WO1997011587A1 - Procede et dispositif de mesure d'un flux d'ions dans un plasma - Google Patents

Procede et dispositif de mesure d'un flux d'ions dans un plasma Download PDF

Info

Publication number
WO1997011587A1
WO1997011587A1 PCT/FR1996/001451 FR9601451W WO9711587A1 WO 1997011587 A1 WO1997011587 A1 WO 1997011587A1 FR 9601451 W FR9601451 W FR 9601451W WO 9711587 A1 WO9711587 A1 WO 9711587A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
capacitor
plasma
potential
measurement
Prior art date
Application number
PCT/FR1996/001451
Other languages
English (en)
Inventor
Jean-Paul Booth
Nicholas St John Braithwaite
Original Assignee
Centre National De La Recherche Scientifique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique filed Critical Centre National De La Recherche Scientifique
Priority to JP51243797A priority Critical patent/JP3937453B2/ja
Priority to US08/836,036 priority patent/US5936413A/en
Priority to EP96931869A priority patent/EP0792571B1/fr
Priority to DE69605643T priority patent/DE69605643T2/de
Publication of WO1997011587A1 publication Critical patent/WO1997011587A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/0006Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature
    • H05H1/0081Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature by electric means

Definitions

  • the present invention relates to a method and a device for measuring a flow of positive ions coming from an ionized gas, or plasma, towards a solid surface with which it is in contact, for example, a wall of a plasma reactor or a sample to be processed.
  • the invention applies more particularly to the measurement of the flow of ions in an enclosure constituting a plasma reactor intended to coat a sample with a thin layer, or to modify the structure or the chemical composition of a surface. by ion bombardment.
  • FIG. 1 represents, schematically and in section, an example of a plasma reactor to which the present invention applies. It is, for example, a so-called radiofrequency excitation reactor by capacitive coupling.
  • Such a reactor consists of a vacuum enclosure 1. Near a first wall 2 of this enclosure 1 is placed, on a substrate holder 3, a sample to be treated 4.
  • the sample 4 generally has the form of a disc of which a surface 8 directed towards the interior of the enclosure 1 constitutes the surface to be treated.
  • the enclosure 1 is filled with a gas at low pressure, for example, of the order of a few tens to a few hundreds of milliters (a few to a few tens of pascals).
  • Several means can be used to generate the plasma. For example, about 100 ⁇ m in diameter) in an electrode placed near a wall of the enclosure.
  • An electrostatic filter placed behind the orifice makes it possible to separate the positive ions from the electrons and thus to measure the current of ions transmitted.
  • a drawback of such a method is that it requires calibration of the transmission rate of the orifice and of the electrostatic filter.
  • deposits of thin layers on the filter cause this rate to change.
  • the measurements are therefore disturbed by these deposits due to the plasma, which makes them rapidly unusable and causes complete failure of the measuring device.
  • the present invention aims to overcome these drawbacks by proposing a method for measuring an ion flow which can be implemented whatever the plasma used.
  • the invention aims to allow the measurement of the ion flow in plasmas depositing thin insulating layers.
  • the invention also aims to propose a method which does not disturb the deposition or etching process proper.
  • the invention aims to authorize a servo-ment of a plasma deposition or etching process.
  • the invention also aims to propose a device for implementing such a method which is particularly simple to carry out.
  • a small electrode generally shaped cylin ⁇ drique.
  • This electrode is connected, outside the enclosure, by a wire surrounded by an insulating sheath.
  • a variable voltage V is applied between the probe and the walls of the reactor and the current I in the wire is measured.
  • the shape of the current-voltage characteristic I (V) thus obtained makes it possible to estimate parameters characteristic of the plasma, such as the density of ions and electrons, the temperature of the electrons and the potential of the plasma. By modeling, these parameters make it possible to obtain an estimate of the flow of ions towards the walls.
  • a variant of this method known as a "flat Langmuir probe", consists in placing, near a wall (for example 9, FIG. 1) of the enclosure 1, an electrode in the form of a
  • FIG. 2 represents the shape of the current-voltage characteristic of such an electrode in a plasma reactor.
  • a strongly negative voltage V is applied, a saturation current Isat is obtained.
  • This current Isat is an image of the positive ion flow ri on since all the electrons are repelled.
  • a disadvantage of Langmuir probe methods which consist in measuring a direct current between the probe and the plasma, is that they no longer work if the probe is polluted, in particular, if the plasma deposits an insulating layer on the electrode. This is generally the case with chemically complex gases (CF. ⁇ , SiH4, CH4, etc.) which rapidly deposit thin insulating layers on any surface in contact with the plasma.
  • chemically complex gases CF. ⁇ , SiH4, CH4, etc.
  • a second method consists in sampling the flow of ions (and electrons) by means of a small orifice (generally a probe internal to the enclosure and comprising a flat sensitive surface; means external to the enclosure for supplying the probe periodically with a radiofrequency voltage; a measurement capacitor external to the enclosure mounted in series between said supply means and said probe; and means external to the enclosure for measuring, periodically, the discharge current of the measurement capacitor or the variations in potential at the terminals of this capacitor during its discharge.
  • a small orifice generally a probe internal to the enclosure and comprising a flat sensitive surface; means external to the enclosure for supplying the probe periodically with a radiofrequency voltage; a measurement capacitor external to the enclosure mounted in series between said supply means and said probe; and means external to the enclosure for measuring, periodically, the discharge current of the measurement capacitor or the variations in potential at the terminals of this capacitor during its discharge.
  • said probe consists of a disc connected, by a substantially axial conductor, to a terminal of said measurement capacitor, the rear and lateral faces of the disc being surrounded by an insulator and a conductive sheath having a screen and guard ring function.
  • said sheath is connected to said power source by means of a capacitor.
  • said power supply means are constituted by a radio frequency voltage source which supplies radio frequency oscillation trains, said measurement being carried out between two oscillation trains.
  • the period of the radiofrequency oscillations is short compared to the duration of application of these oscillations, the duration of application of the oscillation trains being long enough to establish a voltage of autopolarization of the probe and the time interval between two trains of oscillations being sufficiently long to allow the measurement.
  • the invention also aims to propose a device which does not require a calibration prior to the measurements.
  • the invention aims to allow an absolute measurement of the ion flow.
  • the invention further aims to propose a device which allows a measurement of the homogeneity of the ion flow in the vicinity of the wall of the enclosure intended to receive a sample to be treated.
  • the present invention provides a method of measuring an ion flow from a plasma to a surface in contact with the latter, consisting in measuring the discharge rate of a connected measurement capacitor between a radio frequency voltage source and a plate-shaped probe in contact with the plasma.
  • the measurement method consists in supplying the probe, periodically, with trains of radio frequency oscillations and in carrying out the measurement, between two trains of oscillations, after l damping of the radio frequency signal and before the potential of the probe is stabilized.
  • the measurement method consists in carrying out a measurement of the variation of the potential at the terminals of the measurement capacitor.
  • the method consists in measuring the discharge current of the measurement capacitor by means of a transformer interposed between this capacitor and the probe.
  • the value of the measurement capacitor is less than the value of the capacity of a thin layer possibly expected on the probe.
  • the invention also relates to a device for measuring an ion flow in a vacuum enclosure constituting a plasma reactor, comprising: surface greater than that of the probe is added to serve as a reference for the measurements.
  • a second terminal B of the capacitor 12 constitutes, at the same time, an input terminal of the device intended to be connected to the probe 10 and an output terminal of the device towards measuring means, for example, an oscilloscope 14.
  • FIG. 4 is a sectional view of an exemplary embodiment of the probe 10 fitted to a measurement device according to the invention as shown in FIG. 3.
  • the probe 10 consists of a flat disc 20 intended to be connected, by a conductor 21, to the terminal B of the measuring device.
  • the conductor 21 therefore crosses the wall (for example, 9) near which the probe 10 is placed.
  • the face of the disc 20 directed towards the inside of the enclosure constitutes the sensitive surface 11 of the probe.
  • the probe is preferably surrounded by a guard ring.
  • This guard ring intended to avoid the influence of edge effects, for example consists of a concentric conductive disc 22, larger and thicker than the disc 20.
  • the disc 22 is provided with a recess in which the disc 20 is inserted.
  • the lateral faces and the rear face of the disc 20 as well as the conductor 21 are insulated from the disc 22 by an insulator 23.
  • the probe 10 is excited by the radio frequency voltage source 13 periodically.
  • the source 13 provides oscillation trains at regular intervals between which the discharge of the measurement capacitor 12 is observed.
  • FIG. 5 illustrates the shape of the signal applied to terminal A of the capacitor 12 by the source 13.
  • FIG. 3 schematically shows an embodiment of a device for measuring an ion flow according to the invention
  • Figure 4 is a sectional view of an embodiment of a probe of a measuring device according to the invention as shown in Figure 3
  • FIGS. 5 and 6 illustrate an embodiment of the method for measuring an ion flow according to the invention.
  • FIG. 3 schematically represents an embodiment of a device for measuring an ion flow according to the invention.
  • This device consists of a probe 10 intended to be placed near a surface towards which it is desired to determine the flow of ions, for example, the wall 9 (FIG. 1), of a vacuum enclosure (not shown ) a plasma reactor.
  • a sensitive surface 11 of the probe 10 is directed towards the interior of the enclosure.
  • the probe 10 is connected to a measurement capacitor 12 of capacity C m .
  • a first terminal A of the capacitor 12 is connected to a first terminal of a radio frequency voltage source 13 of low output impedance (typically 50 ohms), a second terminal of which is connected to the walls of the reactor and, with these, to a reference potential, usually the mass.
  • a radio frequency voltage source 13 typically 50 ohms
  • the terminal B of the capacitor 12 is found, after the damping of the oscillations, at the self-polarization potential V D j .as .
  • the probe 10 then being polarized at a strongly negative potential, it is no longer able to pick up electrons.
  • the flow of ions arriving on the surface 11 of the probe 10 remains unchanged and begins to discharge the capacitor 12.
  • the potential of the terminal B of the capacitor 12 will increase linearly until converging towards a floating potential which corresponds to a value Vf where the flow of ions and the flow of electrons compensate each other.
  • the discharge rate of the capacitor 12 is measured during the linear period when the current is composed solely of the flow of ions (zero electron flow). These measurements are carried out either by observing the time derivative dV ⁇ / dt of the potential at terminal B, or by observing the current I ⁇ flowing to the capacitor 12 using a transformer interposed between the probe 10 and the capacitor 12.
  • a transformer interposed between the probe 10 and the capacitor 12.
  • One uses for this for example, an oscilloscope 14 or a specific signal processing circuit. The measurements are made after the damping of the radiofrequency oscillations and before the variation in the signal is no longer linear, that is to say before the potential of terminal B approaches the floating potential Vf.
  • the flow of electrons T e varies as a function of the potential V ⁇ and becomes zero when the potential V ⁇ is strongly negative, as in the case of a plane Langmuir probe. feels, in the form of a timing diagram, the potential V ⁇ of terminal A.
  • the radiofrequency oscillations last for a period Ti corresponding, for example, to approximately half (T n / 2) of the period of the oscillation trains.
  • the measures are carried out laughing inté ⁇ of the time interval T2 between two trains of duration swayed ⁇ tions T] _.
  • a signal as shown in FIG. 5 is, for example, obtained by means of a source 13 whose output is chopped at a frequency fh-
  • the frequency f Q of the radiofrequency oscillations is, for example, between 1 and 20 MHz.
  • the frequency f Q of the radiofrequency oscillations is, for example, between 1 and 20 MHz.
  • the value of the frequency f 0 is sufficiently distant from the excitation frequency of the plasma (by the source 6 of FIG. 1) to avoid the appearance of interference with the plasma potential.
  • the average flow of electrons to the probe exceeds, initially, the average flow of positive ions, which causes the charge of the capacitor 12.
  • the average value of the oscillations of the potential of the terminal B will decrease until reaching a negative value corresponding to a potential Vbi as where the flow of electrons is decreased until reaching a value identical to the ion flow, therefore where the average current resulting in the probe 10 is zero.
  • This potential V D i as results from the classic self-polarization effect existing in a plasma.
  • Figure ⁇ illustrates this operation and represents, in the form of a timing diagram, the potential of terminal B of the condenser 12, in the presence of plasma.
  • Ci remains unchanged.
  • the effects of the capacity Ci of the insulating layer are to reduce the absolute value of the potential V ⁇ obtained at the end of the radiofrequency oscillations, to reduce the charge accumulated by the capacitor 12 of capacity C m and to reduce the discharge time of the capacitor 12 and, consequently, the linear period during which the measurements can be made.
  • the initial value of the time derivative dV ⁇ / dt remains unchanged and the discharge speed is always, at the beginning, proportional to the flow of 1 ion ions for a sufficiently high amplitude V cc of the radiofrequency signal.
  • the capacity C m of the capacitor 12 is chosen to be less than the expected capacity of the thin insulating layer capable of being deposited on the probe 10 by the plasma. This has the advantage of increasing the duration during which the potential variation on terminal B is exploitable.
  • the choice of the value of the capacitor 12 depends on the level of electrical noise of the installation to which the device is associated and on the desired usable discharge duration. In fact, the larger the capacitance C m , the slower the discharge of the measurement capacitor 12.
  • the value of the capacitor 12 is too large, the variation in potential measured dV ⁇ / dt is too slow and the measurements risk being distorted by noise. If the value of the capacitor 12 is too low, its discharge may be too rapid and not allow sufficient time to reach an equilibrium of the space charge region in front of the probe, thus causing an error in the measurement. The time necessary for this equilibrium is given by the ion-plasma period:.
  • ⁇ tion (Mi. ⁇ o / ne), where Mi represents the mass of the ion, where ⁇ o represents the permittivity of space and where n represents the density of ions in the plasma.
  • the value of the capacitor 12 is, for example, chosen from around a few nanofarads. Such a value respects the
  • the amplitude of the radiofrequency signal is chosen to be sufficiently large (for example, of the order of several tens of volts) for the self-polarization potential Vbi as to be sufficiently negative to prevent the electrons from being picked up by the probe. 10 for a sufficient time to carry out the measurement. This amounts to saying that the amplitude V cc of the radiofrequency signal is chosen to be much higher than the electronic temperature expressed in electronvolts.
  • This thin layer is translated, from the electrical point of view, by a capacitor Ci (not shown) in series with the capacitor 12 between the terminal B and the plasma.
  • Ci (not shown) in series with the capacitor 12 between the terminal B and the plasma.
  • the consequence of the presence of this capacity is that the potential measured on terminal B does not correspond to the self-polarization potential Ybi as but to a fraction of this potential due to the series association of the capacitor 12 with the capacity Ci of the insulating layer.
  • Another advantage of the present invention is that it makes it possible to verify, in a phase of characterization of the enclosure, the homogeneity of the flow of ions in the region of the enclosure intended to receive a sample to be treated and this, with any plasma.
  • several probes and measuring devices according to the invention are distributed near the wall intended to receive, in normal operation, the sample to be treated. The interpretation of the measurements given by the various measurement devices makes it possible to draw up a map of the distribution of the ion flow near the wall concerned.
  • the sensitive surface 11 of the probe 10 is relatively large (of the order of several hundred square meters).
  • the larger the surface of the probe the greater the current collected for a given ion flow. This improves the signal-to-noise ratio and the time resolution of the probe.
  • the edge effects and the effects of any insulating layers deposited on the probe are minimized with a large probe.
  • the size of the probes will be adapted (by limiting it) to obtain an adequate spatial resolution.
  • Another advantage of the present invention is that the measurements are not affected by magnetic fields as long as the gyromagnetic radius of the ion is less than the size of the probe and the amplitude and orientation of the magnetic field do not not prevent the electrons from reaching the probe, therefore charging the capacitor 12 to establish self-polarization.
  • the size of the probe 10 can thus be adapted to the maximum magnetic field expected. For example, for a probe whose disc condition with respect to the capacity of a possible insulating thin layer deposited by the plasma. Indeed, the capacity of a thin insulating layer with a relative dielectric constant ⁇ r of 4 and a thickness of 0.1 ⁇ m is of the order of 177 nanos
  • the period T 0 l / f 0 of the radiofrequency oscillations is short compared to the duration T] _ of application of these oscillations, so that the duration Ti is sufficiently long to allow self-polarization of the probe at the potential Vbi as and that the time interval T2 between two oscillation trains is long enough to allow the measurement of the discharge rate of the capacitor 12.
  • An advantage of the present invention is that it is applicable to any chemical composition of plasma. Only a very significant chemical attack (etching) of the material or materials of which the probe is made or a deposit of an insulating layer whose thickness is such that it no longer allows self-polarization of the probe to constitute a limit to the operation of the measuring device.
  • Another advantage of the invention is that the results obtained are independent of the chemical nature of the ions collected by the probe. In fact, only the electric current is measured, therefore the total flow of positive ions.
  • a probe according to the invention can be placed near a wall of the enclosure other than that near which a sample to be treated is placed.
  • the result of the measurement carried out by the device according to the invention can then be used to control the process. If the device detects a slight variation in the flow of ions (acceleration or deceleration of the discharge speed of the measurement capacitor), it can issue a setpoint making it possible to modify the radio frequency or microwave signal for excitation of the gas so to modify the plasma. If the device detects a sudden drop in the 16
  • a method of measuring an ion flow from a plasma to a surface in contact with the latter characterized in that it consists in measuring the discharge rate of a measurement capacitor (12) connected between a radio frequency voltage source (13) and a plate-shaped probe (10) in contact with the plasma.
  • charac ⁇ terized in that it consists in supplying the probe (10), periodically, by trains of radiofrequency oscillations and in carrying out the measurement, between two trains d 'oscillations, after the absorption of the radiofrequency signal and before the potential of the probe (10) is stabilized.
  • Measuring method according to claim 1 or 2 characterized in that it consists in carrying out a measurement of the variation of the potential across the terminals of the measurement capacitor (12).
  • Measuring method claim 1 or 2 charac ⁇ terized in that it consists in measuring the discharge current of the measurement capacitor (12) by means of a transformer inter ⁇ placed between this capacitor (12) and the probe (10). 5. Measuring method according to any one of claims 1 to 4, characterized in that the value of the measuring capacitor (12) is less than the value of the capacity of a thin layer possibly expected on the probe ( 10).
  • Device for measuring an ion flow in a vacuum enclosure (1) constituting a plasma reactor characterized in that it comprises: a probe (10) internal to the enclosure (1) and having a flat sensitive surface (11); means (13) external to the enclosure (1) for supplying the probe (10) periodically with a radio frequency voltage; a measurement capacitor (12) external to the enclosure (1) mounted in series between said supply means (13) and said probe (10); and has a diameter of 1 cm, the measurements will not be disturbed by magnetic fields of less than 1000 Gauss.
  • the substrate holder 3 ( Figure 1) can serve as an ion flow probe.
  • the radio frequency power supply generator 5, FIG. 1 which serves to establish the self-polarization of the substrate and which, in the case of reactive ion etching with capacitive coupling, maintains the plasma is chopped and then plays the role. of radio frequency voltage source 13 according to the invention. Means similar to those set out in relation to FIG. 3 are used to measure the flow of ions.
  • the invention also makes it possible to determine the plasma potential and the electronic temperature. Indeed, by analyzing the current-voltage characteristic of terminal B when the potential V ⁇ approaches the floating potential Vf, the probe can then provide parameters characteristic of the plasma in the manner of a conventional Langmuir probe.
  • the present invention is susceptible to various variants and modifications which will appear to those skilled in the art.
  • the materials, dimensions, capacities and frequencies indicated by way of example may be modified, in particular, depending on the plasma reactor for which the device is intended.
  • the invention applies regardless of the mode of excitation of the gas, whether continuous, radiofrequency or microwave.
  • the invention also applies to a measurement of the flux of charged species present in plasmas other than positive ions, such as aggregates of nanometric sizes or dust particles with a positive charge.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

L'invention concerne un procédé de mesure d'un flux d'ions provenant d'un plasma vers une surface en contact avec ce dernier, consistant à mesurer le taux de décharge d'un condensateur de mesure (12) connecté entre une source de tension radiofréquence (13) et une sonde (10) en forme de plaque en contact avec le plasma.

Description

PROCÈDE ET DISPOSITIF DE MESURE D'UN FLUX D'IONS DANS UN PLASMA.
La présente invention concerne un procédé et un dispo¬ sitif de mesure d'un flux d'ions positifs provenant d'un gaz ionisé, ou plasma, vers une surface solide avec laquelle il est en contact, par exemple, une paroi d'un réacteur à plasma ou un échantillon à traiter. L'invention s'applique plus particulière¬ ment à la mesure du flux d'ions dans une enceinte constituant un réacteur à plasma destiné à revêtir un échantillon d'une couche mince, ou de modifier la structure ou la composition chimique d'une surface par bombardement ionique. La figure 1 représente, schématiquement et en coupe, un exemple de réacteur à plasma auquel s'applique la présente inven¬ tion. Il s'agit, par exemple, d'un réacteur dit à excitation radiofréquence par couplage capacitif.
Un tel réacteur est constitué d'une enceinte sous vide 1. Près d'une première paroi 2 de cette enceinte 1 est placé, sur un porte-substrat 3, un échantillon à traiter 4. L'échantillon 4 a généralement la forme d'un disque dont une surface 8 dirigée vers l'intérieur de l'enceinte 1 constitue la surface à traiter. L'enceinte 1 est remplie d'un gaz à faible pression, par exemple, de l'ordre de quelques dizaines à quelques centaines de millitorrs (quelques à quelques dizaines de pascals) . Plusieurs moyens peuvent être utilisés pour générer le plasma. Par exemple, d'environ 100 μm de diamètre) dans une électrode placée à proxi¬ mité d'une paroi de l'enceinte. Un filtre électrostatique placé derrière l'orifice permet de séparer les ions positifs des élec¬ trons et ainsi de mesurer le courant d'ions transmis. Un inconvé- nient d'une telle méthode est qu'elle nécessite un calibrage du taux de transmission de l'orifice et du filtre électrostatique. Or, des dépôts de couches minces sur le filtre entraînent une modification de ce taux. Les mesures sont donc perturbées par ces dépôts dus au plasma ce qui les rend rapidement inexploitables et entraîne une défaillance complète de l'appareil de mesure.
Une conséquence des inconvénients des méthodes exposées ci-dessus est que les réacteurs à plasma classiques sont généra¬ lement caractérisés en fonctionnant avec un gaz rare, par exem¬ ple, de l'argon, préalablement à tout processus de dépôt ou de gravure. On ne peut donc pas connaître, autrement que par modéli¬ sation, les caractéristiques d'un réacteur en présence d'un gaz complexe.
Un autre inconvénient commun à toutes les méthodes connues est qu'elles ne permettent pas une mesure directe du flux d'ions pendant le traitement d'un échantillon. Elles ne permet¬ tent donc pas un asservissement d'un processus de dépôt ou de gravure.
La présente invention vise à pallier ces inconvénients en proposant un procédé de mesure d'un flux d'ions qui puisse être mis en oeuvre quel que soit le plasma utilisé. En particu¬ lier, l'invention vise à permettre la mesure du flux d'ions dans des plasmas déposant des couches minces isolantes.
L'invention vise également à proposer un procédé qui ne perturbe pas le processus de dépôt, ou de gravure, proprement dit. En particulier, l'invention vise à autoriser un asservisse¬ ment d'un processus de dépôt, ou de gravure, par plasma.
L'invention vise également à proposer un dispositif pour la mise en oeuvre d'un tel procédé qui soit particulièrement simple à réaliser. de l'enceinte, une petite électrode généralement de forme cylin¬ drique. Cette électrode est reliée, à l'extérieur de l'enceinte, par un fil entouré d'une gaine isolante. Une tension variable V est appliquée entre la sonde et les parois du réacteur et on mesure le courant I dans le fil. La forme de la caractéristique courant-tension I (V) ainsi obtenue permet d'estimer des paramè¬ tres caractéristiques du plasma, comme la densité d'ions et d'électrons, la température des électrons et le potentiel du plasma. Par modélisation, ces paramètres permettent d'obtenir une estimation du flux d'ions vers les parois.
Une variante de cette méthode, dite à "sonde de Langmuir plane", consiste à placer, à proximité d'une paroi (par exemple 9, figure 1) de l'enceinte 1, une électrode en forme d'un
2 disque de surface S assez importante (par exemple, quelques cm ) dont la face arrière dirigée vers la paroi est revêtue d'un maté¬ riau isolant.
La figure 2 représente l'allure de la caractéristique courant-tension d'une telle électrode dans un réacteur à plasma. Lorsqu'on applique une tension V fortement négative, on arrive à un courant de saturation Isat. Ce courant Isat est une image du flux d'ions positifs rion dans la mesure où tous les électrons sont repoussés. La relation qui lie le courant Isat au flux d'ions Tion en supposant que les ions sont ionisés une seule fois est donnée par la relation Isat = e.S.rion, où e représente la charge d'un électron.
Un inconvénient des méthodes à sonde de Langmuir, qui consistent à mesurer un courant continu entre la sonde et le plasma, est qu'elles ne fonctionnent plus si la sonde se trouve polluée, en particulier, si le plasma dépose une couche isolante sur l'électrode. C'est généralement le cas des gaz chimiquement complexes (CF.}, SiH4, CH4, etc.) qui déposent rapidement des cou¬ ches minces isolantes sur toute surface en contact avec le plasma.
Une deuxième méthode consiste à échantillonner le flux d'ions (et d'électrons) au moyen d'un petit orifice (généralement une sonde interne à l'enceinte et comportant une sur¬ face sensible plane ; des moyens externes à l'enceinte pour alimenter, pério¬ diquement, la sonde par une tension radiofréquence ; un condensateur de mesure externe à l'enceinte monté en série entre lesdits moyens d'alimentation et ladite sonde ; et des moyens externes à l'enceinte pour mesurer, périodi¬ quement, le courant de décharge du condensateur de mesure ou les variations de potentiel aux bornes de ce condensateur pendant sa décharge.
Selon un mode de réalisation de la présente invention, ladite sonde est constituée d'un disque relié, par un conducteur sensiblement axial, à une borne dudit condensateur de mesure, les faces arrière et latérale du disque étant entourées d'un isolant et d'une gaine conductrice ayant une fonction d'écran et d'anneau de garde.
Selon un mode de réalisation de la présente invention, ladite gaine est reliée à ladite source d'alimentation par l'in¬ termédiaire d'un condensateur. Selon un mode de réalisation de la présente invention, lesdits moyens d'alimentation sont constitués par une source de tension radiofréquence qui fournit des trains d'oscillations radiofréquence, ladite mesure s'effectuant entre deux trains d'oscillations. Selon un mode de réalisation de la présente invention, la période des oscillations radiofréquence est courte par rapport à la durée d'application de ces oscillations, la durée d'applica¬ tion des trains d'oscillations étant suffisamment longue pour établir une tension d'autopolarisation de la sonde et l'inter- valle de temps entre deux trains d'oscillations étant suffisam¬ ment long pour permettre la mesure.
Ces objets, caractéristiques et avantages, ainsi que d' autres de la présente invention seront exposés en détail dans la description suivante de modes de mise en oeuvre et de réalisa- L'invention vise également à proposer un dispositif qui ne nécessite pas un étalonnage préalable aux mesures. En particu¬ lier, l'invention vise à permettre une mesure absolue du flux d'ions. L'invention vise en outre à proposer un dispositif qui permette une mesure de l'homogénéité du flux d'ions au voisinage de la paroi de l'enceinte destinée à recevoir un échantillon à traiter.
Pour atteindre ces objets, la présente invention pré- voit un procédé de mesure d'un flux d'ions provenant d'un plasma vers une surface en contact avec ce dernier, consistant à mesurer le taux de décharge d'un condensateur de mesure connecté entre une source de tension radiofréquence et une sonde en forme de plaque en contact avec le plasma. Selon un mode de mise en oeuvre de la présente inven¬ tion, le procédé de mesure consiste à alimenter la sonde, pério¬ diquement, par des trains d'oscillations radiofréquence et à effectuer la mesure, entre deux trains d'oscillations, après l'amortissement du signal radiofréquence et avant que le poten- tiel de la sonde soit stabilisé.
Selon un mode de mise en oeuvre de la présente inven¬ tion, le procédé de mesure consiste à effectuer une mesure de la variation du potentiel aux bornes du condensateur de mesure.
Selon un mode de mise en oeuvre de la présente inven- tion, le procédé consiste à mesurer le courant de décharge du condensateur de mesure au moyen d'un transformateur interposé entre ce condensateur et la sonde.
Selon un mode de mise en oeuvre de la présente inven¬ tion, la valeur du condensateur de mesure est inférieure à la valeur de la capacité d'une couche mince éventuellement attendue sur la sonde.
L'invention concerne également un dispositif de mesure d'un flux d'ions dans une enceinte sous vide constituant un réac¬ teur à plasma, comportant : surface supérieure à celle de la sonde est ajoutée pour servir de référence aux mesures. Une seconde borne B du condensateur 12 constitue, à la fois, une borne d'entrée du dispositif destinée à être raccordée à la sonde 10 et une borne de sortie du dispositif vers des moyens de mesure, par exemple, un oscilloscope 14.
La figure 4 est une vue en coupe d'un exemple de réali¬ sation de la sonde 10 équipant un dispositif de mesure selon 1'invention tel que représenté à la figure 3.
La sonde 10 est constituée d'un disque plan 20 destiné à être relié, par un conducteur 21, à la borne B du dispositif de mesure. Le conducteur 21 traverse donc la paroi (par exemple, 9) à proximité de laquelle est placée la sonde 10. La face du disque 20 dirigée vers l'intérieur de l'enceinte constitue la surface sensible 11 de la sonde. La sonde est, de préférence, entourée d'un anneau de garde. Cet anneau de garde, destiné à éviter l'in¬ fluence des effets de bord, est par exemple constitué d'un disque conducteur 22 concentrique, plus grand et plus épais que le dis¬ que 20. Le disque 22 est muni d'un evidement dans lequel est inséré le disque 20. Les faces latérales et la face arrière du disque 20 ainsi que le conducteur 21 sont isolés du disque 22 par un isolant 23. Pour que le disque 22 assure au mieux son rôle d'anneau de garde, il est de préférence relié électriquement d'une façon non représentée à la borne A par un condensateur de valeur Cg (non représenté) . Pour que le potentiel de l'anneau de garde soit toujours proche du potentiel de la sonde, on choisira Cg tel que : cg/cm = Sg/Sm/ ou sg et sm représentent, respective¬ ment, les surfaces de l'anneau de garde et de la sonde.
Selon l'invention, la sonde 10 est excitée par la source de tension radiofréquence 13 de manière périodique. En d'autres termes, la source 13 fournit des trains d'oscillations à intervalles réguliers entre lesquels on observe la décharge du condensateur de mesure 12.
La figure 5 illustre la forme du signal appliqué à la borne A du condensateur 12 par la source 13. Cette figure repré- tion particuliers faite à titre non-limitatif en relation avec les figures jointes parmi lesquelles : les figures 1 et 2 qui ont été décrites précédemment sont destinées à exposer l'état de la technique et le problème posé ; la figure 3 représente, schématiquement, un mode de réalisation d'un dispositif de mesure d'un flux d'ions selon l'invention ; la figure 4 est une vue en coupe d'un mode de réalisa- tion d'une sonde d'un dispositif de mesure selon l'invention tel que représenté à la figure 3 ; et les figures 5 et 6 illustrent un mode de mise en oeuvre du procédé de mesure d'un flux d'ions selon l'invention.
Pour des raisons de clarté, seuls les éléments du dis- positif selon l'invention et du réacteur à plasma qui sont néces¬ saires à la compréhension de l'invention ont été représentés. De même, les chronogrammes des figures 5 et 6 ne sont pas à l'échelle et les mêmes éléments ont été désignés par les mêmes références aux différentes figures. La figure 3 représente, schématiquement, un mode de réalisation d'un dispositif de mesure d'un flux d'ions selon l'invention.
Ce dispositif est constitué d'une sonde 10 destinée à être placée à proximité d'une surface vers laquelle on souhaite déterminer le flux d'ions, par exemple, la paroi 9 (figure 1), d'une enceinte sous vide (non représentée) d'un réacteur à plasma. Une surface sensible 11 de la sonde 10 est dirigée vers l'intérieur de l'enceinte. Selon l'invention, la sonde 10 est reliée à un condensateur de mesure 12 de capacité Cm. Une pre- mière borne A du condensateur 12 est reliée à une première borne d'une source de tension radiofréquence 13 de faible impédance de sortie (typiquement 50 ohms) dont une deuxième borne est reliée aux parois du réacteur et, avec celles-ci, à un potentiel de référence, généralement la masse. Dans le cas où les parois du réacteur sont en un matériau non-conducteur, une électrode de 10
risation correspond, sensiblement, à la moitié de l'amplitude crête à crête Vcc des oscillations radiofréquence.
A la fin du train d'oscillations, c'est-à-dire lorsque le signal radiofréquence est coupé, la borne B du condensateur 12 se retrouve, après l'amortissement des oscillations, au potentiel d'autopolarisation VDj.as. La sonde 10 étant alors polarisée à un potentiel fortement négatif, elle n'est plus en mesure de capter des électrons. Par contre, le flux d'ions arrivant sur la surface 11 de la sonde 10 reste inchangé et commence à décharger le condensateur 12. Ainsi, le potentiel de la borne B du condensa¬ teur 12 va croître de manière linéaire jusqu'à converger vers un potentiel flottant qui correspond à une valeur Vf où le flux d'ions et le flux d'électrons se compensent.
Selon l'invention, on mesure le taux de décharge du condensateur 12 pendant la période linéaire où le courant est composé uniquement du flux d'ions (flux d'électrons nul). Ces mesures sont effectuées, soit en observant la dérivée temporelle dVβ/dt du potentiel à la borne B, soit en observant le courant Iβ circulant vers le condensateur 12 à l'aide d'un transformateur interposé entre la sonde 10 et le condensateur 12. On utilise pour cela, par exemple, un oscilloscope 14 ou un circuit spécifi¬ que de traitement du signal. Les mesures sont effectuées après l'amortissement des oscillations radiofréquence et avant que la variation du signal ne soit plus linéaire, c'est-à-dire avant que le potentiel de la borne B s'approche du potentiel flottant Vf.
Pendant la décharge du condensateur 12, la variation du potentiel de la borne B suit, en première approximation, la rela¬ tion : dVB/dt = e. Sm. (rion-re)/Cm, où rion et Te représentent, respectivement, le flux d'ions et le flux d'électrons et où e représente la charge d'un électron.
Le flux d'électrons Te varie en fonction du potentiel Vβ et devient nul lorsque le potentiel Vβ est fortement négatif, comme dans le cas d'une sonde de Langmuir plane. sente, sous forme de chronogramme, le potentiel V^ de la borne A. La périodicité Th des trains d'oscillations correspond, par exem¬ ple, à une fréquence fn = 1/Th comprise entre 1 et 20 kHz. Les oscillations radiofréquence durent pendant une période Ti corres- pondant, par exemple, à environ la moitié (Tn/2) de la période des trains d'oscillations. Les mesures sont effectuées à l'inté¬ rieur de l'intervalle de temps T2 entre deux trains d'oscilla¬ tions de durée T]_. Un signal tel que représenté à la figure 5 est, par exemple, obtenu au moyen d'une source 13 dont la sortie est hachée à une fréquence fh-
La fréquence fQ des oscillations radiofréquence est, par exemple, comprise entre 1 et 20 MHz. Pour un réacteur à plasma à excitation radiofréquence, on veillera à ce que la valeur de la fréquence f0 soit suffisamment éloignée de la fré- quence d'excitation du plasma (par la source 6 de la figure 1) pour éviter l'apparition d'interférences avec le potentiel du plasma. A titre d'exemple particulier, pour un plasma généré au moyen d'un générateur d'une fréquence d'environ 13,5 MHz à cou¬ plage capacitif, on évitera de choisir, pour la fréquence f0, une fréquence comprise entre 12 et 15 MHz.
Sous l'effet des oscillations délivrées par la source 13 et de la non-linéarité du courant (en fonction de la tension appliquée) fourni à la sonde par le plasma, le flux moyen d'élec¬ trons vers la sonde dépasse, initialement, le flux moyen d'ions positifs, ce qui provoque la charge du condensateur 12. La valeur moyenne des oscillations du potentiel de la borne B va diminuer jusqu'à atteindre une valeur négative correspondant à un poten¬ tiel Vbias où le flux d'électrons est diminué jusqu'à atteindre une valeur identique au flux d'ions, donc où le courant moyen résultant dans la sonde 10 est nul. Ce potentiel VDias résulte de l'effet classique d'autopolarisation existant dans un plasma.
La figure β illustre ce fonctionnement et représente, sous forme de chronogramme, le potentiel de la borne B du conden¬ sateur 12, en présence de plasma. Le potentiel VDj.as d'autopola- 12
et Ci reste inchangé. Les effets de la capacité Ci de la couche isolante sont de réduire la valeur absolue du potentiel Vβ obte¬ nue à la fin des oscillations radiofréquence, de réduire la charge accumulée par le condensateur 12 de capacité Cm et de réduire le temps de décharge du condensateur 12 et, par consé¬ quent, la période linéaire pendant laquelle les mesures peuvent être effectuées. Par contre, la valeur initiale de la dérivée temporelle dVβ/dt reste inchangée et la vitesse de décharge est toujours, au début, proportionnelle au flux d'ions 1 ion pour une amplitude Vcc du signal radiofréquence suffisamment élevée.
De préférence, la capacité Cm du condensateur 12 est choisie pour être inférieure à la capacité attendue de la couche mince isolante susceptible d'être déposée sur la sonde 10 par le plasma. Cela présente l'avantage d'augmenter la durée pendant laquelle la variation de potentiel sur la borne B est exploita¬ ble.
Le choix de la valeur du condensateur 12 dépend du niveau de bruit électrique de l'installation à laquelle est asso¬ cié le dispositif et de la durée de décharge exploitable souhai- tée. En effet, plus la capacité Cm est grande, plus la décharge du condensateur de mesure 12 est lente.
Si la valeur du condensateur 12 est trop importante, la variation de potentiel mesurée dVβ/dt est trop lente et les mesu¬ res risquent d'être faussées par du bruit. Si la valeur du condensateur 12 est trop faible, sa décharge risque d'être trop rapide et de ne pas laisser un temps suffisant pour atteindre un équilibre de la région de charge d'espace devant la sonde, entraînant ainsi une erreur dans la mesure. Le temps nécessaire à cet équilibre est donné par la période ion-plasma : .
2 "^ tion = (Mi.εo/n.e ) , où Mi représente la masse de l'ion, où εo représente la permittivité de l'espace et où n représente la densité des ions dans le plasma.
La valeur du condensateur 12 est, par exemple, choisie d'environ quelques nanofarads. Une telle valeur respecte la L'amplitude du signal radiofréquence est choisie suffi¬ samment grande (par exemple, de l'ordre de plusieurs dizaines de volts) pour que le potentiel d'autopolarisation Vbias soit suffi¬ samment négatif pour empêcher que les électrons soient captés par la sonde 10 pendant un temps suffisant pour effectuer la mesure. Cela revient à dire que l'amplitude Vcc du signal radiofréquence est choisie pour être nettement supérieure à la température élec¬ tronique exprimée en électronvolts.
Ainsi, tant que les électrons sont repoussés par la sonde dans la mesure où elle est à un potentiel suffisamment négatif par rapport au potentiel Vf, le flux d'électrons Te sur la sonde est nul et la pente de décharge du condensateur 12 est proportionnelle au flux d'ions rion.
En mesurant cette pente, par exemple, au moyen de l'os- cilloscope 14, on peut déduire le flux d'ions de la relation :
IB = Cm.dVB/dt = e. Sm.rion. La présence d'un plasma déposant une couche mince iso¬ lante n'affecte pas le fonctionnement d'un dispositif selon l'in¬ vention. Cette couche mince se traduit, du point de vue électri- que, par une capacité Ci (non représentée) en série avec le condensateur 12 entre la borne B et le plasma. La conséquence de la présence de cette capacité est que le potentiel mesuré sur la borne B ne correspond pas au potentiel d'autopolarisation Ybias mais à une fraction de ce potentiel en raison de l'association série du condensateur 12 avec la capacité Ci de la couche isolante.
La relation qui lie le potentiel de la borne B au potentiel Vs de la surface de la sonde en contact avec le plasma, à l'instant où le signal radiofréquence est coupé, est : VB - Vs.Ci/(Cm + Ci) .
La valeur du potentiel Vs à l'instant où le signal radiofréquence est coupé est toujours VDias. La valeur absolue initiale du potentiel Vβ sera donc réduite. Cependant, tant que le potentiel Vs reste suffisamment négatif, le flux d'ions et donc le courant (identique) circulant à travers les capacités Cm 14
flux d'ions, il peut générer une alarme indiquant que les parois de l'enceinte sont polluées. On notera que plusieurs sondes asso¬ ciées à plusieurs dispositifs de mesures peuvent être réparties à proximité des parois de l'enceinte pour disposer de mesures dans différentes régions de l'enceinte.
Un autre avantage de la présente invention est qu'elle permet de vérifier, dans une phase de caracterisation de l'en¬ ceinte, l'homogénéité du flux d'ions dans la région de l'enceinte destinée à recevoir un échantillon à traiter et ce, avec n'im- porte quel plasma. Pour ce faire, plusieurs sondes et dispositifs de mesures selon l'invention sont répartis à proximité de la paroi destinée à recevoir, en fonctionnement normal, l'échan¬ tillon à traiter. L'interprétation des mesures données par les différents dispositifs de mesure permet de dresser une carte de la répartition du flux d'ions à proximité de la paroi concernée.
Selon l'invention, la surface sensible 11 de la sonde 10 est relativement importante (de l'ordre de plusieurs centi¬ mètres carrés) . En effet, plus la surface de la sonde est impor¬ tante, plus le courant récolté est important pour un flux d'ions donné. Cela permet d'améliorer le rapport signal/bruit et la résolution temporelle de la sonde. De plus, les effets de bord et les effets de couches isolantes éventuelles déposées sur la sonde sont minimisés avec une sonde de taille importante. Dans une application où plusieurs sondes sont utilisées pour établir une cartographie du flux d'ions en fonction de la position, on adap¬ tera (en la limitant) la taille des sondes pour obtenir une réso¬ lution spatiale adéquate.
Un autre avantage de la présente invention est que les mesures ne sont pas affectées par des champs magnétiques tant que le rayon gyromagnetique de l'ion est inférieur à la taille de la sonde et que l'amplitude et l'orientation du champ magnétique n'empêchent pas les électrons d'arriver jusqu'à la sonde, donc de charger le condensateur 12 pour établir une autopolarisation. La taille de la sonde 10 peut ainsi être adaptée au champ magnétique maximal attendu. Par exemple, pour une sonde dont le disque condition par rapport à la capacité d'une éventuelle couche mince isolante déposée par le plasma. En effet, la capacité d'une couche mince isolante avec une constante diélectrique relative εr de 4 et d'une épaisseur de 0,1 μm est de l'ordre de 177 nano-
2 farads pour une sonde de 5 cm .
On veillera à ce que la période T0 = l/f0 des oscilla¬ tions radiofréquence soit courte par rapport à la durée T]_ d'application de ces oscillations, à ce que la durée Ti soit suffisamment longue pour permettre une autopolarisation de la sonde au potentiel Vbias et à ce que l'intervalle de temps T2 entre deux trains d'oscillations soit suffisamment long pour permettre la mesure du taux de décharge du condensateur 12.
Un avantage de la présente invention est qu'elle est applicable à n'importe quelle composition chimique de plasma. Seule une attaque chimique (gravure) très importante du ou des matériaux dont la sonde est constituée ou un dépôt d'une couche isolante dont l'épaisseur est telle qu'elle ne permet plus d'atteindre une autopolarisation de la sonde constitue une limite au fonctionnement du dispositif de mesure. Un autre avantage de l'invention est que les résultats obtenus sont indépendants de la nature chimique des ions récoltés par la sonde. En effet, on ne mesure que le courant électrique, donc le flux total des ions positifs.
Un autre avantage de la présente invention est qu'elle autorise un asservissement d'un processus de dépôt ou de gravure pendant sa mise en oeuvre. Une sonde selon l'invention peut être placée à proximité d'une paroi de l'enceinte autre que celle à proximité de laquelle est placé un échantillon à traiter. Le résultat de la mesure opérée par le dispositif selon l'invention peut alors être utilisé pour asservir le processus. Si le dispo¬ sitif détecte une légère variation du flux d'ions (accélération ou ralentissement de la vitesse de décharge du condensateur de mesure) , il peut délivrer une consigne permettant de modifier le signal radiofréquence ou micro-onde d'excitation du gaz afin de modifier le plasma. Si le dispositif détecte une chute brutale du 16
REVENDICATIONS
1. Procédé de mesure d'un flux d'ions provenant d'un plasma vers une surface en contact avec ce dernier, caractérisé en ce qu'il consiste à mesurer le taux de décharge d'un condensa¬ teur de mesure (12) connecté entre une source de tension radio- fréquence (13) et une sonde (10) en forme de plaque en contact avec le plasma.
2. Procédé de mesure selon la revendication 1, carac¬ térisé en ce qu'il consiste à alimenter la sonde (10), périodi¬ quement, par des trains d'oscillations radiofréquence et à effec- tuer la mesure, entre deux trains d'oscillations, après l'amor¬ tissement du signal radiofréquence et avant que le potentiel de la sonde (10) soit stabilisé.
3. Procédé de mesure selon la revendication 1 ou 2, caractérisé en ce qu'il consiste à effectuer une mesure de la variation du potentiel aux bornes du condensateur de mesure (12) .
4. Procédé de mesure la revendication 1 ou 2, carac¬ térisé en ce qu'il consiste à mesurer le courant de décharge du condensateur de mesure (12) au moyen d'un transformateur inter¬ posé entre ce condensateur (12) et la sonde (10) . 5. Procédé de mesure selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la valeur du conden¬ sateur de mesure (12) est inférieure à la valeur de la capacité d'une couche mince éventuellement attendue sur la sonde (10) .
6. Dispositif de mesure d'un flux d'ions dans une enceinte sous vide (1) constituant un réacteur à plasma, caracté¬ risé en ce qu'il comporte : une sonde (10) interne à l'enceinte (1) et comportant une surface sensible (11) plane ; des moyens (13) externes à l'enceinte (1) pour ali- menter, périodiquement, la sonde (10) par une tension radio¬ fréquence ; un condensateur de mesure (12) externe à l'enceinte (1) monté en série entre lesdits moyens d'alimentation (13) et ladite sonde (10) ; et présente un diamètre de 1 cm, les mesures ne seront pas pertur¬ bées par des champs magnétiques inférieurs à 1000 Gauss.
Selon une variante de l'invention, le porte-substrat 3 (figure 1) peut servir de sonde de flux d'ions. Dans ce cas, l'alimentation radiofréquence (générateur 5, figure 1) qui sert à établir l'autopolarisation du substrat et qui, dans le cas d'une gravure ionique réactive à couplage capacitif, entretient le plasma est hachée et joue alors le rôle de source de tension radiofréquence 13 selon l'invention. Des moyens similaires à ceux exposés en relation avec la figure 3 sont utilisés pour mesurer le flux d'ions. Bien que la mise en oeuvre d'une telle variante risque, le cas échéant, de perturber le traitement du substrat, elle permet d'étudier la différence éventuelle, entre les flux sur les parois et sur le porte-substrat, qui peut être due à une répartition non-homogène des régions de production des ions.
On notera également que l'invention permet également de déterminer le potentiel du plasma et la température électronique. En effet, en analysant la caractéristique courant-tension de la borne B lorsque le potentiel Vβ s'approche du potentiel flottant Vf, la sonde peut alors fournir des paramètres caractéristiques du plasma à la manière d'une sonde de Langmuir classique.
Bien entendu, la présente invention est susceptible de diverses variantes et modifications qui apparaîtront à l'homme de l'art. En particulier, les matériaux, dimensions, capacités et fréquences indiqués à titre d'exemple pourront être modifiés, notamment, en fonction du réacteur à plasma auquel est destiné le dispositif. De plus, bien que l'on ait fait référence dans la description qui précède à un réacteur générant le plasma au moyen d'un générateur radiofréquence à couplage capacitif, l'invention s'applique quel que soit le mode d'excitation du gaz, qu'il soit continu, radiofréquence ou micro-onde. En outre, l'invention s'applique également à une mesure de flux d'espèces chargées présents dans des plasmas autres que des ions positifs, telles que des agrégats de tailles nanométriques ou des particules de poussière avec une charge positive.

Claims

des moyens (14) externes à l'enceinte (1) pour mesurer, périodiquement, le courant de décharge du condensateur de mesure (12) ou les variations de potentiel aux bornes de ce condensateur (12) pendant sa décharge. 7. Dispositif de mesure selon la revendication 6, caractérisé en ce que ladite sonde (10) est constituée d'un dis¬ que (20) relié, par un conducteur (21) sensiblement axial, à une borne (B) dudit condensateur de mesure (12), les faces arrière et latérale du disque (20) étant entourées d'un isolant (23) et d'une gaine conductrice (22) ayant une fonction d'écran et d'an¬ neau de garde.
8. Dispositif de mesure selon la revendication 7, caractérisé en ce que ladite gaine (22) est reliée à ladite source d'alimentation par l'intermédiaire d'un condensateur. 9. Dispositif de mesure selon l'une quelconque des revendications 6 à 8, caractérisé en ce que lesdits moyens d'alimentation sont constitués par une source de tension radio¬ fréquence (13) qui fournit des trains d'oscillations radio¬ fréquence, ladite mesure s'effectuant entre deux trains d'oscillations.
10. Dispositif de mesure selon la revendication 9, caractérisé en ce que la période (T0) des oscillations radio¬ fréquence est courte par rapport à la durée (Ti) d'application de ces oscillations, la durée d'application des trains d'oscilla- tions (Ti) étant suffisamment longue pour établir une tension d'autopolarisation (VDias) de la sonde (10) et l'intervalle de temps (T2) entre deux trains d'oscillations étant suffisamment long pour permettre la mesure.
PCT/FR1996/001451 1995-09-19 1996-09-18 Procede et dispositif de mesure d'un flux d'ions dans un plasma WO1997011587A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP51243797A JP3937453B2 (ja) 1995-09-19 1996-09-18 プラズマ中のイオン流の測定方法及び装置
US08/836,036 US5936413A (en) 1995-09-19 1996-09-18 Method and device for measuring an ion flow in a plasma
EP96931869A EP0792571B1 (fr) 1995-09-19 1996-09-18 Procede et dispositif de mesure d'un flux d'ions dans un plasma
DE69605643T DE69605643T2 (de) 1995-09-19 1996-09-18 Verfahren und vorrichtung zur messung eines zonenflusses in einem plasma

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9511181A FR2738984B1 (fr) 1995-09-19 1995-09-19 Procede et dispositif de mesure d'un flux d'ions dans un plasma
FR95/11181 1995-09-19

Publications (1)

Publication Number Publication Date
WO1997011587A1 true WO1997011587A1 (fr) 1997-03-27

Family

ID=9482863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1996/001451 WO1997011587A1 (fr) 1995-09-19 1996-09-18 Procede et dispositif de mesure d'un flux d'ions dans un plasma

Country Status (6)

Country Link
US (1) US5936413A (fr)
EP (1) EP0792571B1 (fr)
JP (1) JP3937453B2 (fr)
DE (1) DE69605643T2 (fr)
FR (1) FR2738984B1 (fr)
WO (1) WO1997011587A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7319316B2 (en) 2005-06-29 2008-01-15 Lam Research Corporation Apparatus for measuring a set of electrical characteristics in a plasma
US7413672B1 (en) 2006-04-04 2008-08-19 Lam Research Corporation Controlling plasma processing using parameters derived through the use of a planar ion flux probing arrangement
US7479207B2 (en) 2006-03-15 2009-01-20 Lam Research Corporation Adjustable height PIF probe
US7578301B2 (en) 2005-03-28 2009-08-25 Lam Research Corporation Methods and apparatus for determining the endpoint of a cleaning or conditioning process in a plasma processing system
JP2011526415A (ja) * 2008-06-26 2011-10-06 ラム リサーチ コーポレーション プラズマを自動的に特性化するための方法、及び、その方法の少なくとも1つを実行するコンピュータ可読コードを格納するプログラム格納媒体
JP2011527508A (ja) * 2008-07-07 2011-10-27 ラム リサーチ コーポレーション プラズマ処理チャンバ内のプラズマ不安定性を検出するための受動型容量結合静電(cce)プローブ構成
JP2011527506A (ja) * 2008-07-07 2011-10-27 ラム リサーチ コーポレーション プラズマ処理チャンバ内のその場(in−situ)アーク放電事象を検出するための受動型容量結合静電(CCE)プローブ構成

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6326794B1 (en) * 1999-01-14 2001-12-04 International Business Machines Corporation Method and apparatus for in-situ monitoring of ion energy distribution for endpoint detection via capacitance measurement
US6741944B1 (en) * 1999-07-20 2004-05-25 Tokyo Electron Limited Electron density measurement and plasma process control system using a microwave oscillator locked to an open resonator containing the plasma
US6646386B1 (en) 1999-07-20 2003-11-11 Tokyo Electron Limited Stabilized oscillator circuit for plasma density measurement
CN1204399C (zh) * 1999-07-21 2005-06-01 东京电子株式会社 使用开式谐振腔的电子密度测量和等离子体处理控制系统
US6861844B1 (en) 1999-07-21 2005-03-01 Tokyo Electron Limited Electron density measurement and plasma process control system using changes in the resonant frequency of an open resonator containing the plasma
JP2001203097A (ja) * 2000-01-17 2001-07-27 Canon Inc プラズマ密度計測装置および方法並びにこれを利用したプラズマ処理装置および方法
JP4633881B2 (ja) * 2000-02-21 2011-02-16 株式会社日立製作所 プラズマ処理装置及びそれを用いた処理方法
US6653852B1 (en) 2000-03-31 2003-11-25 Lam Research Corporation Wafer integrated plasma probe assembly array
JP3670206B2 (ja) * 2000-11-06 2005-07-13 アルプス電気株式会社 プラズマ処理装置又はプラズマ処理システムの性能評価方法、保守方法、性能管理システム、及び性能確認システム、並びにプラズマ処理装置
US7557591B2 (en) * 2002-03-28 2009-07-07 Tokyo Electron Limited System and method for determining the state of a film in a plasma reactor using an electrical property
JP3773189B2 (ja) * 2002-04-24 2006-05-10 独立行政法人科学技術振興機構 窓型プローブ、プラズマ監視装置、及び、プラズマ処理装置
US6894474B2 (en) 2002-06-07 2005-05-17 Applied Materials, Inc. Non-intrusive plasma probe
US6972582B2 (en) * 2003-02-10 2005-12-06 Solid State Measurements, Inc. Apparatus and method for measuring semiconductor wafer electrical properties
US6902646B2 (en) * 2003-08-14 2005-06-07 Advanced Energy Industries, Inc. Sensor array for measuring plasma characteristics in plasma processing environments
US20050284570A1 (en) * 2004-06-24 2005-12-29 Doran Daniel B Diagnostic plasma measurement device having patterned sensors and features
US20060043063A1 (en) * 2004-09-02 2006-03-02 Mahoney Leonard J Electrically floating diagnostic plasma probe with ion property sensors
DE102006014106B3 (de) 2006-03-24 2007-08-30 RUHR-UNIVERSITäT BOCHUM Vorrichtung und Verfahren zur Messung der Dichte eines Plasmas
US7829468B2 (en) * 2006-06-07 2010-11-09 Lam Research Corporation Method and apparatus to detect fault conditions of plasma processing reactor
EP2114112B1 (fr) * 2008-04-29 2015-09-23 Plasmetrex GmbH Appareil pour procédés industriels au plasma
CN102084474B (zh) * 2008-07-07 2012-11-14 朗姆研究公司 在等离子体处理室中检测去夹紧的电容耦合静电(cce)探针装置及其方法
US8164353B2 (en) * 2008-07-07 2012-04-24 Lam Research Corporation RF-biased capacitively-coupled electrostatic (RFB-CCE) probe arrangement for characterizing a film in a plasma processing chamber
CN104320899A (zh) * 2008-07-07 2015-01-28 朗姆研究公司 用于检测等离子处理室中激发步骤的电容耦合静电(cce)探针装置及其方法
TWI494030B (zh) * 2008-07-07 2015-07-21 Lam Res Corp 供使用於電漿處理腔室中之含真空間隙的面向電漿之探針裝置
IES20090733A2 (en) 2009-09-22 2011-03-30 Donal O'sullivan Sensor for measuring plasma parameters
US20120197570A1 (en) * 2011-01-27 2012-08-02 Mehran Ramezani Measurement of Parameters Within an Integrated Circuit Chip Using a Nano-Probe
US20120283973A1 (en) 2011-05-05 2012-11-08 Imec Plasma probe and method for plasma diagnostics
US9404183B2 (en) 2012-06-08 2016-08-02 Novellus Systems, Inc. Diagnostic and control systems and methods for substrate processing systems using DC self-bias voltage
CN102928701A (zh) * 2012-10-24 2013-02-13 上海市电力公司 用于直流输电下离子流场分布特性测量的测量系统
KR101999720B1 (ko) * 2012-11-20 2019-07-16 삼성디스플레이 주식회사 기판 정전기 검사 장치 및 기판 제조 방법
TWI635197B (zh) * 2013-06-10 2018-09-11 諾發系統有限公司 用於使用直流自偏壓之基板處理系統的診斷及控制系統與方法
DE102013110722A1 (de) * 2013-09-27 2015-04-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Plasma-ionengestütztes Beschichtungsverfahren und Plasmasonde
EP3292559B1 (fr) 2015-05-04 2019-08-07 Ecole Polytechnique Federale de Lausanne (EPFL) Méthode, sonde de mesure et appareil de mesure pour déterminer des charactéristiques plasma
EP3780913A4 (fr) * 2019-01-31 2021-06-16 Korea Research Institute of Standards and Science Appareil de diagnostic plasma de type planaire, appareil de diagnostic plasma de type tranche dans lequel un appareil de diagnostic plasma de type planaire est enfoui, et mandrin électrostatique dans lequel un appareil de diagnostic plasma de type planaire est enfoui
US11996274B2 (en) 2022-04-07 2024-05-28 Mks Instruments, Inc. Real-time, non-invasive IEDF plasma sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4006404A (en) * 1976-01-30 1977-02-01 The United States Of America As Represented By The Secretary Of The Navy Pulsed plasma probe
EP0145015A2 (fr) * 1983-12-14 1985-06-19 Hitachi, Ltd. Méthode et appareil de gravure sèche
SU1733975A1 (ru) * 1988-05-18 1992-05-15 Научно-производственное объединение им.С.А.Лавочкина Способ определени электронной температуры плазмы тлеющего разр да

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2696584A (en) * 1948-06-02 1954-12-07 Kurt S Lion Electric circuit
US4336532A (en) * 1980-05-22 1982-06-22 Radiation Engineering Inc. Integrated nuclear radiation detector and monitor
US5339039A (en) * 1992-09-29 1994-08-16 Arizona Board Of Regents On Behalf Of The University Of Arizona Langmuir probe system for radio frequency excited plasma processing system
US5467013A (en) * 1993-12-07 1995-11-14 Sematech, Inc. Radio frequency monitor for semiconductor process control

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4006404A (en) * 1976-01-30 1977-02-01 The United States Of America As Represented By The Secretary Of The Navy Pulsed plasma probe
EP0145015A2 (fr) * 1983-12-14 1985-06-19 Hitachi, Ltd. Méthode et appareil de gravure sèche
SU1733975A1 (ru) * 1988-05-18 1992-05-15 Научно-производственное объединение им.С.А.Лавочкина Способ определени электронной температуры плазмы тлеющего разр да

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANNARATONE B M ET AL: "A COMPARISON OF A PASSIVE (FILTERED) AND AN ACTIVE (DRIVEN) PROBE FOR RF PLASMA DIAGNOSTICS", MEASUREMENT SCIENCE AND TECHNOLOGY, vol. 2, no. 8, 1 August 1991 (1991-08-01), pages 795 - 800, XP000259454 *
DATABASE WPI Section EI Week 9315, Derwent World Patents Index; Class S03, AN 93-125107, XP002003426 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7578301B2 (en) 2005-03-28 2009-08-25 Lam Research Corporation Methods and apparatus for determining the endpoint of a cleaning or conditioning process in a plasma processing system
US8518209B2 (en) 2005-03-28 2013-08-27 Lam Research Corporation Apparatus for determining the endpoint of a cleaning or conditioning process in a plasma processing system
US7994794B2 (en) 2005-06-29 2011-08-09 Lam Research Corporation Methods for measuring a set of electrical characteristics in a plasma
US7723994B2 (en) 2005-06-29 2010-05-25 Lam Research Corporation Plasma processing chamber with an apparatus for measuring a set of electrical characteristics in a plasma
US7319316B2 (en) 2005-06-29 2008-01-15 Lam Research Corporation Apparatus for measuring a set of electrical characteristics in a plasma
US7479207B2 (en) 2006-03-15 2009-01-20 Lam Research Corporation Adjustable height PIF probe
US7867355B2 (en) 2006-03-15 2011-01-11 Lam Research Corporation Adjustable height PIF probe
US7413672B1 (en) 2006-04-04 2008-08-19 Lam Research Corporation Controlling plasma processing using parameters derived through the use of a planar ion flux probing arrangement
JP2011526415A (ja) * 2008-06-26 2011-10-06 ラム リサーチ コーポレーション プラズマを自動的に特性化するための方法、及び、その方法の少なくとも1つを実行するコンピュータ可読コードを格納するプログラム格納媒体
JP2011527508A (ja) * 2008-07-07 2011-10-27 ラム リサーチ コーポレーション プラズマ処理チャンバ内のプラズマ不安定性を検出するための受動型容量結合静電(cce)プローブ構成
JP2011527506A (ja) * 2008-07-07 2011-10-27 ラム リサーチ コーポレーション プラズマ処理チャンバ内のその場(in−situ)アーク放電事象を検出するための受動型容量結合静電(CCE)プローブ構成
US9129779B2 (en) 2008-07-07 2015-09-08 Lam Research Corporation Processing system for detecting in-situ arcing events during substrate processing
US9153421B2 (en) 2008-07-07 2015-10-06 Lam Research Corporation Passive capacitively-coupled electrostatic (CCE) probe method for detecting plasma instabilities in a plasma processing chamber

Also Published As

Publication number Publication date
US5936413A (en) 1999-08-10
FR2738984B1 (fr) 1997-11-21
JPH10509557A (ja) 1998-09-14
FR2738984A1 (fr) 1997-03-21
DE69605643T2 (de) 2000-04-06
DE69605643D1 (de) 2000-01-20
JP3937453B2 (ja) 2007-06-27
EP0792571B1 (fr) 1999-12-15
EP0792571A1 (fr) 1997-09-03

Similar Documents

Publication Publication Date Title
EP0792571B1 (fr) Procede et dispositif de mesure d'un flux d'ions dans un plasma
EP1794600B1 (fr) Sonde de mesure de caracteristiques d'un courant d'excitation d'un plasma, et reacteur a plasma associe.
EP3146204B1 (fr) Dispositif de formation d'un faisceau quasi-neutre de particules de charges opposees
WO2009004260A2 (fr) Système d'émission d'impulsion électrique et dispositif de découplage capacitif pour un tel système
FR3060125A1 (fr) Dispositif et procede de mesure d'une vitesse d'ecoulement de gaz
EP1160932A1 (fr) Dispositif de connexion électrique étanche d'électrodes par cable blinde et système pour mesures petrophysiques utilisant le dispositif
EP2396645B1 (fr) Lampe a decharge pour gds a champ magnetique axial
WO2019135044A1 (fr) Transformateur de courant ouvrant a noyau magnetique souple
WO2003003032A1 (fr) Procede de charge d'une structure comportant un corps isolant
FR2726369A1 (fr) Procede de mesure du declin de potentiel et de la mobilite electronique d'un materiau
WO2010146086A1 (fr) Dispositif de surveillance d'un poste electrique haute tension isole au gaz par mesure de decharges partielles
Sanchez et al. Electrical properties of metal‐polymer (polysterene) silicon devices
FR2876536A1 (fr) Dispositif et procede de caracterisation de plasma
FR2690750A1 (fr) Procédé et dispositif pour la mesure d'un champ électrique en milieu conducteur.
FR3014205A1 (fr) Analyseur de spectre analogique
WO1998042475A1 (fr) Procede pour le controle d'un processus d'ablation laser, applications d'un tel procede et equipement pour la mise en oeuvre de ce procede
WO2014184357A1 (fr) Générateur de plasma étendu comprenant des générateurs élémentaires intégrés
EP0577495A1 (fr) Dispositif et procédé de contrôle de l'épaisseur et de la régularité d'un revêtement déposé sur un corps isolant allongé
EP2036116B1 (fr) Dispositif et procédé à capacité commandable
FR2982372A1 (fr) Systeme et methode de controle d'un cable electrique
FR2569000A1 (fr) Procede et appareils pour le controle in situ de l'epaisseur de couches ultraminces deposees par pulverisation ionique
FR2673001A1 (fr) Capteur de champ electrique sensible aux champs faibles.
FR2606512A1 (fr) Procede de controle electrique de la contamination de surface, et dispositif de mise en oeuvre
FR2755703A1 (fr) Procede et installation de depot sous vide de couches ultraminces de materiau conducteur a effet dissipatif ou conductif
FR2477766A1 (fr) Cellule d'absorption destinee a recevoir un gaz ou une vapeur rarefie, utilisable pour la stabilisation en frequence d'un oscillateur electrique et la spectrometrie

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1996931869

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08836036

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996931869

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996931869

Country of ref document: EP