 それらの燃焼が効率的に行なわれているため、 4 0 0 O k c a l ZNni3以上の高カロ リー排ガスが大量に得られている。
N o . 3 2〜N o . 3 5は図 4に示す構造の羽口部を備えた試験炉を、 また、 N o . 3 6〜N o . 3 9は図 1 0に示す構造の羽口部を備えた試験炉をそれぞれ 用い、 上記 N o . 2 7, N o . 2 8, N o . 3 0, N o . 3 1にほぼ対応した条 件で燃焼パーナから酸素と微粉炭若しく は微粉炭 +合成樹脂材の吹込みを行った 操業例でぁリ、 これらの操業例では N o . 2 7, N o . 28, N o . 3 0, N o . 3 1に較べて羽口部から吹き込まれる微粉炭と合成樹脂材の燃焼性がよ り高めら れ、 この結果、 コ一クス比が若干低下し、 さ らに炉頂ダス トの発生量が減少して いる。
N o . 4 0〜N o . 4 2は、 炉頂装入される合成樹脂材比を N o . 2 7, N o . 3 2, N o . 3 6ょ リ も高めた操業例でぁリ、 N o . 2 7 , N o . 3 2 , N o .
3 6に較べよ リ高カロ リーの排ガスが得られている。
N o . 4 3〜N o . 4 5は炉頂温度を N o . 2 7, N o . 3 2, N o . 3 6よ リ も低く した操業例であり、 炉頂温度が低いため炉頂ガス中のタール燶度は低下 するものの、 炉頂装入された合成樹脂材の炉上部での熟分解性が低下するため、 排ガス発熱量も N o . 2 7等と比較して低下している。 また、 N o . 4 6〜N o
4 8は N o . 4 0〜N o . 4 2に較べて炉頂温度を低く した操業例であり、 これ らも同様の傾向がみられる。 さらに、 N o . 4 9〜N o . 5 1は羽口部から微粉 炭 +合成榭脂材を吹き込む方式において、 炉頂温度を N 0. 30, N o . 34, N o . 3 8よ り も低く した操業例でぁリ、 これらも同様の傾向がみられる。
N o . 5 2〜Ν ο · 5 4は、 炉項装入される合成樹脂材中に塩化ビュル樹脂を 含ませた操業例でぁリ、 いずれも排ガス中の HC 1濃度は低く抑えられている。
N o . 5 5〜Ν ο · 5 8は微粉炭比に対して炉頂装入及び羽口吹込みされる合 成榭脂材比の合計量を大幅に増大させた操業例であリ、 これらは微粉炭の大量吹 込に伴う排ガス中 HC 1濃度の低減効果が相対的に低下するため、 N o . 3 0, N o . 3 1, N o . 34 , N o . 3 5, N o . 3 8, N o . 3 9に較べて排ガス 中の HC 1濃度が上昇しているが、 特に問題ないレベルである。
N o . 5 9, N o . 6 0は従来型の吹き込み羽口を用いて微粉炭または微粉炭 +合成樹脂材 (以下、 微粉炭等という) と酸素とを吹き込んだ操業例であり、 微 粉炭等の燃焼効率が低いため [P C + 02] 、 [ (P C + S R) κο2] が上げら れず、 このため微粉炭等に較べて大量のコークスを必要と し、 製造コス トが高い。 また、 羽口先における微粉炭等と酸素との接触が十分に確保されていないためス ラグ中の F e Oが高く 、 溶銑の品質低下及び鉄歩留リの低下を生じている。
N o . 6 1, N o . 6 2は従来型の吹き込み羽口を用いて酸素富化された空気 を微粉炭等と と もに吹き込んだ操業例でぁリ、 この操業例では、 従来型の吹き込 み羽口を用いていることに加えて、 吹き込みガスと して酸素富化された空気を用 いているために酸素と微粉炭等との接触が十分に確保できず、 このため微粉炭等 の燃焼効率が N o . 5 9, N o . 6 0ょ リ もさらに低く 、 したがってコ一クス比 を高くせざるを得ないため製造コス トが高い。 また、 酸素富化された空気 ( 6 6 % O 2 ) を使用しているため、 排ガスのカロ リーも低く ( 3 000 k c a 1 ZN m3未満) 、 さ らに、 上記のよ うに酸素と微粉炭等との接触が十分に確保されな いためスラグ中の F e Oが高く 、 溶銑の品質低下及び鉄歩留りの低下を生じてい る。
N o . 6 3 , N o . 6 4は従来型の吹き込み羽口を用い、 酸素富化された空気 を微粉炭等と と もに吹き込むと と もに、 シャフ ト部に二次燃焼用の空気を導入し た操業例でぁリ、 この操業例では N o . 6 1, N o . 6 2に較べて燃料比は低く できるものの、 N o . 6 1 , N o . 6 2 と同様の理由にょ リ微粉炭等の燃焼効率 が低く 、 コークス比が高いため製造コス トが高い。 また、 酸素富化された空気 (6 6 %02) を使用し且つ微粉炭等の燃焼にょ リ生じた燃焼ガスを二次燃焼さ せているため、 排ガスのカロ リーが極めて低い ( 2 00 0 k c a l ZNm3未満) 。 また、 N o . 6 1, N o . 6 2と同様に酸素と微粉炭等との接触が十分に確保 されないため、 スラグ中の F e Oが高く 、 溶銑の品質低下及び鉄歩留りの低下を 生じている。
N o . 6 5, N o . 6 6は本発明法に相当する羽口吹き込み方式を採用し、 微 粉炭等の周囲から酸素富化された空気を吹き込んだ操業例であリ、 この操業例で は吹き込みガスと して酸素富化された空気を用いているために酸素と微粉炭等と の接触が十分に確保できず、 このため微粉炭等の燃焼効率が低く 、 したがってコ —ク ス比を高くせざるを得ないため製造コス 卜が高い。 また、 酸素富化された空 気 ( 6 9 %02) を使用しているため、 排ガスのカロ リーも低い ( 2 9 00 k c a 1 /Nm3未満) 。 さ らに、 酸素富化された空気を用いているために酸素と微 粉炭等の接触が十分に確保されないため、 スラグ中の F e Oが N o . 2 7, N o
2 8や N o . 3 0, N o . 3 1に較べて高く 、 溶銑の品質低下及び歩留低下を生 じている。
N o . 6 7, N o . 6 8は本発明法に相当する羽口吹込方式を採用し、 微粉炭 等の周囲から酸素を吹き込むと と もに、 シャフ ト部に二次燃焼用の空気を導入し た操業例であリ、 これらの操業例では二次燃焼によって排ガス中の未燃チヤ一が 失われる結果、 未燃チヤ一に吸着していた HC 1 の大部分が脱離して再び排ガス 中に移行するため、 塩化ビュル材の装入 fiの割に排ガス中の HC 1濃度が高い。
N o . 6 9, N o . 70は本発明法に相当する羽口吹き込み方式を採用し、 微 粉炭等の周囲から酸素富化された空気を吹き込むと と もに、 シャフ ト部に二次燃 焼用の空気を導入した操業例でぁリ、 この操業例では N o . 6 5, N o . 6 6に 較べて燃料比は低くできるものの、 N o . 6 5, N o . 6 6 と同様の理由にょ リ 微粉炭等の燃焼効率が低く 、 コ一クス比が高いため製造コス トが高い。 また、 酸 素富化された空気 (6 2%02) を使用し且つ微粉炭等の燃焼によ り生じた燃焼 ガスを二次燃焼させているため、 排ガスのカロ リーが極めて低い ( 1 500 k c a l ZNm3未満) 。 また、 N o . 6 5, N o . 6 6と同様に酸素と微粉炭等と の接触が十分に確保されないため、 スラ グ中の F e Oが N o . 2 7, N o . 2 8 や N o . 3 0, N o . 3 1に較べて高く 、 溶銑の品質低下及び鉄歩留りの低下を 生じている。
N o . 7 1〜N o . 74は低燃料比による操業例でぁリ、 このうち N o . 7 1, N o . 7 2は本発明法に相当する羽口吹き込み方式を採用し、 微粉炭等の周囲か ら酸素富化された空気を吹き込んだ操業例である。 この操業例では吹き込みガス と して酸素富化された空気を用いているために酸素と微粉炭等との接触が十分に 確保できず、 このため微粉炭等の燃焼効率が低く 、 したがってコークス比を高く せざるを得ないため製造コス トが高い。 また、 酸素富化された空気 ( 6 3 %02) を使用しているため、 排ガスのカロ リーも低く ( 2 700 k c a l ZNm3未満) 、 さらに、 低燃焼比での操業であるため排ガス量も少ない。 また、 酸素富化され た空気を用いているために酸素と微粉炭等との接触が十分に確保されないため、 スラグ中の F e Oが N o . 2 7 , N o . 2 8や N o . 3 0, N o . 3 1に較べて 高く 、 溶銑の品質低下及び歩留低下を生じている。
N o . 7 3 , N o . 74は本発明法に相当する羽口吹き込み方式を採用し、 微 粉炭等の周囲から酸素富化された空気を吹き込むと と もに、 シャフ 卜部に二次燃 焼用の空気を導入した操業例でぁリ、 この操業例では N o . 7 1 , N o . 7 2に 較べて燃料比は低くできるものの、 N o . 7 1, N o . 7 2 と同様の理由にょ リ 微粉炭等の燃焼効率が低く 、 コークス比が高いため製造コス トが高い。 また、 酸 素富化された空気 ( 6 3 %02) を使用し且つ微粉炭等の燃焼にょ リ生じた燃焼 ガスを二次燃焼させているため、 排ガスのカロ リーが極めて低く ( 1 7 0 0 k c a l ZNm3未満) 、 さらに、 低燃焼比での操業であるため排ガス量も少ない。 また、 N o . 7 1 , N o . 7 2 と同様に酸素と微粉炭等との接触が十分に確保さ れないため、 スラグ中の F e Oが N o . 2 7 , N o . 2 8や N o . 3 0, N o . 3 1 に較べて高く 、 溶銑の品質低下及び鉄歩留りの低下を生じている。
また、 以上の実施例において炉頂ダス 卜への Z n濃化の傾向について見てみる と、 炉頂温度を 4 0 0〜 8 0 0でに制御した本発明例では、 回収ダス ト (炉頂ダ ス ト) 中の Z n濃度が吹込みダス ト (高炉ダス ト) の Z n濃度に較べて十分に高 く 、 炉頂装入されたスクラ ッブゃ吹込みダス 卜に含まれる Z nが炉頂ダス 卜に適 切に捕捉 · 濃化されているこ とが判る。 また、 配管の閉塞等による トラブルの発 生もなく順調に操業できた。
これに対して、 炉頂温度を 2 5 0でと した場合では Z nが十分に濃化されず、 回収ダス ト (炉頂ダス ト) 中の Z n濃度も吹込みダス 卜 (高炉ダス 卜) とあま リ 変らない結果となった。 また、 操業中において Z nの炉内付着が原因とみられる 風圧変動も認められた。
〔実施例 5〕
上述した試験炉による操業データに基づき、 本発明法を実機で操業した場合を シユ ミ レ一シヨ ンした。 このシユ ミ レーシヨ ンは生産量 3 0 0 0 t o n / d a y のスク ラ ップ溶解炉を想定して行った。 その結果を表 4 7に示す。 産業上の利用可能性 本発明は、 廃棄物であるスクラッブと合成樹脂材を利用して溶銑と高力ロリ一 排ガスを製造できるものであるから、 一貫製鉄所等における溶銑製造設備として 利用できる。
Z '65 C 'CC v 3 ά ΙΛΙ Λ 挲 I
99 f8H0/96df/lOd ム 66ZI/厶 6 OAV 第 2 表
Figure imgf000069_0001
P C : 微粉炭比( Λ 'pig) S R : 合成樹脂材吹込み比(kg/い pig)
02 : 酸素流 fi: (Nm3/t-pig)
Na26 N( 3】では空気に付加した酸素 Sを示す。 第 3 表
Figure imgf000070_0001
P C 微粉炭比(kg/い pi g) S R : 合成樹脂材吹込み比 ig) 酸素流!: (NmVt - p ig)
*2 Να26· • α31では空気に付加した酸素 :を示す 第 4 表
Figure imgf000071_0001
*1 P C : 微粉炭比(kg/I 'Pig) S R : 合成樹脂材吹込み比( g/ pig) 02 : 酸素流量 (Nm3/l'pig)
本 2 Ν(χ26~Να31では空気に付加した酸素 :を示す c 第 5 表
Figure imgf000072_0001
] P C 微粉炭比(kg 'pig) S R : 合成樹脂材吹込み比(^Λ 'pig) o2 酸素流 i (NmVt-pig)
Να26' •Na31では空気に付加した酸素!;を示す 第 6 表
Figure imgf000073_0001
P C : 微粉炭比( い S R : 合成樹脂材吹込み比(kg/t 'pig) 0 : 酸素流 fi (NmVfpig)
α26~Να31では空気に付加した酸素 :を示す, 第 表
Figure imgf000074_0001
P C : 微粉炭比(kg/i 'Pig) S R : 合成樹脂材吹込み比(kg/^p ) 02 : 酸素流 i (NmVl'pig)
*2 Ν 26〜Να31では空気に付加した酸素 ftを示す 第 8 表
Figure imgf000075_0001
P C : 微粉炭比(kg/t ' pi g) S R : 合成樹脂材吹込み比(kg/い pig) 02 : 酸素流量 (Nm3/い p ig)
*2 Ν( 26 Να31では空気に付加した酸素 Sを示す 第 9 表
Figure imgf000076_0001
*1 P C 微粉炭比( lig) S R : 合成樹脂材吹込み比(kg/い pig) o2 酸素流量 (NmVf pig)
Να26- •Nci31では空気に付加した酸素!:を示す 第 0 表
Figure imgf000077_0001
P C 微粉炭比(kg/い pig) S R : 合成樹脂材吹込み比( 'pig) o2 酸素流量 ( mVt -pig)
*2 α26· •Να31では空気に付加した酸素!:を示す 第 1 表
Figure imgf000078_0001
*1 P C : 微粉炭比(kg ' p i g) S R : 合成樹脂材吹込み比(kg/i 'p i g)
02 : 酸素流量 (Νπ3Λ ' pi g)
*2 a38〜No 3, a ~ a51では空気に付加した酸素量を示す。 第 2 表
Figure imgf000079_0001
P C : 微粉炭比(ig/ 'Pig) S R 合成樹脂材吹込み比 'pig) 02 : 酸素流!: (Νιη3Λ'ρ )
*2 α38 α 3, Να46 α51では空気に付加した酸素 fiを示す。 第 3 表
Figure imgf000080_0001
P C : 微粉炭比(kg/i ·ρ ) S R : 合成樹脂材吹込み比(kg/い pig) 02 : 酸素流 J: (NmVf Pig)
α38〜 α43, α46〜Ν/'α51では空気に付加した酸素量を示す。 第 4 表
Figure imgf000081_0001
P C : 微粉炭比(kg/い Pig) S R : 合成榭脂材吹込み比 'Pig) 02 : 酸素流量 (Νπι3Λ lig)
*2 Να38~Να43, 46〜 α51では空気に付加した酸素 fiを示す c 第 5 表
Figure imgf000082_0001
P C : 微粉炭比(kg/い pig) S R : 合成樹脂材吹込み比(kg/い pig) 02 : 酸素流惫 (Nm3/I lig)
本2 Να38〜 α43, α46~Να51では空気に付加した酸素;!:を示す。 第 6 表
Figure imgf000083_0001
Ρ C : 微粉炭比(kg^ 'pig) S R : 合成樹脂材吹込み比(kg /い pig) 02 : 酸素流 S (NmVt-pig)
a38〜 a43, a46 ~ Na51では空気に付加した酸素量を示す。 第 1
Figure imgf000084_0001
P C : 微粉炭比(kg ' pig) S R 合成樹脂材吹込み比(kg ·ρ ) 02 : 酸素流量 (Νπι3Λ 'pig)
α38〜Να43, α46~ α51では空気 I 付加した酸素量を示す ( 第 8 表
Figure imgf000085_0001
P C : 微粉炭比(kg 'p i g) S R : 合成樹脂材吹込み比(kg/い pi g) 02 : 酸素流量 ((½3Λ·Ρ^)
α38〜 α43, α 〜 α51では空気に付加した酸素惫を示す。 第 9 表
Figure imgf000086_0001
*1 P C 微粉炭比(kg/1 *pig) S R : 合成樹脂材吹込み比( /い pig) 酸素流量 (Nm3/t -pig)
*2 α38· • α43, α46〜Να51では空気に付加した酸素 Jtを示す。 第 2 0 表
Figure imgf000087_0001
P C : 微粉炭比( /t 'pig) S R : 合成樹脂材吹込み比(kg/I 'pig) 02 : 酸素流 fi (Nm3/1 -Pii)
*2 Να38〜 α43, α46〜Να51では空気に付加した酸素 iを示す。 第 2 1 表
Figure imgf000088_0001
P C : 微粉炭比(kg /い pig) S R : 合成樹脂材吹込み比(kg /い pig) 02 : 酸素流 fi (Nm3/い PU)
*2 3ί(〜 α43, α46〜 Να51では空気に付加した酸素 fiを示す。 第 2 2 表
Figure imgf000089_0001
P C : 微粉炭比(kg/い p i g) S R : 合成樹脂材吹込み比(kg ·ρ ) 02 : 酸素流量 (Nm3 ' p i g)
*2 α38〜 α43, Να 6 ~ Να51では空気に付加した酸素量を示す。 第 2 3 表
Figure imgf000090_0001
P C : 微粉炭比(kg/い Pig) S R : 合成樹脂材吹込み比(kg /い pig) 02 : 酸素流量 (ί½3Λ 'pig)
ネ 2 Να38〜Να43, Να46〜 α51では空気に付加した酸素 fiを示す。 第 2 4 表
Figure imgf000091_0001
P C : 微粉炭比(kg/t 'pig) S R : 合成樹脂材吹込み比(ig 'pig) 02 : 酸素流量 (ϊ½3Λ·ρα)
*2 α38〜 α43, Να46〜 α51では空気に付加した酸素 ftを示す。 α 6
ダ成組トス '
O
〇 〇
〇 o 〇 〇 嫉 υ c
H in < υ 2 2
第 2 6 表
Figure imgf000093_0001
*1 P C : 微粉炭比(kg/t ' p ig) 02 : 酸素流 * (Νπι3Λ · ρ )
S R : 合成樹脂材吹込み比 ' p i g)
*2 Να61~Ν 66, α69 Να74では空気に付加した酸素量を示す, 第 2
Figure imgf000094_0001
*1 P C : 微粉炭比(kg ' pi g) S R : 合成樹脂材比(kg/i 'p i g)
02 : 酸素流量(Nm3/I 'p i g)
*2 α61〜 α66, Να69〜 α74では空気に付加した酸素量を示す。 第 2 8 表
Figure imgf000095_0001
P C : 微粉炭比( 'Pig) S R : 合成樹脂材比(kg /い!) ig) 02 : 酸素流量(Nm3/い pig)
α61〜Να66, Να69〜 Να 74では空気に付加した酸素 を示す。 第 2 9 表
Figure imgf000096_0001
P C : 微粉炭比(kg/i 'pig) S R : 合成樹脂材比( ,P ) 02 : 酸素流 i(Nm3 /い pig)
*2 α61〜 α66, α69〜 α 74では空気に付加した酸素 iを示す。 第 3 0 表
Figure imgf000097_0001
P C 微粉炭比(kg/^pig) S R : 合成樹脂材比(kg/^pig) o2 酸素流量(Nm3/い pig)
Να61 • OL66, α69~Να74では空気に付加した酸素: :を示す, 第 3 表
Figure imgf000098_0001
P C : 微粉炭比(kg/い pig) S R : 合成樹脂材比(kg/い pig) 02 : 酸素流 i(Nm3 /い pig)
*2 Να61〜 α66, Να69〜 Νοι74では空気に付加した酸素 iを示す。 第 3 2 表
Figure imgf000099_0001
:1 P C : 微粉炭比(kg/い pig) S R : 合成樹脂材比(kg/い p ig) 02 : 酸素流量(Nm3 /い p ig)
*2 Να61〜 α66, α69 ~Να74では空気に付加した酸素 :を示す。 第 3 3 表
Figure imgf000100_0001
*1 P C : 微粉炭比(kg /い!) ig) S R : 合成樹脂材比(^Λ 'pig)
02 : 酸素流量(ΝΙΒ3Λ ·Ρ )
*2 Να61 Να66, Να69 ~Να74では空気に付加した酸素量を示す。 第 3 4 表
Figure imgf000101_0001
*1 P C : 微粉炭比(U/^P i g) S R : 合成樹脂材比(kg/い p ig)
02 : 酸素流!:(Νπ3Λ ·ρ ί§)
*2 α61〜Να66, Να69〜 α74では空気に付加した酸素量を示す。 第 3 5 表
Figure imgf000102_0001
P C : 微粉炭比(kg/^pig) S R : 合成樹脂材比(kg /い Pig) 02 : 酸素流量(Nm3/い pig)
*2 α61〜 α66, Να69〜 α74では空気に付加した酸素!;を示す。 第 3 6 表
Figure imgf000103_0001
*1 P C : 微粉炭比(kg/い Pi g) S R : 合成樹脂材比(kg/^p i g)
02 : 酸素流 i(Nn3/ p ig)
*2 a61〜Na66, Na69 ~ a74では空気に付加した酸素 ftを示す。 第 3 7 表
Figure imgf000104_0001
P C : 微粉炭比(kg/い pig) S R : 合成樹脂材比( /い pig) 02 : 酸素流!:(Νπ3/い pig)
*2 α61~Να66, Να69〜 Nc 74では空気に付加した酸素 を示す。 第 3 8 表
Figure imgf000105_0001
P C : 微粉炭比(U/い Pig) S R : 合成樹脂材比(kg 'pig) 02 : 酸素流量(Nm3/l 'pig)
*2 α61〜 α66, Να69〜 α74では空気に付加した酸素 Sを示す。 第 3 9 表
Figure imgf000106_0001
P C : 微粉炭比 /い Pig) S R : 合成樹脂材比( 'Pig) 02 : 酸素流量(Nm3/い!) ig)
*2 α61〜 α66, α69〜 oJ4では空気に付加した酸素!;を示す。 第 4 0 表
Figure imgf000107_0001
*1 P C : 微粉炭比(kg/l'pig) S R : 合成樹脂材比( /い Pig)
02 : 酸素流 S(Nni3/い Pig)
*2 α61〜Να66, α69〜 Να74では空気に付加した酸素量を示す。 第 4 1 表
Figure imgf000108_0001
*1 P C : 微粉炭比( /い p ig) S R : 合成樹脂材比 'p ig)
02 : 酸素流量(Nm3/い P ig)
*2 α61〜Να66, α69〜 α74では空気に付加した酸素 iを示す。 第 4 2 表
Figure imgf000109_0001
P C : 微粉炭比(kg/い Pig) S R : 合成樹脂材比( 'pig) 02 : 酸素流 i(Nni3/い pig)
*2 Να61〜Να66, Να69〜 Να74では空気に付加した酸素 fl:を示す。 第 4 3 表
Figure imgf000110_0001
P C : 微粉炭比 /い P i g) S R : 合成樹脂材比( /い P i «) 02 : 酸素流量(Nm3/ p ig)
本 2 Να61 ~ α66, α69〜 α74では空気に付加した酸素 fiを示す。 第 4 4 表
Figure imgf000111_0001
*1 P C : 微粉炭比(kg/い pig) S R : 合成樹脂材比( Λ 'Pig)
02 : 酸素流量(Νπ3/い pig)
*2 α61〜Να66, Na69〜 α74では空気に付加した酸素量を示す。 第 4 5 表
Figure imgf000112_0001
*1 P C : 微粉炭比( Λ 'pig) S R : 合成樹脂材比(kg/い pig)
02 : 酸素流量(Nm3/ p ig)
*2 α61〜 α66, α69〜 α74では空気に付加した酸素量を示す。 第 4 6 表
Figure imgf000113_0001
*1 P C :微粉炭比(kg *pi g) S R : 合成樹脂材比( Λ ·Ρ )
02 : 酸素流量(Νπι3Λ ·Ρ )
*2 α61〜Να66, α69〜 Να74では空気に付加した酸素!:を示す。 第 4 表
Figure imgf000114_0001
石灰石 (CaO源) 、 硅石 (Si02源) 、 蛇紋岩 (MgO源) 但し、 P低滅のために転炉滓は用いない
*2 微粉炭、 合成樹脂材の搬送ガス
*3 高炉相当
*4 スラグ塩基度は »点、 粘度、 脱硫、 処理を考慮して 高炉滓と同等に設定した

Claims

請 求 の 範 囲
1 . シャフ ト炉内に鉄源であるスク ラ ップとコークスを炉頂装入し、 羽口部に 設けられた燃焼パーナからは微粉炭、 粉粒状または細片状の合成樹脂材及び 酸素を炉内に吹き込み、 これらの吹き込みに当たっては、 微粉炭と合成樹脂 材をバーナ径方向中心若しく はその近傍から吹き込むと と もに、 酸素をその 周囲から吹き込んで微粉炭及び合成樹脂材と酸素を混合させるこ とによ り、 微粉炭と少く と も合成樹脂材の一部を羽口先に形成される燃焼帯で急速燃焼 させ、 この燃焼ガスの顕熟でスクラ ッブを溶解して溶銑を製造する と と もに, 燃焼ガスを炉内で有意に二次燃焼させることなく燃料用ガスと して回収する こ とを特徴とするスクラ ップ溶解法。
2 . シャフ ト炉內に鉄源であるスクラップと コークスを炉頂装入し、 羽口部に 設けられた燃焼パーナからは微粉炭、 粉粒状または細片状の合成樹脂材及び 酸素を炉内に吹き込み、 これらの吹き込みに当たっては、 バ一ナ径方向中心 若しく はその近傍から酸素を吹き込むと と もに、 その周囲から微粉炭と合成 榭脂材を吹き込み、 さ らにその周囲から酸素を吹き込んで微粉炭及び合成樹 脂材と酸素を混合させるこ とによ り、 微粉炭と少なく と も合成樹脂材の一部 を羽口先に形成される燃焼帯で急速燃焼させ、 この燃焼ガスの顕熱でスクラ ップを溶解して溶銑を製造すると と もに、 燃焼ガスを炉内で有意に二次燃焼 させるこ となく燃料用ガスと して回収するこ とを特徴とするスクラ ッブ溶解 法。
3. 燃焼パーナによる合成樹脂材の吹き込みが非連続的若しく は間欠的に実施 され、 且つこの合成榭脂材の吹き込みが微粉炭の吹き込みと と もに若しく は 一時的に微粉炭の吹き込みに代えて実施されるこ とを特徴とする請求項 1 ま たは 2に記載のスクラ ップ溶解法。
4. パーナ先端開口部の内方に予燃焼室が設けられた燃焼パーナを羽口部に備 えたシャフ ト炉を用いて行われるスクラ ップ溶解法であって、 シャフ ト炉内 に鉄源であるスクラ ップとコークスを炉頂装入し、 前記燃焼パーナの予燃焼 室内には微粉炭と酸素を吹き込むと と もに、 粉粒状または細片状若しく は塊 状の合成樹脂材を吹き込み若しく は装入し、 これらの吹き込みに当たっては 少なく と も微粉炭をバ一ナ径方向中心若しく はその近傍から吹き込むと と も に、 酸素をその周囲から吹き込んで両者を混合させることによ り、 予燃焼室 内で微粉炭と少なく と も合成樹脂材の一部を急速燃焼させ、 その燃焼ガスを パーナ先端開口部から炉内に導入し、 該燃焼ガスの顕熱でスクラップを溶解 して溶銑を製造すると と もに、 燃焼ガスを炉內で有意に二次燃焼させること なく燃料用ガスと して回収することを特徴とするスク ラ ッブ溶解法。
5 . 粉粒状または細片状の合成樹脂材をバーナ径方向中心若しくはその近傍か ら予燃焼室内に吹き込むことを特徴とする請求項 4に記載のスクラッブ溶解 法。
6 . パーナ先端開口部の内方に予燃焼室が設けられた燃焼パーナを羽口部に備 えたシャフ ト炉を用いて行われるスクラ ップ溶解法であって、 シャフ ト炉内 に鉄源であるスクラ ップとコークスを炉頂装入し、 前記燃焼パーナの予燃焼 室内には微粉炭と酸素を吹き込むと と もに、 粉粒状または細片状若しく は塊 状の合成樹脂材を吹き込み若しく は装入し、 これらの吹き込みに当たっては. 酸素をバ一ナ径方向中心若しく はその近傍から吹き込むと と もに、 少なく と も微粉炭をその周囲から吹き込み、 さらにその周囲から酸素を吹き込んで微 粉炭と酸素を混合させるこ とによ リ、 予燃焼室内で微粉炭と少なく と も合成 樹脂材の一部を急速燃焼させ、 その燃焼ガスをパーナ先端開口部から炉內に 導入し、 該燃焼ガスの顕熱でスクラ ップを溶解して溶銑を製造すると と もに 燃焼ガスを炉内で有意に二次燃焼させるこ となく燃料用ガスと して回収する ことを特徴とするスクラッブ溶解法。
7. 粉粒状または細片状の合成榭脂材を、 バーナ径方向中心若しく はその近傍 から吹き込まれる酸素の周囲から予燃焼室内に吹き込むこ とを特徴とする請 求項 6に記載のスクラップ溶解法。
8. 合成樹脂材の予燃焼室内への吹き込みまたは装入が非連続的若しく は間欠 的に実施され、 且つこの合成樹脂材の吹き込みまたは装入が、 微粉炭の吹き 込みと と もに若しく は一時的に微粉炭の吹き込みに代えて実施されるこ とを 特徴とする請求項 4、 5、 6または 7に記載のスク ラ ップ溶解法。
9. 燃焼パーナに対して供給する微粉炭比 P C ( k gノ t · pig) 及び合成樹脂 材比 S R ( k gZ t - pig) と酸素流量 02 (Nm3/ t - pig) との比 [ (P C + S R) /02] を 0. 7 k gZNm3以上とするこ とを特徴とする請求項 1、 2、 3、 4、 5、 6、 7または 8に記載のスクラ ップ溶解法。
10. 燃料比を 3 00 k gZ t ' pig以上と し、 燃焼バ一ナに対して供給する微粉 炭比 ( k g Z t - Pig) 及び合成樹脂材比 ( k g/ t - pig) と炉頂装入する コ ークス比 (k t - pig) との重量比 [ (微粉炭比 +合成樹脂材比) コ —ク ス比] を 1. 0以上とするこ とを特徴とする請求項 1 、 2、 3、 4、 5、 6、 7、 8または 9に記載のスクラ ップ溶解法。
11. シャフ ト伊内に鉄源であるスクラ ップ、 コ一タス及び合成樹脂材を炉項装 入し、 羽口部に設けられた燃焼パーナからは微粉炭と酸素を炉內に吹き込み、 これらの吹き込みに当たっては、 微粉炭をバーナ径方向中心若しく はその近 傍から吹き込むと と もに、 酸素をその周囲から吹き込んで両者を混合させる こ とによ リ、 微粉炭を羽口先に形成される燃焼帯で急速燃焼させ、 この燃焼 ガスの顕熱でスクラップを溶解して溶銑を製造すると と もに、 燃焼ガスを炉 内で有意に二次燃焼させることなく 、 合成樹脂材の熱分解によ リ生成したガ スと と もに燃料用ガスと して回収するこ とを特徴とするスクラ ップ溶解法。 シャフ ト炉内に鉄源であるスクラップ、 コークス及び合成樹脂材を炉頂装 入し、 羽口部に設けられた燃焼パーナからは微粉炭と酸素を炉内に吹き込み、 これらの吹き込みに当たっては、 バーナ径方向中心若しくはその近傍から酸 素を吹き込むと と もに、 その周囲から微粉炭を吹き込み、 さ らにその周囲か ら酸素を吹き込んで微粉炭と酸素を混合させることにょ リ、 微粉炭を羽口先 に形成される燃焼帯で急速燃焼させ、 この燃焼ガスの顕熟でスクラ ップを溶 解して溶銑を製造すると と もに、 燃焼ガスを炉内で有意に二次燃焼させるこ となく 、 合成樹脂材の熱分解によ リ生成したガスと と もに燃料用ガスと して 回収するこ とを特徴とするスクラ ッブ溶解法。
シャフ ト炉内に鉄源であるスクラ ップ、 コークス及び合成樹脂材を炉頂装 入し、 羽口部に設けられた燃焼パーナからは微粉炭、 粉粒状または細片状の 合成樹脂材及び酸素を炉内に吹き込み、 これらの吹き込みに当たっては、 微 粉炭と合成樹脂材をバーナ径方向中心若しく はその近傍から吹き込むと と も に、 酸素をその周囲から吹き込んで微粉炭及び合成樹脂材と酸素を混合させ るこ とによ リ 、 微粉炭と少く と も合成樹脂材の一部を羽口先に形成される燃 焼帯で急速燃焼させ、 この燃焼ガスの顕熟でスクラ ップを溶解して溶銑を製 造すると と もに、 燃焼ガスを炉內で有意に二次燃焼させることなく 、 合成樹 脂材の熱分解にょ リ生成したガスと と もに燃料用ガスと して回収することを 特徴とするスクラ ッブ溶解法。
シャフ ト炉内に鉄源であるスクラ ップ、 コ一クス及び合成樹脂材を炉頂装 入し、 羽口部に設けられた燃焼パーナからは微粉炭、 粉粒状または細片状の 合成樹脂材及び酸素を炉内に吹き込み、 これらの吹き込みに当たっては、 バ ーナ径方向中心若しく はその近傍から酸素を吹き込むと と もに、 その周囲か ら微粉炭と合成樹脂材を吹き込み、 さらにその周囲から酸素を吹き込んで微 粉炭及び合成榭脂材と酸素を混合させることによ り、 微粉炭と少なく と も合 成樹脂材の一部を羽口先に形成される燃焼栴で急速燃焼させ、 この燃焼ガス の顕熱でスクラッブを溶解して溶銑を製造すると と もに、 燃焼ガスを炉内で 有意に二次燃焼させることなく 、 合成樹脂材の熱分解によ リ生成したガスと と もに燃料用ガスと して回収することを特徴とするスク ラ シプ溶解法。
15. 燃焼パーナによる合成樹脂材の吹き込みが非連続的若しく は間欠的に実施 され、 且つこの合成樹脂材の吹き込みが微粉炭の吹き込みと と もに若しく は 一時的に微粉炭の吹き込みに代えて実施されるこ とを特徴とする請求項 1 3 または 1 4に記載のスクラ ッブ溶解法。
1 6 . パーナ先端開口部の内方に予燃焼室が設けられた燃焼バ一ナを羽口部に備 えたシャフ ト炉を用いて行われるスクラ ップ溶解法であって、 シャフ ト炉內 に鉄源であるスクラ ップ、 コ一クス及び合成樹脂材を炉頂装入し、 前記燃焼 パーナの予燃焼室内には微粉炭と酸素を吹き込み、 これらの吹き込みに当た つては、 微粉炭をバ一ナ径方向中心若しく はその近傍から吹き込むと と もに、 酸素をその周囲から吹き込んで両者を混合させることにょ リ、 予燃焼室内で 微粉炭を急速燃焼させ、 その燃焼ガスをパーナ先端開口部から炉内に導入し、 該燃焼ガスの顕熱でスクラップを溶解して溶銑を製造すると と もに、 燃焼ガ スを炉內で有意に二次燃焼させるこ となく 、 合成樹脂材の熱分解にょ リ生成 したガスと ともに燃料用ガスと して回収することを特徴とするスクラ ップ溶 解法。
7 . バ一ナ先端開口部の内方に予燃焼室が設けられた燃焼バーナを羽口部に備 えたシャフ ト炉を用いて行われるスクラ ッブ溶解法であって、 シャフ ト炉内 に鉄源であるスク ラ ップ、 コ一クス及び合成樹脂材を炉頂装入し、 前記燃焼 パーナの予燃焼室内には微粉炭と酸素を吹き込み、 これらの吹き込みに当た つては、 酸素をバーナ径方向中心若しく はその近傍から吹き込むと と もに、 その周囲から微粉炭を吹き込み、 さらにその周囲から酸素を吹き込んで微粉 炭と酸素を混合させることによ リ、 予燃焼室内で微粉炭を急速燃焼させ、 そ の燃焼ガスをパーナ先端開口部から炉内に導入し、 該燃焼ガスの顕熱でスク ラッブを溶解して溶銑を製造すると と もに、 燃焼ガスを炉内で有意に二次燃 焼させることなく、 合成樹脂材の熱分解によ り生成したガス と と もに燃料用 ガスと して回収する.ことを特徴とするスクラップ溶解法。
1 8 . パーナ先端開口部の內方に予燃焼室が設けられた燃焼パーナを羽口部に備 えたシャフ ト炉を用いて行われるスクラ ッブ溶解法であって、 シャフ ト炉内 に鉄源であるスク ラ ップ、 コークス及び合成榭脂材を炉頂装入し、 前記燃焼 パーナの予燃焼室内には微粉炭と酸素を吹き込むと と もに、 粉粒状または細 片状若しく は塊状の合成樹脂材を吹き込み若しく は装入し、 これらの吹き込 みに当たっては、 少なく と も微粉炭をバーナ径方向中心若しく はその近傍か ら吹き込むと と もに、 酸素をその周囲から吹き込んで両者を混合させること によ り、 予燃焼室内で微粉炭と少なく と も合成樹脂材の一部を急速燃焼させ. その燃焼ガスをパーナ先端開口部から炉内に導入し、 該燃焼ガスの顕熱でス クラ ップを溶解して溶銑を製造すると と もに、 燃焼ガスを炉内で有意に二次 燃焼させることなく 、 合成樹脂材の熱分解によ リ生成したガスと と もに燃料 用ガスと して回収するこ とを特徴とするスクラ ッブ溶解法。
19. 粉粒状または細片状の合成樹脂材をバ一ナ径方向中心若しく はその近傍か ら予燃焼室内に吹き込むことを特徴とする請求項 1 8に記載のスク ラ ップ溶 解法。
20. パーナ先端開口部の内方に予燃焼室が設けられた燃焼パーナを羽口部に備 えたシャフ ト炉を用いて行われるスクラ ッブ溶解法であって、 シャフ ト炉内 に鉄源であるスクラ ップ、 コークス及び合成樹脂材を炉頂装入し、 前記燃焼 パーナの予燃焼室内には微粉炭と酸素を吹き込むと と もに、 粉粒状または細 片状若しく は塊状の合成樹脂材を吹き込み若しく は装入し、 これらの吹き込 みに当たっては、 酸素をバーナ径方向中心若しく はその近傍から吹き込むと と もに、 少なく と も微粉炭をその周囲から吹き込み、 さらにその周囲から酸 素を吹き込んで微粉炭と酸素を混合させるこ とにょ リ、 予燃焼室内で微粉炭 と少なく と も合成樹脂材の一部を急速燃焼させ、 その燃焼ガスをパーナ先端 開口部から炉內に導入し、 該燃焼ガスの顕熱でスク ラ ップを溶解して溶銑を 製造すると と もに、 燃焼ガスを炉内で有意に二次燃焼させることなく 、 合成 榭脂材の熱分解によ リ生成したガスと と もに燃料用ガスと して回収すること を特徴とするスクラ ッブ溶解法。
21. 粉粒状または細片状の合成榭脂材を、 バーナ径方向中心若しくはその近傍 から吹き込まれる酸素の周囲から予燃焼室内に吹き込むことを特徴とする請 求項 20に記載のスクラ ッブ溶解法。
22. 合成樹脂材の予燃焼室内への吹き込みまたは装入が非連続的若しく は間欠 的に実施され、 且つこの合成樹脂材の吹き込みまたは装入が、 微粉炭の吹き 込みと と もに若しく は一時的に微粉炭の吹き込みに代えて実施されるこ とを 特徴とする請求項 1 8、 1 9、 2 0または 2 1 に記載のスク ラ ップ溶解法。
23. 燃焼パーナに対して供給する微粉炭比 P C ( k g/ t - pig) と酸素流量 O
2 (Nm3/ t - pig) との比 [ P CZ02] を 0. 7 k gZNm3以上とするこ とを特徴とする請求項 1 1、 1 2、 1 6または 1 7に記載のスク ラ ップ溶解 法。
24. 燃料比を 3 00 k gZ t ' pig以上と し、 燃焼バ一ナに対して供給する微粉 炭比 (k gZ t - pig) と炉頂装入するコ一クス比 (k gZ t - pig) との重 量比 [微粉炭比 Zコ ークス比] を 1. 0以上とすることを特徴とする請求項 1 1 、 1 2、 1 6、 1 7または 2 3に記載のスク ラ ップ溶解法。
25. 燃焼パーナに対して供給する微粉炭比 P C ( k g / t - pig) 及び合成樹脂 材比 S R ( k g / t - pig) と酸素流量 O 2 (NmV t - pig) との比 [ (P C + S R) /02] を 0. 7 k gZNm3以上とすることを特徴とする請求項 1 3、 1 4、 1 5、 1 8、 1 9、 20、 2 1または 22に記載のスク ラ ップ 溶解法。
26. 燃料比を 300 k gZ t ' pig以上と し、 燃焼パーナに対して供給する微粉 炭比 (k gZ t - pig) 及び合成樹脂材比 (k gZ t - pig) と炉頂装入する コ一クス比 (k gZ t - pig) との重量比 [ (微粉炭比 +合成樹脂材比) コ —クス比] を 1. 0以上とすることを特徴とする請求項 1 3、 1 4、 1 5、 1 8、 1 9、 20、 2 1、 2 2または 25に記載のスクラ ップ溶解法。
27. 炉頂温度を 400〜 600 °Cに制御するこ とを特徴とする請求項 1 1、 1 2、 1 3、 1 4、 1 5、 1 6、 1 7、 1 8、 1 9、 20、 2 1、 22、 23、 24、 2 5または 26に記載のスク ラ ップ溶解法。
28. シャフ ト炉内に鉄源であるスクラップとコ一クスを炉頂装入し、 羽口部に 設けられた燃焼パーナからは微粉炭、 粉粒状または細片状の合成榭脂材及び 酸素を炉内に吹き込むと と もに、 該燃焼パーナまたはノ及び羽口部の他の吹 込み手段を通じて炉内にダス ト類を吹き込み、 前記微粉炭、 粉粒状または細 片状の合成樹脂材及び酸素の吹き込みに当たっては、 微粉炭と合成樹脂材を バ一ナ径方向中心若しく はその近傍から吹き込むと と もに、 酸素をその周囲 から吹き込んで微粉炭及び合成樹脂材と酸素を混合させるこ とによ り、 微粉 炭と少なく と も合成樹脂材の一部を羽口先に形成される燃焼帯で急速燃焼さ せ、 この燃焼ガスの顕熱でスクラ ップを溶解して溶銑を製造すると と もに、 燃焼ガスを炉内で有意に二次燃焼させることなく燃料用ガスと して回収する こ とを特徴とするスクラ ッブ溶解法。
29. シャフ ト炉内に鉄源であるスクラ ップとコ一クスを炉頂装入し、 羽口部に 設けられた燃焼パーナからは微粉炭、 粉粒状または細片状の合成樹脂材及び 酸素を炉内に吹き込むと と もに、 該燃焼バ一ナまたは Z及び羽口部の他の吹 込み手段を通じて炉内にダス ト類を吹き込み、 前記微粉炭、 粉粒状または細 片状の合成樹脂材及び酸素の吹き込みに当たっては、 バ一ナ径方向中心若し く はその近傍から酸素を吹き込むと と もに、 その周囲から微粉炭と合成樹脂 材を吹き込み、 さらにその周囲から酸素を吹き込んで微粉炭及び合成樹脂材 と酸素を混合させることによ リ、 微粉炭と少なく と も合成樹脂材の一部を羽 口先に形成される燃焼帯で急速燃焼させ、 この燃焼ガスの顕熱でスク ラ ップ を溶解して溶銑を製造すると と もに、 燃焼ガスを炉内で有意に二次燃焼させ ることなく燃料用ガスと して回収することを特徴とするスクラ ップ溶解法。
30. パーナ先端開口部の内方に予燃焼室が設けられた燃焼バ一ナを羽口部に備 えたシャ フ ト炉を用いて行われるスクラッブ溶解法であって、 シャフ ト炉内 に鉄源であるスクラ ップと コ一クスを炉頂装入し、 前記燃焼パーナの予燃焼 室内には微粉炭と酸素を吹き込むと と もに、 粉粒状または細片状若しく は塊 状の合成樹脂材を吹き込み若しく は装入し、 さらに該燃焼パーナまたは/及 び羽口部の他の吹込み手段を通じて炉内にダス ト類を吹き込み、 前記微粉炭 粉粒状または細片状の合成榭脂材及び酸素の吹き込みに当たっては、 少なく と も微粉炭をバ一ナ径方向中心若しくはその近傍から吹き込むと と もに、 酸 素をその周囲から吹き込んで両者を混合させるこ とによ リ、 予燃焼室内で微 粉炭と少なく と も合成榭脂材の一部を急速燃焼させ、 その燃焼ガスをバ一ナ 先端開口部から炉内に導入し、 この燃焼ガスの顕熱でスク ラ ップを溶解して 溶铣を製造すると と もに、 燃焼ガスを炉内で有意に二次燃焼させることなく 燃料用ガスと して回収することを特徴とするスクラッブ溶解法。
1 . バ一ナ先端開口部の内方に予燃焼室が設けられた燃焼パーナを羽口部に備 えたシャフ ト炉を用いて行われるスクラ ッブ溶解法であって、 シャフ ト炉內 に鉄源であるスクラ ップと コ一クスを炉頂装入し、 前記燃焼パーナの予燃焼 室内には微粉炭と酸素を吹き込むと と もに、 粉粒状または細片状若しく は塊 状の合成樹脂材を吹き込み若しく は装入し、 さ らに該燃焼パーナまたはノ及 び羽口部の他の吹込み手段を通じて炉内にダス ト類を吹き込み、 前記微粉炭 粉粒状または細片状の合成樹脂材及び酸素の吹き込みに当たっては、 酸素を バ一ナ径方向中心若しく はその近傍から吹き込むと と もに、 少なく と も微粉 炭をその周囲から吹き込み、 さ らにその周囲から酸素を吹き込んで微粉炭と 酸素を混合させるこ とによ リ、 予燃焼室内で微粉炭と少なく と も合成樹脂材 の一部を急速燃焼させ、 その燃焼ガスをパーナ先端開口部から炉内に導入し この燃焼ガスの顕熱でスクラ ップを溶解して溶銑を製造すると と もに、 燃焼 ガスを炉内で有意に二次燃焼させるこ となく燃料用ガス と して回収するこ と を特徴とするスクラ ップ溶解法。
32. シャフ ト炉内に鉄源であるスクラ ップ、 コークス及び合成樹脂材を炉頂装 入し、 羽口部に設けられた燃焼パーナからは微粉炭及び酸素を炉内に吹き込 みむと と もに、 該燃焼パーナまたは z及び羽口部の他の吹込み手段を通じて 炉内にダス ト類を吹き込み、 前記微粉炭及び酸素の吹き込みに当たっては、 微粉炭をバーナ径方向中心若しく はその近傍から吹き込むと と もに、 酸素を その周囲から吹き込んで両者を混合させることによ リ、 微粉炭を羽口先に形 成される燃焼帯で急速燃焼させ、 この燃焼ガスの顕熱でスク ラ ップを溶解し て溶銑を製造すると と もに、 燃焼ガスを炉内で有意に二次燃焼させるこ とな く 、 合成樹脂材の熱分解によ リ生成したガスと と もに燃料用ガスと して回収 するこ とを特徴とするスク ラッブ溶解法。
33. シャフ ト炉内に鉄源であるスク ラ ップ、 コ一クス及び合成樹脂材を炉頂装 入し、 羽口部に設けられた燃焼パーナからは微粉炭及び酸素を炉内に吹き込 みむと と もに、 該燃焼パーナまたは Z及び羽口部の他の吹込み手段を通じて 炉内にダス 卜類を吹き込み、 前記微粉炭及び酸素の吹き込みに当たっては、 バ一ナ径方向中心若しく はその近傍から酸素を吹き込むと と もに、 その周囲 から微粉炭を吹き込み、 さらにその周囲から酸素を吹き込んで微粉炭と酸素 を混合させることによ リ、 微粉炭を羽口先に形成される燃焼帯で急速燃焼さ せ、 この燃焼ガスの顕熱でスクラ ップを溶解して溶銑を製造すると と もに、 燃焼ガスを炉内で有意に二次燃焼させるこ となく 、 合成樹脂材の熱分解によ リ生成したガスと と もに燃料用ガスと して回収するこ とを特徴とするスクラ ッブ溶解法。
34. シャフ ト炉内に鉄源であるスクラ ップ、 コークス及び合成樹脂材を炉項装 入し、 羽口部に設けられた燃焼パーナからは微粉炭、 粉粒状または細片状の 合成樹脂材及び酸素を炉内に吹き込むと と もに、 該燃焼パーナまたは z及び 羽口部の他の吹込み手段を通じて炉内にダス ト類を吹き込み、 前記微粉炭、 粉粒状または細片状の合成樹脂材及び酸素の吹き込みに当たっては、 微粉炭 と合成榭脂材をバ一ナ径方向中心若しくはその近傍から吹き込むと と もに、 酸素をその周囲から吹き込んで微粉炭及び合成樹脂材と酸素を混合させるこ とにょ リ、 微粉炭と少く とも合成榭脂材の一部を羽口先に形成される燃焼帯 で急速燃焼させ、 この燃焼ガスの顕熱でスク ラ ップを溶解して溶銑を製造す ると と もに、 燃焼ガスを炉内で有意に二次燃焼させることなく 、 合成樹脂材 の熱分解によ リ生成したガスと と もに燃料用ガスと して回収するこ とを特徴 とするスクラ ッブ溶解法。
35. シャフ ト炉内に鉄源であるスクラ ップ、 コークス及び合成樹脂材を炉頂装 入し、 羽口部に設けられた燃焼パーナからは微粉炭、 粉粒状または細片状の 合成樹脂材及び酸素を炉内に吹き込むと と もに、 該燃焼パーナまたは 及び 羽口部の他の吹込み手段を通じて炉内にダス ト類を吹き込み、 前記微粉炭、 粉粒状または細片状の合成樹脂材及び酸素の吹き込みに当たっては、 パーナ 径方向中心若しく はその近傍から酸素を吹き込むと と もに、 その周囲から微 粉炭と合成樹脂材を吹き込み、 さらにその周囲から酸素を吹き込んで微粉炭 及び合成樹脂材と酸素を混合させることによ リ、 微粉炭と少なく と も合成樹 脂材の一部を羽口先に形成される燃焼帯で急速燃焼させ、 この燃焼ガスの顕 熱でスク ラ ップを溶解して溶銑を製造すると と もに、 燃焼ガスを炉内で有意 に二次燃焼させることなく 、 合成榭脂材の熟分解によ リ生成したガスと と も に燃料用ガスと して回収することを特徴とするスク ラ ップ溶解法。
36. パーナ先端開口部の内方に予燃焼室が設けられた燃焼パーナを羽口部に備 えたシャフ ト炉を用いて行われるスク ラ ッブ溶解法であって、 シャフ ト炉内 に鉄源であるスク ラ ップ、 コークス及び合成樹脂材を炉頂装入し、 前記燃焼 パーナの予燃焼室内には微粉炭と酸素を吹き込むと と もに、 該燃焼パーナま たはノ及び羽口部の他の吹込み手段を通じて炉内にダス ト類を吹き込み、 前 記微粉炭及び酸素の吹き込みに当たっては、 微粉炭をバーナ径方向中心若し くはその近傍から吹き込むと ともに、 酸素をその周囲から吹き込んで両者を 混合させることによ リ、 予燃焼室内で微粉炭を急速燃焼させ、 その燃焼ガス をパーナ先端開口部から炉内に導入し、 この燃焼ガスの顕熱でスクラップを 溶解して溶铣を製造すると と もに、 燃焼ガスを炉内で有意に二次燃焼させる ことなく、 合成樹脂材の熱分解によ リ生成したガスと と もに燃料用ガスと し て回収することを特徴とするスクラップ溶解法。
37. バ一ナ先端開口部の内方に予燃焼室が設けられた燃焼パーナを羽口部に備 えたシャフ ト炉を用いて行われるスクラ ップ溶解法であって、 シャフ ト炉内 に鉄源であるスク ラ ップ、 コ一クス及び合成樹脂材を炉頂装入し、 前記燃焼 パーナの予燃焼室内には微粉炭と酸素を吹き込むと と もに、 該燃焼パーナま たは Z及び羽口部の他の吹込み手段を通じて炉內にダス ト類を吹き込み、 前 記微粉炭と酸素の吹き込みに当たっては、 酸素をバ一ナ径方向中心若しく は その近傍から吹き込むと と もに、 その周囲から微粉炭を吹き込み、 さらにそ の周囲から酸素を吹き込んで微粉炭と酸素を混合させるこ とによ リ、 予燃焼 室内で微粉炭を急速燃焼させ、 その燃焼ガスをパーナ先端開口部から炉内に 導入し、 この燃焼ガスの顕熱でスクラ ップを溶解して溶銑を製造すると と も に、 燃焼ガスを炉内で有意に二次燃焼させることなく 、 合成樹脂材の熱分解 によ リ生成したガスと と もに燃料用ガスと して回収することを特徴とするス クラップ溶解法。
38. パーナ先端開口部の内方に予燃焼室が設けられた燃焼パーナを羽口部に備 えたシャフ ト炉を用いて行われるスクラ ップ溶解法であって、 シャフ 卜炉內 に鉄源であるスク ラ ップ、 コークス及び合成樹脂材を炉頂装入し、 前記燃焼 パーナの予燃焼室内には微粉炭と酸素を吹き込むと と もに、 粉粒状または細 片状若しく は塊状の合成樹脂材を吹き込み若しく は装入し、 さらに該燃焼バ ーナまたはノ及び羽口部の他の吹込み手段を通じて炉内にダス ト類を吹き込 み、 前記微粉炭、 粉粒状または細片状の合成樹脂材及び酸素の吹き込みに当 たっては、 少なく とも微粉炭をバ一ナ径方向中心若しく はその近傍から吹き 込むと と もに、 酸素をその周囲から吹き込んで両者を混合させるこ とによ リ, 予燃焼室内で微粉炭と少なく と も合成樹脂材の一部を急速燃焼させ、 その燃 焼ガスをバ一ナ先端開口部から炉内に導入し、 この燃焼ガスの顕熱でスク ラ ッブを溶解して溶銑を製造すると と もに、 燃焼ガスを炉內で有意に二次燃焼 させることなく 、 合成樹脂材の熱分解によ リ生成したガスと と もに燃料用ガ スと して回収することを特徴とするスクラ ップ溶解法。
39. パーナ先端開口部の内方に予燃焼室が設けられた燃焼パーナを羽口部に備 えたシャフ ト炉を用いて行われるスクラ ップ溶解法であって、 シャフ ト炉内 に鉄源であるスク ラ ップ、 コークス及び合成樹脂材を炉頂装入し、 前記燃焼 バ一ナの予燃焼室内には微粉炭と酸素を吹き込むと と もに、 粉粒状または細 片状若しく は塊状の合成樹脂材を吹き込み若しく は装入し、 さ らに該燃焼バ —ナまたは Z及び羽口部の他の吹込み手段を通じて炉内にダス ト類を吹き込 み、 前記微粉炭、 粉粒状または細片状の合成樹脂材及び酸素の吹き込みに当 たっては、 酸素をバーナ径方向中心若しく はその近傍から吹き込むと と もに. 少なく と も微粉炭をその周囲から吹き込み、 さらにその周囲から酸素を吹き 込んで微粉炭と酸素を混合させるこ とによ り、 予燃焼室内で微粉炭と少なく と も合成樹脂材の一部を急速燃焼させ、 その燃焼ガスをパーナ先端開口部か ら炉内に導入し、 この燃焼ガスの顕熱でスクラ ッブを溶解して溶銑を製造す ると と もに、 燃焼ガスを炉内で有意に二次燃焼させることなく 、 合成樹脂材 の熱分解によ リ生成したガスと と もに燃料用ガスと して回収することを特徴 とするスクラ ップ溶解法。
40. 粉粒状または細片状の合成樹脂材をバーナ径方向中心若しく はその近傍か ら予燃焼室内に吹き込むことを特徴とする請求項 3 0または 3 8に記載のス クラップ溶解法。
41. 粉粒状または細片状の合成樹脂材を、 バ一ナ径方向中心若しく はその近傍 から吹き込まれる酸素の周囲から予燃焼室内に吹き込むことを特徴とする請 求項 3 1または 3 9に記載のスクラ ップ溶解法。
42. 燃焼パーナによる合成樹脂材の吹き込みが非連続的若しく は間欠的に実施 され、 且つこの合成樹脂材の吹き込みが微^炭の吹き込みと と もに若しく は 一時的に微粉炭の吹き込みに代えて実施されるこ とを特徴とする請求項 2 8 , 2 9、 34または 3 5に記載のスクラ ップ溶解法。
43. 合成樹脂材の予燃焼室内への吹き込みまたは装入が非連続的若しく は間欠 的に実施され、 且つこの合成樹脂材の吹き込みまたは装入が、 微粉炭の吹き 込みと と もに若しく は一時的に微粉炭の吹き込みに代えて実施されることを 特徴とする請求項 3 0、 3 1、 3 8、 1 3 9、 40または 1 4 1に記載のス クラ ッブ溶解法。
44. ダス ト類の炉内への吹込みが非連続的若しく は間欠的に実施されるこ とを 特徴とする請求項 2 8、 2 9、 3 0、 3 1、 3 2、 3 3、 34、 3 5、 3 6、 3 7、 3 8、 3 9、 4 0、 4 1、 4 2または 4 3に記載のスクラ ップ溶解法 c
45. 炉内に吹き込まれるダス 卜類が、 高炉ダス 卜、 転炉ダス ト、 電気炉ダス ト、 キュポラダス 卜、 ミルスケール、 シュ レッダーダス ト、 亜鉛ダス ト及び当該 炉で排ガスから回収されたダス トのう ちの 1種または 2種以上を含んでいる こ とを特徴とする請求項 2 8、 2 9、 30、 3 1、 3 2、 3 3、 3 4、 3 5、 3 6、 3 7、 3 8、 3 9、 4 0、 4 1、 4 2、 4 3または 44に記載のスク ラ ップ溶解法。
46. 炉頂温度を 4 0 0〜 6 0 0でに制御することを特徴とする請求項 3 2、 3 3、 3 4、 3 5、 3 6、 3 7、 3 8、 3 9、 4 0、 4 1、 4 2、 4 3、 44 または 4 5に記載のスクラ ップ溶解法。
47. 炉頂温度を 4 00〜 8 00でに制御すると と もに、 当該炉で排ガスから回 収された亜鉛含有ダス トを、 炉内に吹き込まれるダス ト類の少なく と も一部 と して用いることを特徴とする請求項 4 5に記載のスクラ ッブ溶解法。 48. 燃焼パーナに対して微粉炭と酸素を供給する場合には、 燃焼パーナに供給す る微粉炭比 P C ( k g / t - pig) と酸素流量 02 (Nm3/ t - pig) との比 [ P C/02] を 0. 7 k gZNm3以上と し、 燃焼バ一ナに対して微粉炭及 び合成樹脂材と酸素を供給する場合には、 燃焼パーナに供給する微粉炭比 P c ( k g κ t - pig) 及び合成樹脂材比 S R ( k g / t - pig) と酸素流量 o2
( N m3/ t - pig) との比 [ (P C + S R) /02] を 0. 7 k gZNm3以 上とすることを特徴とする請求項 2 8、 2 9、 3 0、 3 1、 3 2、 3 3、 3
4、 3 5、 3 6、 3 7、 3 8、 3 9、 4 0、 4 1、 4 2、 4 3、 4 4、 4 5、 4 6または 4 7に記載のスクラ ッブ溶解法。
49. 燃料比を S O O k gZ t ' pig以上と し、 且つ燃焼パーナに対して微粉炭と 酸素を供給する場合には燃焼パーナに供給する微粉炭比 (k gZ t - pig) と 炉頂装入するコークス比 ( k gZ t - pig) との重量比 [微粉炭比ノコ一クス 比] を 1. 0以上と し、 燃焼パーナに対して微粉炭及び合成樹脂材と酸素を 供給する場合には、 燃焼バ一ナに供給する微粉炭比 ( k g Z t - pig) 及び合 成樹脂材比 ( k gZ t - pig) と炉頂装入するコ一クス比 ( k g/ t - Pig) との重量比 [ (微粉炭比 +合成樹脂材比) コークス比] を 1. 0以上とす ることを特徴とする請求項 2 8、 2 9、 3 0、 3 1、 3 2、 3 3、 34、 3
5、 3 6、 3 7、 3 8、 3 9、 4 0、 4 1、 4 2、 4 3、 44、 4 5、 4 6、 4 7または 4 8に記載のスクラ ッブ溶解法。
PCT/JP1996/001184 1995-10-02 1996-04-30 Procede de fusion de dechets WO1997012997A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA 2205812 CA2205812C (en) 1995-10-02 1996-04-30 Scrap melting process
KR1019970703588A KR100259970B1 (ko) 1995-10-02 1996-04-30 스크랩 용해법
AU55154/96A AU722145B2 (en) 1995-10-02 1996-04-30 The production of hot metal by the melting down of scrap as an iron source.
DE1996625037 DE69625037T2 (de) 1995-10-02 1996-04-30 Schrottschmelzverfahren
US08/849,233 US6053962A (en) 1995-10-02 1996-04-30 Scrap melting process
EP19960912286 EP0792938B1 (en) 1995-10-02 1996-04-30 Scrap melting method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP7/278447 1995-10-02
JP27844695A JPH0995724A (ja) 1995-10-02 1995-10-02 スクラップ溶解法
JP27844595A JP3293430B2 (ja) 1995-10-02 1995-10-02 スクラップ溶解法
JP7/278445 1995-10-02
JP27844795A JP3293431B2 (ja) 1995-10-02 1995-10-02 スクラップ溶解法
JP7/278446 1995-10-02

Publications (1)

Publication Number Publication Date
WO1997012997A1 true WO1997012997A1 (fr) 1997-04-10

Family

ID=27336558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/001184 WO1997012997A1 (fr) 1995-10-02 1996-04-30 Procede de fusion de dechets

Country Status (9)

Country Link
US (1) US6053962A (ja)
EP (1) EP0792938B1 (ja)
KR (1) KR100259970B1 (ja)
CN (1) CN1055126C (ja)
AU (1) AU722145B2 (ja)
CA (1) CA2205812C (ja)
DE (1) DE69625037T2 (ja)
TW (1) TW360714B (ja)
WO (1) WO1997012997A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19909742A1 (de) * 1999-03-05 2000-09-07 Linde Tech Gase Gmbh Verfahren zum Betreiben eines Schachtofens
DE19939951C2 (de) * 1999-08-23 2002-10-24 Sgl Acotec Gmbh Verfahren für einen Brenner und eine entsprechende Vorrichtung
FR2843969B1 (fr) 2002-09-04 2007-03-23 Inst Francais Du Petrole Procede de valorisation d'une charge d'hydrocarbures et de diminution de la tension de vapeur de ladite charge
LU91691B1 (en) * 2010-05-26 2011-11-28 Wurth Paul Sa Tuyere stock arrangement of a blast furnace
DE102017009607A1 (de) * 2017-10-17 2019-04-18 Daimler Ag Zuführungs- und Zündvorrichtung für einen Gasmotor und Verfahren zum Betrieb einer Zuführungs- und Zündvorrichtung für einen Gasmotor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651509A (en) * 1979-09-28 1981-05-09 Ishikawajima Harima Heavy Ind Co Ltd Dust recovering method from blast furnace top gas
JPS62263906A (ja) * 1986-05-12 1987-11-16 Sumitomo Metal Ind Ltd 高炉羽口からの微粉炭吹込み方法
JPH01167506A (ja) * 1987-12-21 1989-07-03 Nippon Sanso Kk 固体燃料インジェクションランス用のノズル
JPH0688107A (ja) * 1992-07-01 1994-03-29 Paul Wurth Sa 微粉炭を溶鉱炉のるつぼの中に噴射する方法および装置
JPH06264120A (ja) * 1993-03-10 1994-09-20 Nippon Steel Corp 銑鉄製造方法
JPH07228905A (ja) * 1994-02-17 1995-08-29 Nippon Steel Corp 高炉の操業方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2419165A1 (de) * 1973-04-25 1974-11-21 Centre Rech Metallurgique Verfahren und vorrichtung zum schmelzen von eisenschrott
JPS5325221A (en) * 1976-08-21 1978-03-08 Sumitomo Metal Mining Co Method of treating materials containing zinc and lead
JPS55125211A (en) * 1979-03-20 1980-09-26 Nakayama Seikosho:Kk Processing method of steel-making dust containing zinc and blast furnace gas ash
US4556418A (en) * 1984-10-03 1985-12-03 Thermal Systems Engineering, Inc. Process for melting a ferrous burden
JPH0723503B2 (ja) * 1987-02-09 1995-03-15 住友金属工業株式会社 溶銑製造方法
JPH01195225A (ja) * 1988-01-29 1989-08-07 Kobe Steel Ltd 製鉄原料の溶解方法
JP2761885B2 (ja) * 1988-04-21 1998-06-04 日本鋼管株式会社 微粉炭バーナ
CH677195A5 (ja) * 1989-02-09 1991-04-30 Fischer Ag Georg
DE4104252C2 (de) * 1991-02-13 1998-07-02 Schingnitz Manfred Entsorgungsverfahren für schadstoffbelastete, kohlenstoffhaltige Abfallstoffe
US5244490A (en) * 1992-05-07 1993-09-14 General Motors Corporation Iron making method using waste polymer material
JP2933809B2 (ja) * 1993-09-10 1999-08-16 新日本製鐵株式会社 移動層型スクラップ溶融炉の操業方法
JP3224394B2 (ja) * 1993-12-21 2001-10-29 デル グリューネ プンクト デュアレス システム ドイチランド アクチェンゲゼルシャフト 金属鉱石からの金属の製造プロセス
CN1031000C (zh) * 1994-05-31 1996-02-14 高征铠 氧气煤粉熔剂风口复合喷吹高炉炼铁工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651509A (en) * 1979-09-28 1981-05-09 Ishikawajima Harima Heavy Ind Co Ltd Dust recovering method from blast furnace top gas
JPS62263906A (ja) * 1986-05-12 1987-11-16 Sumitomo Metal Ind Ltd 高炉羽口からの微粉炭吹込み方法
JPH01167506A (ja) * 1987-12-21 1989-07-03 Nippon Sanso Kk 固体燃料インジェクションランス用のノズル
JPH0688107A (ja) * 1992-07-01 1994-03-29 Paul Wurth Sa 微粉炭を溶鉱炉のるつぼの中に噴射する方法および装置
JPH06264120A (ja) * 1993-03-10 1994-09-20 Nippon Steel Corp 銑鉄製造方法
JPH07228905A (ja) * 1994-02-17 1995-08-29 Nippon Steel Corp 高炉の操業方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0792938A4 *

Also Published As

Publication number Publication date
KR100259970B1 (ko) 2000-06-15
CN1055126C (zh) 2000-08-02
AU5515496A (en) 1997-04-28
TW360714B (en) 1999-06-11
CA2205812C (en) 2004-03-23
EP0792938A4 (en) 1998-07-15
DE69625037D1 (de) 2003-01-09
CN1166184A (zh) 1997-11-26
CA2205812A1 (en) 1997-04-10
US6053962A (en) 2000-04-25
AU722145B2 (en) 2000-07-20
EP0792938B1 (en) 2002-11-27
DE69625037T2 (de) 2003-07-17
EP0792938A1 (en) 1997-09-03

Similar Documents

Publication Publication Date Title
US4153426A (en) Synthetic gas production
EP2440677B1 (en) Method of production of iron, semi steel and reducing gases
CA2335866C (en) Blast furnace with narrowed top section and method of using
WO1997012997A1 (fr) Procede de fusion de dechets
AU2018286965B2 (en) Process of making pig iron in a blast furnace using pellets containing thermoplastic and cellulosic materials
KR101607254B1 (ko) 복합 용철 제조 장치
US7220293B2 (en) Thermal synthesis production of steel
JPH08188811A (ja) スクラップ溶解法
JP2000192129A (ja) 転炉操業方法
JP3395943B2 (ja) 冶金炉に用いられる燃焼バーナ
JP3293431B2 (ja) スクラップ溶解法
JP3293430B2 (ja) スクラップ溶解法
AU2004276579A1 (en) Method and apparatus for producing molten iron
JP3597714B2 (ja) 炭化装置付き小型溶融炉及び溶融還元方法
JPS58174512A (ja) 溶融鉄の製造方法及び装置
JPH0995724A (ja) スクラップ溶解法
JP3523720B2 (ja) スクラップ溶解法
JPS58174513A (ja) 銑鉄の製造方法及びその装置
JPS58174511A (ja) 銑鉄の製造方法およびその装置
JPS6241288B2 (ja)
JPS58171510A (ja) 銑鉄製造方法およびその装置
JPS58171511A (ja) 銑鉄製造方法及びその装置
JPS58171514A (ja) 銑鉄の製造方法及びその装置
JPS58171513A (ja) 銑鉄製造方法及びその装置
JPH09184614A (ja) 石炭灰の溶融処理における石炭灰の装入方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96191158.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

ENP Entry into the national phase

Ref document number: 2205812

Country of ref document: CA

Ref document number: 2205812

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1996912286

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019970703588

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08849233

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996912286

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970703588

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019970703588

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996912286

Country of ref document: EP