WO1997009596A2 - Procede et dispositif permettant de detecter des donnees d'exploitation sur des parties mobiles/rotatives d'un dispositif, notamment d'un moteur electrique - Google Patents

Procede et dispositif permettant de detecter des donnees d'exploitation sur des parties mobiles/rotatives d'un dispositif, notamment d'un moteur electrique Download PDF

Info

Publication number
WO1997009596A2
WO1997009596A2 PCT/DE1996/001646 DE9601646W WO9709596A2 WO 1997009596 A2 WO1997009596 A2 WO 1997009596A2 DE 9601646 W DE9601646 W DE 9601646W WO 9709596 A2 WO9709596 A2 WO 9709596A2
Authority
WO
WIPO (PCT)
Prior art keywords
signal
sensor
evaluation
electromagnetic
sensor element
Prior art date
Application number
PCT/DE1996/001646
Other languages
German (de)
English (en)
Other versions
WO1997009596A3 (fr
Inventor
Reinhard Maier
Wolf-Eckhart Bulst
Oliver Sczesny
Thomas Ostertag
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO1997009596A2 publication Critical patent/WO1997009596A2/fr
Publication of WO1997009596A3 publication Critical patent/WO1997009596A3/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/04Thermometers specially adapted for specific purposes for measuring temperature of moving solid bodies
    • G01K13/08Thermometers specially adapted for specific purposes for measuring temperature of moving solid bodies in rotary movement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • G01L1/162Measuring force or stress, in general using properties of piezoelectric devices using piezoelectric resonators
    • G01L1/165Measuring force or stress, in general using properties of piezoelectric devices using piezoelectric resonators with acoustic surface waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/75Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems using transponders powered from received waves, e.g. using passive transponders, or using passive reflectors
    • G01S13/751Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems using transponders powered from received waves, e.g. using passive transponders, or using passive reflectors wherein the responder or reflector radiates a coded signal
    • G01S13/755Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems using transponders powered from received waves, e.g. using passive transponders, or using passive reflectors wherein the responder or reflector radiates a coded signal using delay lines, e.g. acoustic delay lines

Definitions

  • the present invention relates to a method and a surface wave sensor device for recording operating data on moving, in particular rotating, force-transmitting parts of a device. More particularly, the invention relates to torque measurement and / or speed measurement in a force-generating, force-transmitting and / or force-absorbing mechanical device.
  • a force-generating, force-transmitting and / or force-absorbing mechanical device can be a motor, in particular an electric motor. It can also be a powered device, such as a dynamo.
  • the method according to the invention can also be used for sensor devices on rotating, only passive force or torque transmitting devices, such as drive shafts and the like.
  • the long-term and / or instantaneous temperature of the rotor is also of interest, in particular in order to be able to anticipate or detect harmful overload in good time and, if necessary, to take countermeasures in good time.
  • Rotation are, and are to be transferred to a stationary device.
  • the torque measurement is usually carried out using a specially provided torque shaft or a "torque section" of a conventional shaft.
  • a section of a shaft intended for torque measurement is designed such that this shaft has a reduced diameter in the region of this section, for example.
  • Dr. Staiger, Mohilo + Co. GmbH "Components and Systems for Quality Assurance", to the doctoral thesis Wilhelm Baldauf, Progress Reports VDJ, Series 8, No. 380 and WO 91/13832, Longsdale.
  • the doctoral thesis and the WO publication each describe a relevant measuring device in which surface wave devices are used as actual sensors for torque measurement.
  • the surface wave sensor element is used as the frequency-determining element of an oscillator circuit.
  • the surface wave sensor element changes its resonance frequency and thus the oscillator frequency of the oscillator circuit.
  • the resonant circuit consisting of the surface wave element and the oscillator amplifier also contains two electromagnetic transformers / transmitters, each of which transmits high-frequency signals between the rotor and the stator.
  • the surface acoustic wave element is inevitably operated as a two-port element, with one port being connected to one transmitter and the other port to the other transmitter. It can be seen that all the irregularities in the transmitters influence the vibration behavior of the resonance circuit and thus also influence the respective one Resonance frequency.
  • the WO publication describes measures with which the disturbing influence of the signal transmission cited above and falsifies the measurement result is avoided.
  • the complete oscillator ie the frequency-determining surface wave sensor element and the associated oscillator amplifier, are both located on the rotor part of the device.
  • a high-frequency signal corresponding to the measured value is transmitted via the electromagnetic transmitter also provided there between the rotor and the stator transmitted, the frequency of which is usually not influenced by this transformer.
  • this principle of the WO publication requires that also active circuit components, namely the amplifier, are located on the rotor. This requires a corresponding, here transformative, power supply transmission from the stator to the rotor, which is not only an additional effort compared to the device according to the doctoral thesis, but also requires additional circuit parts to be attached to the rotor
  • the object of the present invention is, despite the wide range of already available measuring devices for torque and / or speed and / or temperature of the device, in which these measured values are to be recorded on moving, in particular rotating device parts
  • the weight of the section of the device to be provided on the moving part should also be as small as possible, e.g. to avoid unbalance or not to have to take into account.
  • Temperature measurement should also be possible at internal locations of the device, namely where the highest temperatures occur due to shielding.
  • the method should also be usable for speed measurement.
  • the method of operating the surface acoustic wave sensor element and the associated signal transmission used in the present invention is based on principles which are described for surface acoustic wave arrangements in a further WO-93/13495.
  • transformer-type transmission devices are avoided, as are the case with the devices mentioned at the beginning
  • an electromagnetic wave propagating in free space is generated a broadband high-frequency interrogation signal.
  • This wave is generated by a quiescent evaluation device and is transmitted with the help of an antenna. It is picked up by a further antenna, which is located on the moving part of the device, usually the rotor, and which is connected to the one gate of the surface wave sensor element.
  • the sensor element can receive the broadband query signal, which still has no information content.
  • the interrogation signal received via only one gate of the surface wave sensor element is then available as an electrical signal and is converted into an acoustic wave in the electroacoustic transducer of the surface wave element.
  • a property inherent in the surface wave element is its spectral transfer function, which is known to result from, or is determined by, the surface structure element to be specified or specified.
  • the acoustic wave in the surface wave element is a storage of the received energy of the interrogation signal.
  • the stored acoustic energy thus influenced is then converted back into a corresponding electrical signal, which then contains the measured value information.
  • this electrical sensor signal is emitted via the gate of the surface acoustic wave element already mentioned above, namely via the gate which was already used to receive the informationless query signal.
  • the electrical sensor signal is converted into an electromagnetic wave which in turn propagates in free space, which now contains the measured value information.
  • the electromagnetic wave received by the antenna of the evaluation device is analyzed in the evaluation device and the one contained in this wave Coded measured value information content evaluated according to amount and phase.
  • the sensor element functions functionally as a measurement-influenced runtime arrangement. An important distinguishing criterion compared to the prior art is that one and the same signal transmission path is used for the interrogation signal and receive pulse. Any other measurement errors due to frequency falsification are excluded.
  • the surface wave element is only effective as an energy store in the invention, the spectral components of the spectral transfer function (filter function) of the surface wave element being discrete influenced by the sensor effect, which in the evaluation device according to their amount and their Phase can be evaluated.
  • the evaluation can be carried out by sampling the signal in the time domain and subsequent Fast Fourier, Chirp-Z or the like. Transforming the signal into the frequency domain.
  • the surface wave element is used in the invention as a purely passive element, which sends an electrical measurement signal to the evaluation device, without the need to supply power to the surface wave element.
  • surface waves should not only be surface waves in the narrower sense, such as Rayleigh, lead stone and the like waves. Acoustic waves with a similar effect should also be subsumed under the term “surface waves” used here, e.g. the SSBW waves, bulk waves, shear waves and the like.
  • FIG. 1 shows a flow diagram which represents the principle of the method according to the invention
  • Figure 2 shows examples of known structures of a torque
  • Figure 3 shows a detailed representation of a surface wave element, as in the
  • 1 designates a stationary evaluation device with a signal generator which generates an (informationless) query signal as a transmitter signal.
  • This interrogation signal is a broadband high frequency transmission pulse or e.g. also a chirp signal with increasing and / or decreasing frequency response.
  • 2 denotes an antenna, with the aid of which the electromagnetic wave 11 of the interrogation signal, which propagates in free space, is generated. As such a wave, the interrogation signal is transmitted from the "stator" to the "rotor". This electromagnetic wave is received by the antenna 3 located on the “rotor” and converted back into an electrical signal.
  • the spatial distance between the antennas 2 and 3 can optionally be dimensioned relatively large and optimally adapted to the requirements, so that the stationary device part with the antenna 2 can be dimensioned at an advantageously large distance from the moving / rotor part .
  • the antenna 3 is electrically connected to the only one gate of the surface wave element 30.
  • This gate is essentially the interdigital transducer 32 of the surface acoustic wave element.
  • the electrical signal of the interrogation signal received and generated by the antenna 3 is converted into a surface acoustic wave of the surface wave element 30.
  • the course of this acoustic wave in the surface of the element 30 is designated in part by a).
  • the acoustic wave experiences a reflection in itself and the return path of the acoustic wave to the transducer 32 is schematically indicated by b ) indicated.
  • the frequency image 34 shows an example spectrum of the interrogation signal.
  • the spectral transfer function of the surface acoustic wave element which acts here as a filter, filters this spectral distribution 34 out of a characteristic spectral distribution 35, which is the response signal of the surface acoustic wave arrangement 30.
  • the result of the measurement is encoded in this response signal.
  • the wave (b) returning to the transducer 32 is converted (back) into a corresponding electrical signal in the transducer 32.
  • This electrical signal containing the measured value information is passed on to the antenna 3, which in turn effects the conversion into an electromagnetic wave 12 propagating in the free space
  • This electromagnetic wave transmits the measured value signal from the rotor to the stator, where it is received by means of the antenna 2.
  • the electromagnetic wave received by the antenna 2 is converted into an electrical signal and fed to the evaluation part 1 '.
  • the measured value signal to be measured by the sensor is determined by evaluating the returned spectral components 35, which represent the measured variable in coded form.
  • the response signal 35 After the transducer 32 has emitted the acoustic wave, the response signal 35 returns to the same transducer with a time delay.
  • Figures 2a to 2d show a schematic representation of four examples of embodiments of mechanical torque measuring bodies with the actual measuring length piece 22.
  • Figure 2a shows the example of a measuring length piece as a solid shaft
  • Figure 2b such as a hollow shaft
  • Figure 2c such as a four-sided cantilever
  • FIG. 2d the example of the so-called lantern with in this case four symmetrically distributed webs.
  • FIG. 3 which also belongs to the prior art, shows the example of a
  • Surface wave element 30 as used in the invention in this embodiment or a similar design with the same effect.
  • one platelet-shaped substrate body which is made of a piezoelectric material, preferably single-crystalline material, for example quartz, lithium niobate, lithium tantalate and the like, or is a platelet which is coated on its (in the figure) upper surface with a piezoelectric layer
  • 32 is the interdigital surface waves -Converters are used to describe surface wave elements.
  • 3, 31 denote the dipoles of the antenna provided / used for the invention, which is shown only schematically here and which serves to receive the electromagnetic wave, for example the broadband interrogation signal 4, and also to send back a characteristic response signal 35 from the surface wave element is to be used.
  • the interdigital transducer 32 is both an input transducer and an output transducer of the surface acoustic wave element.
  • a one-port element can also consist of several, but electrically connected transducers.
  • an acoustic wave can be generated in the surface of the substrate body 31, which propagates or extends in the longitudinal direction Z in the substrate body 31 (to the right in the figure).
  • reflectors 37 known in principle for surface wave elements, are arranged on / in the surface of the substrate body 31, which reflect this acoustic wave 36 back in according to its orientation. This reflection takes place e.g. in such a way that the reflected wave undergoes a modulation as can be seen from the response signal 35. This back-reflected wave is converted back into an electrical signal 35 in the interdigital converter 32
  • the device to be used for the method according to the invention comprises a surface wave element as shown in FIG. 3 with the (dipole) antenna (or with the connection for such an antenna) and the one equipped with the antenna 2 (stationary) ) Evaluation device 1 with its generator part for the query signal.
  • the antenna 3 is in a manner adapted or to be optimized for the individual case on the moving / rotating part, such as, for example, the length 2 of the (rotor) shaft arranged
  • the antenna 3 and the antenna 2 only have to be positioned in mutual proximity, the spacing of these antennas in the invention being conveniently chosen to be generously dimensioned.
  • the invention can also be used for a common acquisition of various operating data of a device, such as for temperature measurement as well as for torque measurement and speed measurement.
  • the temperature inside the device is of interest, for example within a winding.
  • a surface wave element determined as a temperature sensor is also wrapped into the inside of the winding and for the method according to the invention it is only necessary to extend the antenna 3 to such an extent that the reception and the radiation of the electromagnetic waves 11 and 12 from / into the free space from / to the evaluation device is guaranteed
  • FIGS. 2a to 2d are discussed again.
  • the use of two surface wave elements 30 is provided for the torque measurement.
  • these two surface wave elements are positioned at an angle of + 45 ° and -45 ° to the axis of the shaft, as a result of which they are positioned orthogonally to one another.
  • the distortion occurring in one element and the corresponding compression in the other element are measured.
  • the influence of temperature can be eliminated.
  • the surface wave elements 30 are attached to the outer surface of the length 22 in a known manner.
  • such an attachment is to be provided which, however, transmits as little mechanical distortion as possible but causes good thermal contact
  • a particular advantage of the method according to the invention is that with one and the same interrogation device 1 (one after the other) several different surface wave sensors, e.g. for torque speed, temperature can be queried via the same transmission path of the WeUen 11 and 12. This minimizes the hardware expenditure for the acquisition of various operating data of the device to be monitored, e.g. of the electric motor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

L'invention concerne un procédé permettant de détecter des données d'exploitation sur des parties rotatives d'un dispositif à l'aide d'une unité d'interrogation/d'évaluation (1) et d'un élément de détection à ondes de surface (30) se trouvant sur le rotor (22). La transmission de signaux entre le stator et le rotor s'effectue par ondes électromagnétiques (11, 12). De l'énergie acoustique est accumulée avec une sélection de composantes (35) du spectre du signal d'interrogation (34) induite par les valeurs mesurées. L'évaluation s'effectue par balayage et transformation du signal de réponse.
PCT/DE1996/001646 1995-09-04 1996-09-04 Procede et dispositif permettant de detecter des donnees d'exploitation sur des parties mobiles/rotatives d'un dispositif, notamment d'un moteur electrique WO1997009596A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19532601 1995-09-04
DE19532601.6 1995-09-04

Publications (2)

Publication Number Publication Date
WO1997009596A2 true WO1997009596A2 (fr) 1997-03-13
WO1997009596A3 WO1997009596A3 (fr) 1997-04-24

Family

ID=7771219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1996/001646 WO1997009596A2 (fr) 1995-09-04 1996-09-04 Procede et dispositif permettant de detecter des donnees d'exploitation sur des parties mobiles/rotatives d'un dispositif, notamment d'un moteur electrique

Country Status (1)

Country Link
WO (1) WO1997009596A2 (fr)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0901881A2 (fr) * 1997-09-02 1999-03-17 OTTO BILZ Werkzeugfabrik GmbH & Co. Outil ou porte-outil
EP1026492A2 (fr) * 1999-02-01 2000-08-09 Baumer Electric Ag Dispositif sans fil de mesure de couple et capteur pour ce dispositif
WO2000062029A1 (fr) * 1999-03-26 2000-10-19 Sensit As Dispositif et systeme de surveillance de la temperature interne de pieces mobiles inaccessibles
WO2000065320A1 (fr) * 1999-04-27 2000-11-02 Transense Technologies Plc Dispositif a couche mince
WO2001033180A1 (fr) * 1999-11-01 2001-05-10 Transense Technologies Plc Mesure de couple
WO2001067058A1 (fr) * 2000-03-10 2001-09-13 Siemens Aktiengesellschaft Procede et dispositif permettant de mesurer un moment s'appliquant a un composant
WO2002029434A1 (fr) * 2000-10-04 2002-04-11 Siemens Aktiengesellschaft Procede et dispositif de mesure radio d'au moins un parametre resultant de la rotation d'un objet, en particulier d'un rotor
DE102004006358A1 (de) * 2004-02-09 2005-09-01 Voith Turbo Gmbh & Co. Kg Themperaturüberwachte hydrodynamische Maschine
WO2006123085A1 (fr) * 2005-05-20 2006-11-23 Transense Technologies Plc Capteur de temperature et de couple saw
EP1798866A1 (fr) * 2005-12-19 2007-06-20 Siemens Aktiengesellschaft Machine rotative et utilisation de communication électrique du champ proche pour la transmission de signaux sans fil
DE102006057225A1 (de) * 2006-09-04 2008-03-06 Continental Teves Ag & Co. Ohg Sensoranordnung zur Erfassung des Drehmoments einer Welle
WO2010112139A1 (fr) 2009-03-30 2010-10-07 Sew-Eurodrive Gmbh & Co. Kg Moteur électrique
DE102011000054A1 (de) * 2011-01-07 2012-07-12 Deutsches Zentrum für Luft- und Raumfahrt e.V. Torsionssensor
DE102011010153A1 (de) * 2011-02-02 2012-08-02 Voith Patent Gmbh Hydrodynamische Komponente
DE102011104286A1 (de) * 2011-06-16 2012-12-20 Leopold Kostal Gmbh & Co. Kg Torsionsmodul
EP2735400A1 (fr) * 2012-11-22 2014-05-28 Sandvik Intellectual Property AB Agencement permettant de commander le processus d'usinage d'enlèvement rotatif de copeaux d'une pièce et outil de coupe pour usinage par enlèvement de copeaux rotatif
WO2014114518A1 (fr) * 2013-01-22 2014-07-31 Siemens Aktiengesellschaft Dispositif, systeme et procede comprenant une puce a ondes acoustiques de surface
DE102013010275C5 (de) * 2013-06-18 2016-09-15 Ika-Werke Gmbh & Co. Kg Magnetrührer mit SAW-Sensor
EP4009501A1 (fr) * 2020-12-02 2022-06-08 pro-micron GmbH Surveillance d'état d'un élément rotatif, notamment d'un rotor d'un moteur électrique

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2754669A1 (de) * 1977-03-28 1978-10-12 Hewlett Packard Co Messfuehler
GB2165411A (en) * 1984-10-09 1986-04-09 X Cyte Inc Surface acoustic wave passive transponder having amplitude and phase-modifying surface pads
WO1991000494A1 (fr) * 1989-06-28 1991-01-10 Tyren Carl Capteur
WO1991013832A2 (fr) * 1990-03-03 1991-09-19 Anthony Lonsdale Procede et appareil de mesure de deformation
WO1993013495A1 (fr) * 1992-01-03 1993-07-08 Siemens Aktiengesellschaft Capteur passif a ondes de surface pouvant etre interroge sans fil
DE4006885C2 (de) * 1989-04-05 1995-04-13 Siemens Ag Auswerteverfahren für einen Sensor zur Messung der Temperatur eines bewegten, vorzugsweise rotierenden Körpers, insbesondere einer rotierenden Bremsscheibe

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2754669A1 (de) * 1977-03-28 1978-10-12 Hewlett Packard Co Messfuehler
GB2165411A (en) * 1984-10-09 1986-04-09 X Cyte Inc Surface acoustic wave passive transponder having amplitude and phase-modifying surface pads
DE4006885C2 (de) * 1989-04-05 1995-04-13 Siemens Ag Auswerteverfahren für einen Sensor zur Messung der Temperatur eines bewegten, vorzugsweise rotierenden Körpers, insbesondere einer rotierenden Bremsscheibe
WO1991000494A1 (fr) * 1989-06-28 1991-01-10 Tyren Carl Capteur
WO1991013832A2 (fr) * 1990-03-03 1991-09-19 Anthony Lonsdale Procede et appareil de mesure de deformation
WO1993013495A1 (fr) * 1992-01-03 1993-07-08 Siemens Aktiengesellschaft Capteur passif a ondes de surface pouvant etre interroge sans fil

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0901881A3 (fr) * 1997-09-02 2001-10-17 OTTO BILZ Werkzeugfabrik GmbH & Co. Outil ou porte-outil
EP0901881A2 (fr) * 1997-09-02 1999-03-17 OTTO BILZ Werkzeugfabrik GmbH & Co. Outil ou porte-outil
EP1026492A2 (fr) * 1999-02-01 2000-08-09 Baumer Electric Ag Dispositif sans fil de mesure de couple et capteur pour ce dispositif
EP1026492A3 (fr) * 1999-02-01 2000-09-06 Baumer Electric Ag Dispositif sans fil de mesure de couple et capteur pour ce dispositif
US6964518B1 (en) 1999-03-26 2005-11-15 Kongsberg Maritime As Device and system for monitoring internal temperature of inaccessible or moving parts
WO2000062029A1 (fr) * 1999-03-26 2000-10-19 Sensit As Dispositif et systeme de surveillance de la temperature interne de pieces mobiles inaccessibles
EP1173737B1 (fr) 1999-03-26 2016-03-09 Kongsberg Maritime AS Dispositif et systeme de surveillance de la temperature interne de pieces mobiles inaccessibles
EP1173737B2 (fr) 1999-03-26 2019-05-08 Kongsberg Maritime AS Dispositif et système de surveillance de la temperature interne de pièces mobiles inaccessibles
EP1173737A1 (fr) 1999-03-26 2002-01-23 Sensit AS Dispositif et systeme de surveillance de la temperature interne de pieces mobiles inaccessibles
JP2002541472A (ja) * 1999-03-26 2002-12-03 センシット エーエス アクセス不能あるいは可動部品内の温度をモニターする装置およびシステム
WO2000065320A1 (fr) * 1999-04-27 2000-11-02 Transense Technologies Plc Dispositif a couche mince
WO2001033180A1 (fr) * 1999-11-01 2001-05-10 Transense Technologies Plc Mesure de couple
WO2001067058A1 (fr) * 2000-03-10 2001-09-13 Siemens Aktiengesellschaft Procede et dispositif permettant de mesurer un moment s'appliquant a un composant
WO2002029434A1 (fr) * 2000-10-04 2002-04-11 Siemens Aktiengesellschaft Procede et dispositif de mesure radio d'au moins un parametre resultant de la rotation d'un objet, en particulier d'un rotor
DE102004006358A1 (de) * 2004-02-09 2005-09-01 Voith Turbo Gmbh & Co. Kg Themperaturüberwachte hydrodynamische Maschine
US7254942B2 (en) 2004-02-09 2007-08-14 Voith Turbo Gmbh & Co. Kg Temperature-monitored hydrodynamic machine
DE102004006358B4 (de) * 2004-02-09 2012-11-15 Voith Turbo Gmbh & Co. Kg Themperaturüberwachte hydrodynamische Maschine
WO2006123085A1 (fr) * 2005-05-20 2006-11-23 Transense Technologies Plc Capteur de temperature et de couple saw
US7795779B2 (en) 2005-05-20 2010-09-14 Transense Technologies Plc Saw torque and temperature sensor
EP1798866A1 (fr) * 2005-12-19 2007-06-20 Siemens Aktiengesellschaft Machine rotative et utilisation de communication électrique du champ proche pour la transmission de signaux sans fil
DE102006057225A1 (de) * 2006-09-04 2008-03-06 Continental Teves Ag & Co. Ohg Sensoranordnung zur Erfassung des Drehmoments einer Welle
WO2010112139A1 (fr) 2009-03-30 2010-10-07 Sew-Eurodrive Gmbh & Co. Kg Moteur électrique
DE102011000054B4 (de) * 2011-01-07 2014-12-11 Deutsches Zentrum für Luft- und Raumfahrt e.V. Torsionssensor
DE102011000054A1 (de) * 2011-01-07 2012-07-12 Deutsches Zentrum für Luft- und Raumfahrt e.V. Torsionssensor
DE102011010153B4 (de) * 2011-02-02 2012-11-08 Voith Patent Gmbh Hydrodynamische Komponente
DE102011010153A1 (de) * 2011-02-02 2012-08-02 Voith Patent Gmbh Hydrodynamische Komponente
DE102011104286A1 (de) * 2011-06-16 2012-12-20 Leopold Kostal Gmbh & Co. Kg Torsionsmodul
EP2735400A1 (fr) * 2012-11-22 2014-05-28 Sandvik Intellectual Property AB Agencement permettant de commander le processus d'usinage d'enlèvement rotatif de copeaux d'une pièce et outil de coupe pour usinage par enlèvement de copeaux rotatif
US9498827B2 (en) 2012-11-22 2016-11-22 Sandvik Intellectual Property Ab Arrangement for controlling the process of rotary chip removing machining of a workpiece, and a cutting tool for rotary chip removing machining
WO2014114518A1 (fr) * 2013-01-22 2014-07-31 Siemens Aktiengesellschaft Dispositif, systeme et procede comprenant une puce a ondes acoustiques de surface
DE102013010275C5 (de) * 2013-06-18 2016-09-15 Ika-Werke Gmbh & Co. Kg Magnetrührer mit SAW-Sensor
EP4009501A1 (fr) * 2020-12-02 2022-06-08 pro-micron GmbH Surveillance d'état d'un élément rotatif, notamment d'un rotor d'un moteur électrique
WO2022117265A1 (fr) * 2020-12-02 2022-06-09 Pro-Micron Gmbh Surveillance d'état pour un élément rotatif d'un moteur ou d'une machine de travail, plus particulièrement pour le rotor d'un moteur électrique

Also Published As

Publication number Publication date
WO1997009596A3 (fr) 1997-04-24

Similar Documents

Publication Publication Date Title
WO1997009596A2 (fr) Procede et dispositif permettant de detecter des donnees d'exploitation sur des parties mobiles/rotatives d'un dispositif, notamment d'un moteur electrique
EP0619906B1 (fr) Capteur passif a ondes de surface pouvant etre interroge sans fil
DE69127074T2 (de) Vorrichtung und verfahren zur dynamischen drehmomentmessung
DE69512657T2 (de) Verfahren zum überwachen von turbinenschaufelschwingungen mittels mikrowellen
DE2906704A1 (de) Ultraschalltransponder
DE102007012494A1 (de) Verfahren und Vorrichtung für eine Maschinendrehmomenterfassung
WO2006015813A1 (fr) Procede permettant de determiner la force de pretension de composants de liaison par excitation par ultrasons
DE10124394A1 (de) Verfahren und Vorrichtung zum Liefern einer dynamischen Ultraschall-Messung der Parameter von Wälzelementlagern
WO2003014686A1 (fr) Mesure sans contact de contraintes sur des pieces rotatives
DE10023961B4 (de) System zur Messung physikalischer Größen bei einer Achse oder drehbaren Welle
EP2473818B1 (fr) Dispositif pour mesurer et/ou enregistrer des distances et des variations de distance et dispositif pour mesurer et/ou enregistrer des contraintes mécaniques
DE102004045199A1 (de) Messvorrichtung und Verfahren zur Bestimmung von Temperatur und/oder Druck und Verwendung der Messvorrichtung
WO1998053282A1 (fr) Interrupteur de limite de niveau de remplissage a oscillations et procede pour constater et/ou surveiller un niveau d'une substance dans un contenant
EP1212832A1 (fr) Systeme et procede de detection haute resolution
DE69207859T2 (de) Hochfrequenz akustisches Rheometer, und dieses Rheometer verwendende Vorrichtung zur Messung der Viskosität eines Fluides
EP1026492A2 (fr) Dispositif sans fil de mesure de couple et capteur pour ce dispositif
DE102018009199A1 (de) Verfahren zum Betrieb einer Messeinrichtung und Messeinrichtung
DE112018002734T5 (de) Objekterfassungssystem
EP1352220B1 (fr) Appareil de mesure de niveau de remplissage comportant un dispositif de couplage
WO2022122490A1 (fr) Système de capteur ultrasonore pour un véhicule à moteur et procédé de fonctionnement du système de capteur ultrasonore
EP3837512B1 (fr) Dispositif oscillant ultrasonore comprenant un capteur piézoélectrique
EP4038730A1 (fr) Surveillance d'état pour un élément rotatif d'un moteur ou d'une machine de travail, plus particulièrement pour le rotor d'un moteur électrique
EP2715714B1 (fr) Procédé et dispositif d'amortissement actif d'un transducteur acoustique
CH456191A (de) Verfahren zur Temperaturmessung und Einrichtung zur Ausführung des Verfahrens
DE60000351T2 (de) Verfahren und Vorrichtung zur Drehmomentmessung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CA CN JP KR RU US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA