WO1997009455A1 - Composition de brasage - Google Patents

Composition de brasage Download PDF

Info

Publication number
WO1997009455A1
WO1997009455A1 PCT/US1996/013720 US9613720W WO9709455A1 WO 1997009455 A1 WO1997009455 A1 WO 1997009455A1 US 9613720 W US9613720 W US 9613720W WO 9709455 A1 WO9709455 A1 WO 9709455A1
Authority
WO
WIPO (PCT)
Prior art keywords
tin
silver
copper
composition
indium
Prior art date
Application number
PCT/US1996/013720
Other languages
English (en)
Inventor
Thomas Tipton Hitch
Ashok Narayan Prabhu
Original Assignee
Sarnoff Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sarnoff Corporation filed Critical Sarnoff Corporation
Publication of WO1997009455A1 publication Critical patent/WO1997009455A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent

Definitions

  • the invention is directed to soldering alloys that are non-toxic, exhibit low melting temperatures, behave well in normal soldering applications such as, for example, hand soldering, wave soldering or paste reflow soldering, and impart useful long-term properties to the connections made with them.
  • Tin has a melting temperature of about 232° C, and is the primary ingredient ofthe inventive compositions. Tin readily wets a large number of other metals and forms a eutectic with many of these alloys.
  • a eutectic is a low melting temperature alloy of specific composition that changes from liquid to two or more solid phases at a precise single temperature rather than solidifying over a temperature span often referred to as a "pasty range".
  • tin can be an adequate solder when used alone, it suffers from two significant drawbacks. First, its melting temperature of 232°C is too high for many soldering applications, including routine electronic circuit assembly.
  • the binary alloy which forms the foundation for the inventive compositions is the well known tin-silver eutectic 96.5Sn-3.5Ag with a melting temperature of about 221°C. All compositions are given in percent by weight unless otherwise indicated. Copper is then added to this binary alloy to produce a nearly eutectic tin-silver-copper ternary alloy which is one of the inventive compositions and is the base for the remaining inventive compositions.
  • a preferred composition of this ternary alloy is 95.8Sn-3.5Ag- 0.67Cu with a solidus temperature of about 213°C and a liquidus temperature of about 218°C. Many solder compositions are known, but most have one or more poor properties.
  • alloys containing significant fractions of antimony have poor wetting characteristics and melting temperatures that are too high for many applications.
  • Zinc-tin eutectic solder has a favorable melting temperature of 199°C, but the zinc in the molten alloy oxidizes rapidly when contacted with air. Alloys having relatively low silver fractions have broad pasty ranges which, while suitable for many plumbing applications, are not useful in electronics applications, where a eutectic or nearly eutectic alloy is favorable.
  • Tin-based solders having significant bismuth contents generally have poor fatigue characteristics (relative to the standard tin-lead eutectic solder). Even the tin-lead eutectic solder has drawbacks apart from its toxicity. For example, the fatigue behavior of this alloy is inferior to most of the present non-bismuth containing inventive compositions.
  • inventive compositions have unusually good combinations of the most important solder properties — namely, wettability, fatigue life, cost and corrosion resistance. They also have demonstrated excellent strength
  • a soldering composition comprising by weight about 3.1-3.5% silver, 0.5-2.7% copper and the balance tin, having a preferred composition of about
  • a further soldering composition comprising by weight about 3.7-4.6% silver, 1.0-1.6% copper and the balance tin, having a preferred composition of about 4.5% silver, 1.5% copper and 94.0% tin.
  • a further soldering composition comprising by weight about 3.1- 6.5% silver, 0.25-0.8% copper and the balance tin, having a preferred composition of about 5.0% silver, 0.7% copper and 94.3% tin.
  • a further soldering composition comprising by weight about 1.5-7.0% silver, 0.4-1.4% copper, 0.5-6.0% indium and the balance tin, having a preferred composition of about 3.3% silver, 0.67% copper, 4.1% indium and 91.9% tin.
  • a further soldering composition comprising by weight about 0.1-6.0% silver, 0.1-0.4% copper, 0.1-2.0% antimony and the balance tin, having a preferred composition of about 5.0% silver, 0.4% copper, 0.3% antimony and 94.3% tin.
  • a further soldering composition comprising by weight about 3.0-5.2% silver, 0.4-2.7% copper, 0.4-2.6% zinc and the balance tin, having a preferred composition of about 3.6% silver, 0.67% copper, 1.1% zinc and 94.6% tin.
  • a further soldering composition comprising by weight about 1.4-7.1% silver, 0.5- 1.3% copper, 0.2-9.0% indium, 0.4-2.7% antimony and the balance tin, having a preferred composition of about 3.3% silver, 0.66% copper, 4.2% indium, 1.3% antimony and 90.5% tin.
  • a further soldering composition comprising by weight about OJ-10.0% silver, OJ-3.0% copper, 0.07-20.0% indium, 0.05-9.0% zinc and the balance tin, having a preferred composition of about 3.3% silver, 0.66% copper, 4.2% indium, 1.3% zinc and 90.5% tin.
  • a further soldering composition comprising by weight about 1.5-4.5% silver, 0.3-1.4% copper, 0.1- 10.0% indium, 0.01-0.5% antimony, 0.01-3.0% zinc and the balance tin, having a preferred composition of about 3.5% silver, 0.69% copper, 0.44% indium, 0.45% antimony, 0.11% zinc and 94.8% tin.
  • a further soldering composition comprising by weight about 0.2-7.4% silver, 0.2-1.4% copper, 0.02-8.0% indium, 0.02-10.0% bismuth and the balance tin, having a preferred composition of about 3.5% silver, 0.69% copper, 2.2% indium, 4.5% bismuth and 89.1% tin.
  • a further soldering composition comprising by weight about 3.1-7.4% silver, 0.2-1.4% copper, 0.02-2.5% antimony, 0.02-2.4% zinc and the balance tin, having a preferred composition of about 3.5% silver, 0.69% copper, 1.4% antimony, 1.1% zinc and 93.3% tin.
  • an aspect ofthe invention is a method for soldering comprising the step of employing a solder composition ofthe invention.
  • liquid flux was applied to a standard test strip (of copper, in this case).
  • the test strip was then fastened to a Multicore Universal Solderability Test (or "MUST") device commercially available from Multicore Solders of Richardson, Texas.
  • MUST Multicore Universal Solderability Test
  • a molten bath of the solder to be tested was then placed in a solder pot contained in the device and brought to a predetermined temperature.
  • An automatic test cycle ofthe device then began by raising the solder pot until electrical contact was made with the test strip, at which point the pot was raised an additional predetermined amount.
  • the apparent weight of the test strip was then measured as the solder lifted and then wet up on the test strip. The rate of wetting and the maximum weight of the solder applied to the strip indicate solderability.
  • Fatigue was measured using a test electronic circuit board containing multiple leads.
  • the solder to be measured was applied to the board to form one or more continuous circuits (referred to as "daisy chains") connecting the leads. As strain is applied to the board, the solder will accumulate fatigue until the circuit is broken.
  • Different methods used to apply strain to the board involved an isothermal bending test, in which the board was bent in different directions at high speed (approximately two cycles per minute) and uniform temperature, and a thermal cycling test, in which the board was more slowly cycled through hot and cold temperatures (approximately 80° C to -30° C) repeatedly.
  • Corrosion was tested using a conventional process in which the solder sample to be measured was formed into an electrode. Both this electrode and a standard calomel electrode were placed into a 0.04% ammonium chloride solution, and the potential between these two electrodes was then measured. A more positive potential for the electrode being tested indicates a more corrosion resistant solder sample.
  • alloys (l)-(3) generally contain a higher silver content than most existing tin-silver-based solders. This somewhat higher silver content results in a more nearly eutectic solder, desirable in electronic applications.
  • indium in alloy (4) improves the wetting behavior and lowers the melting temperature, with little impairment of fatigue life or corrosion resistance.
  • the addition of copper also lowers the melting temperature and helps strengthen the alloy.
  • alloy (5) suppresses the undesirable beta tin phase referred to above.
  • a higher silver content and the elimination of antimony and nickel distinguish alloy (6) from existing solders.
  • the removal of antimony softens the alloy but not to a significant degree, while the removal of nickel results in a better behaved alloy that is easier to manufacture.
  • indium in alloy (7) reduces the melting temperature and, because the indium and antimony levels are relatively low, improves the fatigue characteristics.
  • indium and zinc in alloy (8) lowers the melting temperature. Also, the addition of zinc, in place of indium, lowers the cost of the alloy.
  • indium in alloy (9) improves the wetting behavior and, with the antimony and zinc additions, all in limited amounts, improves fatigue life.
  • alloy (11) The higher silver content of alloy (11) distinguishes it from existing solders. As stated above, this higher silver content results in a more nearly eutectic solder that is desirable in electronic applications.
  • Each of the inventive compositions can be used in all the major modes of usage for electronic soldering (for example, hand soldering, wave soldering and paste reflow soldering).
  • Each of the inventive compositions can be made easily by melting pure tin and adding the remaining alloying elements. For quantities of up to about one kilogram, this can be done in a ceramic crucible or in borosilicate glass labware. The resulting compositions can be used as melted for wave soldering. For use in hand soldering, the resulting compositions generally are extruded to form a wire which can contain flux, if desired.
  • solder powders can be made using a variety of known techniques. One such technique involves atomizing molten solder with a burst of pressurized nitrogen, collecting the powders, separating into the desired size fraction, remelting the other size fractions, and repeating the process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

Les compositions décrites contiennent toutes une base étain-argent-cuivre. A cette base sont ajoutées des combinaisons variables d'indium, d'antimoine, de zinc et/ou de bismuth pour former des compositions de brasage présentant les propriétés recherchées. Sont également décrits des procédés de brasage à l'aide de ces compositions.
PCT/US1996/013720 1995-09-01 1996-08-29 Composition de brasage WO1997009455A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US52353195A 1995-09-01 1995-09-01
US08/523,531 1995-09-01

Publications (1)

Publication Number Publication Date
WO1997009455A1 true WO1997009455A1 (fr) 1997-03-13

Family

ID=24085407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1996/013720 WO1997009455A1 (fr) 1995-09-01 1996-08-29 Composition de brasage

Country Status (1)

Country Link
WO (1) WO1997009455A1 (fr)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999004048A1 (fr) * 1997-07-17 1999-01-28 Litton Systems, Inc. Soudures sans plomb a base d'etain-bismuth
US5938862A (en) * 1998-04-03 1999-08-17 Delco Electronics Corporation Fatigue-resistant lead-free alloy
US6176947B1 (en) 1998-12-31 2001-01-23 H-Technologies Group, Incorporated Lead-free solders
FR2797554A1 (fr) * 1999-08-12 2001-02-16 Valeo Electronique Procede d'assemblage de composants electroniques sur un support et dispositif electronique obtenu par ce procede
WO2001031074A1 (fr) * 1999-10-25 2001-05-03 Paolo Agostinelli Alliage de metaux pour connexions electriques a tension de contact nulle
EP1118413A1 (fr) * 1999-06-30 2001-07-25 Honda Giken Kogyo Kabushiki Kaisha Structure et procede d'assemblage d'elements metalliques
WO2001062433A1 (fr) * 2000-02-24 2001-08-30 Nihon Superior Sha Co., Ltd. Procede de regulation de la teneur en cuivre dans un bain d'immersion de brasage
EP1163971A1 (fr) * 2000-06-12 2001-12-19 Hitachi, Ltd. Dispositif électronique et dispositif semiconducteur
EP1180411A1 (fr) * 2000-08-17 2002-02-20 Senju Metal Industry Co., Ltd. Pâte excempt de plomb pour le soudage tendre par refusion
WO2002040213A1 (fr) * 2000-11-16 2002-05-23 Singapore Asahi Chemical And Solder Industries Pte. Ltd. Brasures sans plomb
EP1231015A1 (fr) * 2001-02-09 2002-08-14 Taiho Kogyo Co., Ltd. Soudure tendre sans plomb et joint soudé
WO2002063674A1 (fr) * 2001-02-08 2002-08-15 International Business Machines Corporation Structure de soudure sans plomb et procede permettant d'obtenir une grande duree de vie en fatigue
EP1249302A1 (fr) * 1999-11-18 2002-10-16 Nippon Steel Corporation Alliage de soudage, element electronique dote de globule et de bossage de soudure
JP2002307187A (ja) * 2001-02-09 2002-10-22 Taiho Kogyo Co Ltd 鉛フリーはんだ及びはんだ継手
WO2003006200A1 (fr) * 2001-07-09 2003-01-23 Quantum Chemical Technologies (S'pore) Pte Ltd. Ameliorations apportees ou reliees a des brasures
EP1344597A1 (fr) * 2002-03-15 2003-09-17 Delphi Technologies, Inc. Alliage de soudure tendre sans plomb et procédé de soudage à refusion
DE19816671C2 (de) * 1997-04-16 2003-09-18 Fuji Electric Co Ltd Verwendung von Legierungen als bleifreie Lötmittel-Legierungen
SG98429A1 (en) * 1999-10-12 2003-09-19 Singapore Asahi Chemical & Solder Ind Pte Ltd Lead-free solders
EP1382413A1 (fr) * 2002-07-09 2004-01-21 Senju Metal Industry Co., Ltd. Alliage de brasage sans plomb
US6896172B2 (en) 2000-08-22 2005-05-24 Senju Metal Industry Co., Ltd. Lead-free solder paste for reflow soldering
US7145236B2 (en) * 2000-06-12 2006-12-05 Renesas Technology Corp. Semiconductor device having solder bumps reliably reflow solderable
CZ297596B6 (cs) * 2005-10-19 2007-01-10 JenĂ­k@Jan Bezolovnatá pájka
US7472817B2 (en) 2004-10-27 2009-01-06 Quantum Chemical Technologies (Singapore) Pte. Ltd Solders
WO2009011392A1 (fr) * 2007-07-18 2009-01-22 Senju Metal Industry Co., Ltd. Brasure sans plomb en contenant pour circuit électronique embarqué
GB2455486A (en) * 2008-03-05 2009-06-17 Quantum Chem Tech Singapore A sputtered film, solder spheres and solder paste formed from an Sn-Ag-Cu-In alloy
WO2010122764A1 (fr) * 2009-04-20 2010-10-28 パナソニック株式会社 Matériau de soudure et ensemble composant électronique
EP2671667A1 (fr) * 2012-06-08 2013-12-11 Nihon Almit Co., Ltd. Pâte de brasage pour liaison de microcomposants
JP2014065065A (ja) * 2012-09-26 2014-04-17 Tamura Seisakusho Co Ltd 無鉛はんだ合金、ソルダーペースト組成物及びプリント配線板
US9199340B2 (en) 2013-11-27 2015-12-01 Panasonic Intellectual Property Management Co., Ltd. Solder material and bonded structure
WO2016179358A1 (fr) * 2015-05-05 2016-11-10 Indium Corporation Alliages de soudure sans plomb de haute fiabilité pour applications électroniques en environnements difficiles
EP3031567A4 (fr) * 2013-08-05 2017-04-19 Senju Metal Industry Co., Ltd Alliage de soudure sans plomb
CN106715040A (zh) * 2015-05-19 2017-05-24 松下知识产权经营株式会社 焊料合金以及使用其的安装结构体
CN107635716A (zh) * 2015-05-05 2018-01-26 铟泰公司 用于严苛环境电子器件应用的高可靠性无铅焊料合金
CN107984118A (zh) * 2017-12-18 2018-05-04 苏州铜宝锐新材料有限公司 一种铜焊膏的制备方法
CN108098183A (zh) * 2017-12-18 2018-06-01 苏州铜宝锐新材料有限公司 一种铜焊膏
CN108115305A (zh) * 2017-12-18 2018-06-05 苏州铜宝锐新材料有限公司 一种低熔点钎焊材料
CN108115311A (zh) * 2017-12-18 2018-06-05 苏州铜宝锐新材料有限公司 一种低熔点钎焊材料的制备方法
WO2018164171A1 (fr) * 2017-03-10 2018-09-13 株式会社タムラ製作所 Alliage de soudage sans plomb, pâte à souder, et carte de circuit électronique
WO2018186218A1 (fr) 2017-04-07 2018-10-11 株式会社ケーヒン Matériau de brasure
JP2020049543A (ja) * 2018-09-28 2020-04-02 株式会社ケーヒン はんだ材料
CN111673312A (zh) * 2020-05-29 2020-09-18 西安理工大学 一种电子封装用Sn-Ag-Cu系无铅焊料及其制备方法
US20220088720A1 (en) * 2020-09-21 2022-03-24 Aptiv Technologies Limited Lead-free solder composition
CN114367762A (zh) * 2020-06-11 2022-04-19 中山翰华锡业有限公司 焊料合金粉、低介质损耗高可靠性焊锡膏及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1437641A (en) * 1919-09-11 1922-12-05 Pfyffer Solder for aluminum and its alloys
DE2054542A1 (en) * 1970-11-05 1972-05-10 Siemens Ag Tin-rich brazing alloy - for joining thermocouple members
US4643875A (en) * 1985-07-24 1987-02-17 Gte Products Corporation Tin based ductile brazing alloys
US4695428A (en) * 1986-08-21 1987-09-22 J. W. Harris Company Solder composition
US4797328A (en) * 1986-02-19 1989-01-10 Degussa Aktiengesellschaft Soft-solder alloy for bonding ceramic articles
JPH0550286A (ja) * 1991-07-08 1993-03-02 Senju Metal Ind Co Ltd 高温はんだ
US5393489A (en) * 1993-06-16 1995-02-28 International Business Machines Corporation High temperature, lead-free, tin based solder composition
US5405577A (en) * 1993-04-29 1995-04-11 Seelig; Karl F. Lead-free and bismuth-free tin alloy solder composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1437641A (en) * 1919-09-11 1922-12-05 Pfyffer Solder for aluminum and its alloys
DE2054542A1 (en) * 1970-11-05 1972-05-10 Siemens Ag Tin-rich brazing alloy - for joining thermocouple members
US4643875A (en) * 1985-07-24 1987-02-17 Gte Products Corporation Tin based ductile brazing alloys
US4797328A (en) * 1986-02-19 1989-01-10 Degussa Aktiengesellschaft Soft-solder alloy for bonding ceramic articles
US4695428A (en) * 1986-08-21 1987-09-22 J. W. Harris Company Solder composition
JPH0550286A (ja) * 1991-07-08 1993-03-02 Senju Metal Ind Co Ltd 高温はんだ
US5405577A (en) * 1993-04-29 1995-04-11 Seelig; Karl F. Lead-free and bismuth-free tin alloy solder composition
US5393489A (en) * 1993-06-16 1995-02-28 International Business Machines Corporation High temperature, lead-free, tin based solder composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPIDS, AN 93-112315; & JP,A,05 050 286, (MATSUSHITA ELEC. IND. CO. LTD.). *

Cited By (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19816671C2 (de) * 1997-04-16 2003-09-18 Fuji Electric Co Ltd Verwendung von Legierungen als bleifreie Lötmittel-Legierungen
WO1999004048A1 (fr) * 1997-07-17 1999-01-28 Litton Systems, Inc. Soudures sans plomb a base d'etain-bismuth
US5938862A (en) * 1998-04-03 1999-08-17 Delco Electronics Corporation Fatigue-resistant lead-free alloy
US6176947B1 (en) 1998-12-31 2001-01-23 H-Technologies Group, Incorporated Lead-free solders
EP1118413A1 (fr) * 1999-06-30 2001-07-25 Honda Giken Kogyo Kabushiki Kaisha Structure et procede d'assemblage d'elements metalliques
EP1118413A4 (fr) * 1999-06-30 2005-09-28 Honda Motor Co Ltd Structure et procede d'assemblage d'elements metalliques
WO2001013687A1 (fr) * 1999-08-12 2001-02-22 Valeo Electronique Procede d'assemblage de composants electroniques sur un support et dispositif obtenu par ce procede
FR2797554A1 (fr) * 1999-08-12 2001-02-16 Valeo Electronique Procede d'assemblage de composants electroniques sur un support et dispositif electronique obtenu par ce procede
SG98429A1 (en) * 1999-10-12 2003-09-19 Singapore Asahi Chemical & Solder Ind Pte Ltd Lead-free solders
WO2001031074A1 (fr) * 1999-10-25 2001-05-03 Paolo Agostinelli Alliage de metaux pour connexions electriques a tension de contact nulle
EP1249302A1 (fr) * 1999-11-18 2002-10-16 Nippon Steel Corporation Alliage de soudage, element electronique dote de globule et de bossage de soudure
EP1249302A4 (fr) * 1999-11-18 2004-10-20 Nippon Steel Corp Alliage de soudage, element electronique dote de globule et de bossage de soudure
WO2001062433A1 (fr) * 2000-02-24 2001-08-30 Nihon Superior Sha Co., Ltd. Procede de regulation de la teneur en cuivre dans un bain d'immersion de brasage
KR100852403B1 (ko) * 2000-02-24 2008-08-14 니혼 슈페리어 샤 가부시키 가이샤 땜납 침지조 내의 구리 함량을 제어하는 방법
EP1163971A1 (fr) * 2000-06-12 2001-12-19 Hitachi, Ltd. Dispositif électronique et dispositif semiconducteur
US7145236B2 (en) * 2000-06-12 2006-12-05 Renesas Technology Corp. Semiconductor device having solder bumps reliably reflow solderable
US6774490B2 (en) 2000-06-12 2004-08-10 Hitachi, Ltd. Electronic device
US6555052B2 (en) 2000-06-12 2003-04-29 Hitachi, Ltd. Electron device and semiconductor device
EP1180411A1 (fr) * 2000-08-17 2002-02-20 Senju Metal Industry Co., Ltd. Pâte excempt de plomb pour le soudage tendre par refusion
US6896172B2 (en) 2000-08-22 2005-05-24 Senju Metal Industry Co., Ltd. Lead-free solder paste for reflow soldering
WO2002040213A1 (fr) * 2000-11-16 2002-05-23 Singapore Asahi Chemical And Solder Industries Pte. Ltd. Brasures sans plomb
CZ297089B6 (cs) * 2000-11-16 2006-09-13 Singapore Asahi Chemical And Solder Industries Pte. Ltd. Bezolovnatá pájecí slitina
CN1331204C (zh) * 2001-02-08 2007-08-08 国际商业机器公司 用于高疲劳寿命无铅焊料的结构及方法
US6784086B2 (en) 2001-02-08 2004-08-31 International Business Machines Corporation Lead-free solder structure and method for high fatigue life
WO2002063674A1 (fr) * 2001-02-08 2002-08-15 International Business Machines Corporation Structure de soudure sans plomb et procede permettant d'obtenir une grande duree de vie en fatigue
JP2002307187A (ja) * 2001-02-09 2002-10-22 Taiho Kogyo Co Ltd 鉛フリーはんだ及びはんだ継手
US6689488B2 (en) 2001-02-09 2004-02-10 Taiho Kogyo Co., Ltd. Lead-free solder and solder joint
EP1231015A1 (fr) * 2001-02-09 2002-08-14 Taiho Kogyo Co., Ltd. Soudure tendre sans plomb et joint soudé
NO337878B1 (no) * 2001-07-09 2016-07-04 Singapore Asahi Chemical & Solder Ind Pte Ltd Hovedsakelig blyfritt loddemetall, fremgangsmåte for preparering derav samt anvendelse av nevnte loddemetall
US6843862B2 (en) * 2001-07-09 2005-01-18 Quantum Chemical Technologies (Singapore) Pte Ltd Solders
WO2003006200A1 (fr) * 2001-07-09 2003-01-23 Quantum Chemical Technologies (S'pore) Pte Ltd. Ameliorations apportees ou reliees a des brasures
CZ303793B6 (cs) * 2001-07-09 2013-05-09 Quantum Chemical Technologies (S'pore) Pte Ltd. Bezolovnatá pájka, zpusob její prípravy a zpusob pájení
AU2002226534B2 (en) * 2001-07-09 2006-11-09 Quantum Chemical Technologies (S'pore) Pte Ltd. Improvements in or relating to solders
US6767411B2 (en) 2002-03-15 2004-07-27 Delphi Technologies, Inc. Lead-free solder alloy and solder reflow process
EP1344597A1 (fr) * 2002-03-15 2003-09-17 Delphi Technologies, Inc. Alliage de soudure tendre sans plomb et procédé de soudage à refusion
EP1382413A1 (fr) * 2002-07-09 2004-01-21 Senju Metal Industry Co., Ltd. Alliage de brasage sans plomb
US7029542B2 (en) 2002-07-09 2006-04-18 Senju Metal Industry Co., Ltd. Lead-free solder alloy
US7472817B2 (en) 2004-10-27 2009-01-06 Quantum Chemical Technologies (Singapore) Pte. Ltd Solders
CZ297596B6 (cs) * 2005-10-19 2007-01-10 JenĂ­k@Jan Bezolovnatá pájka
KR101167549B1 (ko) 2007-07-18 2012-07-20 센주긴조쿠고교 가부시키가이샤 차재 전자 회로용 In 함유 무납 땜납
US8888932B2 (en) 2007-07-18 2014-11-18 Senju Metal Industry Co., Ltd. Indium-containing lead-free solder for vehicle-mounted electronic circuits
JP4962570B2 (ja) * 2007-07-18 2012-06-27 千住金属工業株式会社 車載電子回路用In入り鉛フリーはんだ
CN101801589B (zh) * 2007-07-18 2013-05-15 千住金属工业株式会社 车载电子电路用In掺入无铅焊料
WO2009011392A1 (fr) * 2007-07-18 2009-01-22 Senju Metal Industry Co., Ltd. Brasure sans plomb en contenant pour circuit électronique embarqué
GB2455486A (en) * 2008-03-05 2009-06-17 Quantum Chem Tech Singapore A sputtered film, solder spheres and solder paste formed from an Sn-Ag-Cu-In alloy
JP5280520B2 (ja) * 2009-04-20 2013-09-04 パナソニック株式会社 はんだ材料および電子部品接合体
US8598464B2 (en) 2009-04-20 2013-12-03 Panasonic Corporation Soldering material and electronic component assembly
WO2010122764A1 (fr) * 2009-04-20 2010-10-28 パナソニック株式会社 Matériau de soudure et ensemble composant électronique
EP2671667A1 (fr) * 2012-06-08 2013-12-11 Nihon Almit Co., Ltd. Pâte de brasage pour liaison de microcomposants
JP2013252548A (ja) * 2012-06-08 2013-12-19 Nihon Almit Co Ltd 微細部品接合用のソルダペースト
JP2014065065A (ja) * 2012-09-26 2014-04-17 Tamura Seisakusho Co Ltd 無鉛はんだ合金、ソルダーペースト組成物及びプリント配線板
US10076808B2 (en) 2013-08-05 2018-09-18 Senju Metal Industry Co., Ltd. Lead-free solder alloy
EP3031567A4 (fr) * 2013-08-05 2017-04-19 Senju Metal Industry Co., Ltd Alliage de soudure sans plomb
TWI648408B (zh) * 2013-08-05 2019-01-21 日商千住金屬工業股份有限公司 Lead-free solder alloy
US9199340B2 (en) 2013-11-27 2015-12-01 Panasonic Intellectual Property Management Co., Ltd. Solder material and bonded structure
US9789569B2 (en) 2013-11-27 2017-10-17 Panasonic Intellectual Property Managment Co., Ltd. Solder material and bonded structure
EP3838473A1 (fr) * 2015-05-05 2021-06-23 Indium Corporation Alliages de soudure sans plomb de haute fiabilité pour applications électroniques en environnements difficiles
US11229979B2 (en) 2015-05-05 2022-01-25 Indium Corporation High reliability lead-free solder alloys for harsh environment electronics applications
US11413709B2 (en) 2015-05-05 2022-08-16 Indium Corporation High reliability lead-free solder alloys for harsh environment electronics applications
CN113146093A (zh) * 2015-05-05 2021-07-23 铟泰公司 用于严苛环境电子器件应用的高可靠性无铅焊料合金
WO2016179358A1 (fr) * 2015-05-05 2016-11-10 Indium Corporation Alliages de soudure sans plomb de haute fiabilité pour applications électroniques en environnements difficiles
CN107635716A (zh) * 2015-05-05 2018-01-26 铟泰公司 用于严苛环境电子器件应用的高可靠性无铅焊料合金
CN106715040A (zh) * 2015-05-19 2017-05-24 松下知识产权经营株式会社 焊料合金以及使用其的安装结构体
CN106715040B (zh) * 2015-05-19 2019-09-24 松下知识产权经营株式会社 焊料合金以及使用其的安装结构体
WO2018164171A1 (fr) * 2017-03-10 2018-09-13 株式会社タムラ製作所 Alliage de soudage sans plomb, pâte à souder, et carte de circuit électronique
WO2018186218A1 (fr) 2017-04-07 2018-10-11 株式会社ケーヒン Matériau de brasure
CN108115311A (zh) * 2017-12-18 2018-06-05 苏州铜宝锐新材料有限公司 一种低熔点钎焊材料的制备方法
CN108098183A (zh) * 2017-12-18 2018-06-01 苏州铜宝锐新材料有限公司 一种铜焊膏
CN107984118A (zh) * 2017-12-18 2018-05-04 苏州铜宝锐新材料有限公司 一种铜焊膏的制备方法
CN108115305A (zh) * 2017-12-18 2018-06-05 苏州铜宝锐新材料有限公司 一种低熔点钎焊材料
JP2020049543A (ja) * 2018-09-28 2020-04-02 株式会社ケーヒン はんだ材料
CN112334268A (zh) * 2018-09-28 2021-02-05 株式会社京浜 焊接材料
WO2020066164A1 (fr) * 2018-09-28 2020-04-02 株式会社ケーヒン Matériau de brasure
CN111673312A (zh) * 2020-05-29 2020-09-18 西安理工大学 一种电子封装用Sn-Ag-Cu系无铅焊料及其制备方法
CN111673312B (zh) * 2020-05-29 2022-02-22 西安理工大学 一种电子封装用Sn-Ag-Cu系无铅焊料及其制备方法
CN114367762A (zh) * 2020-06-11 2022-04-19 中山翰华锡业有限公司 焊料合金粉、低介质损耗高可靠性焊锡膏及其制备方法
CN114367762B (zh) * 2020-06-11 2023-08-18 中山翰华锡业有限公司 焊料合金粉、低介质损耗高可靠性焊锡膏及其制备方法
US20220088720A1 (en) * 2020-09-21 2022-03-24 Aptiv Technologies Limited Lead-free solder composition
US11383330B2 (en) * 2020-09-21 2022-07-12 Aptiv Technologies Limited Lead-free solder composition
US11738412B2 (en) 2020-09-21 2023-08-29 Aptiv Technologies Limited Lead-free solder composition

Similar Documents

Publication Publication Date Title
WO1997009455A1 (fr) Composition de brasage
EP1043112B1 (fr) Brasure sans plomb
EP0847829B1 (fr) Composition pour soudure tendre sans plomb
EP0985486B1 (fr) Soudure sans plomb
US6156132A (en) Solder alloys
Glazer Microstructure and mechanical properties of Pb-free solder alloys for low-cost electronic assembly: a review
CN101208173B (zh) 无铅焊膏及其制法
CN100534699C (zh) 无铅焊料合金
JP5320556B2 (ja) Sn、AgおよびCuからなるはんだ物質
US5985212A (en) High strength lead-free solder materials
CA2340393A1 (fr) Soudure sans plomb
JP3363393B2 (ja) 鉛フリーはんだ合金
JPH0970687A (ja) 無鉛はんだ合金
WO1998034755A1 (fr) Soudure sans plomb
US5755896A (en) Low temperature lead-free solder compositions
EP1598142A1 (fr) Alliage de soudure tendre sans plomb et procédé pour sa préparation
WO2006122240A2 (fr) Compositions de brasure a base d'alliage d'etain
KR950031361A (ko) 개선된 땜납 페이스트 혼합물
US5308578A (en) Fatigue resistant lead-tin eutectic solder
US5871690A (en) Low-temperature solder compositions
Bradley et al. Characterization of the melting and wetting of Sn-Ag-X solders
WO1999004048A1 (fr) Soudures sans plomb a base d'etain-bismuth
CN101733575A (zh) 一种低成本锡锌铋铜无铅焊料及其焊点
JP3346848B2 (ja) 無鉛はんだ合金
US6936219B2 (en) Lead-free alloy

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR MX

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase