WO1997011496A1 - Semiconductor device, method of producing the same and system using the semiconductor device - Google Patents

Semiconductor device, method of producing the same and system using the semiconductor device Download PDF

Info

Publication number
WO1997011496A1
WO1997011496A1 PCT/JP1995/001844 JP9501844W WO9711496A1 WO 1997011496 A1 WO1997011496 A1 WO 1997011496A1 JP 9501844 W JP9501844 W JP 9501844W WO 9711496 A1 WO9711496 A1 WO 9711496A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
region
semiconductor region
conductivity type
base
Prior art date
Application number
PCT/JP1995/001844
Other languages
French (fr)
Japanese (ja)
Inventor
Eiji Ooue
Takahiro Onai
Katsuyoshi Washio
Yukihiro Kiyota
Masao Kondo
Katsuya Oda
Toru Masuda
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP1995/001844 priority Critical patent/WO1997011496A1/en
Publication of WO1997011496A1 publication Critical patent/WO1997011496A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66272Silicon vertical transistors
    • H01L29/66287Silicon vertical transistors with a single crystalline emitter, collector or base including extrinsic, link or graft base formed on the silicon substrate, e.g. by epitaxy, recrystallisation, after insulating device isolation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1004Base region of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/732Vertical transistors

Definitions

  • the present invention relates to a semiconductor device capable of high-speed operation, particularly to a bipolar transistor, and further relates to a method for manufacturing the semiconductor device, an optical transmission system device using the semiconductor device, and a mobile wireless portable device. . Background art
  • FIG. 2 is a cross-sectional view of a conventional bipolar transistor using a conventional silicon selective epitaxial method disclosed in Japanese Patent Application Laid-Open No. Hei 5-3-1542.
  • reference numeral 201 denotes a p-type silicon substrate
  • 202 denotes an n + -type buried layer
  • 203 denotes an n- -type silicon epitaxial layer
  • 204 denotes a LOCOS oxide film
  • 2 denotes a LOCOS oxide film.
  • 05 is an n + type phosphorus diffusion layer
  • 206 is a silicon nitride film
  • 207 is polycrystalline silicon for a p + type base electrode
  • 208 is polycrystalline silicon for an n + type collector electrode
  • 2 09, 214, 220 are silicon nitride films
  • 210 is an n-type buried layer
  • 211 is a single-crystal silicon collector
  • 211 is a single-crystal silicon intrinsic base layer
  • 2 13 is polycrystalline silicon WO 97/11496
  • the single-crystal silicon intrinsic berth layer 212 is deposited by an epitaxy method on the main surface of the silicon substrate 201 on which the collector region is formed. Disclosure of the invention
  • the amount of side etching of the silicon nitride film 206 is increased to make the base polycrystalline silicon electrode 207 and the polycrystalline silicon graph base 21 1
  • the contact area between the base region 2 12 and the collector low-accuracy layer 203 increases, and the base-collector capacitance increases.
  • the contact area between the base polycrystalline silicon electrode 207 and the polycrystalline silicon graphite base 213 cannot be reduced below a certain area in consideration of the maximum base resistance. Therefore, the content of the base region 211 and the collector region 203 is inevitable! : Cannot be less than a certain value.
  • the conventional technology reduces the base resistance for further high-speed operation, and It is difficult to eliminate the parasitic capacitance i component such as base and collector capacitance.
  • the limitation of the high-speed operation of such a bipolar transistor impedes the high-speed operation of various semiconductor integrated circuit devices using the same, and furthermore, the high-speed operation of a system using the same.
  • the need to compensate for the high-speed operation of Gbps optical communication systems also necessitates an increase in the operating speed of transistors.
  • a typical object of the present invention is to overcome the above-mentioned problems
  • Another object of the present invention is to provide a transistor that operates at high speed with low power consumption by reducing the base / collector capacitance ft.
  • Still another object of the present invention is to provide a manufacturing method capable of realizing the above-described transistor by a relatively simple process.
  • Still another object of the present invention is to provide a system such as an optical transmission system that can operate at high speed with low power consumption by using a semiconductor device that can operate at high speed with low power consumption.
  • an insulating film is inserted under a polycrystalline semiconductor graft base which is a connection portion between a base region and a base polycrystalline silicon electrode. And separate it from the collector region to reduce base / collector junction area.
  • a semiconductor device includes:
  • a second conductive semiconductor region (114); a first conductive third semiconductor region (118) formed in the first semiconductor region; and a first wiring layer The second semiconductor region is formed on the main surface of the first semiconductor region, and the first wiring layer is formed on the main region of the first semiconductor region. It is formed on the first semiconductor region via the insulating film (105) formed on the surface.
  • a semiconductor device includes: A first semiconductor region of the first conductivity type (103); a second semiconductor region of the second conductivity type (1 14) deposited on the main surface of the first semiconductor region; A third semiconductor region of the first conductivity type formed in the semiconductor region of the first conductivity type, and a first insulating film formed on the main surface of the first semiconductor region and having a first opening.
  • a method for manufacturing a semiconductor device includes:
  • a first step (105) of forming a first insulating film on a surface of a semiconductor substrate (103) of a first conductivity type formed on a semiconductor substrate (101), and the first insulating film A second step of forming a second insulating film (107) thereon; a third step of forming a first conductor layer (110) on the second insulating film; A fourth 'step (FIG. 5 (b)) of forming a first opening by etching the first conductor layer and the second insulating film; and forming the second opening through the first opening.
  • a method for manufacturing a semiconductor device includes:
  • a front body in which a first conductor layer (1 06) having a first opening is stacked on a main surface of a single crystal semiconductor substrate (1 03) via a first insulating film (105) And selectively depositing a semiconductor material on the main surface of the semiconductor substrate from the first opening to form a first semiconductor region (114, etc.) and contact with the first conductor layer.
  • the first polycrystalline semiconductor graphite base 113 shown in FIG. Decrease in contact resistance of crystalline semiconductor graft base 113
  • the resistance of the polycrystalline semiconductor graft base 1 13 can be reduced. Therefore, if the sheet resistance of the base slaughter 114 is the same, the base resistance can be reduced as compared with the conventional example.
  • the base collector capacitance in this region is equal to the capacitance of the silicon oxide film 105 and that of the low concentration collector layer 103.
  • Series with! which can be reduced to about 12 or less as compared with the conventional case where only the low concentration collector layer 103 is used.
  • the ratio of the planar projection area of this region to the emitter area increases as the emitter size decreases, and if the low-concentration collector layer 103 is made thinner for the purpose of speeding up, It depends on the invention! : The reduction effect is greatly increased, and the base-collector capacitance can be reduced to about 1 2.
  • the base resistance can be reduced and the base collector capacitance can be reduced, and low power consumption and high speed operation can be achieved.
  • FIG. 1 is a sectional view of a bipolar transistor according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a conventional bipolar transistor.
  • Fig. 3 shows the parasite of the present invention! : Diagram showing the effect of extinction.
  • FIG. 4 is a first sectional view showing a manufacturing process of the bipolar transistor according to the first embodiment of the present invention.
  • FIG. 5 is a second sectional view showing the manufacturing process of the bipolar transistor according to the first embodiment of the present invention.
  • FIG. 6 shows a manufacturing process of the bipolar transistor according to the first embodiment of the present invention. Third sectional view.
  • FIG. 7 is a fourth sectional view showing the manufacturing process of the bipolar transistor according to the first embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of a bipolar transistor according to a second embodiment of the present invention.
  • FIG. 9 is a first cross-sectional view showing a manufacturing process of the bipolar transistor according to the third embodiment of the present invention.
  • FIG. 10 is a second sectional view showing the manufacturing process of the bipolar transistor according to the third embodiment of the present invention.
  • FIG. 11 is a third sectional view showing the manufacturing process of the bipolar transistor according to the third embodiment of the present invention.
  • FIG. 12 is a fourth sectional view showing the manufacturing process of the bipolar transistor according to the third embodiment of the present invention.
  • FIG. 13 is a cross-sectional view of a bipolar transistor according to a fourth embodiment of the present invention.
  • FIG. 14 is a first cross-sectional view showing a manufacturing process of the bipolar transistor according to the fifth embodiment of the present invention.
  • FIG. 15 is a second sectional view showing the manufacturing process of the bipolar transistor according to the fifth embodiment of the present invention.
  • FIG. 16 is a third sectional view showing the manufacturing process of the bipolar transistor according to the fifth embodiment of the present invention.
  • FIG. 17 is a front S-width circuit diagram of an optical transmission system according to a sixth embodiment of the present invention.
  • FIG. 18 is a front-end module of an optical transmission system according to a seventh embodiment of the present invention.
  • FIG. 19 is a configuration diagram of an optical transmission system according to an eighth embodiment of the present invention.
  • FIG. 20 is a configuration diagram of an optical transmission system according to an eighth embodiment of the present invention.
  • FIG. 21 is a configuration diagram of a mobile radio portable device according to a ninth embodiment of the present invention.
  • FIG. 22 is a circuit diagram of a D flip-flop according to a tenth embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows a sectional view of a first embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of a bipolar transistor according to the present embodiment, and is a cross-sectional view of a substantially completed stage although a final protective film and the like are omitted.
  • 101 is a p-type silicon substrate of a first conductivity type
  • 102 is an n-type high-concentration collector buried layer of a second conductivity type opposite to the first conductivity type
  • 3 is an n-type low concentration collector layer.
  • the main surface of the collector region becomes the main surface of the semiconductor substrate and is formed in a substantially planar shape. A base region is formed.
  • 104, 105, 106, 111, 116, 119 are insulating films such as silicon oxide films, and 107 is a silicon oxide film which is insulating films.
  • 107 is a silicon oxide film which is insulating films.
  • the material of the insulating film 105 and the insulating film 107 is not limited to the oxide film and the nitride film, and that the material of the cabinet is such that the insulating film 105 has a sufficiently high selectivity to the insulating film 107.
  • An insulating film is sufficient.
  • Reference numeral 110 denotes a base polycrystalline silicon electrode which is an extraction electrode of a base region formed of polycrystalline silicon.
  • the base extraction S pole 110 is formed so as to be connected to the base region from the side surface via the later-described graft base regions 113 and 115.
  • the base extraction electrode is formed on the substrate only through the insulating film 105 in the vicinity of the graft base region 113, but has a tapered shape as the distance from the graft base region 113 increases. Since the insulating film 106 having the inclined surface is formed via the insulating film 106, the structure is such that the distance from the semiconductor substrate gradually increases.
  • the connection with the graph base region can be relatively easily performed in the vicinity of the graph base, and the distance from the semiconductor base 103 to the other portions is relatively small. And the parasitic capacitance between the lead electrode 106 and the semiconductor substrate 103! : Can be eliminated.
  • Reference numeral 113 denotes a first polycrystalline semiconductor graft base that electrically connects the intrinsic base region 114 and the base extraction electrode 110.
  • the first graph base region is connected to the base extraction electrode 110 on the upper surface
  • the collector region 103 is connected to the base region through the silicon oxide 105 which is an insulating film on the lower surface.
  • Semiconductor substrate to be formed Is in contact with Further, one of the side surfaces is formed in contact with a second graft base region which is electrically connected to the base region 114, which will be described later, and the other is formed in contact with the silicon nitride layer 107.
  • the base region 114 and the emitter region 118 are formed with a distance also in the depth direction of the drawing, and have a rectangular shape with rounded corners. Is formed.
  • the graph base areas 1 13 and 1 15 are shaped to surround the base castles 114.
  • the base extraction electrode 110 also surrounds the base region, and is configured to be connected to the base region 114 via the graft base region.
  • Reference numeral 114 denotes a single-crystal semiconductor base layer, which is formed in the present embodiment in such a manner that it does not overlap with the base extraction electrode as described above.
  • the base region 114 can be made of a silicon single crystal, and can also be made of a so-called silicon germanium using a mixed material of silicon and germanium. is there. Generally, a single crystal with few crystal defects can be easily formed when formed only with silicon, and the characteristics of a transistor can be improved when silicon germanium is used.
  • Reference numeral 115 denotes a second polycrystalline semiconductor substrate which electrically connects the base layer 114 and the base lead electrode 110 to each other, and has a contact area with the base region 114.
  • the semiconductor substrate is configured to be obliquely in contact with the main surface of the semiconductor substrate.
  • the side surface of the base region is configured to have the (111) plane with respect to the semiconductor substrate 103 having the (100) plane.
  • Reference numeral 117 denotes an emitter polycrystalline silicon electrode
  • reference numeral 118 denotes an emitter region.
  • the connection between the base lead-out electrode 110 and the epitaxial base region 114 does not come into contact with the collector region 103, and the side surface of the base region 114 does not come into contact with the collector region 103. Is being read from. Therefore, it is not necessary to increase the size of the base region, which was required in the past, in a planar manner for connection with the extraction electrode, and the base region can be formed with a minimum size for performing selective epitaxial growth. Base ⁇ Collector capacity can be reduced.
  • the graft base region 113 connecting the base extraction electrode 110 and the epi base region 114 is formed on the main surface of the semiconductor substrate forming the collector region. o is arranged via 5 g. Therefore, draw out the base
  • the volume formed between the source region and the collector region! Can also be reduced.
  • the parasitic capacitance ft between the base and the collector can be reduced, and a sufficient contact area can be secured by connecting the base region and the extraction electrode from the side. Elimination of resistance can also be achieved.
  • the base region is formed by selective epitaxial growth, so that the effects of the above-described embodiment and the effects of selective epitaxial growth are combined, so that higher speed operation and lower power consumption can be achieved. Things.
  • the horizontal axis represents the thickness d e P i of the low concentration collector layer (103 in FIG. 1 and 203 in FIG. 2), and the vertical axis represents the base-collector according to the above embodiment.
  • Peripheral volume between SCTC and conventional base collector! It is the ratio with CTC.
  • the peripheral volume ft between the base and collector in the conventional example is formed by the base region 2 12 immediately below the graph base region 2 13, the low-concentration collector region 203 and the high-concentration collector region 202 It is i. This can be considered as a parasitic capacitance using the base region 211 and the high concentration collector region 202 as electrodes because the low concentration collector region 203 is depleted.
  • the base-collector peripheral volume i CTC has a graft base region because the insulating film 105 is interposed between the graphite base 113 and the collector low-concentration layer 103.
  • the parasitic capacitance Jt using the electrodes 113 and the high-concentration collector layer 102 as both electrodes can be considered.
  • Fig. 3 shows the case where the WE of the emitter in the emitter region is 0.1, 0.2, and 0.4 (where the value of 1 ⁇ (is in the range of 0.05 m to 0.15 ⁇ ). The data up to is shown.
  • the value of the CTC according to the present embodiment divided by the value of the CTC according to the conventional example is less than 1 in all cases. It can be seen that the capacitance between the base and the collector has decreased. In particular, as the emitter width, for example, the emitter WE, becomes smaller, the graph becomes lower in the figure, indicating that the effect of this embodiment becomes more remarkable as the size becomes smaller. I have.
  • FIGS. 4 to 7 show a manufacturing method of the first embodiment of the present invention.
  • a high-concentration n-type collector buried layer 102 is formed on a silicon substrate 101 by thermal diffusion, and then a low-concentration n-type collector is formed by silicon epitaxial growth.
  • the layer 103 is formed.
  • the low-concentration collector layer 103 is formed in the shape of a semiconductor substrate, becomes a base portion of an element, and has a substantially planar surface.
  • a trench having a depth of 3 / m is formed by dry etching so as to surround the periphery of the high-concentration n-type collector buried layer 102 on the plane, and the silicon oxide film 104 is buried.
  • a low concentration n-type collector layer 103 is thermally oxidized to form a silicon oxide film 105 of about 30 nm.
  • the thermal oxidation is preferably performed at a temperature as low as possible from the viewpoint of preventing the high-concentration collector layer 102 from rising, and in this embodiment, the thermal oxidation is performed at about 90 Ot.
  • a silicon oxide film 106 of 200 ⁇ m is formed by the CVD method, and only a silicon oxide layer 106 is removed by wet etching at a place where an emitter is to be formed.
  • silicon oxide film 106 This is because a step is formed in the silicon oxide film 106 in order to secure a space between a base lead electrode formed later and the semiconductor substrate and to facilitate connection with the base region.
  • approximately 50 nm of silicon nitride 107 is formed by the CVD method.
  • other materials can be used instead of the silicon nitride film 107. Since the silicon nitride film 107 is partly removed later by etching, it is necessary to use a material having a sufficient selectivity with respect to the silicon oxide film.
  • the silicon oxide film 107, the silicon oxide film 106, and the silicon oxide film 105 are opened by dry etching, and n-type impurities are ion-implanted. , An n-type layer 108 is formed. Thereafter, a collector polycrystalline silicon electrode 109 is formed.
  • a 200 nm p-type polycrystalline silicon film 110 is deposited and processed into a base polycrystalline silicon polarized pattern.
  • the base extraction electrode 110 is processed into a size necessary to be connected to the base electrode later, and the silicon oxide film 106 formed by selective etching as shown in FIG. 4 (b). It is formed so as to straddle the step.
  • a 200 nm silicon The con oxide film 111 is laminated.
  • the silicon oxide film 111 and the base polycrystalline silicon electrode 110 are etched using the resist film defining the intrinsic region of the transistor as a mask. .
  • a silicon oxide film 112 is deposited to a thickness of about 100 nm, and a side wall insulating film 112 is formed by dry etching.
  • the silicon nitride film 107 is side-etched by wet etching using hot phosphoric acid or the like. This side-etched portion is filled with polycrystalline silicon later to form a contact with the base lead electrode.
  • a side etch of about 100 nm is performed as a value satisfying both requirements.
  • the first p-type polycrystalline semiconductor graft base 1 having the same thickness as the silicon nitride film 107 was formed by selective growth only on the portion of the base polycrystalline silicon electrode 110 exposed by the side-etching.
  • the selective growth is performed at a temperature of about 500 to 600 using monosilane, disilane, or a mixed gas of these and germane depending on the material to be deposited.
  • the polycrystal is grown using the polycrystal base extraction electrode as a seed, and the graft base region 113 is formed.
  • the silicon oxide film 105 is etched using an HF-based etchant, and the p-type single crystal semiconductor base layer 114 is formed by selective growth.
  • a second p-type polycrystalline semiconductor graft base 1 15 is simultaneously formed. This selective growth can be performed under the same conditions as the selective growth of the graft base region 113 described above.
  • the base region 1 14 is deposited on the low-concentration collector layer 103, which is a single crystal, while maintaining the single crystal.
  • the gradient region 1 15 is a polycrystalline graphite base region 1 1 3 Is deposited in a polycrystalline state.
  • the side surface of the base region 114 growing as a single crystal becomes the (111) plane.
  • the region to be a single crystal and the region to be a polycrystal are oblique along the (111) plane.
  • the silicon region 114 can be made of either a silicon single crystal or a silicon-germanium single crystal, but generally, silicon-germanium has characteristics such as a larger current width ratio.
  • the step of filling the graft base region 113 and the step of depositing the graft base region 115 and the base region 114 are performed separately.
  • the graphite base region 113 can be sufficiently filled, the connection with the base extraction electrode 110 can be sufficiently achieved, and the impurity concentration can be set separately.
  • the impurity concentration of the graft base region 113 can be increased, and the base resistance can be reduced.
  • an opening is formed up to the silicon oxide film 105, the silicon nitride film 107 is removed by wet etching, and then selective growth is performed. It can be realized.
  • a silicon oxide film is again deposited on the entire surface by the CVD method, and the side wall insulating silicon oxide film 116 is removed by anisotropic dry etching. Form.
  • a high-concentration n-type polycrystalline silicon is deposited on the entire surface, and the periphery of the emitter region is etched using a resist mask having an S-shaped pattern to form a polycrystalline silicon emitter electrode 117.
  • heat treatment is performed at 900 for about 30 seconds, and n-type impurities are diffused from the polycrystalline silicon emitter electrode 117 to the surface of the base layer 114 to form an emitter region 118.
  • the bipolar transistor according to the present embodiment has a collector region 103 formed by depositing on the semiconductor substrate and a base region 114 formed by projecting on the collector region.
  • the base electrode is formed from an emitter region formed by diffusion in the base castle, and the base extraction electrode can be configured to be connected from the side surface of the base castle.
  • a portion deposited as the base region 114 and in contact with the collector slope remains in an open area for selective growth, so that the base-collector capacitance can be reduced.
  • a silicon oxide film 119 is deposited, and an emitter and a base are deposited. Open the silicon oxide film 119 on the electrode of each source and collector by dry etching, and form the emitter electrode 120, the base electrode 121, and the collector 3 ⁇ 4 ⁇ 122 with tungsten. .
  • the structure shown in FIG. 1 is obtained by the above manufacturing method.
  • the emitter electrode 120 and the like can be formed by a gold-extended material such as aluminum in addition to tungsten.However, when aluminum is used, it is necessary to consider the mutual diffusion of silicon with the polycrystalline silicon 117 and the like. It is necessary to use a barrier metal such as titanium nitride between them.
  • FIG. 8 is a sectional view of a second embodiment of the present invention.
  • the same parts as those in the above-described embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • a silicon oxide film 130 which is an insulative material, is formed on a silicon substrate 101, and a single crystal silicon layer 131 serving as a semiconductor base portion on which elements are formed is formed thereon.
  • an SOI (silicon 'on' insulator) substrate is used, which is formed by using a manufacturing method similar to that of the first embodiment on an SOI substrate formed by known bonding or implantation of oxygen ions.
  • the collector-to-substrate capacitance i is 1 Z2 compared to the first embodiment.
  • the reduction of the base-collector capacitance and the SOI substrate realized by the present invention can be achieved. It is possible to further reduce the parasitic capacitance S of the bipolar transistor by reducing the collector to substrate capacitance !.
  • FIG. 12 is a sectional view of a bipolar transistor according to a third embodiment of the present invention.
  • the description of the parts of the present embodiment which are the same as those of the first and second embodiments will be omitted.
  • a so-called LOCOS oxide film is used together with the groove 104 for element isolation.
  • reference numeral 134 denotes a local isolation oxide (OSC) oxide film for element isolation in which the area other than the element formation region is locally oxidized.
  • OSC local isolation oxide
  • a high concentration n-type collector buried layer 102 is formed on a silicon substrate 101 by thermal expansion, and then a low concentration n-type A collector layer 103 is deposited.
  • planarly high level n-type collector A 3 m deep is formed by dry etching so as to surround the periphery of the buried layer 102, the silicon oxide film 104 is buried, and a device for element separation for electrically separating the devices is formed. Form 3 ⁇ 4.
  • the surface of the low-concentration n-type collector layer 103 which is the semiconductor substrate formed by the epitaxial growth, is oxidized by thermal oxidation to form a silicon oxide film of about 20 nm. Form.
  • a silicon nitride film 133 which is an oxidation-resistant film, is deposited on the entire surface by the CVD method to a thickness of about 200 nm, and dry etching is performed on portions other than those where the intrinsic region is to be formed, as shown in FIG.
  • the silicon nitride film 133 is left.
  • the silicon oxide film 107 and the LOCOS oxide film 134 are opened by dry etching, n-type impurities are ion-implanted, and contact with the collector electrode is made. An n-type layer 108 for reducing resistance is formed. Thereafter, a collector polycrystalline silicon electrode 109 is formed.
  • a p-type polycrystalline silicon film 110 of about 200 nm is deposited and processed into a base polycrystalline silicon electrode pattern.
  • the base extraction electrode 110 is formed so that its end is formed on the LOCOS oxide film and has a step.
  • the silicon oxide layer 111 and the base polycrystalline silicon electrode 110 are formed. Perform etching. Thereafter, in order to form a silicon oxide film 112 having a sidewall isolation, a silicon oxide is deposited to a thickness of about 100 nm and then dry-etched to form a side wall 112.
  • the silicon nitride film 107 is side-etched with hot phosphoric acid by 100 nm.
  • the side etch forms the graph base area described later.
  • the process is performed to the left and right in the figure to the bottom of the base extraction electrode 110, respectively.
  • the base portion serving as the collector region is protected by the oxide film 134, and the side surface of the base lead electrode 110 is supported by the side wall oxide film 112.
  • the first p-type polycrystalline semiconductor graph having the same thickness as the silicon nitride film 107 was formed only by the selective growth method on the portion exposed by the side etch under the base polycrystalline silicon electrode 110.
  • the LOCOS oxide layer 134 is etched using an HF-based etchant, and the base layer 1 of the p-type single crystal semiconductor is formed by a selective growth method. 14 are deposited on the collector region 103. At this time, the second p-type polycrystalline semiconductor graft base 115 is simultaneously formed.
  • a silicon oxide film is deposited on the entire surface by the CVD method, and a silicon oxide film sidewall 16 is formed by anisotropic dry etching.
  • high-concentration n-type polycrystalline silicon is deposited on the entire surface, and is etched using a resist mask having a pattern covering the periphery of the emitter region to form a polycrystalline silicon emitter electrode 117.
  • a heat treatment is performed at about 900 for about 30 seconds, and n-type impurities are diffused from the polycrystalline silicon emitter electrode 117 to the surface of the base layer 114 to selectively grow the base region 1.
  • An emitter region 1 18 is formed in 14.
  • a silicon oxide film 119 is deposited, and polycrystalline silicon of the emitter, base, and collector is opened.
  • the silicon oxide film 119 on the electrode is opened by dry etching, and the emitter electrode 122 is made of tungsten. 0, base electrode 122, and collector electrode 122 are formed.
  • the structure shown in FIG. 12 is obtained by the above manufacturing method.
  • the thickness of the silicon oxide film 134 below the first graph base 114 is formed by the LOCOS method, so that the thickness increases as the distance from the emitter increases, and the base-collector capacitance becomes lower. Can be destroyed.
  • the process for forming the base extraction electrode 110 with a step can be formed by the process of forming the L ⁇ COS oxide film, the silicon oxide film 106 as in the first embodiment can be formed. ⁇ The etching step can be omitted.
  • FIG. Also in this embodiment, the description of the same parts as those in the above-described embodiment will be omitted.
  • a manufacturing method similar to that of the third embodiment is used by using an SOI substrate having a silicon oxide layer 130 as an insulating film and a single-crystal silicon layer 131 on a silicon substrate 101. .
  • the capacitance between the collector substrates is about 1/2 that of the third embodiment.
  • the base extraction electrode 140 is formed of tungsten. Also in this embodiment, the description of the parts common to the above-described embodiments is omitted.
  • a 50 nm p-type polycrystalline silicon film 1 is formed. 35 is deposited and processed into a base polycrystalline silicon electrode pattern. On top of this, a 20 nm silicon oxide film 1336 and a 150 nm polycrystalline silicon film 1337 are stacked, and a 400 nm silicon oxide film 111 is further laminated.
  • a silicon oxide film 111, a polycrystalline silicon film 1337, and a silicon oxide film 11 are used as a mask with a resist (not shown) defining an intrinsic region of the transistor. 1 36 and the p-type polycrystalline silicon film 1 35 are etched. After that, a silicon oxide layer 112 is deposited to a thickness of 100 nm, and a side wall is formed by dry etching.
  • the polycrystalline silicon layer 117 is deposited on the entire surface through the steps shown in FIGS. 5 (c) to 6 (b) shown in the first embodiment and the like, and is shown in FIG. 15 (c). Such a structure is formed.
  • a silicon oxide film 1380 is deposited to a thickness of 300 nm, and a silicon oxide film 1380, an emitter polycrystalline silicon electrode 117 and a silicon oxide film 111 are formed. Is processed by dry etching into a pattern covering the emitter. Thereafter, a silicon oxide film 139 is deposited on the entire surface, and a silicon oxide film 139 is formed by anisotropic dry etching.
  • the polycrystalline silicon 137 is removed by isotropic dry etching, and the silicon oxide film 136 is removed by wet etching.
  • a base tungsten lead electrode 140 and a collector tungsten 141 are formed on the exposed p-type polycrystalline silicon 135 by a selective CVD method. After that, a silicon oxide film 119 is deposited, and the silicon oxide film 119 of the tungsten electrode of the base and collector is opened by dry etching on the polycrystalline silicon electrode of the emitter, and the emitter electrode 120 of tungsten is formed by tungsten.
  • a base electrode 1 2 1 and a collector electrode 1 2 2 are formed. With the above manufacturing method, the structure shown in FIG. 16 (b) is obtained.
  • the resistance of the base extraction electrode is reduced to about 1/10 as compared with the first embodiment.
  • a bipolar transistor with low power consumption can be formed.
  • an LOCOS oxide film can be used for element isolation as in the third embodiment, and an SO1 substrate can be used as in the second and fourth embodiments.
  • the base-collector capacitance is reduced, and the capacity between the collector and the substrate! : It is possible to reduce the resistance and further reduce the resistance of the base lead-out electrode, and it is possible to configure a bipolar transistor that can operate at high speed and high frequency. Therefore, by using the bipolar transistor according to the present invention particularly in a circuit or a system that requires a high-speed operation, it is possible to improve the performance of the entire circuit and the system.
  • FIG. 17 shows a sixth embodiment of the present invention.
  • the circuit shown in FIG. 17 is a circuit diagram showing a frontal hunting circuit used in the optical transmission system.
  • an optical transmission system requires high-speed transmission of several tens of Gbps, and its pre-width circuit requires particularly high-speed operation. Therefore, by employing the transistor according to the present invention as a transistor constituting this amplifying circuit, the performance of the entire width circuit can be remarkably improved.
  • reference numeral 300 denotes a semiconductor integrated circuit that constitutes a pre-arm circuit formed on a single semiconductor substrate.
  • PD is a photodiode that is a light receiving element that receives an optical signal transmitted through an optical transmission cable
  • 303 is a power line and a grounding line. This is a depletion capacitor connected to the internal circuit and short-circuiting the AC component, and is externally provided outside the semiconductor circuit 300.
  • the bipolar transistors Q1 and Q2 are bipolar transistors forming a wide-width circuit, and the above-described device having the structure of the present embodiment is applied.
  • Diode D1 is a diode for level shift, which can be formed by using the bipolar transistor of the present invention and short-circuiting between the base and the collector. Diodes can also be applied in series.
  • Rl, R2, and R3 are resistors.
  • OUT is an output terminal, and an output buffer circuit is inserted between the output terminal and the emitter of the transistor Q2 as necessary.
  • the optical signal transmitted through the optical transmission cable is converted into an electric signal by the photodiode PD, and the signal is transmitted through the input terminal IN of the semiconductor circuit 300 to the width transistors Q1 and Q2. It operates so that it is output from the output terminal OUT after being amplified by 2.
  • the present circuit has a margin of 40 GHz or more.
  • FIG. 18 shows a front end module of an optical transmission system in which the photodiode PD and the pre-width circuit 300 shown in FIG. 17 are integrated.
  • 401 is an optical fiber
  • 402 is a lens
  • 403 is a photodiode
  • 404 is a semiconductor integrated circuit on which a preamplifier is formed.
  • Reference numeral 407 denotes a substrate on which a photodiode and a preamplifier 404 are mounted, which is connected to an output amplifier 406 via a wiring 406 for connecting a diode and a louver. Have been.
  • Reference numeral 408 denotes a hermetically sealed package such as a metal case.
  • the substrate 407 also has the capacitor 303 shown in FIG.
  • the signal path can be shortened, making it difficult for noise to occur and reducing the parasitic L and C components. Can be suppressed.
  • This embodiment is an example in which the semiconductor device manufactured according to the above embodiment is used for the preamplifier circuit of the sixth embodiment, which is used as an integrated circuit chip, and is applied to a front end module.
  • the optical signal input from the optical fiber 401 is passed through the lens 402.
  • the light is condensed and converted to an S-gas signal by the photo diode IC 403. Electrical signal is on the board
  • the signal is amplified by the preamplifier IC 404 through the wiring 405 on 407 and output from the output terminal 406.
  • FIGS. 19 and 20 show system configuration diagrams of the optical transmission system using the front-end amplifier and the front end module shown in FIGS. 17 and 18.
  • FIG. 19 shows a transmitting system 500 of the optical transmission system.
  • the gas signal 501 to be transmitted is input to the multiplexer MUX and multiplexed into, for example, 4: 1 and the output signal is transmitted to the driver 502.
  • the semiconductor laser LD always emits light of a constant intensity, and an external modulator driven by a driver 502
  • the transmission module shown in Fig. 19 is what is called an external modulation type. In this embodiment, instead of this, it is possible to employ a direct modulation type which directly controls the light emission of the semiconductor laser, but in general, the transmission by the external modulation type is performed by a trap. Suitable for high-speed, long-distance transmission with no spread of vector oscillation.
  • FIG. 20 shows an optical receiving module 510 of the optical transmission system according to the present embodiment.
  • reference numeral 52 denotes a front-end module to which the embodiment of the present invention shown in FIGS. 17 and 18 can be applied.
  • the electric signal amplified by the preamplifier 522 in the front end module is input to the main amplifier 530 and amplified.
  • the main amplifier 530 is input to an automatic gain adjuster 531 that sweeps the output of the main amplifier 532 to keep the output constant, avoiding variations due to optical transmission distances and manufacturing deviations. It is configured to: It should be noted that, in addition to the configuration for adjusting the gain, a limit amplifier for limiting the output amplitude may be employed for the main amplifier.
  • the Iffi classifier 540 is configured to perform 1-bit analog-to-digital conversion in synchronization with a predetermined clock, digitizes the output of the main amplifier section, and uses a separator DMUX to output, for example, 1: 4.
  • the signal is input to a digital signal processing circuit 560 of the subsequent stage, and a predetermined process is performed.
  • the mouth extraction unit 550 is the operation timing of the separator 540 and the separator DMU X
  • the output of the main amplifier section 530 is rectified by the full-wave rectifier 551, and is filtered by the narrow-band filter 552 to become a clock signal. Extract the signal.
  • the output of the filter 552 is a phase shifter for matching the phase of the filter output and the analog signal, and delays the filter output based on a predetermined delay 1 :.
  • a circuit can be configured using the transistor element having the above-described configuration at various points.
  • the circuit constituting the main amplifier 532 can be constituted by the circuit shown in FIG.
  • FIG. 21 is a configuration diagram of a mobile radio portable device according to a ninth embodiment of the present invention.
  • a semiconductor device manufactured according to the above embodiment is manufactured by using a mobile radio such as a low-noise gun 603, a synthesizer 606, a PLL (Phase Locked Loop) 611, or the like.
  • a mobile radio such as a low-noise gun 603, a synthesizer 606, a PLL (Phase Locked Loop) 611, or the like.
  • PLL Phase Locked Loop
  • the input from the antenna is amplified by the low-noise amplifier 603, the frequency emitted from the synthesizer 606 is oscillated from the oscillator 605, and the signal from the low-noise amplifier 603 is used by using the signal oscillated from the oscillator 605.
  • the down-mixer 604 down-compensates to a lower frequency. Further, the frequency generated from the PLL 611 is oscillated from the oscillator 610, and the signal from the down mixer 604 is oscillated from the oscillator 610, and the lowering device 609 is used to handle the lower frequency. Signal processing is performed by the baseband unit 6 13.
  • the signal emitted from the baseband unit 613 is modulated by the transformer 612 using the signal from the PLL 611, and furthermore, the upmixer 608 converts the signal by the synthesizer 606.
  • the signal is up-converted to a high frequency based on this signal, amplified by the power amplifier 607, and transmitted from the antenna 601.
  • Reference numeral 602 denotes a switch for switching between transmission and reception of a signal. The switch receives a control signal (not shown) from the base unit 613 and controls its transmission and reception.
  • the baseband unit 6 13 is connected to a microphone (not shown), which is not shown in the drawing, and is capable of inputting and outputting audio signals.
  • the semiconductor device manufactured according to the above-described embodiment may be applied to each block of the present embodiment, in particular, to the low-noise amplifier 603, the synthesizer 606, and the PLL 611 to configure respective circuits. it can. Since the transistor according to the present invention can reduce the base resistance and the base collector capacitance, the low-noise gun 603, the synthesizer 606, and the PLL 611 reduce noise and reduce power consumption. Can be achieved. This makes it possible to realize a mobile wireless portable device that can be used for a long time with low noise as a whole system.
  • FIG. 22 is a circuit diagram of a D flip-flop used in a PLL prescaler of a mobile radio portable device according to a tenth embodiment of the present invention.
  • This embodiment is an example in which the semiconductor device g manufactured according to the above-described embodiment is used for the transistors 71 to 72 on the circuit of FIG.
  • the input signal, the close signal, and the output signal have only two states, high potential and low potential.
  • the input signal and inverted input signal are input to terminals 7 19 and 7 20, respectively, and the clock signal and inverted clock signal are input to terminals 7 2 1 and 7 22, respectively.
  • Terminals 7 2 3 and 7 An output signal and an inverted output signal are obtained from 24.
  • the current paths flowing through the current sources 718 and 719 are switched to one of the transistors 709 and 710 and 711 and 712 by a clock signal, respectively.
  • the on / off of the transistors 701 to 706 is determined by an input signal, a short-circuit signal, and a potential at a lower end of the resistor generated by a current flowing through the resistors 713 and 714. In this circuit, the output signal outputs an input value when the peak signal changes from a low level to a high potential, and otherwise holds the previous input value.
  • the semiconductor device manufactured according to the above-described embodiment can reduce the base resistance and the base no-collector volume 1: so that the power consumption of PLL of the mobile wireless portable device can be reduced.
  • the present invention uses a base plug without increasing the base resistance.
  • the transistor capacity can be reduced, and a transistor that operates at high speed with low power consumption can be obtained.
  • Applying this to a wide-bandwidth circuit and peripheral circuits of an optical transmission system makes it possible to transmit and receive large-capacity signals at ultra-high speed.
  • a mobile wireless portable device that has low noise and can be used for a long time can be obtained.
  • the present invention can be applied to a bipolar transistor and various semiconductor integrated circuit devices using the same.
  • the present invention is applicable to a semiconductor integrated circuit device forming an optical transmission system or a mobile wireless terminal. Can be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Bipolar Transistors (AREA)

Abstract

A low-power ultrahigh-speed bipolar transistor and a circuit using the same are provided to achieve ultrahigh-speed transmission and receiving of a large quantity of signals as well as low-noise operation of a portable wireless device for extended periods of time. A silicon oxide film (115) is inserted under a polycrystalline silicon graft base (113) that connects a base region (114) to a base polycrystalline silicon electrode (110). This makes it possible to lower the base resistance and the base-collector capacitance, and to obtain a low-power transistor that operates at high speeds.

Description

明 細 答 半導体装置及びその製造方法及び半導体装置を用いたシステム 技術分野  Semiconductor device, method of manufacturing the same, and system using semiconductor device
本発明は高速勖作可能な半導体装置、 特にバイポーラ トランジスタに関するも のであり、 さらに当該半導体装置の製造方法及び当核半導体装置を用いた光伝送 システム装置及び移動体無線携带機に閣するものである。 背景技術  The present invention relates to a semiconductor device capable of high-speed operation, particularly to a bipolar transistor, and further relates to a method for manufacturing the semiconductor device, an optical transmission system device using the semiconductor device, and a mobile wireless portable device. . Background art
バイポーラ トランジスタの動作の高速化や遮断周波数の改善のために、 そのべ ース領域を薄く形成するいわゆるベースのシヤロー化に関する研究 ·開発が行わ れている。 このべ一スのシヤロー化のために、 後述する従来の技術のように、 ベ —ス領域をェピタキシャル成長で堆積することによりベース領域を薄く形成す る技術が知られている。 この技術によれば、 ベース領域を半導体基板への拡散に より形成する技術と比べ、 ベース領域の厚さが比較的容易に制御できるため、 上 述したべ一スのシヤロー化の要求に対応することができる。 また、 ベース領域を ェピタキシャル成長法により形成する場合にも、所望の領域にだけ選択的にェピ タキシャル成長を行う技術が知られている。 選択ェピタキシャル成長技術を用い ることにより、 上述したベースのシヤロー化を図り、 かつ、 活性領域の面積を削 滅し余分な寄生成分を削滅することが可能となる。  In order to increase the operation speed of bipolar transistors and to improve the cutoff frequency, research and development on so-called “shallow” bases, in which the base region is formed thinner, are being conducted. In order to make the base shallow, there is known a technique of forming the base region thin by depositing the base region by epitaxy, as in a conventional technology described later. According to this technology, the thickness of the base region can be controlled relatively easily, compared to a technology in which the base region is formed by diffusion into a semiconductor substrate. be able to. Also, when the base region is formed by an epitaxial growth method, a technique for selectively performing epitaxial growth only on a desired region is known. By using the selective epitaxy technique, it is possible to reduce the size of the active region by eliminating the above-described shallow base, and to eliminate extra parasitic components.
第 2図に、特開平 5 - 3 1 5 3 4 2号公報に示されている従来のシリ コン選択 ェピタキシャル法を用いたバイポーラ トランジスタの断面図を示す。 第 2図にお いて、 2 0 1 は p型シリコン基板、 2 0 2 は n +型埋込層、 2 0 3 は n—型シ リ コンェピタキシャル層、 2 0 4 は L O C O S酸化膜、 2 0 5 は n +型リン拡 散層、 2 0 6はシリ コン窒化膜、 2 0 7は p +型ベース電極用多結晶シリ コン、 2 0 8は n +型コレクタ電極用多結晶シリコン、 2 0 9、 2 1 4、 2 2 0 はシ リコン窒化膜、 2 1 0 は n型埋込層、 2 1 1 は単結晶シリ コン · コレクタ、 2 1 2 は単結晶シリ コン真性ベース層、 2 1 3 は多結晶シリ コン ' グラフ 卜べ一 WO 97/11496 FIG. 2 is a cross-sectional view of a conventional bipolar transistor using a conventional silicon selective epitaxial method disclosed in Japanese Patent Application Laid-Open No. Hei 5-3-1542. In FIG. 2, reference numeral 201 denotes a p-type silicon substrate, 202 denotes an n + -type buried layer, 203 denotes an n- -type silicon epitaxial layer, 204 denotes a LOCOS oxide film, and 2 denotes a LOCOS oxide film. 05 is an n + type phosphorus diffusion layer, 206 is a silicon nitride film, 207 is polycrystalline silicon for a p + type base electrode, 208 is polycrystalline silicon for an n + type collector electrode, 2 09, 214, 220 are silicon nitride films, 210 is an n-type buried layer, 211 is a single-crystal silicon collector, 211 is a single-crystal silicon intrinsic base layer, 2 13 is polycrystalline silicon WO 97/11496
ス、 2 1 5は単結晶シリ コンェミッタ、 2 1 6 は A i系電極、 2 1 9は n +型ェ ミ ッタ電極用多結晶シリ コンである。 単結晶シリ コン真性バース層 2 1 2は、 コ レクタ領域が形成されるシリコン基板 2 0 1の主面上にェピタキシャル成長法 により堆積されているものである。 発明の開示 215, a single-crystal silicon emitter; 216, an Ai-based electrode; and 219, a polycrystalline silicon for an n + -type emitter electrode. The single-crystal silicon intrinsic berth layer 212 is deposited by an epitaxy method on the main surface of the silicon substrate 201 on which the collector region is formed. Disclosure of the invention
第 2図の従来技術では、ベース抵抗低減のためにシリコン窒化膜 2 0 6 のサイ ドエツチ量を增加させて、 ベース多結晶シリ コン電極 2 0 7 と多結晶シリ コン グラフ トべ一ス 2 1 3 の面積を增加させる程、 ベース領域 2 1 2 とコレクタ低 澳度層 2 0 3との接触面積が堉加し、ベース コレクタ容量が增加する。一般に、 ベース多結晶シリ コン電極 2 0 7 と多結晶シリ コングラフ トベース 2 1 3 との 接触面積はべ一ス抵抗の增大を考慮すると一定面積以下にはできない。 従って、 必然的にベース領域 2 1 2とコレクタ領域 2 0 3との容!:は一定の値以下には することができない。 このように、 第 2図の従来構造ではベース抵抗とベースノ コレクタ容!:とはトレ一 ドオフの M係があり、 両者を両立させ高速動作可能なバ ィポーラデバイスを実現することは不可能である。 また、 寄生容量成分が多けれ ば、 その容 Jfc成分への充放電により電力を消費し消 *電力の削減が困難となるも のである。  In the prior art shown in FIG. 2, in order to reduce the base resistance, the amount of side etching of the silicon nitride film 206 is increased to make the base polycrystalline silicon electrode 207 and the polycrystalline silicon graph base 21 1 As the area 3 increases, the contact area between the base region 2 12 and the collector low-accuracy layer 203 increases, and the base-collector capacitance increases. In general, the contact area between the base polycrystalline silicon electrode 207 and the polycrystalline silicon graphite base 213 cannot be reduced below a certain area in consideration of the maximum base resistance. Therefore, the content of the base region 211 and the collector region 203 is inevitable! : Cannot be less than a certain value. Thus, in the conventional structure shown in Fig. 2, the base resistance and base no collector capacitance! There is a trade-off of M, and it is impossible to achieve a bipolar device that can operate at high speed by balancing both. If the parasitic capacitance component is large, power is consumed by charging / discharging the capacitance Jfc component, making it * difficult to reduce power consumption.
以上のように、 ベース領域をェピタキシャル成長、 特に選択ェピタキシャル成 長で行いある程度の高速動作を図ったとしても、 従来の技術では、 更なる高速動 作のためにベース抵抗を削減し、 かつ、 ベース ' コレクタ容量等の寄生容 i成分 を削滅するといつたことは困難である。 このようなバイポーラ トランジスタの高 速動作の限界は、 これを用いた各種の半導体集積回路装 fiひいてはそれを用いた システムの高速動作の妨げとなるものであり、特に高速動作の要求の強い数十 G b p sの光通信システムの高速な動作を補償する必要上も、 トランジスタの動作 速度の向上が必要とされているものである。 また、 移動無線用の携辨端末機器の ように、 低消費電力化の要求が強いシステムを構成する上でも、 寄生容量成分が 削減された トランジスタの実現が必要とされている。  As described above, even if the base region is epitaxially grown, particularly by selective epitaxy, and a certain high-speed operation is achieved, the conventional technology reduces the base resistance for further high-speed operation, and It is difficult to eliminate the parasitic capacitance i component such as base and collector capacitance. The limitation of the high-speed operation of such a bipolar transistor impedes the high-speed operation of various semiconductor integrated circuit devices using the same, and furthermore, the high-speed operation of a system using the same. The need to compensate for the high-speed operation of Gbps optical communication systems also necessitates an increase in the operating speed of transistors. In addition, when constructing a system that requires strong power consumption, such as a mobile wireless terminal device, it is necessary to realize a transistor with a reduced parasitic capacitance component.
従って、 本発明の代表的な目的は上記課 ¾を克服することにあり、 ベース抵抗 とベース/コレクタ容 ftを低滅し、低消費電力で高速に動作するトランジスタを 提供することにある。 Therefore, a typical object of the present invention is to overcome the above-mentioned problems, Another object of the present invention is to provide a transistor that operates at high speed with low power consumption by reducing the base / collector capacitance ft.
さらに、 本発明の他の代表的な目的は、 上述したトランジスタを比較的簡単な プロセスにより実現することのできる製造方法を提供することにある。  Still another object of the present invention is to provide a manufacturing method capable of realizing the above-described transistor by a relatively simple process.
さらに、 本発明の他の代表的な目的は高速'低消費電力で動作可能な半導体装 置を用いて高速'低消費 «力で動作可能な光伝送システムなどのシステムを提供 することにある。  Still another object of the present invention is to provide a system such as an optical transmission system that can operate at high speed with low power consumption by using a semiconductor device that can operate at high speed with low power consumption.
さらに、 本発明の他の代表的な目的は、 本願の明細睿及び図面から明らかにな るであろう。  Further, other typical objects of the present invention will become apparent from the specification and drawings of the present application.
上述の代表的な目的を達成するために本発明の代表的な形態では、ベース領域 とべ一ス多結晶シリコン電極とのつなぎ部分である多結晶半導体グラフ卜べ一 スの下に絶縁膜を挿入し、 コレクタ領域から分離し、 ベース/ ^コレクタ接合面穣 を低滅する。  In order to achieve the above-mentioned typical object, in a typical embodiment of the present invention, an insulating film is inserted under a polycrystalline semiconductor graft base which is a connection portion between a base region and a base polycrystalline silicon electrode. And separate it from the collector region to reduce base / collector junction area.
本発明の代表的な形態による半導体装置は、  A semiconductor device according to a representative embodiment of the present invention includes:
第 1導 «型の半導体基体 (1 0 3 ) と、 上記半導体基体の主面部に接触して形 成された上記第 1導 ffi型と反対導《型の第 2導電型の第 1の半導体領域 (1 1 4 ) と、 上記第 1の半導体領域に形成された第 1導電型の第 2半導体領域 (1 1 8 ) と、 上記半導体基体上に絶縁膜を介して堆積された多結晶半導体層 (1 1 5 等) とを有し、 上記多結晶半導体層は、 上記第 1の半導体領域とその側面にて接 統されて構成されている。  A first conductive type semiconductor substrate (103) and a first conductive type second semiconductor of a second conductive type opposite to the first conductive ffi type formed in contact with the main surface of the semiconductor base A region (1 14), a second semiconductor region (1 18) of a first conductivity type formed in the first semiconductor region, and a polycrystalline semiconductor deposited on the semiconductor substrate via an insulating film And the polycrystalline semiconductor layer is configured so as to be connected to the first semiconductor region on the side surface thereof.
また、 本発明の代表的な形應による半導体装置は、  In addition, a semiconductor device according to a typical configuration of the present invention includes:
半導体基板 (1 0 1 ) と、 上記半導体基板上に形成された第 1導 ¾型の第 1の 半導体領域 (1 0 3 ) と、 上記第 1導電型と反対導 «;型である第 2導電型の第 2 の半導体領城 (1 1 4 ) と、 上記第 1の半導体領域に形成された第 1導 «型の第 3の半導体領城 (1 1 8 ) と、 第 1の配線層 (1 1 0等) とを有し、 上記第 2の 半導体領城は上記第 1の半導体領域の主面上に形成され、上記第 1の配線層は、 上記第 1の半導体領城の主面上に形成された絶緣膜 (1 0 5 ) を介して上記第 1 の半導体領域上に形成される。  A semiconductor substrate (101), a first semiconductor region (103) of a first conductivity type formed on the semiconductor substrate, and a second conductivity type opposite to the first conductivity type. A second conductive semiconductor region (114); a first conductive third semiconductor region (118) formed in the first semiconductor region; and a first wiring layer The second semiconductor region is formed on the main surface of the first semiconductor region, and the first wiring layer is formed on the main region of the first semiconductor region. It is formed on the first semiconductor region via the insulating film (105) formed on the surface.
また、 本発明の代表的な形餱による半導体装置は、 第 1導電型の第 1の半導体領域 (1 03) と、 上記第 1の半導体領域の主面上 に堆積された第 2導電型の第 2の半導体領域 (1 1 4) と、 上記第 2の半導体領 域に形成された第 1導電型の第 3の半導体領域 (1 1 8) と、 上記第 1の半導体 領域の主面上に形成され第 1の開口部を有する第 1の絶縁膜 (1 05) と、 上記 第 1の絶緣膜上に形成され上記第 1の開口部よりその開口面積が大なる第 2の 開口部を有する第 2の絶縁膜 (1 07) と、 上記第 2の半導体領域と接触して形 成される配線層 (1 1 5等) とを有し、 上記第 2の半導体領域は、 上記第 1の開 口部によってその底面が規定され、上記配線層は上記第 2の開口部により上記第 1の絶緣膜と接統され、上記第 1の開口部により上記第 2の半導体領域と接統さ て構成される。 Further, a semiconductor device according to a representative embodiment of the present invention includes: A first semiconductor region of the first conductivity type (103); a second semiconductor region of the second conductivity type (1 14) deposited on the main surface of the first semiconductor region; A third semiconductor region of the first conductivity type formed in the semiconductor region of the first conductivity type, and a first insulating film formed on the main surface of the first semiconductor region and having a first opening. (105); a second insulating film (107) formed on the first insulating film and having a second opening having an opening area larger than that of the first opening; A wiring layer (115, etc.) formed in contact with the second semiconductor region, the bottom surface of the second semiconductor region is defined by the first opening, and the wiring layer is The second opening is connected to the first insulating film, and the first opening is connected to the second semiconductor region.
また、 本発明の代表的な形態による半導体装置の製造方法は、  Further, a method for manufacturing a semiconductor device according to a representative embodiment of the present invention includes:
半導体基板上 (1 0 1 ) に形成された第 1導電型の半導体基体 (1 0 3) 表面 に第 1の絶緣膜を形成する第 1の工程 (1 05) と、 上記第 1の絶緣膜上に第 2 の絶緣膜 (1 0 7) を形成する第 2の工程と、 上記第 2の絶緣膜上に第 1の導体 層 (1 1 0) を形成する第 3の工程と、 上記第 1の導体層及び第 2の絶緣膜をェ ツチングすることにより第 1の開口部を形成する第 4の'工程 (第 5図 (b) ) と、 上記第 1の開口部を通して上記第 2の絶緣膜を選択的にエッチングすることに より第 2の開口部を形成する第 5の工程 (第 5図 (c) ) と、  A first step (105) of forming a first insulating film on a surface of a semiconductor substrate (103) of a first conductivity type formed on a semiconductor substrate (101), and the first insulating film A second step of forming a second insulating film (107) thereon; a third step of forming a first conductor layer (110) on the second insulating film; A fourth 'step (FIG. 5 (b)) of forming a first opening by etching the first conductor layer and the second insulating film; and forming the second opening through the first opening. A fifth step (FIG. 5 (c)) of forming a second opening by selectively etching the insulating film;
上記第 1の開口部を通して半導体材料を堆積することにより上記第 2の開口部 に半導体材料を充填する第 6の工程 (第 5図 (c) ) と、 上記第 1の開口部を通 して、上記第 1の絶縁瞜を上記半導体基体の表面が露出するするまでエッチング する第 7の工程と、 上記第 1の開口部を通して、 上記半導体基体の表面に選択的 に半導体材料を上記第 2の開口都を充填した半導体材料と接統されるまで堆積 する第 8の工程 (第 6図 (a) ) とを有する。 A sixth step (FIG. 5 (c)) of filling the second opening with the semiconductor material by depositing the semiconductor material through the first opening, and passing through the first opening. A seventh step of etching the first insulating layer until the surface of the semiconductor substrate is exposed, and selectively depositing a semiconductor material on the surface of the semiconductor substrate through the first opening. And an eighth step (FIG. 6 (a)) of depositing until the semiconductor material is filled with the opening.
また、 本発明の代表的な形條による半導体装置の製造方法は、  Further, a method for manufacturing a semiconductor device according to a typical form of the present invention includes:
単結晶半導体基体 (1 03) の主面上に第 1の絶縁膜 ( 1 05) を介して第 1 の開口部を有する第 1の導体層 (1 06) が積層された前置体を形成する工程と、 上記第 1の開口部から上記半導体基体の主面上に選択的に半導体材料を堆穂し 第 1の半導体領域 (1 1 4等) を形成し上記第 1の導体層と接統する工程と、 上 記第 1の半導体領域上に不純物を含有した第 2の導体層 (1 1 7 ) を形成するェ 程と、 上記第 2の導体層から上記第 1の半導体領城に不純物を拡散することによ り第 2の半導体領域 ( 1 1 8 ) を形成する工程とを有する。 Forming a front body in which a first conductor layer (1 06) having a first opening is stacked on a main surface of a single crystal semiconductor substrate (1 03) via a first insulating film (105) And selectively depositing a semiconductor material on the main surface of the semiconductor substrate from the first opening to form a first semiconductor region (114, etc.) and contact with the first conductor layer. Process and Forming a second conductor layer containing impurities on the first semiconductor region; and diffusing the impurities from the second conductor layer into the first semiconductor region. Forming a second semiconductor region (118).
本発明において、第 1図における第 1の多結晶半導体グラフ トベース 1 1 3 は ベース層 1 1 4 より高濂度の不純物添加が可能であり、ベース多結晶シリ コン電 極 1 1 0 と第 1の多結晶半導体グラフトベース 1 1 3 の接触抵抗の低滅と、 第 In the present invention, the first polycrystalline semiconductor graphite base 113 shown in FIG. Decrease in contact resistance of crystalline semiconductor graft base 113
1の多結晶半導体グラフ トベース 1 1 3の抵抗が低滅可能である。したがって、 ベース屠 1 1 4 のシート抵抗が同じであれば、従来例に比べてベース抵抗の低滅 が可能である。 The resistance of the polycrystalline semiconductor graft base 1 13 can be reduced. Therefore, if the sheet resistance of the base slaughter 114 is the same, the base resistance can be reduced as compared with the conventional example.
また、 第 1の多結晶半導体グラフトベース 1 1 3 がシリコン酸化膜 1 0 5 上 に有るため、 この領域のベース コレクタ容量はシリ コン酸化膜 1 0 5の容量 と低濃度コレクタ層 1 0 3の容!:との直列容!:となり、従来例の低濃度コレクタ 層 1 0 3 のみの場合と比べておよそ 1 2 以下に低滅可能である。 さらに、 こ の領域の平面投影面積のエミッタ面積との比率は、エミッタの縮少化に伴って增 加し、 また、 高速化を目的として低濃度コレクタ層 1 0 3 の薄層化すると、 本発 明による容!:低滅効果は著しく増大し、ベース コレクタ容量をおよそ 1ノ 2 に 低滅することが可能である。  In addition, since the first polycrystalline semiconductor graft base 113 is on the silicon oxide film 105, the base collector capacitance in this region is equal to the capacitance of the silicon oxide film 105 and that of the low concentration collector layer 103. Yeah! : Series with! , Which can be reduced to about 12 or less as compared with the conventional case where only the low concentration collector layer 103 is used. Furthermore, the ratio of the planar projection area of this region to the emitter area increases as the emitter size decreases, and if the low-concentration collector layer 103 is made thinner for the purpose of speeding up, It depends on the invention! : The reduction effect is greatly increased, and the base-collector capacitance can be reduced to about 1 2.
このように本発明により、ベース抵抗の低滅とべ一ス コレクタ容鼉が低減で き低消費電力かつ高速動作が可能となる。 図面の簡単な説明  As described above, according to the present invention, the base resistance can be reduced and the base collector capacitance can be reduced, and low power consumption and high speed operation can be achieved. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の第 1の実施例のバイポーラ トランジスタの断面図。  FIG. 1 is a sectional view of a bipolar transistor according to a first embodiment of the present invention.
第 2図は、 従来のバイポーラ トランジスタの断面図。  FIG. 2 is a cross-sectional view of a conventional bipolar transistor.
第 3図は、 本発明の寄生容!:削滅の効果を示す図。  Fig. 3 shows the parasite of the present invention! : Diagram showing the effect of extinction.
第 4図は、本発明の第 1の実施例のパイポーラ トランジスタの製造工程を示す 第 1の断面図。  FIG. 4 is a first sectional view showing a manufacturing process of the bipolar transistor according to the first embodiment of the present invention.
第 5図は、本発明の第 1の実施例のバイポーラ トランジスタの製造工程を示す 第 2の断面図。  FIG. 5 is a second sectional view showing the manufacturing process of the bipolar transistor according to the first embodiment of the present invention.
第 6図は、 本発明の第 1の実施例のバイポーラ トランジスタの製造工程を示す 第 3の断面図。 FIG. 6 shows a manufacturing process of the bipolar transistor according to the first embodiment of the present invention. Third sectional view.
第 7図は、本発明の第 1の実施例のバイポーラ トランジスタの製造工程を示す 第 4の断面図。  FIG. 7 is a fourth sectional view showing the manufacturing process of the bipolar transistor according to the first embodiment of the present invention.
第 8図は、 本発明の第 2の実施例のバイポーラ トランジスタの断面図。  FIG. 8 is a cross-sectional view of a bipolar transistor according to a second embodiment of the present invention.
第 9図は、本発明の第 3の実施例のバイポーラ トランジスタの製造工程を示す 第 1の断面図。  FIG. 9 is a first cross-sectional view showing a manufacturing process of the bipolar transistor according to the third embodiment of the present invention.
第 1 0図は、本発明の第 3の実施例のバイポーラ トランジスタの製造工程を示 す第 2の断面図。  FIG. 10 is a second sectional view showing the manufacturing process of the bipolar transistor according to the third embodiment of the present invention.
第 1 1図は、本発明の第 3の実施例のバイポーラ トランジスタの製造工程を示 す第 3の断面図。  FIG. 11 is a third sectional view showing the manufacturing process of the bipolar transistor according to the third embodiment of the present invention.
第 1 2図は、本発明の第 3の実施例のバイポーラ トランジスタの製造工程を示 す第 4の断面図。  FIG. 12 is a fourth sectional view showing the manufacturing process of the bipolar transistor according to the third embodiment of the present invention.
第 1 3図は、 本発明の第 4の実施例のバイポーラ トランジスタの断面図。 第 1 4図は、本発明の第 5の実施例のバイポーラ トランジスタの製造工程を示 す第 1の断面図。  FIG. 13 is a cross-sectional view of a bipolar transistor according to a fourth embodiment of the present invention. FIG. 14 is a first cross-sectional view showing a manufacturing process of the bipolar transistor according to the fifth embodiment of the present invention.
第 1 5図は、本発明の第 5の実施例のバイポーラ トランジスタの製造工程を示 す第 2の断面図。  FIG. 15 is a second sectional view showing the manufacturing process of the bipolar transistor according to the fifth embodiment of the present invention.
第 1 6図は、本発明の第 5の実施例のバイポーラ トランジスタの製造工程を示 す第 3の断面図。  FIG. 16 is a third sectional view showing the manufacturing process of the bipolar transistor according to the fifth embodiment of the present invention.
第 1 7図は、 本発明の第 6の実施例の光伝送システムの前 S增幅回路図。 第 1 8図は、本発明の第 7の実施例の光伝送システムのフロントェンドモジュ —ル。  FIG. 17 is a front S-width circuit diagram of an optical transmission system according to a sixth embodiment of the present invention. FIG. 18 is a front-end module of an optical transmission system according to a seventh embodiment of the present invention.
第 1 9図は、 本発明の第 8の実施例の光伝送システムの構成図。  FIG. 19 is a configuration diagram of an optical transmission system according to an eighth embodiment of the present invention.
第 2 0図は、 本発明の第 8の実施例の光伝送システムの構成図。  FIG. 20 is a configuration diagram of an optical transmission system according to an eighth embodiment of the present invention.
第 2 1図は、 本発明の第 9の実施例の移動体無線の携搭機の構成図。  FIG. 21 is a configuration diagram of a mobile radio portable device according to a ninth embodiment of the present invention.
第 2 2図は、 本発明の第 1 0の実施例の Dフリ ッブフ口ップの回路図。 発明を実施するための最良の形態  FIG. 22 is a circuit diagram of a D flip-flop according to a tenth embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を実施するための ft良の諸形睢を実施例と して説明する。 第 1図に本発明の第 1の実施例の断面図を示す。 第 1図は本実施例によるバイ ポーラ トランジスタの断面図であり、最終保護膜等は省略してあるがほぼ完成段 階の断面図である。 Hereinafter, various embodiments of ft for implementing the present invention will be described as examples. FIG. 1 shows a sectional view of a first embodiment of the present invention. FIG. 1 is a cross-sectional view of a bipolar transistor according to the present embodiment, and is a cross-sectional view of a substantially completed stage although a final protective film and the like are omitted.
第 1図において、 1 0 1は第 1導電型である p型のシリコン基板、 1 0 2 は第 1導電型と反対の第 2導電型である n型の高濃度コレクタ埋込層、 1 0 3は n型 低濃度コレクタ層である。 本実施例においては、 半導体基体上に選択ェピタキシ ャル成長によって形成したベース領域を用いるため、 コレクタ領域の主面は半導 体基体の主面となりほぼ平面状に形成され、 その上に後述するベース領域が堆積 形成されている。  In FIG. 1, 101 is a p-type silicon substrate of a first conductivity type, 102 is an n-type high-concentration collector buried layer of a second conductivity type opposite to the first conductivity type, 3 is an n-type low concentration collector layer. In this embodiment, since the base region formed by selective epitaxy growth on the semiconductor substrate is used, the main surface of the collector region becomes the main surface of the semiconductor substrate and is formed in a substantially planar shape. A base region is formed.
また、 1 0 4、 1 0 5、 1 0 6、 1 1 1、 1 1 6、 1 1 9 はシリコン酸化 膜などの絶緣膜、 1 0 7 は絶緣膜であるシリコン窆化膜である。 なお、 絶緣膜 1 0 5と絶縁膜 1 0 7の材料は酸化膜と窒化膜に限らず、絶緣膜 1 0 7に対し絶縁 膜 1 0 5が充分に高い選択比を有するような閣係の絶縁膜であれば足りるもの である。 1 1 0は多結晶シリコンで形成されたベース領域の引き出し亀極である ベース多結晶シリ コン電極である。 本実施例によればベース引き出し S極 1 1 0 は後述するグラフ トベース領域 1 1 3及び 1 1 5を介してベース領域にその側 面から接統されるよう形成されている。 また、 ベース引き出し電極は、 グラフ ト ベース領域 1 1 3の近傍では絶縁膜 1 0 5のみを介して基体上に形成されてい るが、 グラフトべ一ス領城 1 1 3から遠ざかるに従いテーパー状の傾斜面を有す る絶緣膜 1 0 6を介して形成されているため、 次第に半導体基体との間隔が開く ごとく構成されている。 このような構成をとることにより、 後述するようにグラ フ トベースの近傍ではグラフ トベース領域との接統が比較的容易に行えるとと もに、 それ以外の部分では半導体基体 1 0 3との距離を充分にとることが可能と なり引き出し電極 1 0 6と半導体基体 1 0 3との寄生容!:を削滅することが可 能となる。  Further, 104, 105, 106, 111, 116, 119 are insulating films such as silicon oxide films, and 107 is a silicon oxide film which is insulating films. Note that the material of the insulating film 105 and the insulating film 107 is not limited to the oxide film and the nitride film, and that the material of the cabinet is such that the insulating film 105 has a sufficiently high selectivity to the insulating film 107. An insulating film is sufficient. Reference numeral 110 denotes a base polycrystalline silicon electrode which is an extraction electrode of a base region formed of polycrystalline silicon. According to this embodiment, the base extraction S pole 110 is formed so as to be connected to the base region from the side surface via the later-described graft base regions 113 and 115. The base extraction electrode is formed on the substrate only through the insulating film 105 in the vicinity of the graft base region 113, but has a tapered shape as the distance from the graft base region 113 increases. Since the insulating film 106 having the inclined surface is formed via the insulating film 106, the structure is such that the distance from the semiconductor substrate gradually increases. By adopting such a configuration, as will be described later, the connection with the graph base region can be relatively easily performed in the vicinity of the graph base, and the distance from the semiconductor base 103 to the other portions is relatively small. And the parasitic capacitance between the lead electrode 106 and the semiconductor substrate 103! : Can be eliminated.
また、 1 1 3は真性ベース領域 1 1 4とベース引き出し電極 1 1 0とを電気的 に接統する第 1の多結晶半導体グラフ トベースである。 この第 1のグラフ トべ一 ス領域はその上面でベース引き出し ¾極 1 1 0と接統され、 その下面は絶緣膜で ある酸化シリ コン瞜 1 0 5を介してコ レクタ領域 1 0 3を形成する半導体基体 と接している。 さらに、 その側面の一方はベース領域 1 1 4と電気的に接統する ベく後述する第 2のグラフ トベース領域に接し、 その他方は窒化シリコン瞜 1 0 7に接して形成されている。 断面図である第 1図には図示されないが、 ベ一ス領 域 1 1 4、 ェミッタ領域 1 1 8は図面の奥行き方向にも距離をもって形成され、 角部に丸みを持たせた長方形状に形成されている。 同様に、 グラフ トベース領域 1 1 3、 1 1 5もべ一ス領城 1 1 4の周囲を囲む形状とされている。 また、 ベー ス引き出し電極 1 1 0も、 ベース領域の周囲を囲み、 グラフトベース領域を介し てベース領域 1 1 4と接統されるよう構成されている。 Reference numeral 113 denotes a first polycrystalline semiconductor graft base that electrically connects the intrinsic base region 114 and the base extraction electrode 110. The first graph base region is connected to the base extraction electrode 110 on the upper surface, and the collector region 103 is connected to the base region through the silicon oxide 105 which is an insulating film on the lower surface. Semiconductor substrate to be formed Is in contact with Further, one of the side surfaces is formed in contact with a second graft base region which is electrically connected to the base region 114, which will be described later, and the other is formed in contact with the silicon nitride layer 107. Although not shown in FIG. 1 which is a cross-sectional view, the base region 114 and the emitter region 118 are formed with a distance also in the depth direction of the drawing, and have a rectangular shape with rounded corners. Is formed. Similarly, the graph base areas 1 13 and 1 15 are shaped to surround the base castles 114. The base extraction electrode 110 also surrounds the base region, and is configured to be connected to the base region 114 via the graft base region.
また、 1 1 4 は単結晶半導体ベース層であり、本実施例においては上述したご とくベース引き出し電極と平面的に重ならない範囲に形成されている。 なお、 本 本実施例においてベース領域 1 1 4はシリ コン単結晶により構成することも可 能であり、 また、 シリコンとゲルマニウムの混合材料を用いたいわゆるシリ コン ゲルマニウムによっても構成することが可能である。 一般に、 シリコンのみによ り形成する場合には結晶欠陥の少ない単結晶を構成しやすく、 シリコンゲルマ二 ゥムを用いた場合にはトランジスタの特性を向上させることができる。 1 1 5 は ベース層 1 1 4 とベース引き出し電極 1 1 0とを籩気的に接統する第 2の多結 晶半導体グラフ 卜べ一スであり、 ベース領域 1 1 4とは接触面積を增大させ、 抵 抗値を低滅させるため、 半導体基体の主面に対し斜めに接するように構成されて いる。 本実施例においては、 ( 1 0 0 ) 面を有する半導体基体 1 0 3に対しべ一 ス領域の側面は (1 1 1 ) 面を有するように構成されている。  Reference numeral 114 denotes a single-crystal semiconductor base layer, which is formed in the present embodiment in such a manner that it does not overlap with the base extraction electrode as described above. In this embodiment, the base region 114 can be made of a silicon single crystal, and can also be made of a so-called silicon germanium using a mixed material of silicon and germanium. is there. Generally, a single crystal with few crystal defects can be easily formed when formed only with silicon, and the characteristics of a transistor can be improved when silicon germanium is used. Reference numeral 115 denotes a second polycrystalline semiconductor substrate which electrically connects the base layer 114 and the base lead electrode 110 to each other, and has a contact area with the base region 114. In order to increase the resistance and reduce the resistance value, the semiconductor substrate is configured to be obliquely in contact with the main surface of the semiconductor substrate. In the present embodiment, the side surface of the base region is configured to have the (111) plane with respect to the semiconductor substrate 103 having the (100) plane.
また、 1 1 7 はェミッタ多結晶シリ コン電極、 1 1 8 はェミッタ領域である。 第 1図に示した実施例によれば、 ベース引き出し電極 1 1 0とェピタキシャル ベース領域 1 1 4との接統はコレクタ領域 1 0 3と接触することなく、 ベース領 城 1 1 4の側面から接読がおこなわれている。 従って、 従来必要であったベース 領域を引き出し戴極との接統のために平面的に大きく とる必要がなく、 ベ一ス領 域は選択ェピタキシャル成長を行う場合の最小寸法で形成すればたり、ベース · コレクタ容量の削滅が可能となる。  Reference numeral 117 denotes an emitter polycrystalline silicon electrode, and reference numeral 118 denotes an emitter region. According to the embodiment shown in FIG. 1, the connection between the base lead-out electrode 110 and the epitaxial base region 114 does not come into contact with the collector region 103, and the side surface of the base region 114 does not come into contact with the collector region 103. Is being read from. Therefore, it is not necessary to increase the size of the base region, which was required in the past, in a planar manner for connection with the extraction electrode, and the base region can be formed with a minimum size for performing selective epitaxial growth. Base · Collector capacity can be reduced.
また、ベース引き出し «極 1 1 0とェピベース領域 1 1 4とを接統するグラフ トベース領域 1 1 3は、 コレクタ領域を形成する半導体基板の主面上に絶緣膜 1 o 5を介して配 gされている。 従って、 ベース引き出し ¾極あるいはグラフ 卜べIn addition, the graft base region 113 connecting the base extraction electrode 110 and the epi base region 114 is formed on the main surface of the semiconductor substrate forming the collector region. o is arranged via 5 g. Therefore, draw out the base
—ス領域とコレクタ頜域との間で形成される容!:をも滅少させることができる。 このように、 本実施例によればベース ' コレクタ間の寄生容 ftを削減するとと もに、ベ一ス領域と引き出し電極との接統を側面から行うことにより充分な接触 面積が確保できベース抵抗の削滅をも達成することができる。 —The volume formed between the source region and the collector region! : Can also be reduced. As described above, according to the present embodiment, the parasitic capacitance ft between the base and the collector can be reduced, and a sufficient contact area can be secured by connecting the base region and the extraction electrode from the side. Elimination of resistance can also be achieved.
また、 本実施例においては選択ェピタキシャル成長によりベース領域を形成し ているため、 上述した本実施例の効果と選択ェピタキシャル成長による効果とが 相まって、 さらなる高速動作 ·低消費電力化が達成できるものである。  In addition, in the present embodiment, the base region is formed by selective epitaxial growth, so that the effects of the above-described embodiment and the effects of selective epitaxial growth are combined, so that higher speed operation and lower power consumption can be achieved. Things.
次に、 上述した実施例の効果を第 3図を用いて説明する。  Next, the effects of the above-described embodiment will be described with reference to FIG.
第 3図のグラフは横軸に低濃度コレクタ層 (第 1図の 1 0 3、 第 2図の 2 0 3 ) の膜厚 d e P iをとり、 縦軸に上記実施例によるベース · コレクタ間周辺容 S C T Cと従来例によるベースコレクタ間周辺容!: C T Cとの比をとつたものであ る。 従来例のベースコレクタ間周辺容 ftはグラフ 卜ベース領域 2 1 3直下のベ一 ス領域 2 1 2と低濃度コレクタ領城 2 0 3 と高濃度コレクタ領域 2 0 2とによ り形成される容 iである。 これは、 低濃度コレクタ領域 2 0 3が空乏化するため、 ベース領域 2 1 2と高濃度コレクタ領域 2 0 2とを電極とする寄生容量と考え ることができる。 本実施例によるベース ' コレクタ間周辺容 i C T Cは、 グラフ 卜べ一ス領城 1 1 3とコレクタ低濃度層 1 0 3の間に絶縁膜 1 0 5が介在され ているため、 グラフトベース領域 1 1 3と高濃度コレクタ層 1 0 2とを両電極と する寄生容 Jtと考えることができる。 なお、 第 3図にはェミッタ領域の蝠 W Eが 0 . 1 、 0 . 2、 0 . 4 の場合について、 (1 <^ (の値が0 . 0 5 m〜 0 . 1 5 μ πιの範囲までのデータを示している。 In the graph of FIG. 3, the horizontal axis represents the thickness d e P i of the low concentration collector layer (103 in FIG. 1 and 203 in FIG. 2), and the vertical axis represents the base-collector according to the above embodiment. Peripheral volume between SCTC and conventional base collector! : It is the ratio with CTC. The peripheral volume ft between the base and collector in the conventional example is formed by the base region 2 12 immediately below the graph base region 2 13, the low-concentration collector region 203 and the high-concentration collector region 202 It is i. This can be considered as a parasitic capacitance using the base region 211 and the high concentration collector region 202 as electrodes because the low concentration collector region 203 is depleted. The base-collector peripheral volume i CTC according to the present embodiment has a graft base region because the insulating film 105 is interposed between the graphite base 113 and the collector low-concentration layer 103. The parasitic capacitance Jt using the electrodes 113 and the high-concentration collector layer 102 as both electrodes can be considered. Note that Fig. 3 shows the case where the WE of the emitter in the emitter region is 0.1, 0.2, and 0.4 (where the value of 1 <^ (is in the range of 0.05 m to 0.15 μπι). The data up to is shown.
第 3図から明らかなように、 本実施例による C T Cの値を従来例による C T Cの 値で割った臚 (第 3図の縦軸) は、 いずれも 1を下回っており、 本実施例による 構造によるベース · コレクタ間の容量が減少していることが解る。 特に、 ェミ ツ タ幅例えばエミッタ蝠 W Eが小さくなっていくに従いグラフが図中の下方向位置 するようになり、微細化に従い本実施例の効果がより顕著になっていることを示 している。  As is evident from FIG. 3, the value of the CTC according to the present embodiment divided by the value of the CTC according to the conventional example (vertical axis in FIG. 3) is less than 1 in all cases. It can be seen that the capacitance between the base and the collector has decreased. In particular, as the emitter width, for example, the emitter WE, becomes smaller, the graph becomes lower in the figure, indicating that the effect of this embodiment becomes more remarkable as the size becomes smaller. I have.
次に、 第 4図から第 7図に本発明の第 1の実施例の製造方法を示す。 まず、 第 4図 (a ) に示すように、 高濃度 n型コレクタ埋込層 1 0 2 をシリコ ン基板 1 0 1 上に熱拡散により形成した後、シリコンェピタキシャル成長により 低濃度 n型コレクタ層 1 0 3 を形成する。低濃度コレクタ層 1 0 3は半導体基板 状に形成され、 素子の基体部分となるり、 その表面は概略平面状となる。 平面上 で高濃度 n型コレクタ埋込層 1 0 2 の周辺を囲むように深さ 3 / m の溝をドラ ィエッチングにより形成し、 シリコン酸化膜 1 0 4 を埋め込む。 これにより、 ノく ィポーラ トランジスタが形成される基体部分となるコレクタ領域と、 隣接する他 の素子との S気的な分離を行う ¾を形成することができる。 Next, FIGS. 4 to 7 show a manufacturing method of the first embodiment of the present invention. First, as shown in Fig. 4 (a), a high-concentration n-type collector buried layer 102 is formed on a silicon substrate 101 by thermal diffusion, and then a low-concentration n-type collector is formed by silicon epitaxial growth. The layer 103 is formed. The low-concentration collector layer 103 is formed in the shape of a semiconductor substrate, becomes a base portion of an element, and has a substantially planar surface. A trench having a depth of 3 / m is formed by dry etching so as to surround the periphery of the high-concentration n-type collector buried layer 102 on the plane, and the silicon oxide film 104 is buried. As a result, it is possible to form a collector region which is a base portion on which the bipolar transistor is formed, and which performs S-gas separation from another adjacent element.
次に、 第 4図 (b ) に示すように、 低濃度 n型コレクタ層 1 0 3 を熱酸化する ことにより およそ 3 0 n m のシリコン酸化膜 1 0 5を形成する。 熱酸化は高濃 度コレクタ層 1 0 2のわき上がりを防止する観点からなるべく低温で行うこと が好ましく、 本実施例では約 9 0 O t程度で行う。 次に、 C V D法によ 2 0 0 η m のシリ コン酸化膜 1 0 6 を形成し、 ェミッタ形成予定の場所をウエッ トエツ チによりシリコン酸化胰 1 0 6 のみを除去する。 これは、後に形成されるベース 引き出し電極と半導体基板との間隔を確保するとともに、 ベース領域との接統を 容易にするためにシリ コン酸化膜 1 0 6に段差を投けるためである。 その後、 C V D法によりおよそ 5 0 n m のシリコン窆化胰 1 0 7 を形成する。 ここで、 シ リ コン窒化膜 1 0 7の代わりに他の材料を用いることもできる。 このシリ コン窒 化膜 1 0 7の部分は後にゥエツ トエッチにより部分的に除去するため、 シリ コン 酸化膜と充分な選択比をもつ材料であることが必要である。  Next, as shown in FIG. 4 (b), a low concentration n-type collector layer 103 is thermally oxidized to form a silicon oxide film 105 of about 30 nm. The thermal oxidation is preferably performed at a temperature as low as possible from the viewpoint of preventing the high-concentration collector layer 102 from rising, and in this embodiment, the thermal oxidation is performed at about 90 Ot. Next, a silicon oxide film 106 of 200 ηm is formed by the CVD method, and only a silicon oxide layer 106 is removed by wet etching at a place where an emitter is to be formed. This is because a step is formed in the silicon oxide film 106 in order to secure a space between a base lead electrode formed later and the semiconductor substrate and to facilitate connection with the base region. After that, approximately 50 nm of silicon nitride 107 is formed by the CVD method. Here, other materials can be used instead of the silicon nitride film 107. Since the silicon nitride film 107 is partly removed later by etching, it is necessary to use a material having a sufficient selectivity with respect to the silicon oxide film.
次に、 第 4図 (c ) に示すように、 シリコン窆化膜 1 0 7 、 シリコン酸化膜 1 0 6 、 シリコン酸化膜 1 0 5 をドライエッチングにより開孔し、 n型不純物を イオン注入し、 n型層 1 0 8 を形成する。 その後、 コレクタ多結晶シリコン電極 1 0 9 を形成する。  Next, as shown in FIG. 4 (c), the silicon oxide film 107, the silicon oxide film 106, and the silicon oxide film 105 are opened by dry etching, and n-type impurities are ion-implanted. , An n-type layer 108 is formed. Thereafter, a collector polycrystalline silicon electrode 109 is formed.
次に、 第 5図 (a ) に示すように、 2 0 0 n mの p型多結晶シリコン膜 1 1 0 を堆積しベース多結晶シリ コン戴極パターンに加工する。 ベース引き出し電極 1 1 0は、 後にベース電極と接統されるために必要な大きさに加工するとともに、 第 4図 (b ) により選択的にエッチングして形成したシリ コン酸化膜 1 0 6の段 差ににまたがるように形成される。その上に層間絶緣瞜である 2 0 0 n m のシリ コン酸化膜 1 1 1を積層する。 Next, as shown in FIG. 5 (a), a 200 nm p-type polycrystalline silicon film 110 is deposited and processed into a base polycrystalline silicon polarized pattern. The base extraction electrode 110 is processed into a size necessary to be connected to the base electrode later, and the silicon oxide film 106 formed by selective etching as shown in FIG. 4 (b). It is formed so as to straddle the step. On top of that, a 200 nm silicon The con oxide film 111 is laminated.
次に、 第 5図 (b ) に示すように、 トランジスタの真性領域を定めるレジス ト 膜をマスクと して、 シリ コン酸化膜 1 1 1 、 ベース多結晶シリ コン電極 1 1 0 のエッチングを行う。 その後、 シリコン酸化膜 1 1 2 をおよそ 1 0 0 n m 堆積 後、 ドライエッチングにより側壁絶緣膜となるサイ ドウオール 1 1 2を形成する。 次に、 第 5図 (c ) に示すように、 シリコン窒化膜 1 0 7 を熱リン酸等を用い たゥエツ トエッチングにより サイ ドエツチする。このサイ ドエツチした部分は後 に多結晶シリコンが充填され、ベース引き出し ¾極とのコンタク トを形成する部 分となる。 従って、 接触面精を増大させる褫点からはなるべく大きくとることが 必要であるが、 ベース · コレクタ間の容量を考慮すると無制限に大きくすること はできない。 本実施例では、 両要求を満たす値として約 1 0 0 n mのサイ ドエツ チを行っている。  Next, as shown in FIG. 5 (b), the silicon oxide film 111 and the base polycrystalline silicon electrode 110 are etched using the resist film defining the intrinsic region of the transistor as a mask. . After that, a silicon oxide film 112 is deposited to a thickness of about 100 nm, and a side wall insulating film 112 is formed by dry etching. Next, as shown in FIG. 5 (c), the silicon nitride film 107 is side-etched by wet etching using hot phosphoric acid or the like. This side-etched portion is filled with polycrystalline silicon later to form a contact with the base lead electrode. Therefore, it is necessary to increase the sharpening point as much as possible from the point of sharpening of the contact surface, but it cannot be increased without limit in consideration of the capacitance between the base and collector. In the present embodiment, a side etch of about 100 nm is performed as a value satisfying both requirements.
その後、ベース多結晶シリコン電極 1 1 0 の、サイ ドエツチにより露出した部 分のみに、選択成長法により、 シリ コン窒化膜 1 0 7 と同じ膜厚の第 1の p型多 結晶半導体グラフトベース 1 1 3 を形成する。選択成長は堆積させる材料により モノシラン、 ジシラン、 又はこれらとゲルマンとの混合ガスを用いおよそ 5 0 0でから 6 0 0での温度で行う。 このような条件での処理により、 多結晶ベース 引き出し電極を種として多結晶が成長しグラフ トベース領域 1 1 3が形成され る。  After that, the first p-type polycrystalline semiconductor graft base 1 having the same thickness as the silicon nitride film 107 was formed by selective growth only on the portion of the base polycrystalline silicon electrode 110 exposed by the side-etching. Form 1 3. The selective growth is performed at a temperature of about 500 to 600 using monosilane, disilane, or a mixed gas of these and germane depending on the material to be deposited. By the treatment under such conditions, the polycrystal is grown using the polycrystal base extraction electrode as a seed, and the graft base region 113 is formed.
次に、 第 6図 (a ) に示すように、 H F系のエッチング液を用いて、 シリコン 酸化膜 1 0 5 をエッチングし、選択成長法により、 p型単結晶半導体のベース層 1 1 4 と第 2の p型多結晶半導体グラフ トベース 1 1 5 を同時に形成する。 こ の選択成長も上述したグラフ 卜ベース領域 1 1 3の選択成長と同様の条件で行 うことができる。 ベース領域 1 1 4は単結晶である低濃度コレクタ層 1 0 3上に 単結晶を保ったまま堆積され、 グラフ 卜べ一ス傾域 1 1 5は多結晶であるグラフ トベース領城 1 1 3に速統した多結晶の状態で堆積される。 低濃度コレクタ領域 1 0 3の表面が (1 0 0 ) 面を有するようにすれば、 単結晶として成長するべ一 ス領域 1 1 4の側面は ( 1 1 1 ) 面となり、 第 6図 (a ) に示すように単結晶と なる領域と多結晶となる領域とが ( 1 1 1 ) 面に沿って斜めになる。 なお、 ベ一 ス領域 1 1 4はシリコン単結晶によっても、 シリ コン 'ゲルマニウム単結晶によ つても構成することができるが、 一般にシリコン 'ゲルマニウムを採用する方が、 電流增幅率が大きいなどの特性を有する。 Next, as shown in FIG. 6 (a), the silicon oxide film 105 is etched using an HF-based etchant, and the p-type single crystal semiconductor base layer 114 is formed by selective growth. A second p-type polycrystalline semiconductor graft base 1 15 is simultaneously formed. This selective growth can be performed under the same conditions as the selective growth of the graft base region 113 described above. The base region 1 14 is deposited on the low-concentration collector layer 103, which is a single crystal, while maintaining the single crystal. The gradient region 1 15 is a polycrystalline graphite base region 1 1 3 Is deposited in a polycrystalline state. If the surface of the low-concentration collector region 103 has the (100) plane, the side surface of the base region 114 growing as a single crystal becomes the (111) plane. As shown in a), the region to be a single crystal and the region to be a polycrystal are oblique along the (111) plane. In addition, The silicon region 114 can be made of either a silicon single crystal or a silicon-germanium single crystal, but generally, silicon-germanium has characteristics such as a larger current width ratio.
本実施例では、 グラフ トベース領域 1 1 3を充填する工程と、 グラフ 卜ベース 領域 1 1 5及びベース領域 1 1 4を堆積する工程とを分離して行っている。 これ により、 グラフ トベース領城 1 1 3を充分に充填し、 ベース引き出し電極 1 1 0 との接統を充分に满たすことができ、 また、 不純物湊度を別々に設定することが できるため、 グラフ トベース領域 1 1 3の不純物濃度を高く しベース抵抗を低滅 することができる。 もちろん、 グラフトベース領域 1 1 3の充填をベース領域 1 1 4の形成と同時に行うことも可能であるがグラフ トベース領域 1 1 3が充分 に充填されるよう選択成長の条件を選択する必要がある。 このようなプロセスは、 第 5図 (b ) に示す工程のときに、 シリコン酸化膜 1 0 5まで開口し、 ウエッ ト エッチングでシリコン窒化膜 1 0 7を除去した後、選択成長を行うことにより実 現することができる。  In this embodiment, the step of filling the graft base region 113 and the step of depositing the graft base region 115 and the base region 114 are performed separately. As a result, the graphite base region 113 can be sufficiently filled, the connection with the base extraction electrode 110 can be sufficiently achieved, and the impurity concentration can be set separately. In addition, the impurity concentration of the graft base region 113 can be increased, and the base resistance can be reduced. Of course, it is possible to fill the graft base region 113 simultaneously with the formation of the base region 114, but it is necessary to select the conditions for selective growth so that the graft base region 113 is sufficiently filled. . In such a process, at the step shown in FIG. 5 (b), an opening is formed up to the silicon oxide film 105, the silicon nitride film 107 is removed by wet etching, and then selective growth is performed. It can be realized.
次に、 第 6図 (b ) に示すように、 再び C V D法によりシリ コン酸化膜を全面 に堆積し、異方性のドライエッチングにより側壁絶緣瞜であるシリコン酸化膜の サイ ドウオール 1 1 6 を形成する。 その後、全面に高濃度の n型多結晶シリ コン を堆積し、 エミ ッタ領域周辺部を Sうパターンのレジス トマスクを用いてエッチ ングし、 多結晶シリコンエミッタ電極 1 1 7 を形成する。 次に、 9 0 0 で、 3 0 秒程度の熱処理を行い、 多結晶シリ コンェミッタ電極 1 1 7 より n型不純物 をべ一ス層 1 1 4 表面に拡散し、 エミッタ領域 1 1 8 を形成する。 このような 処理により、 本実施例によるバイポーラ トランジスタは、 半導体基板上に堆積し て形成されたコレクタ領城 1 0 3と、 そのコレクタ領域上に堆積し突出して形成 されたベース領域 1 1 4と、 かかるベ一ス領城内に拡散により形成されたエミッ タ領域から形成され、 ベースの引き出し電極はべ一ス領城の側面から接統するよ うに構成することができる。 また、 このよな製造方法を採用することによりベー ス領域 1 1 4として堆積され、 コレクタ傾城と接する部分は、 選択成長のために 開口した範囲にとどまりベース · コレクタ容量を削減することができる。  Next, as shown in FIG. 6 (b), a silicon oxide film is again deposited on the entire surface by the CVD method, and the side wall insulating silicon oxide film 116 is removed by anisotropic dry etching. Form. After that, a high-concentration n-type polycrystalline silicon is deposited on the entire surface, and the periphery of the emitter region is etched using a resist mask having an S-shaped pattern to form a polycrystalline silicon emitter electrode 117. Next, heat treatment is performed at 900 for about 30 seconds, and n-type impurities are diffused from the polycrystalline silicon emitter electrode 117 to the surface of the base layer 114 to form an emitter region 118. . By such processing, the bipolar transistor according to the present embodiment has a collector region 103 formed by depositing on the semiconductor substrate and a base region 114 formed by projecting on the collector region. The base electrode is formed from an emitter region formed by diffusion in the base castle, and the base extraction electrode can be configured to be connected from the side surface of the base castle. In addition, by adopting such a manufacturing method, a portion deposited as the base region 114 and in contact with the collector slope remains in an open area for selective growth, so that the base-collector capacitance can be reduced.
その後、 第 7図に示すように、 シリコン酸化膜 1 1 9 を堆積し、 ェミッタ、 ベ —ス、コレクタの各多結晶シリコン ¾極上のシリ コン酸化膜 1 1 9 をドライエツ チングにより開孔し、 タングステンによりエミッタ電極 1 2 0 、ベース電極 1 2 1 、 コレクタ ¾棰1 2 2 を形成する。 以上の製造方法により第 1図に示す構造 になる。 エミッタ電極 1 2 0等はタングステンの他アルミニウム等の金展材料に よっても形成することができるが、 アルミニウムを用いる場合にはシリコンの相 互拡散を考慮し多結晶シリ コン 1 1 7等との間に窒化チタンなどのバリアメタ ルを用いることが必要である。 Thereafter, as shown in FIG. 7, a silicon oxide film 119 is deposited, and an emitter and a base are deposited. Open the silicon oxide film 119 on the electrode of each source and collector by dry etching, and form the emitter electrode 120, the base electrode 121, and the collector ¾ 棰 122 with tungsten. . The structure shown in FIG. 1 is obtained by the above manufacturing method. The emitter electrode 120 and the like can be formed by a gold-extended material such as aluminum in addition to tungsten.However, when aluminum is used, it is necessary to consider the mutual diffusion of silicon with the polycrystalline silicon 117 and the like. It is necessary to use a barrier metal such as titanium nitride between them.
第 8図に本発明の第 2の実施例の断面図を示す。 本実施例のうち、 上述した実 施例と共通の部分については、 共通の参照符号を用いその説明を省略する。  FIG. 8 is a sectional view of a second embodiment of the present invention. In this embodiment, the same parts as those in the above-described embodiment are denoted by the same reference numerals, and description thereof will be omitted.
本実施例ではシリ コン基板 1 0 1 上に絶緣物であるシリ コン酸化膜 1 3 0を 形成し、その上に素子が形成される半導体基体部となる単結晶シリ コン層 1 3 1 を有する S O I (シリコン 'オン 'インシユレータ〉 基板を用いている。 本実施 例では周知の張り合わせあるいは酸素イオンの打ち込みにより形成した S O I 基板に、第 1の実施例と同様な製造方法を用いることによって形成するものであ る。 これより、 コレクタ Z基板間容 iは第 1の実施例に比べて 1 Z 2となる。 本 実施例では、本発明により実現できるベース ·コレクタ間容量の削减と S O I基 板によるコレクタ '基板間容!:の削減によりバイポーラ トランジスタの寄生容 S をさらに削滅することが可能となる。  In this embodiment, a silicon oxide film 130, which is an insulative material, is formed on a silicon substrate 101, and a single crystal silicon layer 131 serving as a semiconductor base portion on which elements are formed is formed thereon. In this embodiment, an SOI (silicon 'on' insulator) substrate is used, which is formed by using a manufacturing method similar to that of the first embodiment on an SOI substrate formed by known bonding or implantation of oxygen ions. Thus, the collector-to-substrate capacitance i is 1 Z2 compared to the first embodiment.In this embodiment, the reduction of the base-collector capacitance and the SOI substrate realized by the present invention can be achieved. It is possible to further reduce the parasitic capacitance S of the bipolar transistor by reducing the collector to substrate capacitance !.
次に第 9図から第 1 2図を用いて本発明の第 3の実施例を説明する。  Next, a third embodiment of the present invention will be described with reference to FIGS. 9 to 12.
第 1 2図は、本発明の第 3の実施例であるバイポーラ トランジスタの断面図を 示している。 本実施例の內、 第 1及び第 2の実施例と重複する部分については説 明を省略する。 本実施例は、 素子分離のために溝 1 0 4とともにいわゆる L O C O S酸化膜を用いたものである。  FIG. 12 is a sectional view of a bipolar transistor according to a third embodiment of the present invention. The description of the parts of the present embodiment which are the same as those of the first and second embodiments will be omitted. In the present embodiment, a so-called LOCOS oxide film is used together with the groove 104 for element isolation.
第 1 2図において、 1 3 4 は素子形成領域以外を局所的に酸化した素子分離用 の L O C O S (ローカル 'ォキサイデーション ·ォブ ' シリ コン) 酸化膜である。 第 9図から第 1 2図に本発明の第 3の実施例の製造方法を示す。  In FIG. 12, reference numeral 134 denotes a local isolation oxide (OSC) oxide film for element isolation in which the area other than the element formation region is locally oxidized. 9 to 12 show a manufacturing method according to a third embodiment of the present invention.
まず、 第 9図 (a ) に示すように、 高濃度 n型コレクタ埋込層 1 0 2 をシリコ ン基板 1 0 1 上に熱拡歉により形成した後、シリコンェピタキシャル成長により 低濃度 n型コレクタ層 1 0 3 を堆積形成する。 次に、平面的に高澳度 n型コレク タ埋込層 1 0 2 の周辺を囲むように深さ 3 m の をドライエッチングにより 形成し、 シリ コン酸化膜 1 04 を埋め込み、素子間を ¾気的に分離するための素 子分離用の ¾を形成する。 First, as shown in Fig. 9 (a), a high concentration n-type collector buried layer 102 is formed on a silicon substrate 101 by thermal expansion, and then a low concentration n-type A collector layer 103 is deposited. Next, planarly high level n-type collector A 3 m deep is formed by dry etching so as to surround the periphery of the buried layer 102, the silicon oxide film 104 is buried, and a device for element separation for electrically separating the devices is formed. Form ¾.
次に、 第 9図 (b) に示すように、 ェビタキシャル成長により形成した半導体 基体部である低濃度 n型コレクタ層 1 03の表面を熱酸化により酸化し、約 20 nmのシリ コン酸化膜を形成する。 その後、 CVD法により耐酸化性の膜である シリコン窒化膜 1 33を全面に約 200 n m堆積し、真性領域形成予定の場所以 外をドライエッチにより除去し、 第 9図 (b) に示すごとくシリコン窒化膜 1 3 3を残存させる。  Next, as shown in FIG. 9 (b), the surface of the low-concentration n-type collector layer 103, which is the semiconductor substrate formed by the epitaxial growth, is oxidized by thermal oxidation to form a silicon oxide film of about 20 nm. Form. Thereafter, a silicon nitride film 133, which is an oxidation-resistant film, is deposited on the entire surface by the CVD method to a thickness of about 200 nm, and dry etching is performed on portions other than those where the intrinsic region is to be formed, as shown in FIG. The silicon nitride film 133 is left.
次に、 第 9図 (c) に示すように、 全面を熱酸化することにより、 シリ コン窒 化膜 1 3 3が残存していない領域は酸化され、約 200 nmの L O C O S酸化膜 1 34が形成される。 その後、 シリ コン窒化膜 1 33 、 シリ コン酸化膜 1 3 2 を除去し、 全面を約 30 nm酸化する。  Next, as shown in FIG. 9 (c), by thermally oxidizing the entire surface, the region where the silicon nitride film 133 does not remain is oxidized, and a LOCOS oxide film 134 of about 200 nm is formed. It is formed. After that, the silicon nitride film 133 and the silicon oxide film 132 are removed, and the entire surface is oxidized by about 30 nm.
次に、 第 1 0図 (a) に示すように、 シリコン窆化膜 1 0 7 、 LOCOS酸化 膜 1 34 をドライエッチングにより開孔し、 n型不純物をイオン注入し、 コレク タ電極との接触抵抗を低滅する n型層 1 08 を形成する。 その後、 コレクタ多結 晶シリコン電極 1 0 9 を形成する。  Next, as shown in FIG. 10 (a), the silicon oxide film 107 and the LOCOS oxide film 134 are opened by dry etching, n-type impurities are ion-implanted, and contact with the collector electrode is made. An n-type layer 108 for reducing resistance is formed. Thereafter, a collector polycrystalline silicon electrode 109 is formed.
次に、 第 1 0図 (b) に示すように、 およそ 2 00 nmの p型多結晶シリ コン 膜 1 1 0 を堆積しベース多結晶シリコン電極パターンに加工する。 このとき、上 述した実施例 1 と同様に、 ベース引き出し電極 1 1 0はその端部が LOCOS酸 化膜の上に形成され、段差を有するように加工される。 その上に約 200 nmの 層間絶緣膜であるシリ コン酸化膜 1 1 1 を積層する。  Next, as shown in FIG. 10 (b), a p-type polycrystalline silicon film 110 of about 200 nm is deposited and processed into a base polycrystalline silicon electrode pattern. At this time, as in Embodiment 1 described above, the base extraction electrode 110 is formed so that its end is formed on the LOCOS oxide film and has a step. A silicon oxide film 111, which is an interlayer insulating film of about 200 nm, is laminated thereon.
次に、 第 1 0図 (c ) に示すように、 トランジスタの真性領域を定めるレジス ト膜 (図示せず) をマスクとして、 シリコン酸化瞜 1 1 1 、 ベース多結晶シリコ ン電極 1 1 0 のエッチングを行う。 その後、側壁絶緣瞜であるシリ コン酸化膜 1 1 2 を形成するため、シリコン酸化瞜を約 1 00 nm堆積後ドライエッチングを 行いサイ ド ウォール 1 1 2を形成する。  Next, as shown in FIG. 10 (c), using a resist film (not shown) for defining an intrinsic region of the transistor as a mask, the silicon oxide layer 111 and the base polycrystalline silicon electrode 110 are formed. Perform etching. Thereafter, in order to form a silicon oxide film 112 having a sidewall isolation, a silicon oxide is deposited to a thickness of about 100 nm and then dry-etched to form a side wall 112.
次に、 第 1 1図 (a ) に示すように、 シリ コン窒化膜 1 07 を熱リン酸により 1 00 nmサイ ドエツチする。サイ ドエツチは後述するグラフ トベース領域を形 成するため、 ベース引き出し電極 1 1 0と充分な接触面積が確保できるよう、 図 中の左右にそれぞれベース引き出し電極 1 1 0の下まで行われる。 このとき、 コ レクタ領域となる基体部は酸化膜 1 3 4により保護され、 ベース引き出し電極 1 1 0の側面は側壁酸化膜 1 1 2により保餞されているため、 シリコン窒化膜 1 0 7のサイ ドエツチ時に不所望なエッチングをされることがない。 その後、 ベース 多結晶シリコン電極 1 1 0の下部のサイ ドエツチにより a出した部分のみに、選 択成長法により、シリコン窒化膜 1 0 7 と同じ膜厚の第 1の p型多結晶半導体グ ラフ 卜ベース 1 1 3 を形成する Next, as shown in FIG. 11A, the silicon nitride film 107 is side-etched with hot phosphoric acid by 100 nm. The side etch forms the graph base area described later. In order to secure a sufficient contact area with the base extraction electrode 110, the process is performed to the left and right in the figure to the bottom of the base extraction electrode 110, respectively. At this time, the base portion serving as the collector region is protected by the oxide film 134, and the side surface of the base lead electrode 110 is supported by the side wall oxide film 112. There is no undesired etching during side etching. After that, the first p-type polycrystalline semiconductor graph having the same thickness as the silicon nitride film 107 was formed only by the selective growth method on the portion exposed by the side etch under the base polycrystalline silicon electrode 110. Form the base 1 1 3
次に、 第 1 1図 (b ) に示すように、 H F系のエッチング液を用いて、 L O C O S酸化瞜 1 3 4 をエッチングし、選択成長法により、 p型単結晶半導体のベ一 ス層 1 1 4をコレクタ領域 1 0 3上に堆積する。このとき同時に第 2の p型多結 晶半導体グラフ トベース 1 1 5が堆積形成される を同時に形成する。  Next, as shown in FIG. 11 (b), the LOCOS oxide layer 134 is etched using an HF-based etchant, and the base layer 1 of the p-type single crystal semiconductor is formed by a selective growth method. 14 are deposited on the collector region 103. At this time, the second p-type polycrystalline semiconductor graft base 115 is simultaneously formed.
次に、 第 1 2図に示すように、 C V D法によりシリ コン酸化膜を全面に堆積し、 異方性のドライエッチングによりシリコン酸化膜のサイ ドウオール 1 1 6 を形 成する。 その後、 全面に高濃度の n型多結晶シリ コンを堆積し、 ェミ ッタ領域周 辺部を覆うパターンのレジス トマスクを用いてエッチングし、 多結晶シリコンェ ミッタ電極 1 1 7 を形成する。 そして、 約 9 0 0 でで 3 0 秒程度の熱処理を行 い、 多結晶シリ コンェミッタ電極 1 1 7 より n型不純物をべ一ス層 1 1 4 表面 に拡散し、選択成長させたベース領域 1 1 4の中にエミッタ領域 1 1 8 を形成す る。  Next, as shown in FIG. 12, a silicon oxide film is deposited on the entire surface by the CVD method, and a silicon oxide film sidewall 16 is formed by anisotropic dry etching. Thereafter, high-concentration n-type polycrystalline silicon is deposited on the entire surface, and is etched using a resist mask having a pattern covering the periphery of the emitter region to form a polycrystalline silicon emitter electrode 117. Then, a heat treatment is performed at about 900 for about 30 seconds, and n-type impurities are diffused from the polycrystalline silicon emitter electrode 117 to the surface of the base layer 114 to selectively grow the base region 1. An emitter region 1 18 is formed in 14.
さらに、 シリ コン酸化膜 1 1 9 を堆積し、 ェミッタ、 ベース、 コレクタの各多 結晶シリ コン «極上のシリ コン酸化膜 1 1 9 をドライエッチングにより開孔し、 タングステンによりエミ ッタ電極 1 2 0 、 ベース電極 1 2 1 、 コレクタ電極 1 2 2 を形成する。 以上の製造方法により第 1 2図に示す構造になる。  Further, a silicon oxide film 119 is deposited, and polycrystalline silicon of the emitter, base, and collector is opened. The silicon oxide film 119 on the electrode is opened by dry etching, and the emitter electrode 122 is made of tungsten. 0, base electrode 122, and collector electrode 122 are formed. The structure shown in FIG. 12 is obtained by the above manufacturing method.
本実施例では第 1のグラフ 卜べ一ス 1 1 4 の下のシリコン酸化膜 1 3 4 の膜 厚は L O C O S法により形成しているため、 ェミッタから離れる程厚くなり、 ベ ースノコレクタ容量がより低滅可能である。 また、 ベース引き出し電極 1 1 0を 段差を有する形状とするための工程が L〇 C O S酸化膜を形成する工程により 形成できるため、 第 1の実施例で行ったようなシリコン酸化膜 1 0 6のゥエツ ト エッチング工程を省略することができる。 In this embodiment, the thickness of the silicon oxide film 134 below the first graph base 114 is formed by the LOCOS method, so that the thickness increases as the distance from the emitter increases, and the base-collector capacitance becomes lower. Can be destroyed. In addition, since the process for forming the base extraction electrode 110 with a step can be formed by the process of forming the L〇COS oxide film, the silicon oxide film 106 as in the first embodiment can be formed.ゥ The etching step can be omitted.
次に、 本発明の第 4の実施例を第 1 3図に示す。 本実施例においても、 先述し た実施例と重複する部分については説明を省略する。  Next, a fourth embodiment of the present invention is shown in FIG. Also in this embodiment, the description of the same parts as those in the above-described embodiment will be omitted.
本実施例ではシリコン基板 1 0 1 上に絶緣膜であるシリコン酸化 1 3 0 、 単 結晶シリコン層 1 3 1 を有する S O I基板を用いて、第 3の実施例と同様な製造 方法を使用する'。 これより、 コレクタノ基板間容量は第 3の実施例に比べて約 1 / 2 。本実施例においては、上述した第 2及び第 3の実施例を組み合わせた形態 となるため、 両実施例の効果をあわせて奏することが可能である。  In the present embodiment, a manufacturing method similar to that of the third embodiment is used by using an SOI substrate having a silicon oxide layer 130 as an insulating film and a single-crystal silicon layer 131 on a silicon substrate 101. . As a result, the capacitance between the collector substrates is about 1/2 that of the third embodiment. In this embodiment, since the above-described second and third embodiments are combined, it is possible to achieve the effects of both embodiments.
次に、 本発明の第 5の実施例を第 1 4図から第 1 6図を用いて説明する。 第 1 6図 (b ) に示す様に、 ベース引き出し «極 1 4 0をタングステンで形成するも のである。 本実施例においても、 上述の各実施例と共通する部分については説明 を省略する。  Next, a fifth embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 16 (b), the base extraction electrode 140 is formed of tungsten. Also in this embodiment, the description of the parts common to the above-described embodiments is omitted.
第 1の実施例に述べたような方法により第 4図 (c ) の様な構造に形成した後、 第 1 4図 (a ) に示すように、 5 0 n mの p型多結晶シリコン膜 1 3 5を堆積し ベース多結晶シリ コン電極パターンに加工する。 その上に 2 0 n mのシリコン酸 ィヒ膜 1 3 6 と 1 5 0 n mの多結晶シリ コン膜 1 3 7、 さらに 4 0 0 n mのシリ コ ン酸化瞜1 1 1を積層する。  After forming the structure as shown in FIG. 4 (c) by the method described in the first embodiment, as shown in FIG. 14 (a), a 50 nm p-type polycrystalline silicon film 1 is formed. 35 is deposited and processed into a base polycrystalline silicon electrode pattern. On top of this, a 20 nm silicon oxide film 1336 and a 150 nm polycrystalline silicon film 1337 are stacked, and a 400 nm silicon oxide film 111 is further laminated.
次に第 1 4図 (b ) に示すように、 トランジスタの真性領域を定める図示しな いレジスト胰をマスクとして、 シリ コン酸化膜 1 1 1、 多結晶シリ コン膜 1 3 7、 シリコン酸化瞜 1 3 6と p型多結晶シリコン膜 1 3 5のエッチングを行う。 その 後、 シリコン酸化腠 1 1 2を 1 0 0 n m堆積後、 ドライエッチングによりサイ ド ウォールを形成する。  Next, as shown in FIG. 14 (b), a silicon oxide film 111, a polycrystalline silicon film 1337, and a silicon oxide film 11 are used as a mask with a resist (not shown) defining an intrinsic region of the transistor. 1 36 and the p-type polycrystalline silicon film 1 35 are etched. After that, a silicon oxide layer 112 is deposited to a thickness of 100 nm, and a side wall is formed by dry etching.
次に、 第 1実施例等に示す第 5図 (c ) 乃至第 6図 (b ) の工程を経て多結晶 シリ コン瞜 1 1 7を全面に堆積し、 第 1 5図 (c ) に示すような構造を形成する。 次に第 1 6図 ( a ) に示すように、 シリコン酸化膜 1 3 8を 3 0 0 n m堆積し、 シリコン酸化膜 1 3 8、 ェミッタ多結晶シリコン電極 1 1 7、 シリコン酸化膜 1 1 1をエミッタを覆うようなパターンにドライエッチにより加工する。 その後、 全面にシリコン酸化膜 1 3 9を堆積し、異方性のドライエッチによりシリコン酸 化膜のサイ ドウオール 1 3 9を形成する。 多結晶シリコン 1 3 7を等方ドライエッチにより、 また、 シリコン酸化膜 1 3 6をゥエツ 卜エッチにより除去する。 露出した p型多結晶シリ コン 1 3 5上に選 択 C V D法によりベースタングステン引き出し電極 1 4 0とコレクタタングス テン瞜 1 4 1を形成する。 その後、 シリコン酸化膜 1 1 9を堆積し、 ェミッタの 多結晶シリコン電極上とベース、 コレクタのタングステン電極のシリコン酸化膜 1 1 9をドライエッチングにより開孔し、 タングステンによりェミッタ霪極 1 2 0、 ベース亀極 1 2 1、 コレクタ電極 1 2 2を形成する。 以上の製造方法により 図 1 6 ( b ) に示す構造になる。 Next, the polycrystalline silicon layer 117 is deposited on the entire surface through the steps shown in FIGS. 5 (c) to 6 (b) shown in the first embodiment and the like, and is shown in FIG. 15 (c). Such a structure is formed. Next, as shown in Fig. 16 (a), a silicon oxide film 1380 is deposited to a thickness of 300 nm, and a silicon oxide film 1380, an emitter polycrystalline silicon electrode 117 and a silicon oxide film 111 are formed. Is processed by dry etching into a pattern covering the emitter. Thereafter, a silicon oxide film 139 is deposited on the entire surface, and a silicon oxide film 139 is formed by anisotropic dry etching. The polycrystalline silicon 137 is removed by isotropic dry etching, and the silicon oxide film 136 is removed by wet etching. A base tungsten lead electrode 140 and a collector tungsten 141 are formed on the exposed p-type polycrystalline silicon 135 by a selective CVD method. After that, a silicon oxide film 119 is deposited, and the silicon oxide film 119 of the tungsten electrode of the base and collector is opened by dry etching on the polycrystalline silicon electrode of the emitter, and the emitter electrode 120 of tungsten is formed by tungsten. A base electrode 1 2 1 and a collector electrode 1 2 2 are formed. With the above manufacturing method, the structure shown in FIG. 16 (b) is obtained.
本実施例では、 ベース引き出し電極にタングステンを用いることにより、 第 1 の実施例に比べて、 ベース引き出し電極の抵抗は約 1/10 となり、 本発明による 寄生容数の低減効果と相まって、 さらに高速かつ消 電力の小さいバイポーラ ト ランジスタを形成することができる。 なお、 本実施例において、 第 3の実施例の ように素子分離として L O C O S酸化膜を用いることもでき、 また、 第 2及び第 4の実施例のように S O 1基板を用いることもできる。  In this embodiment, by using tungsten for the base extraction electrode, the resistance of the base extraction electrode is reduced to about 1/10 as compared with the first embodiment. In addition, a bipolar transistor with low power consumption can be formed. In this embodiment, an LOCOS oxide film can be used for element isolation as in the third embodiment, and an SO1 substrate can be used as in the second and fourth embodiments.
以上説明したように本発明によるバイポーラ トランジスタによれば、ベース · コレクタ容量の削滅、 さらにはコレクタ ·基板間の容!:の削減、 さらにはベース 引き出し髦極の低抵抗化が可能となり、 高速かつ高周波で動作可能なバイポーラ トランジスタを構成することが可能となる。 従って、 特に高速動作が必要とされ る回路やシステムに本発明によるバイポーラ トランジスタを用いることで、 回路 及びシステム全体での性能の向上が可能となる。  As described above, according to the bipolar transistor of the present invention, the base-collector capacitance is reduced, and the capacity between the collector and the substrate! : It is possible to reduce the resistance and further reduce the resistance of the base lead-out electrode, and it is possible to configure a bipolar transistor that can operate at high speed and high frequency. Therefore, by using the bipolar transistor according to the present invention particularly in a circuit or a system that requires a high-speed operation, it is possible to improve the performance of the entire circuit and the system.
第 1 7図には、 本発明の第 6の実施例を示す。 第 1 7図に示された回路は光伝 送システムに用いられる前置增蝠回路を示す回路図である。 周知のとおり、 光伝 送システムは、 数十 G b p sの高速伝送が必要であり、 その前置增幅回路は特に 高速動作が要求されるものである。 従って、 この増幅回路を構成する トランジス タと して本発明による トランジスタを採用することにより、增幅回路全体での性 能を著しく向上することができるものである。  FIG. 17 shows a sixth embodiment of the present invention. The circuit shown in FIG. 17 is a circuit diagram showing a frontal hunting circuit used in the optical transmission system. As is well known, an optical transmission system requires high-speed transmission of several tens of Gbps, and its pre-width circuit requires particularly high-speed operation. Therefore, by employing the transistor according to the present invention as a transistor constituting this amplifying circuit, the performance of the entire width circuit can be remarkably improved.
第 1 7図において、 3 0 0は単一の半導体基板上に形成された前置增蝠回路を 構成する半導体集積回路である。 P Dは光伝送ケーブルを通して送信されてくる 光信号を受ける受光素子であるフォ トダイォード、 3 0 3は電源ラインと接地ラ インとの間に接統され交流成分をショー卜するためのディ力ップリ ング容量で あり、 半導体回路 3 0 0の外部に外づけされている。 バイポーラ トランジスタ Q 1及び Q 2は增幅回路を構成するバイポーラ トランジスタであり、 上述した本実 施例の構造を有する素子が適用される。 ダイォ一ド D 1はレベルシフ ト用ダイォ ―ドであり、 本発明のバイポーラ トランジスタを利用し、 そのベース ' コレクタ 間を短絡して形成することも可能であり、 また、 必要に応じて複数個のダイォ一 ドを直列接統して適用することも可能である。 また、 R l、 R 2、 R 3はそれぞ れ抵抗である。 また、 O U Tは出力端子であり、 必要にトランジスタ Q 2のエミ ッタとの間に出力用バッファ回路が挿入される。 In FIG. 17, reference numeral 300 denotes a semiconductor integrated circuit that constitutes a pre-arm circuit formed on a single semiconductor substrate. PD is a photodiode that is a light receiving element that receives an optical signal transmitted through an optical transmission cable, and 303 is a power line and a grounding line. This is a depletion capacitor connected to the internal circuit and short-circuiting the AC component, and is externally provided outside the semiconductor circuit 300. The bipolar transistors Q1 and Q2 are bipolar transistors forming a wide-width circuit, and the above-described device having the structure of the present embodiment is applied. Diode D1 is a diode for level shift, which can be formed by using the bipolar transistor of the present invention and short-circuiting between the base and the collector. Diodes can also be applied in series. Rl, R2, and R3 are resistors. OUT is an output terminal, and an output buffer circuit is inserted between the output terminal and the emitter of the transistor Q2 as necessary.
本実施例では、 光伝送ケーブルを伝送した光信号がフォ トダイオード P Dによ り電気信号に変換され、 その信号が半導体回路 3 0 0の入力端子 I Nを介し、 增 幅用 トランジスタ Q 1及び Q 2により增幅されて出力端子 O U Tから出力され るよう動作するものである。  In this embodiment, the optical signal transmitted through the optical transmission cable is converted into an electric signal by the photodiode PD, and the signal is transmitted through the input terminal IN of the semiconductor circuit 300 to the width transistors Q1 and Q2. It operates so that it is output from the output terminal OUT after being amplified by 2.
前記実施例に従って製造した半導体装置を用いることで本回路は 4 0 G H z 以上の裕域を有するものである。  By using the semiconductor device manufactured according to the above embodiment, the present circuit has a margin of 40 GHz or more.
第 1 8図には、 第 1 7図に示したフォ トダイォ一ド P D及び前置增幅回路 3 0 0が集積された光伝送システムのフロン トェンドモジュールを示す。 図中 4 0 1 は光ファイバ一、 4 0 2はレンズ、 4 0 3はフォ トダイオード、 4 0 4は前 増 幅器が形成された半導体集積回路である。 4 0 7はフォ 卜ダイオード及び前置増 幅器 4 0 4が実装された基板であり、 ダイォード及び增椹器等を接統する配線 4 0 6を介して出力嫌子 4 0 6に接統されている。 また、 4 0 8は金厲ケースなど の気密封止パッケージである。 図示していないが、 基板 4 0 7条には第 1 7図に 示すコンデンサ 3 0 3も実装されているものである。 このように、 フロントェン ドを構成するフォ トダイォ一ド及び前置増幅器を同一のモジュールに構成する ことにより、信号経路を短くすることができノイズの乗りにく く寄生の L成分や C成分も小さく抑えることができる。  FIG. 18 shows a front end module of an optical transmission system in which the photodiode PD and the pre-width circuit 300 shown in FIG. 17 are integrated. In the figure, 401 is an optical fiber, 402 is a lens, 403 is a photodiode, and 404 is a semiconductor integrated circuit on which a preamplifier is formed. Reference numeral 407 denotes a substrate on which a photodiode and a preamplifier 404 are mounted, which is connected to an output amplifier 406 via a wiring 406 for connecting a diode and a louver. Have been. Reference numeral 408 denotes a hermetically sealed package such as a metal case. Although not shown, the substrate 407 also has the capacitor 303 shown in FIG. 17 mounted thereon. In this way, by configuring the front-end photodiode and pre-amplifier in the same module, the signal path can be shortened, making it difficult for noise to occur and reducing the parasitic L and C components. Can be suppressed.
本実施例は前記実施例に従って製造した半導体装置を、 前記第 6実施例の前置 増幅回路に用い、 これを集積回路チップと し、 フロントエンドモジユー こ適用 した例である。 光ファイバ一 4 0 1 から入力した光信号はレンズ 4 0 2 により 集光されフォ トダイオー ド I C 4 0 3 で S気信号に変換される。電気信号は基板This embodiment is an example in which the semiconductor device manufactured according to the above embodiment is used for the preamplifier circuit of the sixth embodiment, which is used as an integrated circuit chip, and is applied to a front end module. The optical signal input from the optical fiber 401 is passed through the lens 402. The light is condensed and converted to an S-gas signal by the photo diode IC 403. Electrical signal is on the board
4 0 7 上の配線 4 0 5 を通して前置増幅器 I C 4 0 4 で增幅され出力端子 4 0 6 から出力される。 The signal is amplified by the preamplifier IC 404 through the wiring 405 on 407 and output from the output terminal 406.
第 1 9図及び第 2 0図には、第 1 7図及び第 1 8図に示す前 g增幅器及びフ口 ン トェンドモジュールを利用した光伝送システムのシステム構成図を示す。 第 1 9図には、 光伝送システムの送信側システム 5 0 0を示している。 伝送す べき亀気信号 5 0 1はマルチプレクサ MU Xに入力され例えば 4 : 1などに多重 化され、 その出力信号がドライバ 5 0 2に伝達される。 半導体レーザ一 L Dは常 時一定の強度の光を出力しており、 ドライバ 5 0 2により駆動される外部変調器 FIGS. 19 and 20 show system configuration diagrams of the optical transmission system using the front-end amplifier and the front end module shown in FIGS. 17 and 18. FIG. 19 shows a transmitting system 500 of the optical transmission system. The gas signal 501 to be transmitted is input to the multiplexer MUX and multiplexed into, for example, 4: 1 and the output signal is transmitted to the driver 502. The semiconductor laser LD always emits light of a constant intensity, and an external modulator driven by a driver 502
5 0 3がドライバ 5 0 2の出力に応じて光を吸収あるいは非吸収して光フアイ バー 5 0 4に伝送するよう構成されている。 第 1 9図に示す送信モジュールはい わゆる外部変調型とよばれるものである。 本実施例ではこれに変えて、 半導体レ —ザ一の発光を直接制御する直接変獮型を採用することも可能であるが、一般的 に外部変調型での送信のほうがチヤ一プによるスぺク トル発振の広がりがなく、 高速、 長距離の伝送に適する。 503 is configured to absorb or not absorb light according to the output of the driver 502 and transmit the light to the optical fiber 504. The transmission module shown in Fig. 19 is what is called an external modulation type. In this embodiment, instead of this, it is possible to employ a direct modulation type which directly controls the light emission of the semiconductor laser, but in general, the transmission by the external modulation type is performed by a trap. Suitable for high-speed, long-distance transmission with no spread of vector oscillation.
第 2 0図には、本実施例による光伝送システムの光受信型モジュール 5 1 0を 示している。  FIG. 20 shows an optical receiving module 510 of the optical transmission system according to the present embodiment.
本図において、 5 2 0はフロントェンドモジュールであり、 第 1 7図及び第 1 8図に示した本発明の実施例を適用できるものである。 フロン トェンドモジユー ルに 5 2 0のプリアンプ 5 2 2により増幅された電気信号は、 メィンアンプ部 5 3 0に入力され增幅される。 メインアンプ部 5 3 0は、 光伝送の距離や製造偏差 によるバラツキを避け、 出力を一定に保っため、 メインアンプ 5 3 2の出力が掃 還される自動利得脷整器 5 3 1に入力されるよう構成されている。 なお、 メイン アンプ部は利得を調整する構成の他、 出力振幅を制限するリ ミ ッ トアンプを採用 することもできる。 Iffi別器 5 4 0は所定のクロックに同期して 1 ビッ トのアナ口 グ -ディジタル変換を行うよう構成され、 メインアンプ部の出力をディジタル化 し、 分離器 D MU Xにより例えば 1 : 4に分離され後段のディジタル信号処理回 路 5 6 0に入力され、 所定の処理が行われる。  In this figure, reference numeral 52 denotes a front-end module to which the embodiment of the present invention shown in FIGS. 17 and 18 can be applied. The electric signal amplified by the preamplifier 522 in the front end module is input to the main amplifier 530 and amplified. The main amplifier 530 is input to an automatic gain adjuster 531 that sweeps the output of the main amplifier 532 to keep the output constant, avoiding variations due to optical transmission distances and manufacturing deviations. It is configured to: It should be noted that, in addition to the configuration for adjusting the gain, a limit amplifier for limiting the output amplitude may be employed for the main amplifier. The Iffi classifier 540 is configured to perform 1-bit analog-to-digital conversion in synchronization with a predetermined clock, digitizes the output of the main amplifier section, and uses a separator DMUX to output, for example, 1: 4. The signal is input to a digital signal processing circuit 560 of the subsequent stage, and a predetermined process is performed.
ク口ック抽出部 5 5 0は、羝別器 5 4 0及び分離器 D MU Xの動作タイ ミング を制御するためのクロックを変換した電気信号から形成するためのものであり、 メインアンプ部 530の出力を全波整流器 551により整流し、 辨域の狭いフィ ルタ 552によりフィルタリングしてクロック信号となる信号を抽出する。 フィ ルタ 552の出力はフィルタ出力とアナログ信号の位相をあわせるための位相 器であり、予め定められた遅延 1:に基づきフィルタ出力を遅延させるものである。 本実施例による光通信システムにおいては、その各所に先に述べた構成のトラ ンジスタ素子を用いて回路を構成することができる。 また、 同様にメインアンプ 532を構成する回路も第 1 7図に示した回路により構成することが可能であ る。 The mouth extraction unit 550 is the operation timing of the separator 540 and the separator DMU X The output of the main amplifier section 530 is rectified by the full-wave rectifier 551, and is filtered by the narrow-band filter 552 to become a clock signal. Extract the signal. The output of the filter 552 is a phase shifter for matching the phase of the filter output and the analog signal, and delays the filter output based on a predetermined delay 1 :. In the optical communication system according to the present embodiment, a circuit can be configured using the transistor element having the above-described configuration at various points. Similarly, the circuit constituting the main amplifier 532 can be constituted by the circuit shown in FIG.
前記実施例に従って製造した半導体装 Sは遮断周波数、及び 大遮断周波数が 100 GH z と超高速で動作可能なため、 1秒当たり 40G ビッ トと大容量の信 号を超高速で送受信することができる。 また、 従来このような高速動作が必要な 回路については、 シリ コンバイポーラ トランジスタに比べ動作速度が速い G a A s トランジスタを用いる必要のあった回路に、安価なシリ コン トランジスタを用 いることができるため、 システム全体のコス トを低滅することが可能となる。 第 21図は本発明の第 9の実施例を示す移動体無線携带機の構成図である。 本 実施例は前記実施例に従って製造した半導体装置を、低雑音增蝠器 603 、 シン セサイザ一 606、 PLL (P h a s e L o c k e d L o o p : フェーズ - ロック ド ·ループ) 6 1 1等の移動体無線携栴機の各プロックを構成する回路に 適用した例である。  Since the semiconductor device S manufactured in accordance with the embodiment can operate at a very high cutoff frequency and a large cutoff frequency of 100 GHz, it is possible to transmit and receive a signal of a large capacity of 40 Gbits per second at a very high speed. it can. In addition, for circuits that conventionally require such high-speed operation, inexpensive silicon transistors can be used in circuits that need to use GaAs transistors, which have higher operating speeds than silicon bipolar transistors. Therefore, the cost of the entire system can be reduced. FIG. 21 is a configuration diagram of a mobile radio portable device according to a ninth embodiment of the present invention. In this embodiment, a semiconductor device manufactured according to the above embodiment is manufactured by using a mobile radio such as a low-noise gun 603, a synthesizer 606, a PLL (Phase Locked Loop) 611, or the like. This is an example applied to the circuits that make up each block of a hand-held device.
本実施例ではアンテナからの入力を低雑音增幅器 603 で増幅し、シンセサイ ザ 606から発した周波数を発振器 605 から発振させ、 低雑音增幅器 603 からの信号を発振器 605 から発振した信号を用いて、 ダウンミキサ 604で より低い周波数へダウンコンパ一ジョンする。 さらに、 P L L 6 1 1から発した 周波数を発振器 6 10から発振させ、 ダウンミキサ 604からの信号を発振器 6 10 から発振した信号を用いて、 復瀾器 609で復脚し、 より低周波を扱う ベースバン ドユニッ ト 6 1 3で信号処理を行なう。 また、 ベースバン ドュニッ ト 6 1 3から発せられた信号は変獮器 61 2で、 PLL 6 1 1からの信号を用 いて変瀾され、 さらに、 アップミキサ 608においてシンセサイザ 606 か の信号を基に高周波へアップコンパ一トされ、電力増幅器 6 0 7 において增幅さ れアンテナ 6 0 1 より送信される。 また、 6 0 2は信号の送信 ·受信を切り換え るスィツチであり、ベ一スパンドュニッ ト 6 1 3から図示しない制御信号を受け その送倌 ·受信が制御される。 また、 ベースバンドュニッ ト 6 1 3には図示しな ぃスピー力、 マイク等が接統され音声信号の入出力が可能とされている。 In this embodiment, the input from the antenna is amplified by the low-noise amplifier 603, the frequency emitted from the synthesizer 606 is oscillated from the oscillator 605, and the signal from the low-noise amplifier 603 is used by using the signal oscillated from the oscillator 605. The down-mixer 604 down-compensates to a lower frequency. Further, the frequency generated from the PLL 611 is oscillated from the oscillator 610, and the signal from the down mixer 604 is oscillated from the oscillator 610, and the lowering device 609 is used to handle the lower frequency. Signal processing is performed by the baseband unit 6 13. Also, the signal emitted from the baseband unit 613 is modulated by the transformer 612 using the signal from the PLL 611, and furthermore, the upmixer 608 converts the signal by the synthesizer 606. The signal is up-converted to a high frequency based on this signal, amplified by the power amplifier 607, and transmitted from the antenna 601. Reference numeral 602 denotes a switch for switching between transmission and reception of a signal. The switch receives a control signal (not shown) from the base unit 613 and controls its transmission and reception. Further, the baseband unit 6 13 is connected to a microphone (not shown), which is not shown in the drawing, and is capable of inputting and outputting audio signals.
前記実施例に従って製造した半導体装置は、 本実施例の各ブロック、 特に低雑 音堉幅器 6 0 3、 シンセサイザー 6 0 6、 P L L 6 1 1に適用してそれぞれの回 路を構成することができる。 本発明による トランジスタはベース抵抗、 ベ一ス コレクタ容量の低滅が可能であるため、 低雑音增蝠器 6 0 3、 シンセサイザ 6 0 6、 P L L 6 1 1において、 低雑音化、 低消費 S力化が図れる。 これにより、 シ ステム全体として低雑音かつ長時間使用可能な移動体無線携带機を実現するこ とができる。  The semiconductor device manufactured according to the above-described embodiment may be applied to each block of the present embodiment, in particular, to the low-noise amplifier 603, the synthesizer 606, and the PLL 611 to configure respective circuits. it can. Since the transistor according to the present invention can reduce the base resistance and the base collector capacitance, the low-noise gun 603, the synthesizer 606, and the PLL 611 reduce noise and reduce power consumption. Can be achieved. This makes it possible to realize a mobile wireless portable device that can be used for a long time with low noise as a whole system.
第 2 2図は本発明の第 1 0の実施例を示す移動体無線携带機の P L Lのプリ スケ一ラに用いる Dフリ ップフ口ップの回路図である。  FIG. 22 is a circuit diagram of a D flip-flop used in a PLL prescaler of a mobile radio portable device according to a tenth embodiment of the present invention.
本実施例は前述の実施例に従って製造した半導体装 gを第 2 2図の回路上の トランジスタ 7 0 1 から 7 1 2 に用いた例である。  This embodiment is an example in which the semiconductor device g manufactured according to the above-described embodiment is used for the transistors 71 to 72 on the circuit of FIG.
入力信号とク口ック信号及び出力信号は高電位と低電位の 2状態のみを有す る。 入力信号と反転入力信号をそれぞれ端子 7 1 9 と端子 7 2 0に、 また、 ク ロック信号と反転クロック信号をそれぞれ端子 7 2 1 と端子 7 2 2 に入力し、 端子 7 2 3 と端子 7 2 4 より出力信号と反転出力信号を得る。 電流源 7 1 8 と 7 1 9 を流れる電流経路は、 クロック信号によりそれぞれトランジスタ 7 0 9 か 7 1 0 、 7 1 1 か 7 1 2 のいずれかに切り替わる。 さらに、 トランジスタ 7 0 1 から 7 0 6 のオンオフは入力信号とク口ック信号及び抵抗 7 1 3 と 7 1 4 を流れる電流によって生じる抵抗下端の電位により決定される。 本回路において は出力信号は、 ク口ック信号が低 «位から高電位に変化した場合に入力値を出力 し、 それ以外の場合、 前入力値を保持する。  The input signal, the close signal, and the output signal have only two states, high potential and low potential. The input signal and inverted input signal are input to terminals 7 19 and 7 20, respectively, and the clock signal and inverted clock signal are input to terminals 7 2 1 and 7 22, respectively.Terminals 7 2 3 and 7 An output signal and an inverted output signal are obtained from 24. The current paths flowing through the current sources 718 and 719 are switched to one of the transistors 709 and 710 and 711 and 712 by a clock signal, respectively. Further, the on / off of the transistors 701 to 706 is determined by an input signal, a short-circuit signal, and a potential at a lower end of the resistor generated by a current flowing through the resistors 713 and 714. In this circuit, the output signal outputs an input value when the peak signal changes from a low level to a high potential, and otherwise holds the previous input value.
前記実施例に従って製造した半導体装置は、 ベース抵抗、 ベースノコレクタ容 1:を低滅できるため移動体無線携帯機の P L Lの低消費電力化が図れる。  The semiconductor device manufactured according to the above-described embodiment can reduce the base resistance and the base no-collector volume 1: so that the power consumption of PLL of the mobile wireless portable device can be reduced.
本発明は上記で説明したように、 ベース抵抗を增加させることなくベースノコ レクタ容量の低滅が可能であり、低消费電力で高速に動作するトランジスタが得 られる。 これを光伝送システムの增幅回路および周辺回路に適用することにより、 大容量の信号を超高速で送受信することが可能となる。 また、 これを移動体無線 携带機に適用することにより、低雑音かつ長時間使用可能な移動体無線携帯機が できる。 産業上の利用可能性 The present invention, as explained above, uses a base plug without increasing the base resistance. The transistor capacity can be reduced, and a transistor that operates at high speed with low power consumption can be obtained. Applying this to a wide-bandwidth circuit and peripheral circuits of an optical transmission system makes it possible to transmit and receive large-capacity signals at ultra-high speed. In addition, by applying this to a mobile wireless portable device, a mobile wireless portable device that has low noise and can be used for a long time can be obtained. Industrial applicability
以上説明したように、本発明はバイポーラトランジスタ及びそれを用いた各種 の半導体集積回路装置に適用することができ、 例えば、 光伝送システムや移動体 無線端末を形成する半導体集積回路装置に利用することができる。  As described above, the present invention can be applied to a bipolar transistor and various semiconductor integrated circuit devices using the same. For example, the present invention is applicable to a semiconductor integrated circuit device forming an optical transmission system or a mobile wireless terminal. Can be.

Claims

蹐 求 の 範 ffi . 第 1導 «型の半導体基体と、 上記半導体基体の主面部に接触して形成された、上記第 1導 ®型と反対導 « 型の第 2導 型の第 1の半導体領域と、 上記第 1の半導体領域に形成された第 1導電型の第 2半導体領域と、 上記半導体基体上に絶緣膜を介して堆積された多結晶半導体層とを有し、 上記多結晶半導体層は、上記第 1の半導体領域とその側面にて接統されて構 成されたことを特徴とする半導体装置。. 上記半導体基体はバイポーラ トランジスタのコレクタ領域であり、 上記第 1 の半導体領域はベース領域であり、上記第 2の半導体領域はエミッタ領域であ ることを特徴とする請求の範囲第 1項記載の半導体装置。. 上記第 1の半導体領域はシリコン ·ゲルマニウムからなることを特徴とする 請求の範囲第 2項記載の半導体装置。. 上記多結晶半導体層は、 多結晶シリコンにより構成されるベース引き出し簏 極であることを特徴とする請求の範囲第 2項記載の半導体装 Ε。. 上記第 1の半導体領域は、 上記絶緣瞜の開口部によりその底面形状が規定さ れたことを特徴とする精求の範囲第 1項記載の半導体装置。. 上記第 1の半導体領城は、 上記絶緣膜の開口部によりその底面形状が規定さ れた台形状の単結晶シリコンにより構成され、 上記多結晶半導体層は、上記台形状の第 1の半導体領域の傾斜した面に接統 されるよう構成されたことを特徴とする讀求の範囲第 1項記載の半導体装置。. 半導体基板と、 上記半導体基板上に形成された第 1導電型の第 1の半導体領域と、 上記第 1導電型と反対導電型である第 2導 «型の第 2の半導体領域と、 上記第 1の半導体領域に形成された第 1導電型の第 3の半導体領域と、 第 1の配線層とを有し、 上記第 2の半導体領域は上記第 1の半導体領城の主面上に形成され、 上記第 1の配線層は、上記第 1の半導体領域の主面上に形成された絶緣膜を 介して上記第 1の半導体領域上に形成されたことを特微とする半導体装置。. 上記第 1導電型は n型であり、 上記第 2導電型は p型であり、 上記半導体装 置は上記第 1の半導体領域及び上記第 2の半導体領域及び上記第 3の半導体 領域によりバイポーラ トランジスタが構成されるように成したことを特徴と する請求の範囲第 7項記裁の半導体装置。. 上記第 2の半導体領域は、 上記第 1の半導体領域の主面上に堆積された単結 晶シリ コンにより構成されたことを特微とする請求の範囲第 8項記載の半導 体装置。 0 . 上記絶緣膜は酸化シリコンにより構成され、 上記第 1の配線層は、上記絶緣膜と窒化シリコンにより形成された第 2の絶 緣膜とにその底面が接するよう構成されたことを特徴とする請求の範囲第 8 項記載の半導体装置。 The first conductivity type semiconductor substrate and a first conductivity type second conductivity type opposite to the first conductivity type and the opposite conductivity type second conductivity type formed in contact with the main surface of the semiconductor body. A semiconductor region, a second semiconductor region of a first conductivity type formed in the first semiconductor region, and a polycrystalline semiconductor layer deposited on the semiconductor substrate via an insulating film; A semiconductor device, wherein the semiconductor layer is configured so as to be connected to the first semiconductor region on a side surface thereof. The semiconductor device according to claim 1, wherein the semiconductor substrate is a collector region of a bipolar transistor, the first semiconductor region is a base region, and the second semiconductor region is an emitter region. Semiconductor device. 3. The semiconductor device according to claim 2, wherein said first semiconductor region is made of silicon-germanium. 3. The semiconductor device according to claim 2, wherein said polycrystalline semiconductor layer is a base lead electrode made of polycrystalline silicon. 2. The semiconductor device according to claim 1, wherein the bottom shape of the first semiconductor region is defined by the perfect opening. The first semiconductor region is made of trapezoidal single-crystal silicon whose bottom surface is defined by the opening of the insulating film, and the polycrystalline semiconductor layer is formed of the trapezoidal first semiconductor. 2. The semiconductor device according to claim 1, wherein the semiconductor device is configured to be connected to an inclined surface of the region. A semiconductor substrate; a first semiconductor region of a first conductivity type formed on the semiconductor substrate; a second semiconductor region of a second conductivity type having a conductivity type opposite to the first conductivity type; A third semiconductor region of a first conductivity type formed in the first semiconductor region; and a first wiring layer, wherein the second semiconductor region is located on a main surface of the first semiconductor region. A semiconductor device, wherein the first wiring layer is formed, and is formed on the first semiconductor region via an insulating film formed on a main surface of the first semiconductor region. The first conductivity type is n-type, the second conductivity type is p-type, and the semiconductor device is bipolar by the first semiconductor region, the second semiconductor region, and the third semiconductor region. 8. The semiconductor device according to claim 7, wherein a transistor is configured. 9. The semiconductor device according to claim 8, wherein said second semiconductor region is constituted by a single crystal silicon deposited on a main surface of said first semiconductor region. . 0. The insulating film is formed of silicon oxide, and the first wiring layer is configured such that the bottom surface is in contact with the insulating film and a second insulating film formed of silicon nitride. 9. The semiconductor device according to claim 8, wherein
1 . 第 1導電型の第 1の半導体領域と、  1. a first semiconductor region of a first conductivity type;
上記第 1の半導体領域の主面上に堆積された第 2導電型の第 2の半導体領 域と、  A second semiconductor region of a second conductivity type deposited on the main surface of the first semiconductor region;
上記第 2の半導体領域に形成された第 1導電型の第 3の半導体領域と、 上記第 1の半導体領域の主面上に形成され、第 1の開口部を有する第 1の絶 緣腠と、  A third semiconductor region of the first conductivity type formed in the second semiconductor region; and a first insulator having a first opening formed on a main surface of the first semiconductor region. ,
上記第 1の絶緣膜上に形成され、上記第 1の開口部よりその開口面積が大な る第 2の開口部を有する第 2の絶緣膜と、  A second insulating film formed on the first insulating film and having a second opening having an opening area larger than that of the first opening;
上記第 2の半導体領域と接触して形成される配線層とを有し、  A wiring layer formed in contact with the second semiconductor region,
上記第 2の半導体領域は、 上記第 1の開口部によってその底面が規定され、 上記配線層は、 上記第 2の開口部により上記第 1の絶緣膜と接統され、 上記 第 1の開口部により上記第 2の半導体領域と接統されてなることを特徴とす る半導体装置。  The bottom surface of the second semiconductor region is defined by the first opening, the wiring layer is connected to the first insulating film by the second opening, and the first opening Wherein the semiconductor device is connected to the second semiconductor region.
2 . 上記第 1の半導体傾城はバイポーラ トランジスタのコレクタ領城であり、 上記第 2の半導体領域はバイポーラ トランジスタのベース領域であり、 上記第 3の半導体領域はバイポーラ トランジスタのエミッタ領城であることを特徴 とする請求の範囲第 1 1項記載の半導体装置。 2. The first semiconductor region is a collector region of the bipolar transistor, the second semiconductor region is a base region of the bipolar transistor, and the third semiconductor region is an emitter region of the bipolar transistor. The semiconductor device according to claim 11, wherein:
3 . 上記第 1の絶緣膜は酸化膜であり、 上記第 2の絶緣膜は窒化膜であること を特徴とする請求の範囲第 1 1項記載の半導体装置。3. The semiconductor device according to claim 11, wherein the first insulating film is an oxide film, and the second insulating film is a nitride film.
4 . 半導体基板上に形成された第 1導電型の半導体基体表面に、 第 1の絶緣膜 を形成する第 1の工程と、 4. a first step of forming a first insulating film on a surface of a semiconductor substrate of a first conductivity type formed on a semiconductor substrate;
上記第 1の絶緣膜上に第 2の絶緣膜を形成する第 2の工程と、  A second step of forming a second insulating film on the first insulating film;
上記第 2の絶縁膜上に第 1の導体層を形成する第 3の工程と、  A third step of forming a first conductor layer on the second insulating film,
上記第 1の導体層及び第 2の絶緣瞜をェツチングすることにより第 1の開 口部を形成する第 4の工程と、  A fourth step of forming a first opening by etching the first conductor layer and the second insulator;
上記第 1の開口部を通して、上記第 2の絶縁膜を選択的にエッチングするこ とにより第 2の開口部を形成する第 5の工程と、  A fifth step of forming a second opening by selectively etching the second insulating film through the first opening;
上記第 1の開口部を通して、半導体材料を堆積することにより上記第 2の開 口部に半導体材料を充填する第 6の工程と、  A sixth step of filling the second opening with semiconductor material by depositing a semiconductor material through the first opening;
上記第 1の開口部を通して、上記第 1の絶緣膜を上記半導体基体の表面が β 出するまでエッチングする第 7の工程と、  A seventh step of etching the first insulating film through the first opening until the surface of the semiconductor substrate is exposed to β;
上記第 1の開口部を通して、上記半導体基体の表面に選択的に半導体材料を、 上記第 2の開口部を充填した半導体材料と接統されるまで堆積する第 8のェ 程とを有することを特徴とする半導体装置の製造方法。  An eighth step of selectively depositing a semiconductor material on the surface of the semiconductor substrate through the first opening until the semiconductor material is brought into contact with the semiconductor material filling the second opening. A method for manufacturing a semiconductor device.
5 . 上記第 1導電型の半導体領域はバイポーラ トランジスタのコレクタ領域で あり、上記第 8の工程により堆積された半導体材料はバイポーラトランジスタ のべ一ス領城を形成するものであり、上記第 8の工程の後にバイポーラトラン ジス夕のエミッタ領域を形成する工程をさらに有することを特徴とする請求 の範囲第 1 4項記載の半導体装置の製造方法。 5. The semiconductor region of the first conductivity type is a collector region of the bipolar transistor, and the semiconductor material deposited in the eighth step forms a base region of the bipolar transistor. 15. The method for manufacturing a semiconductor device according to claim 14, further comprising a step of forming an emitter region of a bipolar transistor after the step.
6 . 上記第 1の絶緣膜は、 上記第 2の絶緣膜に対しエッチング選択比の大きい ことを特徴とする請求の範囲第 1 4項記載の半導体装置の製造方法。 6. The method for manufacturing a semiconductor device according to claim 14, wherein the first insulating film has a larger etching selectivity than the second insulating film.
7 . 上記第 4の工程の後にさらに、 上記第 1の導体層の側面を覆う側壁酸化膜 を形成する工程を有することを特微とする請求の範囲第 1 5項記載の半導体 装置の製造方法。7. The method of manufacturing a semiconductor device according to claim 15, further comprising, after the fourth step, a step of forming a sidewall oxide film covering a side surface of the first conductor layer. .
8 . 上記第 8の工程の後にさらに、 8. After the eighth step,
上記第 8の工程により堆積された半導体材料と接続するように不純物を含 有した第 2の導体層を形成する工程と、該第 2の導体層から不純物を拡散する ことによりバイポーラトランジスタのエミッタ電極となる半導体領域を形成 することを特徴とする請求の範囲第 1 7項記載の半導体装 gの製造方法。 Impurities are included to connect with the semiconductor material deposited in the eighth step. 18. The method according to claim 17, wherein the step of forming the second conductive layer has a step of forming a semiconductor region serving as an emitter electrode of the bipolar transistor by diffusing impurities from the second conductive layer. A manufacturing method of the semiconductor device g described above.
9 . 単結晶半導体基体の主面上に第 1の絶緣腠を介して第 1の開口部を有する 第 1の導体層が積層された前置体を形成する工程と、 9. A step of forming a front body in which a first conductor layer having a first opening is laminated on a main surface of a single crystal semiconductor substrate through a first insulator;
上記第 1の開口部から上記半導体基体の主面上に選択的に半導体材料を堆 積し第 1の半導体領域を形成し、 上記第 1の導体層と接統する工程と、 上記第 1の半導体領域上に不純物を含有した第 2の導体層を形成する工程 と、  Selectively depositing a semiconductor material on the main surface of the semiconductor substrate from the first opening to form a first semiconductor region, and connecting with the first conductor layer; Forming a second conductive layer containing impurities on the semiconductor region;
上記第 2の導体層から上記第 1の半導体領域に不純物を拡散することによ り第 2の半導体領域を形成する工程とを有することを特徴とする半導体装置 の製造方法。  Forming a second semiconductor region by diffusing impurities from the second conductor layer into the first semiconductor region.
0 . 上記第 1の導体層と接統する工程は、 上記半導体基体表面に半導体材料を 選択的にェビタキシャル成長させる工程であることを特徴とする請求の範囲 第 1 9項記載の半導体装置の製造方法。  10. The method of manufacturing a semiconductor device according to claim 19, wherein the step of contacting with the first conductor layer is a step of selectively and epitaxially growing a semiconductor material on the surface of the semiconductor substrate. Method.
1 . そのベースに受光素子が接統された第 1のバイポーラトランジスタを有す る半導体装置であって、  1. A semiconductor device having a first bipolar transistor having a light receiving element connected to its base,
上記第 1のバイポーラ トランジスタは、  The first bipolar transistor is
コレクタ領域となる第 1導電型の半導体基体と、  A first conductivity type semiconductor substrate serving as a collector region;
上記半導体基体の主面部に接触して形成された、上記第 1導電型と反対導電 型の第 2導 ¾型の第 1の半導体領域と、  A first semiconductor region of a second conductivity type having a conductivity type opposite to the first conductivity type formed in contact with a main surface portion of the semiconductor substrate;
上記第 1の半導体領域に形成された第 1導電型の第 2の半導体領域と、 上記半導体基体上に絶緣膜を介して堆積された多結晶半導体層とを有し、 上記第 1の半導体領城はバイポーラトランジスタのベース領域であり、上記 第 2の半導体領域はバイポーラトランジスタのエミッタ領城であり、  A second semiconductor region of a first conductivity type formed in the first semiconductor region; and a polycrystalline semiconductor layer deposited on the semiconductor substrate via an insulating film. The castle is a base region of the bipolar transistor, the second semiconductor region is an emitter region of the bipolar transistor,
上記多結晶半導体層は、上記第 1の半導体領域とその側面にて接統されて形 成されたことを特徴とする半導体装置。  A semiconductor device, wherein the polycrystalline semiconductor layer is formed so as to be connected to the first semiconductor region on a side surface thereof.
2 . 上記第 1のバイポーラ トランジスタのコレクタには第 2のバイポーラ トラ ンジスタのベースが接統され、 上記第 1及び第 2のバイポーラ トランジスタは 同一の半導体基板上に形成されるとともに、 2. The base of the second bipolar transistor is connected to the collector of the first bipolar transistor, and the first and second bipolar transistors are connected to the collector of the first bipolar transistor. While being formed on the same semiconductor substrate,
上記第 2のバイポーラ トランジスタは  The second bipolar transistor is
コレクタ領域となる第 1導電型の半導体基体と、  A first conductivity type semiconductor substrate serving as a collector region;
上記半導体基体の主面部に接触して形成された、 上記第 1導電型と反対導電 型の第 2導遭型の第 1の半導体領域と、  A first conductive type second semiconductor region of opposite conductivity type to the first conductivity type formed in contact with the main surface of the semiconductor substrate;
上記第 1の半導体領域に形成された第 1導電型の第 2の半導体領域と、 上記半導体基体上に絶縁膜を介して堆積された多結晶半導体層とを有し、 上記第 1の半導体領域はバイポーラ トランジスタのベース領域であり、 上記 第 2の半導体領域はバイポーラ トランジスタのエミッタ領域であり、  A second semiconductor region of a first conductivity type formed in the first semiconductor region; and a polycrystalline semiconductor layer deposited on the semiconductor substrate via an insulating film, wherein the first semiconductor region Is a base region of the bipolar transistor, the second semiconductor region is an emitter region of the bipolar transistor,
上記多結晶半導体層は、 上記第 1の半導体領域とその側面にて接統されて形 成されたことを特徴とする請求の範囲第 2 1項記載の半導体装置。  22. The semiconductor device according to claim 21, wherein said polycrystalline semiconductor layer is formed so as to be connected to said first semiconductor region on a side surface thereof.
3 . 光信号を受け電気信号を出力する受光素子と、 3. A light receiving element that receives an optical signal and outputs an electric signal,
受光素子からの ¾気信号を受ける第 1の增幅回路と、  A first width circuit that receives an air signal from the light receiving element;
上記第 1の增幅回路の出力を受ける第 2の增幅回路と、  A second width circuit receiving an output of the first width circuit;
所定のク口ック信号に同期して、 上記第 2の增幅回路の出力をディジタル信 号に変換する餓別器とを有する光受信システムであって、  An optical receiving system comprising: a starving device that converts an output of the second bandwidth circuit into a digital signal in synchronization with a predetermined peak signal;
上記第 1の增蝠回路は、上記受光素子にそのベースが接統された第 1のバイ ポーラ トランジスタと、該第 1のバイポーラ トランジスタのコレクタにそのべ ースが接統されそのコレクタが上記第 2の增蝠回路の入力に接統された第 2 のバイポーラ トランジスタとを有し、  The first tongue circuit includes a first bipolar transistor having a base connected to the light receiving element, a base connected to a collector of the first bipolar transistor, and a collector connected to the first bipolar transistor. A second bipolar transistor connected to the input of the two hunting circuits,
上記第 1又は第 2のバイポーラ トランジスタの少なく とも一つは、請求の範 囲第 1項、 第 7項、 第 1 1項のいずれかに記載された半導体装置により構成さ れたことを特徴とする光受倌システム。  At least one of the first and second bipolar transistors is constituted by a semiconductor device according to any one of claims 1, 7, and 11. Light receiving system.
4 . 上記第 1及び第 2のバイポーラ トランジスタのいずれもが、 請求の範囲第 1項、 第 7項、 第 1 1項のいずれかに記載された半導体装置により構成された ことを特徴とする光受信システム。  4. A light characterized in that each of the first and second bipolar transistors is constituted by the semiconductor device according to any one of claims 1, 7, and 11. Receiving system.
5 . 上記第及び第 2のバイポーラ トランジスタは単一の半導体チップ上に形成 され、 上記受光素子と上記半導体チップとは単一の基板上に実装されたことを 特徴とする光受信システム。  5. The optical receiving system, wherein the second and second bipolar transistors are formed on a single semiconductor chip, and the light receiving element and the semiconductor chip are mounted on a single substrate.
PCT/JP1995/001844 1995-09-18 1995-09-18 Semiconductor device, method of producing the same and system using the semiconductor device WO1997011496A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1995/001844 WO1997011496A1 (en) 1995-09-18 1995-09-18 Semiconductor device, method of producing the same and system using the semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1995/001844 WO1997011496A1 (en) 1995-09-18 1995-09-18 Semiconductor device, method of producing the same and system using the semiconductor device

Publications (1)

Publication Number Publication Date
WO1997011496A1 true WO1997011496A1 (en) 1997-03-27

Family

ID=14126264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/001844 WO1997011496A1 (en) 1995-09-18 1995-09-18 Semiconductor device, method of producing the same and system using the semiconductor device

Country Status (1)

Country Link
WO (1) WO1997011496A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123949A (en) * 2007-02-16 2007-05-17 Matsushita Electric Ind Co Ltd Semiconductor device and method for manufacturing the same
CN117594442A (en) * 2024-01-18 2024-02-23 常州承芯半导体有限公司 Semiconductor device and method of forming the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63289863A (en) * 1987-05-21 1988-11-28 Sony Corp Bipolar transistor and manufacture thereof
JPH01300559A (en) * 1988-05-30 1989-12-05 Oki Electric Ind Co Ltd Manufacture of bipolar semiconductor integrated circuit device
JPH03147332A (en) * 1989-11-02 1991-06-24 Nec Corp Manufacture of semiconductor device
JPH04188716A (en) * 1990-11-22 1992-07-07 Hitachi Ltd Semiconductor device and manufacture thereof
JPH04262539A (en) * 1991-02-18 1992-09-17 Nec Corp Semiconductor device and manufacture thereof
JPH05299429A (en) * 1992-04-08 1993-11-12 Nec Corp Semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63289863A (en) * 1987-05-21 1988-11-28 Sony Corp Bipolar transistor and manufacture thereof
JPH01300559A (en) * 1988-05-30 1989-12-05 Oki Electric Ind Co Ltd Manufacture of bipolar semiconductor integrated circuit device
JPH03147332A (en) * 1989-11-02 1991-06-24 Nec Corp Manufacture of semiconductor device
JPH04188716A (en) * 1990-11-22 1992-07-07 Hitachi Ltd Semiconductor device and manufacture thereof
JPH04262539A (en) * 1991-02-18 1992-09-17 Nec Corp Semiconductor device and manufacture thereof
JPH05299429A (en) * 1992-04-08 1993-11-12 Nec Corp Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123949A (en) * 2007-02-16 2007-05-17 Matsushita Electric Ind Co Ltd Semiconductor device and method for manufacturing the same
CN117594442A (en) * 2024-01-18 2024-02-23 常州承芯半导体有限公司 Semiconductor device and method of forming the same
CN117594442B (en) * 2024-01-18 2024-05-28 常州承芯半导体有限公司 Semiconductor device and method of forming the same

Similar Documents

Publication Publication Date Title
JP3658745B2 (en) Bipolar transistor
US5962880A (en) Heterojunction bipolar transistor
KR100696348B1 (en) Bipolar transistor and semiconductor integrated circuit
JP4056226B2 (en) Semiconductor device
US6501153B2 (en) Semiconductor device and drive circuit using the semiconductor devices
JP4886964B2 (en) Semiconductor device and manufacturing method thereof
JP2006210790A (en) Semiconductor device and manufacturing method thereof
JP3534576B2 (en) Bipolar transistor and optical receiving system using the same
JP2002026137A (en) Semiconductor integrated circuit device and its manufacturing method
JP4611492B2 (en) Semiconductor device and semiconductor integrated circuit
WO1997011496A1 (en) Semiconductor device, method of producing the same and system using the semiconductor device
JP2000294564A (en) Bipolar transistor, manufacture thereof, and electronic circuit device or optical communication system using the same
JP3562284B2 (en) Bipolar transistor and method of manufacturing the same
US6552374B2 (en) Method of manufacturing bipolar device and structure thereof
JPH10284614A (en) Semiconductor integrated circuit device and manufacture therefor
JP4147605B2 (en) Bipolar transistor manufacturing method
JPH09181262A (en) Semiconductor device and manufacture thereof
JPH11191558A (en) Semiconductor device and its manufacture as well as system using the same
JPH1027883A (en) Semiconductor device and its manufacturing method
JPH11243095A (en) Semiconductor device and manufacture thereof and system using the semiconductor device
JPH1187361A (en) Semiconductor device and manufacture thereof
JP2000150532A (en) Semiconductor device and system using the same
CN118176568A (en) Semiconductor structure, preparation method thereof, radio frequency circuit and communication device
JP4966949B2 (en) Semiconductor device, manufacturing method thereof, and superheterodyne communication device using the semiconductor device
JP2001210655A (en) Bipolar element and manufacturing method therefor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase