WO1997005262A1 - Arzneimittel enthaltend wenigstens einen teil des ul84-proteins des cytomegalovirus, verwendung von polypeptiden entsprechend der aminosäuresequenz des ul84-proteins und verfahren zur einführung von ul84 in zielzellen - Google Patents

Arzneimittel enthaltend wenigstens einen teil des ul84-proteins des cytomegalovirus, verwendung von polypeptiden entsprechend der aminosäuresequenz des ul84-proteins und verfahren zur einführung von ul84 in zielzellen Download PDF

Info

Publication number
WO1997005262A1
WO1997005262A1 PCT/EP1996/001428 EP9601428W WO9705262A1 WO 1997005262 A1 WO1997005262 A1 WO 1997005262A1 EP 9601428 W EP9601428 W EP 9601428W WO 9705262 A1 WO9705262 A1 WO 9705262A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
cells
hcmv
expression
amino acid
Prior art date
Application number
PCT/EP1996/001428
Other languages
English (en)
French (fr)
Inventor
Thomas Stamminger
Bodo Plachter
Original Assignee
Chiron Behring Gmbh & Co.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiron Behring Gmbh & Co. filed Critical Chiron Behring Gmbh & Co.
Priority to DE59611330T priority Critical patent/DE59611330D1/de
Priority to EP96909160A priority patent/EP0840794B1/de
Priority to AU52762/96A priority patent/AU5276296A/en
Publication of WO1997005262A1 publication Critical patent/WO1997005262A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/245Herpetoviridae, e.g. herpes simplex virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16111Cytomegalovirus, e.g. human herpesvirus 5
    • C12N2710/16122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16111Cytomegalovirus, e.g. human herpesvirus 5
    • C12N2710/16134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Definitions

  • the present invention relates to medicaments containing at least one polypeptide or protein which, in terms of the amino acid sequence, at least partially corresponds to the UL84 protein of the human cytomegalovirus.
  • These polypeptides can be used to inhibit the proliferation of human cytomegaloviruses (hereinafter HCMV for short), either the polypeptides being administered in the usual way or the genes coding for these polypeptides being introduced into the target cells with the aid of suitable vectors and being expressed there .
  • HCMV human cytomegalovirus
  • HCMV causes a clinical picture similar to infectious mononucleosis, but otherwise healthy people rarely suffer from an HCMV-induced disease.
  • Certain risk groups such as newborns and especially immunosuppressed patients, as well as transplant recipients can be at risk from HCMV infections.
  • Diseases such as sepsis, pneumonia, colitis or retinitis can lead to life-threatening or blindness. These complications occur especially after organ transplants, with HIV infections, with cytostatics therapy and in newborns after prenatal infection.
  • HCMV infection The clinical manifestations of HCMV infection are very diverse. On the one hand, a generalized infection in the sense of sepsis can occur, but the disease process is often concentrated on an organ system, so that localized therapeutic treatment is desirable.
  • polypeptides are used which intervene in the genetic regulation of the cytomegalovirus.
  • immediate early very early
  • early early
  • late late
  • immediate early proteins proteins that can be classified immunologically.
  • Some of these immediate early proteins have a transactivator function, so they can activate other viral promoters and thus initiate the next phase of viral gene expression, i.e. the early or early phase.
  • some of these immediate early proteins also modify cellular gene expression and can influence heterologous viral promoters.
  • the IE2 protein which has a molecular mass of 86 kDa, and is also essential in the literature for activation of early viral promoters is referred to as IE86, IE80 or IE2-86.
  • the IE86 protein is necessary for the stimulation of early gene expression, while other IE proteins can have an additional, reinforcing effect.
  • the UL84 protein inhibits the transactivating function of IE86 and on the other hand enhances the negative regulation of the IE1 / 2 enhancer / promoter mediated by IE86.
  • expression of the UL84 protein inhibits virus multiplication during the immediate early phase of the replication cycle of HCMV.
  • the interaction of the IE86 protein with the virally encoded UL84 protein could be clarified.
  • a eukaryotic expression vector was first constructed, which expressed the HCMV UL84 protein fused with an antigenic peptide (FLAG - epitope). This allowed the protein to be detected immunologically using a monoclonal antibody directed against the FLAG epitope.
  • COS7 cells were cotransfected on the one hand with this UL84 expression vector and on the other hand with a vector which expressed the IE86 protein.
  • a subsequent immunoprecipitation analysis showed that UL84, independent of other viral proteins, can have a stable interaction with 1E86. This was also confirmed by an in vitro test approach, a so-called "pull down" analysis.
  • reporter constructs that expressed luciferase under the control of various homologous and heterologous promoters were used together with the UL84 and / or IE86 expression plasmids in cotransfection experiments. These experiments gave the surprising finding that the UL84 protein inhibited the IE86-mediated transactivation very strongly and in a dose-dependent manner, while on its own it did not influence the promoters examined. This could be demonstrated both for the promoter of the human immunodeficiency virus and for an early viral promoter of the HCMV, namely the UL112 promoter.
  • the gene coding for the UL84 protein can also be brought into the cells with the aid of a vector and expressed there. Such vectors then contain at least part of the gene coding for UL84.
  • the present invention therefore relates to medicaments which have a polypeptide which comprise at least part of the amino acid sequence of the protein UL84 of the cytomegalovirus or a polypeptide which is homologous thereto, with a homology of at least 80%.
  • These drugs preferably have a polypeptide, the amino acid sequence of which at least partially corresponds to the UL84 protein, this amino acid sequence being shown in FIG. 1.
  • the pharmaceutical preparations according to the invention preferably have polypeptides whose amino acid sequence corresponds at least to the N-terminal region of the UL84 protein. In a particularly preferred embodiment, at least the 180 N-terminal amino acids of the UL84 protein are included.
  • the pharmaceutical preparations according to the invention are preferably used to treat an infection of human cytomegalovirus.
  • polypeptides used according to the invention which comprise at least part of the amino acid sequence of the UL84 protein of the human cytomegalovirus, or nucleic acids coding therefor, can be used for the therapy or prophylaxis of an infection of human cytomegalovirus.
  • the polypeptides used according to the invention or the nucleic acids coding therefor can be used in processes in which a gene coding for at least part of the UL84 protein is introduced into the desired target cells with the aid of suitable vectors and then the UL84 protein is expressed in this cell.
  • Such methods serve to prevent the multiplication of human cytomegaloviruses.
  • the medicaments used in the context of the present invention can be those which are formulated using conventional methods. It is important that the polypeptide reaches the target cells in unchanged form and can then penetrate into the target cells. If oral administration forms are selected, it must be ensured that the medicinal product can survive the gastrointestinal passage unchanged.
  • the UL84 protein is known per se because both the nucleic acid and the amino acid sequence have been pre-published.
  • Figure 1 shows the nucleic acid and amino acid sequence of UL84.
  • the UL84 protein used according to the invention is a viral protein
  • the present invention also includes polypeptides homologous to UL84. Homology represents a degree of agreement between two protein sequences. For example, 50% homology means that 50 out of 100 amino acid positions in the sequence match.
  • the invention also encompasses those proteins which are at least 80% homologous to the pUL84 protein. This means that 8 out of 10 amino acids match in the comparable sequences.
  • the medicaments according to the invention comprise at least this N-terminal region, with at least about 180 terminal amino acids of the UL84- Protein should be present.
  • the polypeptide for therapy, but rather the gene or partial gene coding for the UL84 protein.
  • the gene is brought into the desired target cells with an expression vector and the UL84 protein or partial polypeptide is then expressed in the cells. This can be used on the one hand for the therapy of existing HCMV infections and on the other hand for the prophylaxis against impending HCMV infections.
  • Figure 1 shows the nucleic acid and deduced amino acid sequence of the open reading frame for UL84 of the human cytomegalovirus, strain AD169.
  • Figure 2 shows a schematic representation of the eukaryotic expression plasmid pcDNA-UL84.
  • Figure 3 shows the detection of an interaction of pUL84 and EI86 independent of other viral proteins by immunoprecipitation and "pull down" analysis.
  • A) COS-7 cells were either mock-transfected or transfected with the expression plasmids pHM121 (IE86) and / or pcDNAUL84. After radioactive labeling of cell proteins, cell lysates were produced and examined by immunoprecipitation with the IE86-specific, monoclonal antibody 2.9.5.
  • M size marker
  • Lane 1 lysate from mock-transfected cells
  • Lane 2 lysate from cells transfected with pHM121
  • Lane 3 lysate from cells transfected with pHM121 and pcDNAUL84.
  • TBP, IE1 and UL84 proteins were radiolabelled by in v / fro translation and then incubated with either a GST-IE1 or GST-IE2 fusion protein. After extensive washing of the agarose-coupled GST proteins, bound proteins were denatured by heating to 95% and analyzed by SDS-PAGE.
  • M size marker; Lanes 1-3 found in v / fro-translated TBP, IE1 and UL84 proteins used for the binding reaction; Lanes 4-6, TBP, IE1 and UL84 after incubation with GST-IE1; Lanes 7-9, TBP, IE1 and UL84 after binding to GST-IE2.
  • Figure 4 shows the influence of UL84 on the IE2-mediated transactivation of homologous and heterologous viral promoters.
  • U373 cells were co-transfected with reporter plasmids containing various promoters above luciferase and expression plasmids for IE86 (pHM134), pUL84 ( ⁇ cDNAUL84) or the HIV tat protein (pCT21). After 48 hours, the cells were lysed and the luciferase activity was determined. The figure shows the activation (as x-fold activation) after cotransfection of various expression plasmids relative to the basic activity of the promoter (activity of the promoter after cotransfection of the cloning vector pcDNA3). A) 3 ⁇ g of an HIV promoter luciferase construct were used as reporter plasmid.
  • Figure 5 shows the inhibition of HCMV replication after transient expression of pUL84.
  • U373 cells were transfected with the expression plasmid pcDNAUL84 and infected with HCMV.
  • the expression of pUL84 and the early viral antigen pUL69 was then examined by double immunofluorescence analysis using a confocal laser microscope. This showed that pUL69 was never simultaneously synthesized in cells expressing pUL84.
  • C Superimposition of Figures A and B.
  • Figure 6 shows the inhibition of early viral gene expression after stable expression of pUL84.
  • U373 cell lines have been established that stably express pUL84. These cell lines were infected with HCMV and then protein expression was analyzed by indirect immunofluorescence.
  • a to E cell line IXB1
  • B to F cell line DC1
  • B to F cell line DC1
  • pcDNA3 did not express pUL84.
  • a and B detection of pUL84 using the M2 monoclonal antibody
  • C and D detection of immediate early antigen using a monoclonal antibody against the IE1 protein
  • E and F detection of early antigen using an antiserum against the UL69 protein.
  • Figure 7 shows the inhibition of HCMV replication after stable expression of UL84.
  • U373 cells that were either UL84 negative (A to C) or stably expressed pUL84 (D to F) were mock-infected (A and D) or HCMV with an M.O.I. infected by 2 (B, C, E, F).
  • B and E show the cytopathogenic effect after 5 days of infection, C and F after 23 days of infection.
  • Figure 8 shows the inhibition of virus multiplication after infection of UL84-expressing cell lines with HCMV.
  • the UL84-negative cell line pRcCMVDCI and the UL84-positive lines UL84IXC5 and UL84IXB6 were infected with HCMV with an MOI of 0.1. At various times after infection (0, 3, 4, 7, 10 and 12 days), cell culture supernatant was removed and a virus titration was carried out by determining the 'Tissue Culture Infectious Dose' (TCID50).
  • UL84 (Fig. 1) were amplified using primers UL845 '(TAAGAATTCATGCCACGCGTCGACCCCAACCTTCGGAAT) and UL843' (TAATCTAGATCCCTAGGTACCTTCGAGATCGCCGCAGACCATGGCTAAAGTGA C) using the polymerase chain reaction and the encoded in the primers EcoRI and Xba ⁇ Interfaces cloned into the vector pSG424 (Sadowski, I. and M. Ptashne, 1989, A vector for expressing GAL4 (1-147) fusions in mammalian cells, Nucleic. Acids. Research 17: 7539).
  • the expression cassette consisting of the coding region for pUL84 :: FLAG was then cloned into the vector pcDNA3 (FIG. 2) by cleavage with EcoRI and Xbal.
  • the resulting plasmid pcDNAUL84 was used for the further experiments.
  • COS7 cells were either only with the IE86 expression plasmid pHM121 (Plachter et al. (1993) Analysis of proteins encoded by lE -regions 1 and 2 of human cytomegalovirus using monoclonal antibodies generated against recombinant antigens, Virology 193: 642-652) or transfected with a combination of pHM121 and pcDNAUL84.
  • the transfection was carried out using the DEAE dextran method using 10 ⁇ g vector DNA each (Winkler et al.
  • the cells were detached from the cell culture dish, sedimented and resuspended and incubated for 1 hour in 1 ml of a buffer lysed from 50 mM Tris / HCl, pH 8.0, 5 mM EDTA, 150 mM NaCl, 0.5% NP-40, 1 mM PMSF and 20 mg / ml aprotinin. 250 ⁇ l each of the lysate were treated with protein for 3 h at 4 ° C. -A-Sepharose (Sigma, Deisenhofen) and then centrifuged at 4000 rpm to remove nonspecifically adsorbing substances The IE86-specific monoclonal antibody 2.9.5 (Plachter et al.
  • the TATA-binding protein TBP, the IE1 protein of the HCMV and the UL84 protein were radiolabelled using the TNT system (Promega, Heidelberg) by in w ⁇ ro-translation with the addition of 35 S-methionine.
  • the GST fusion proteins (100 ng each, coupled to glutathione agarose) were placed in 200 ml of ELB buffer (125 mM NaCl, 50 mM HEPES, pH 7.0, 0.1% NP-40, 1 mM PMSF, 0.5 mM DTT) for 10 min , 0.5 mM EDTA) with 1 mg / ml bovine serum albumin. Then 5 ⁇ l each of the test proteins translated into w ' fro were added.
  • pUL84 can thus interact with the IE2 protein regardless of post-translational modifications. Further pull-down experiments with carboxy-terminated UL84 proteins showed that a deletion mutant, which had been produced by cleavage with Pvu ⁇ , still bound efficiently to GST-IE2. An interaction domain of pUL84 is therefore located in the amino-terminal 180 amino acids (AS) of the protein comprising a total of 586 AS.
  • the IE86 protein is a strong transactivator of homologous and heterologous promoters and is essential in this function for the initiation of the early phase of viral gene expression.
  • transient expression analyzes were carried out under Use of the U373 MG cell line permissive for HCMV performed.
  • the reporter used the luciferase gene, in front of which various promoters, such as the human immunodeficiency virus (HIV promoter) promoter, were the early
  • the UL112 promoter of the HCMV or the IE-1/2 enhancer / promoter of the HCMV were cloned. 3 ⁇ g of each of these reporter plasmids were used with either 5 ⁇ g pcDNAUL84 or pHM134 (IE86 expression plasmid) alone or a combination of both
  • the cells were harvested in 1 ml extraction buffer (100 mM potassium phosphate, pH 7.8, 1 mM DTT) and lysed by freezing / thawing three times.
  • 1 ml extraction buffer 100 mM potassium phosphate, pH 7.8, 1 mM DTT
  • HCMV the UL112 promoter
  • pHM137 the UL112 promoter
  • Fig. 4, B lanes 3 and 4
  • This effect turned out to be dose-dependent: If increasing amounts of pcDNA-UL84 were used with a constant amount of pHM137, the negative effect was significantly increased (Fig. 4, C, lanes 4 to 10).
  • the IE86 protein also has a negative autoregulatory function: it can repress its own expression by negatively influencing the activity of the responsible promoter, the IE-1/2 enhancer / promoter (Pizzorno et al.
  • the IE2 gene products of human cytomegalovirus specifically down-regulate expression from the major immediate-early promoter through a target sequence located near the cap site, J. Virol. 64: 6154-6165). If this promoter was used as a fusion with luciferase in cotransfection experiments, it was found that pUL84 did not abolish the repression of this promoter caused by IE86, but actually increased it (Fig. 4, D, lanes 3 and 4). pUL84 specifically neutralizes the transactivating function of IE86 while the negative autoregulatory function is retained or even enhanced.
  • the expression of the transiently expressed pUL84 was detectable by the mouse monoclonal antibody M2 directed against the FLAGR-TAG (Integra BioSciences, Tecnomara GmbH); early viral gene expression was analyzed by rabbit antiserum against the early-late expressed UL69 protein (Winkler et al. (1994) UL69 of human cytomegalovirus, an open reading frame with homology to ICP27 of herpes simplex virus, encodes a transactivator of gene expression, J. Virol. 68: 3943-3954).
  • the antibodies were diluted in PBSo buffer (138 mM NaCl, 2.7 mM Kel, 6.5 mM Na2HP04, 1.5 mM KH2PO4) (M2 antibody: 1: 1000; UL69 antiserum: 1: 200) and for 30 min at 37 ° C incubated with the cells. After washing three times with PBSO4, a rhodamine (TRITC) conjugated goat anti-mouse antibody (Dianova, Hamburg) and a fluorescein (F ⁇ TC) conjugated pig anti-rabbit antibody (Dako, Glostrup, Denmark) were each 1: 40 diluted in PBSo and again incubated for 30 min at 37 ° together with the cells.
  • PBSo buffer 138 mM NaCl, 2.7 mM Kel, 6.5 mM Na2HP04, 1.5 mM KH2PO4
  • U373-MG cell lines were established which stably expressed pUL84.
  • U373 cells were transfected with 10 ⁇ g of the vector pcDNAUL84 or the cloning vector pcDNA3, both of which contained the Neo gene as a selection marker, by calcium phosphate coprecipitation.
  • Geneticin 500 ⁇ g / ml was added to the cell culture medium.
  • cell clones had formed which were isolated and subcultured in 24-well plates. The pUL84 gene expression of these cell clones was then checked with the aid of indirect immunofluorescence and the monoclonal antibody M2.
  • the UL84-positive cell line IXC5 and the negative line DC2 were infected with HCMV with an MOI of 2 and assessed with regard to their morphological changes, which are typical for the replication cycle of the HCMV.
  • CPE cytopathogenic effect
  • the lines DC1 (no UL84 expression), and IXB6 and IXC5 (UL84 expression) were infected with HCMV with a multiplicity of the infection of 0.1 / cell. After different times after infection, cell culture supernatant was removed and frozen at -80 C until analysis.
  • tissue Culture Infectious Dose 50 (TCID50) human foreskin fibroblasts were sown on 96-well plates (2x104 cells per well). The next day, after subconfluent growth of the cells, dilution series of the individual infectious supernatants were prepared. (10 -1 -10 " 9 in steps of 10) and in each case in quadruple batches for infection of the cells.
  • log TCID 50 / 100 ⁇ l total products / number of individual cultures per dilution (e.g. 4)
  • Titer TCID 50 / ml log TCID 50 / 100 ⁇ l + 1
  • Fig. 8 The results of the experiments are shown in Fig. 8. After infection of the UL84-negative cell line DC1, infectious virus was released into the culture supernatant starting after 7 days. After 12 days after infection, the TCID50 was 10,000. In contrast, the two cell lines IXB6 and IXC5 showed (UL84 expression) a TCID50, which was two orders of magnitude lower. In addition, there was no increase in virus production after 10 and 12 days in both cultures.
  • the gene coding for the UL84 protein can be introduced into the desired target cells with the aid of replication-defective adenovirus vectors.
  • replication-defective adenovirus vectors have been e.g. used to introduce the retinoblastoma gene product in smooth vascular muscle cells in vivo in order to prevent the development of restenoses after PTCA (Chang et al. (1995) Cytostatic gene therapy for vascular proliferative disorders with a constitutively active form of the retinoblastoma gene product, Science 267: 518-522).
  • HCMV regarded as the etiological agent of this process
  • the gene coding for UL84 can be introduced into the cells with the aid of the adenovirus vectors mentioned above. Thereby a therapeutic intervention possibility for the development of restenoses is available.
  • the replication-defective adenovirus vector system was also used to introduce an alpha-1 antitrypsin gene into lung epithelial cells in vivo and in used in vitro (Rosenfeld et al. (1991) Adenovirus-mediated transfer of a recombinant alpha 1-antitrypsin gene to the lung epithelium in vivo, Science 252: 431-434).
  • HCMV HCMV
  • Adeno-associated virus vectors have been developed by McLaughlin et al. (1988) Adeno-associated virus general transduction vectors: analysis of proviral structures, J. Virol. 62: 1963-1973. These vectors have the advantage of stable transfer of genetic information into target cells because they integrate into the cellular genome.
  • Such vectors have been e.g. used to transfer a human gamma globulin gene into hematopoietic stem cells (Miller et al. (1994) Recombinant adeno-associated virus (rAAV) -mediated expression of a human gamma-globin gene in human progenitor-derived erythroid cells, Proc. Natl. Acad USA 91: 10183-10187).
  • the CMV-induced diseases represent a considerable problem, especially after bone marrow transplants.
  • the blood cells and their progenitor cells are a target organ of CMV replication and play a key role in the dissemination of the virus.
  • the introduction of UL84 into bone marrow stem cells with the aid of the adeno-associated virus vectors mentioned above represents a further embodiment of the present invention.
  • Adeno-associated virus vectors can also be used to insert genes into post-mitotic cells such as neuronal tissue (Kaplitt et al. (1994) Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain, Nat. Genet. 8: 148-154).
  • CMV primarily infects different areas of the central nervous system in AIDS and after prenatal infection.
  • an intraocular Introducing UL84 with adeno-associated vectors in retinitis therefore seems promising, since current drug therapy does not promise long-term success.
  • retroviral vector systems offer the advantage of integration and can be used for a broad cell spectrum (except post-mitotic cells) (Salmons et al. (1993) Targeting of retroviral vectors for gene therapy, Hum. Gene Ther. 4: 129-141).
  • the retroviral vector systems can be used for the transfer of genetic information into hematopoietic stem cells or cells of the gastrointestinal tract (Bagnis et al. (1994) Retroviral transfer of the nlsLacZ gene into human CD34 + cell populations and into TF-1 cells: future prospects in gene therapy , Hum. Gene Ther. 5: 1325-1333; Yoshida, et al. (1995) Retrovirally transmitted gene therapy for gastric carcinoma using herpes Simplex virus thymidine kinase gene, Cancer 75: 1467-1471).
  • the retroviral vector systems described there can also be used to transfer UL84.
  • Liposome transfer was used in particular to introduce genes into lung epithelial cells and vessels (Alton et al. (1993) Non-invasive liposome-mediated gene delivery can correct the ion transport defect in cystic fibrosis mutant mice, Nat. Genet. 5: 135- 142; Canonico et al. (1994) Aerosol and intravenous transfection of human alpha 1 -antitrypsin gene to lungs of rabbits, Am. J. Respir. Cell Mol. Biol. 10: 24-29; Canonico et al. (1994) No lung toxicity after repeated aerosol or intravenous delivery of plasmid-cationic complexes, J. Appl. Physiol. 77: 415-419; von der Leyen et al.
  • CMV-induced pneumonia can be treated using the technique disclosed in the references mentioned. However, this technique can also be used to introduce UL84 in all localized processes such as skin ulcers caused by HCMV or gastrointestinal ulcers caused by HCMV.
  • liposomes can be used in combination with Sendai virus.
  • MOLECULE TYPE Genomic DNA
  • HYPOTHETICAL YES
  • ANTISENSE NO
  • MOLECULE TYPE Genomic DNA
  • HYPOTHETICAL YES
  • ANTISENSE NO
  • SEQUENCE DESCRIPTION SEQ ID NO: 2: TAATCTAGAT CCCTAGGTAC CTTCGAGATC GCCGCAGACC ATGGCTAAAG TGAC 54

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Mycology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Das humane Cytomegalovirus ist ein wichtiger Krankheitserreger bei verschiedenen Problemgruppen wie beispielsweise immunsupprimierten Patienten, Neugeborenen oder Transplantationspatienten. Offenbart wird die Verwendung von Polypeptiden, die zumindest teilweise der Sequenz des UL84 entsprechen, als Arzneimittel und die Verwendung des entsprechenden Gens in geeigneten Transfervektoren.

Description

Arzneimittel enthaltend wenigstens einen Teil des UL84-Proteins des
Cytomegalovirus, Verwendung von Polypeptiden entsprechend der
Aminosäuresequenz des UL84-Proteins und Verfahren zur Einführung von UL84 in Zielzellen
Gegenstand der vorliegenden Erfindung sind Arzneimittel enthaltend wenigstens ein Polypeptid bzw. Protein, das hinsichtlich der Aminosäuresequenz zumindest teilweise dem UL84-Protein des humanen Cytomegalovirus entspricht. Diese Polypeptide können zur Hemmung der Vermehrung von humanen Cytomegaloviren (im folgenden kurz HCMV) eingesetzt werden, wobei entweder die Polypeptide auf üblichem Wege verabreicht werden oder die Gene kodierend für diese Polypeptide mit Hilfe geeigneter Vektoren in die Zielzellen eingebracht werden und dort zur Expression gebracht werden.
Das humane Cytomegalovirus (HCMV) ist ein ubiquitär verbreitetes Virus. Es dürften etwa 50 % der Bevölkerung in Mitteleuropa als seropositiv angesehen werden und diese Personen tragen demnach das Virus in einer latenten Form in sich.
Das HCMV verursacht ein der Infektiösen Mononukleose ähnliches Krankheitsbild, aber ansonsten leiden gesunde Personen selten an einer HCMV-induzierten Erkrankung.
Bestimmte Risikogruppen, wie beispielsweise Neugeborene und vor allem immunsupprimierte Patienten, sowie die Empfänger von Transplantaten können durch HCMV-Infektionen bedroht sein. Es kann zu lebensbedrohlichen oder auch zu Erblindung führenden Krankheitsbildern wie Sepsis, Pneumonie, Colitis oder Retinitis kommen. Diese Komplikationen treten vor allem nach Organtransplantationen, bei HIV-Infektionen, unter Zytostatika-Therapie und bei Neugeborenen nach pränataler Infektion auf.
Die klinischen Manifestationen der HCMV-Infektion sind sehr vielfältig. Einerseits kann eine generalisierte Infektion im Sinn einer Sepsis entstehen, häufig ist aber das Krankheitsgeschehen auf ein Organsystem konzentriert, so daß eine lokalisierte therapeutische Behandlung wünschenswert ist. Zu den wichtigsten Organmanifestationen zählen die Pneumonie, gastrointestinale Erkrankungen (z.B. Gastritis, Ulzerationen im Magen/Darmtrakt), die Retinitis, Hautulzerationen (insbesondere bei AIDS-Patienten) sowie stenosierende Gefäßprozesse (z.B. nach perkutaner, transluminaler Koronarangioplastie = PTCA, nach Herztransplantation).
Bei vielen dieser Krankheitsbilder ist eine dauernde, virostatische Therapie notwendig, so daß hier ein Therapieprinzip, das zu einer "intrazellulären Immunität" gegen HCMV führt, von großem Vorteil ist.
Derzeit stehen zur Therapie von HCMV-Infektionen im wesentlichen zwei Medikamente zur Verfügung, nämlich Ganciclovir und Foscarnet. Diese beiden Substanzen greifen an der viral kodierten DNA-Polymerase an, deren Funktion sie hemmen. Diese Substanzen haben aber gravierende Nachteile. Sie weisen ein ausgeprägtes Toxizitätsprofil auf, so daß bei 20 bis 40 % aller behandelten Patienten ein Abbruch der Therapie notwendig wird. Andererseits handelt es sich um eine virostatische Therapie, die zum Teil über lange Behandlungszeiträume erforderlich ist. Es kommt daher sehr leicht zum Auftreten von resistenten Virusvarianten und dadurch ist die Wirksamkeit dieser Medikamente nicht mehr gegeben.
Im Rahmen der vorliegenden Erfindung werden Polypeptide eingesetzt, die in die genetische Regulation des Cytomegalovirus eingreifen.
Wie allgemein bei Herpesviren, wird der Replikationszyklus des HCMV in drei ver¬ schiedene Phasen unterteilt, die als immediate early (sehr früh), early (früh) und late (spät) bezeichnet werden. Unmittelbar nach Eintritt des Virus in die Zielzelle kommt es zur Expression einer limitierten Anzahl von Proteinen, den sogenannten immediate early-Proteinen, die immunologisch klassifiziert werden können. Diese immediate early-Proteine haben zum Teil eine Transaktivator-Funktion, sie können also andere virale Promotoren aktivieren und leiten somit die nächste Phase der viralen Genexpression, also die early oder Frühphase ein. Gleichzeitig modifizieren einige dieser immediate early-Proteine auch die zelluläre Genexpression und können heterologe virale Promotoren beeinflussen.
Essentiell für eine Aktivierung von frühen viralen Promotoren ist hierbei das IE2- Protein, das eine Molekularmasse von 86 kDa aufweist und in der Literatur auch als IE86, IE80 oder IE2-86 bezeichnet wird. Das IE86-Protein ist notwendig für die Stimulation der frühen Genexpression, während andere lE-Proteine einen zusätzlichen, verstärkenden Effekt ausüben können.
Im Rahmen der vorliegenden Erfindung wurde festgestellt, daß ein anderes von HCMV stammendes Protein, das Protein UL84, einerseits die transaktivierende Funktion von IE86 hemmt und andererseits die durch IE86 vermittelte Negativ- Regulation des IE1/2 Enhancer/Promotor verstärkt. Aufgrund dieser Erkenntnis konnte nachgewiesen werden, daß eine Expression des Proteins UL84 während der immediate early-Phase des Replikationszyklus von HCMV die Virusvermehrung hemmt.
Im Rahmen der vorliegenden Erfindung konnte die Interaktion des IE86-Proteins mit dem viral kodierten UL84-Protein abgeklärt werden. Hierzu wurde zunächst ein eukaryonter Expressionsvektor konstruiert, der das UL84-Protein des HCMV fusioniert mit einem antigenen Peptid (FLAG--Epitop) exprimierte. Dies erlaubte den immunologischen Nachweis des Proteins mit Hilfe eines gegen das FLAG-- Epitop gerichteten monoklonalen Antikörpers. COS7-Zellen wurden kotransfiziert einerseits mit diesem UL84-Expressionsvektor und andererseits mit einem Vektor, der das IE86-Protein exprimierte. Eine anschließende Immunpräzipitationsanalyse zeigte, daß UL84, unabhängig von anderen viralen Proteinen, eine stabile Interaktion mit 1E86 eingehen kann. Dies wurde auch durch einen in vitro- Versuchsansatz, eine sogenannte "pull down"-Analyse bestätigt.
Um die funktionellen Effekte dieser Interaktion zu untersuchen, wurden Reporterkonstrukte, die Luziferase unter Kontrolle verschiedener homologer und heterologer Promotoren exprimierten, zusammen mit den UL84- und/oder IE86- Expressionsplasmiden in Kotransfektionsexperimenten eingesetzt. Diese Versuche ergaben den überraschenden Befund, daß das UL84-Protein die IE86-vermittelte Transaktivierung sehr stark und dosisabhängig hemmte, während es für sich allein genommen die untersuchten Promotoren nicht beeinflußte. Dies konnte sowohl für den Promotor des menschlichen Immundefizienzvirus als auch für einen frühen viralen Promotor des HCMV, nämlich den UL112-Promotor nachgewiesen werden.
Nachdem die Aktivierung von frühen viralen Promotoren essentiell ist für ein Fortschreiten des Replikationszyklus, ergab sich im Rahmen der vorliegenden Erfindung, daß eine Expression von UL84 zu immediate early-Zeiten die Replikation des HCMV hemmen kann. Dies konnte durch zwei unterschiedliche Versuchsansätze bestätigt werden. Nach Transfektion von für HCMV permissiven U373-Zellen mit dem das Protein UL84 exprimierenden Plasmid und anschließender Superinfektion mit HCMV konnte in UL84 exprimierenden Zellen kein frühes virales Antigen nachgewiesen werden. Dies ist ein klarer Hinweis auf die Hemmung der frühen Genexpression durch UL84.
In einem anderen Versuchsansatz wurden Zellinien etabliert, die das UL84-Protein stabil exprimierten. Nach Infektion dieser Zellen mit HCMV konnte zwar noch immediate early-Protein nachgewiesen werden; dies zeigt, daß die Zellen prinzipiell infizierbar sind. Es kam allerdings nicht zur Expression von early- Proteinen. Gleichzeitig konnten weder die für HCMV typischen morphologischen Veränderungen der Zellen beobachtet werden, noch kam es zu einer Zerstörung der infizierten Zellen. Eine Expression von UL84 zu Beginn der Infektion kann damit die Replikation von HCMV effizient hemmen. Dies ist auf eine Neutralisierung der transaktivierenden Wirkung des IE86-Proteins zurückzuführen, die durch eine spezifische und hochaffine Protein/Protein-Interaktion vermittelt wird.
Aufgrund der im Rahmen der vorliegenden Erfindung gewonnenen Erkenntnisse ist es daher möglich, Arzneimittel zur Verfügung zu stellen, die Polypeptide aufweisen, die hinsichtlich der Aminosäuresequenz dem pUL84-Protein zumindest teilweise entsprechen. Im Rahmen der vorliegenden Erfindung wurde gefunden, daß der N- terminale Bereich des UL84-Proteins für die Bindung an den IE 1/2 Enhancer/Promotor notwendig ist und daher bei diesen Arzneimitteln in bevorzugter Ausführungsform vorhanden ist.
Alternativ hierzu kann das für das UL84-Protein kodierende Gen auch mit Hilfe eines Vektors in die Zellen verbracht werden und dort zur Expression gebracht werden. Derartige Vektoren enthalten dann wenigstens einen Teil des für UL84 kodierenden Gens. Gegenstand der vorliegenden Erfindung sind daher Arzneimittel, die ein Polypeptid aufweisen, das zumindest einen Teil der Aminosäuresequenz des Proteins UL84 des Cytomegalovirus oder ein dazu homologes Polypeptid umfassen, wobei eine Homologie von wenigstens 80 % vorliegt. Bevorzugt weisen diese Arzneimittel ein Polypeptid auf, dessen Aminosäuresequenz dem Protein UL84 wenigstens zum Teil entspricht, wobei diese Aminosäuresequenz in Abbildung 1 dargestellt ist.
Die erfindungsgemäßen pharmazeutischen Zubereitungen weisen bevorzugt Polypeptide auf, deren Aminosäuresequenz wenigstens dem N-terminalen Bereich des UL84-Proteins entspricht. In besonders bevorzugter Ausführungsform werden wenigstens die 180 N-terminalen Aminosäuren des UL84-Proteins umfaßt.
Die erfindungsgemäßen pharmazeutischen Zubereitungen dienen bevorzugt der Behandlung einer Infektion von humanem Cytomegalovirus.
Dementsprechend können die erfindungsgemäß verwendeten Polypeptide, die zumindest einen Teil der Aminosäuresequenz des UL84-Proteins des humanen Cytomegalovirus umfassen, oder dafür kodierende Nucleinsäuren zur Therapie oder Prophylaxe einer Infektion von humanem Cytomegalovirus eingesetzt werden.
In einer bevorzugten Ausführungsform der Erfindung können die erfindungsgemäß verwendeten Polypeptide bzw. die dafür kodierenden Nucleinsäuren in Verfahren eingesetzt werden, bei denen ein für wenigstens einen Teil des Proteins UL84 kodierendes Gen mit Hilfe geeigneter Vektoren in die gewünschten Zielzellen eingeführt wird und dann das UL84-Protein in dieser Zelle exprimiert wird. Derartige Verfahren dienen der Verhinderung der Vermehrung von humanen Cytomegaloviren.
Bei den im Rahmen der vorliegenden Erfindung eingesetzten Arzneimitteln kann es sich um solche handeln, die mit Hilfe herkömmlicher Methoden formuliert werden. Wichtig ist, daß das Polypeptid in unveränderter Form an die Zielzellen gelangt und dann in die Zielzellen eindringen kann. Sofern orale Verabreichungsformen gewählt werden, muß sichergestellt werden, daß das Arzneimittel die Magen-Darm- Passage unverändert überstehen kann.
Das UL84-Protein ist an sich bekannt, da sowohl die Nucleinsäure- wie auch die Aminosäuresequenz vorpubliziert wurde. In der Abbildung 1 ist die Nucleinsäure- und Aminosäuresequenz von UL84 dargestellt. Da es sich bei dem erfindungsgemäß eingesetzten UL84-Protein um ein virales Protein handelt, umfaßt die vorliegende Erfindung auch zu UL84 homologe Polypeptide. Die Homologie stellt eine Bezeichnung für den Grad der Übereinstimmung von zwei Proteinsequenzen dar. 50 % Homologie bedeutet beispielsweise, daß 50 von 100 Aminosäurepositionen in der Sequenz übereinstimmen. Im vorliegenden Fall werden von der Erfindung auch solche Proteine umfaßt, die zu wenigstens 80 % homolog zu dem pUL84-Protein sind. Dies bedeutet, daß 8 von 10 Aminosäuren in den vergleichbaren Sequenzen übereinstimmen.
Da im Rahmen der vorliegenden Erfindung herausgefunden wurde, daß der N- terminale Bereich für die Bindung an den IE 1/2 Enhancer/Promotor notwendig ist, umfassen die erfindungsgemäßen Arzneimittel wenigstens diesen N-terminalen Bereich, wobei wenigstens etwa 180 terminale Aminosäuren des UL84-Proteins vorhanden sein sollten.
Bei einer anderen Ausführungsform der vorliegenden Erfindung ist es auch möglich, nicht das Polypeptid zur Therapie einzusetzen, sondern das für das UL84- Protein kodierende Gen bzw. Teilgen. Bei dieser Verwendung wird das Gen mit einem Expressionsvektor in die gewünschten Zielzellen gebracht und in den Zellen wird dann das UL84-Protein bzw. Teilpolypeptid exprimiert. Verwendet werden kann dies einerseits zur Therapie von bereits bestehenden HCMV-Infektionen und andererseits zur Prophylaxe gegenüber drohenden HCMV-Infektionen.
Die vorliegende Erfindung wird durch die anliegenden Abbildungen näher erläutert:
Abbildung 1 zeigt die Nucleinsäure- und davon abgeleitete Aminosäuresequenz des offenen Leserahmens für UL84 des humanen Cytomegalovirus, Stamm AD169.
Abbildung 2 stellt eine schematische Darstellung des eukaryonten Expressionsplasmids pcDNA-UL84 dar.
Abbildung 3 stellt den Nachweis einer von anderen viralen Proteinen unabhängigen Interaktion von pUL84 und EI86 durch Immunpräzipitation und "pull down"-Analyse dar. Bei der Abbildung bedeuten: A) COS-7-Zellen wurden entweder mock-transfiziert oder mit den Expressionsplasmiden pHM121 (IE86) und/oder pcDNAUL84 transfiziert. Nach radioaktiver Markierung von Zellproteinen wurden Zellysate hergestellt und durch Immunpräzipitation mit dem IE86-spezifischen, monoklonalen Antikörper 2.9.5 untersucht. M: Größenmarker; Spur 1 : Lysat aus mock-transfizierten Zellen; Spur 2, Lysat aus Zellen, die mit pHM121 transfiziert worden waren; Spur 3, Lysat aus Zellen, die mit pHM121 und pcDNAUL84 transfiziert worden waren.
B) GST-"Pull down"-Exρeriment: die Proteine TBP, IE1 und UL84 wurden durch in v/fro-Translation radioaktiv markiert und dann entweder mit einem GST-IE1 oder GST-IE2 Fusionsprotein inkubiert. Nach extensivem Waschen der Agarose- gekoppelten GST-Proteine wurden gebundene Proteine durch Erhitzen auf 95 % denaturiert und durch SDS-PAGE analysiert. M: Größenmarker; Spuren 1-3, die in v/fro-translatierten Proteine TBP, IE1 und UL84, die für die Bindungsreaktion verwendet wurden; Spuren 4-6, TBP, IE1 und UL84 nach Inkubation mit GST-IE1 ; Spuren 7-9, TBP, IE1 und UL84 nach Bindung an GST-IE2.
Abbildung 4 zeigt den Einfluß von UL84 auf die IE2-vermittelte Transaktivierung homologer und heterologer viraler Promotoren.
U373-Zellen wurden mit Reporterplasmiden, die verschiedene Promotoren oberhalb von Luciferase enthielten, und Expressionsplasmiden für IE86 (pHM134), pUL84 (ρcDNAUL84) oder das HIV tat-Protein (pCT21 ) kotransfiziert. Nach 48 h wurden die Zellen lysiert und die Luciferaseaktivität bestimmt. In der Abbildung ist die Aktivierung (als x-fache Aktivierung) nach Kotransfektion verschiedener Expressionsplasmide relativ zur Basisaktivität des Promotors (Aktivität des Promotors nach Kotransfektion des Klonierungsvektors pcDNA3) dargestellt. A) Als Reporterplasmid wurden 3 μg eines HIV-Promotor-Luciferasekonstrukts verwendet. B) Als Reporterplasmid wurden 3 μg eines UL112-Promotor-Luciferasekonstrukts verwendet. Spuren: 1 , Kotransfektion mit 10 μg pcDNA3; 2, Kotransfektion mit 5 μg pcDNAUL84 und 5 μg pcDNA3; 3, Kotransfektion mit 5 μg pHM134; 4, Kotransfektion mit 5 μg pHM134 und 5 μg pcDNAUL84; 5, Kotransfektion mit 5 μg pCT21 und 5 μg pcDNA3; 6, Kotransfektion mit 5 μg pCT21 und 5 μg pcDNAUL84. C) Als Reporterplasmid wurden 3 μg eines UL112- Promotor-Luciferasekonstrukts verwendet. Spuren 1 , Kotransfektion mit 10 μg pcDNAUL84; 2, Kotransfektion mit 10 μg pcDNAUL84; 3, Kotransfektion mit 3 μg pHM134 und 7 μg pcDNA3; 4, Kotransfektion mit 3 μg pHM134, 1 μg pcDNAUL84 und 6 μg pcDNA3; 5, Kotransfektion mit 3 μg pHM134, 2 μg pcDNAUL84 und 5 μg pcDNA3; 6, Kotransfektion mit 3 μg pHM134, 3 μg pcDNAUL84 und 4 μg pcDNA3; 7, Kotransfektion mit 3 μg pHM134, 4 μg pcDNAUL84 und 3 μg pcDNA; 8, Kotransfektion mit 3 μg pHM134, 5 μg pcDNAUL84 und 2 μg pcDNA3; 9, Kotransfektion mit 3 μg pHM134, 6 μg pcDNAUL84 und 1 μg pcDNA3; 10, Kotransfektion mit 3 μg pHM134 und 7 μg pcDNAUL84. D) Als Reporterkonstrukt wurden 3 μg eines IE-1/2 Enhancer/Promotor-Luceferasekonstrukts verwendet. Spuren: 1 , Kotransfektion mit 10 μg pcDNA3; 2, Kotransfektion mit 5 μg pcDNA3 und 5 μg pcDNAUL84; 3, Kotransfektion mit 5 μg pcDNA3 und 5 μg pHM134; 4, Kotransfektion mit 5 μg pHM134 und 5 μg pcDNAUL84.
Abbildung 5 zeigt die Hemmung der HCMV-Replikation nach transienter Expression von pUL84.
U373-Zellen wurden mit dem Expressionsplasmid pcDNAUL84 transfiziert und mit HCMV infiziert. Anschließend wurde die Expression von pUL84 und des frühen viralen Antigen pUL69 durch Doppel-Immunfluoreszenzanalyse unter Verwendung eines konfokalen Lasermikroskops untersucht. Dies zeigte, daß in pUL84- exprimierenden Zellen nie gleichzeitig pUL69 synthetisiert wurde. A) Nachweis von pUL84. B) Nachweis von pUL69. C) Überlagerung der Abbildungen A und B.
Abbildung 6 zeigt die Hemmung der frühen viralen Genexpression nach stabiler Ex¬ pression von pUL84.
Es wurden U373-Zellinien etabliert, die pUL84 stabil exprimierten. Diese Zellinien wurden mit HCMV infiziert und anschließend die Proteinexpression durch indirekte Immunfluoreszenz analysiert. A bis E, Zellinie IXB1 , wurde mit pcDNAUL84 transfiziert und exprimiert pUL84; B bis F, Zellinie DC1, wurde mit dem Klonierungsvektor pcDNA3 transfiziert, exprimiert kein pUL84. A und B, Nachweis von pUL84 mit Hilfe des monoklonalen Antikörpers M2; C und D, Nachweis von immediate early Antigen mit Hilfe eines monoklonalen Antikörpers gegen das IE1- Protein; E und F, Nachweis von frühem Antigen mit Hilfe eines Antiserums gegen das UL69-Protein. Abbildung 7 zeigt die Hemmung der HCMV-Replikation nach stabiler Expression von UL84.
U373-Zellen, die entweder UL84-negativ waren (A bis C) oder pUL84 stabil exprimierten (D bis F) wurden mock-infiziert (A und D) oder mit HCMV mit einer M.O.I. von 2 infiziert (B, C, E, F). B und E zeigen den cytopathogenen Effekt nach 5 Tagen Infektionsdauer, C und F nach 23 Tagen Infektionsdauer.
Abbildung 8 zeigt die Hemmung der Virusvermehrung nach Infektion von UL84- exprimierenden Zellinien mit HCMV.
Die UL84-negative Zellinie pRcCMVDCI und die UL84-positiven Linien UL84IXC5 und UL84IXB6 wurden mit HCMV mit einer M.O.I von 0,1 infiziert. Zu verschiedenen Zeitpunkten nach Infektion (0, 3, 4, 7, 10 und 12 Tage) wurde Zellkulturüberstand entnommen und eine Virustitration durch Bestimmung der 'Tissue Culture Infectious Dose" (TCID50) durchgeführt.
Beispiel 1
Konstruktion eines eukaryonten Expressionsvektors für pUL84
Zur Untersuchung der Eigenschaften von pUL84 wurde der offene Leserahmen UL84 (Abb. 1) unter Verwendung der Primer UL845' (TAAGAATTCATGCCACGCGTCGACCCCAACCTTCGGAAT) und UL843' (TAATCTAGATCCCTAGGTACCTTCGAGATCGCCGCAGACCATGGCTAAAGTGA C) mit Hilfe der Polymerase-Kettenreaktion amplifiziert und über die in den Primern kodierten EcoRI und Xba\ Schnittstellen in den Vektor pSG424 (Sadowski, I. and M. Ptashne, 1989, A vector for expressing GAL4(1-147) fusions in mammalian cells, Nucleic. Acids. Research 17:7539) kloniert. Zur Überprüfung der Expression von pUL84 nach Transfektion wurde durch chemische Synthese ein DNA-Fragment hergestellt, welches für ein Oktapeptid kodiert (FLAGR) und anschließend über Kpn\ und Xba\ in dieses Plasmid kloniert (Fig. 2); dieses Peptid wird durch monoklonale Antikörper erkannt und kann als sogenanntes TAG in Fusion mit heterologen Proteinen dazu verwendet werden, die Expression des heterologen Proteinanteils in eukaryonten Zellen zu überprüfen. Nach Transfektion des resultierenden Plasmides pSG84TAG in COS7-Zellen konnte mit Hilfe des Antikörpers M2 (Fa. Integra Biosciences; Tecnomara Deutschland GmbH) die Ex¬ pression des pUL84::FLAG Fusionsproteins nachgewiesen werden. Zur Verstärkung der Expression wurde anschließend die Expressionskassette bestehend aus der kodierenden Region für pUL84::FLAG über Spaltung mit EcoRI und Xbal in den Vektor pcDNA3 (Abb. 2) umkloniert. Das resultierende Plasmid pcDNAUL84 wurde für die weiteren Experimente eingesetzt.
Beispiel 2
Nachweis einer spezifischen Interaktion des UL84-Proteins mit dem IE86- Transaktivator
Um zu überprüfen, ob pUL84 unabhängig von anderen viralen Proteinen eine spezifische Interaktion mit dem IE86-Transaktivatorprotein des HCMV eingehen kann, wurden COS7-Zellen entweder nur mit dem IE86-Expressionsplasmid pHM121 (Plachter et al. (1993) Analysis of proteins encoded by lE-regions 1 and 2 of human cytomegalovirus using monoclonal antibodies generated against recombinant antigens, Virology 193:642-652) oder mit einer Kombination aus pHM121 und pcDNAUL84 transfiziert. Die Transfektion erfolgte mit Hilfe der DEAE- Dextran-Methode unter Verwendung von je 10 μg Vektor-DNA (Winkler et al. (1994) UL69 of human cytomegalovirus, an open reading frame with homology to ICP27 of herpes Simplex virus, encodes a transactivator of gene expression, J. Virol. 68:3943-3954). Anschließend wurden die Zellproteine durch Zugabe von 'Tran-35S-Label" (ICN, Eschwege) radioaktiv markiert und durch Immunprä¬ zipitation analysiert. Die Zellen wurden dazu von der Zellkulturschale abgelöst, sedimentiert und durch Resuspendieren und einstündige Inkubation in 1 ml eines Puffers aus 50 mM Tris/HCI, pH 8.0, 5 mM EDTA, 150 mM NaCI, 0.5% NP-40, 1 mM PMSF und 20 mg/ml Aprotinin lysiert. Je 250 μl des Lysats wurden für 3 h bei 4°C mit Protein-A-Sepharose (Sigma, Deisenhofen) inkubiert und dann bei 4000 upm zur Entfernung unspezifisch adsorbierender Substanzen zentrifugiert. Der IE86-spezifische monoklonale Antikörper 2.9.5 (Plachter et al. (1993) Analysis of proteins encoded by lE-regions 1 and 2 of human cytomegalovirus using monoclonal antibodies generated against recombinant antigens, Virology 193:642- 652) wurde durch Inkubation bei 4°C in Bindepuffer (100 mM Tris/HCI, pH 7.4, 400 mM NaCI) zusammen mit Anti-Maus IgG an Protein A-Sepharose gekoppelt. Der Protein A Sepharose-Antikörperkomplex wurde dann mit den radioaktiv markierten Proteinen gemischt und 3 h bei 4°C inkubiert. Nach mehreren Wasch-Schritten unter Verwendung von SNNTE-Puffer (50 mM Tris/HCI, pH 7.4, 5 mM EDTA, 100 mM NaCI, 5% Sucrose, 1% NP40) wurde der Komplex in SDS-haltigem Probenpuffer für die Polyacrylamid-Gelelektrophorese (PAGE) aufgenommen und durch SDS-PAGE und Autoradiographie analysiert (Abb. 3). Nach Transfektion des IE86-Expressionsplasmids pHM121 präzipitierte der Antikörper 2.9.5 ein Protein mit einer Molekularmasse von 86 kDa, das in mock-transfizierten Zellen nicht vorhanden war (Abb. 3, A, Spuren 1 und 2). Wurden die Zellen jedoch mit den Plasmiden pHM121 und pcDNAUL84 kotransfiziert, so konnte ein weiteres Protein nachgewiesen werden, das pUL84 entsprach (Abb. 3, A, Spur 3). Dies zeigt, daß pUL84 unabhängig von weiteren viralen Proteinen einen stabilen Komplex mit IE86 eingehen kann.
Um dies zusätzlich abzusichern und zu beweisen, daß diese Interaktion unabhängig ist von posttranslationalen Modifikationen des IE86-Proteins, wurde eine "pull down"-Analyse durchgeführt. Dazu wurden die Proteine IE86 und IE1 des HCMV als Fusionen mit Glutathion-S-Transferase (GST) prokaryont exprimiert und durch Kopplung an Glutathion-Agarose (Pharmacia, Freiburg) gereinigt (Lang et al. (1995) Functional interaction between the human cytomegalovirus 86-kilodalton IE2 protein and the cellular transcription factor CREB, J. Virol., 69: pp. 6030-6037). Parallel dazu wurden das TATA-bindende Protein TBP, das IE1 -Protein des HCMV und das UL84-Protein unter Verwendung des TNT-Systems (Promega, Heidelberg) durch in wϊro-Translation unter Zugabe von 35S-Methionin radioaktiv markiert. Die GST-Fusionsproteine (je 100 ng, an Glutathion-Agarose gekoppelt) wurden für 10 min in 200 ml ELB-Puffer (125 mM NaCI, 50 mM HEPES, pH 7.0, 0.1 % NP-40, 1 mM PMSF, 0.5 mM DTT, 0.5 mM EDTA) mit 1 mg/ml bovinem Serumalbumin inkubiert. Dann wurden je 5 μl der in w'fro-translatierten Testproteine zugegeben. Nach einer weiteren Inkubation für 12 h bei 4°C wurden die Agarose-gekoppelten Proteine fünfmal mit je 1 ml ELB-Puffer gewaschen, in SDS-Probenpuffer aufgenommen, auf 95°C erhitzt und durch SDS-PAGE analysiert. Die Autoradiographie ergab, daß das in Wfro-translatierte UL84-Protein an GST-IE2 gebunden hatte, während keine Interaktion mit dem als Spezifitätskontrolle verwendeten GST-IE1 zu beobachten war (Abb. 3, B, Spuren 6 und 9). pUL84 interagierte mit GST-IE2 mit etwa gleicher Effizienz wie das TATA-bindende Protein TBP, für das schon in vorhergehenden Studien eine starke Bindung an IE2 gezeigt worden war (Abb. 3, B, Spuren 7 und 9). pUL84 kann somit unabhängig von post-translationalen Modifikationen mit dem IE2-Protein interagieren. Weitere "pull down"-Experimente mit carboxy-terminal verkürzten UL84-Proteinen zeigten, daß eine Deletionsmutante, die durch Spaltung mit Pvu\ hergestellt worden war, noch effizient an GST-IE2 band. Eine Interaktionsdomäne von pUL84 befindet sich demnach in den aminoterminalen 180 Aminosäuren (AS) des insgesamt 586 AS umfassenden Proteins.
Beispiel 3
Hemmung der IE86-vermittelten Transaktivierung durch pUL84
Das IE86-Protein ist ein starker Transaktivator von homologen und heterologen Promotoren und in dieser Funktion essentiell für die Einleitung der frühen Phase der viralen Genexpression. Um die funktionellen Auswirkungen der Interaktion von IE86 mit pUL84 zu untersuchen, wurden transiente Expressionsanalysen unter Verwendung der für HCMV permissiven Zellinie U373 MG durchgeführt. Als
Reporter wurde das Luciferasegen verwendet, vor das verschiedene Promotoren, wie der Promotor des menschlichen Immundefizienzvirus (HlV-Promotor), der frühe
UL112-Promotor des HCMV oder der IE-1/2 Enhancer/Promotor des HCMV kloniert waren. Je 3 μg dieser Reporterplasmide wurden mit entweder je 5 μg pcDNAUL84 oder pHM134 (IE86-Expressionsplasmid) allein oder einer Kombination beider
Vektoren kotransfiziert (Lang et al. (1995) Functional interaction between the human cytomegalovirus 86-kilodalton IE2 protein and the cellular transcription factor CREB, J. Virol., in press). Die insgesamt transfizierte DNA-Menge wurde durch Zugabe von DNA des Klonierungsvektors pcDNA3 bis zu einer DNA-Menge des Transfektionsansatzes von 15 μg konstant gehalten. Die Transfektion erfolgte unter Verwendung der DEAE-Dextran-Methode (Arlt et al. (1994) Identification of binding sites for the 86-kilodalton IE2 protein of human cytomegalovirus within an
IE2-responsive viral early promoter, J. Virol. 68:4117-4125). Nach 48 Stunden
Inkubation wurden die Zellen in 1 ml Extraktionspuffer (100 mM Kaliumphosphat, pH7.8, 1 mM DTT) geerntet und durch dreimaliges Einfrieren/Auftauen lysiert.
Durch Zentrifugation wurde unlöslicher Zelldetritus abgetrennt. Gleiche Mengen des Überstands wurden dann mit 100 μl Reaktionspuffer (100 mM Kaliumphosphat, pH7.8, 15 mM MgSθ4, 5 mM ATP) gemischt und die Luciferaseaktivität durch
Injektion von 100 μl Reaktionspuffers mit 1 mM Luciferin (Boehringer, Mannheim) unter Verwendung eines Luminometers (Berthold, Wildbad) bestimmt. Jede
Transfektion wurde wenigstens dreimal wiederholt. Wurde das HIV-
Promotorkonstukt mit pcDNAUL84 allein kotransfiziert, so konnte keine veränderte
Aktivität im Vergleich zur Transfektion des Klonierungsvektors pcDNA3 beobachtet werden; pUL84 allein übt demnach keinen Effekt auf diesen Promotor aus (Abb. 4,
A, Spuren 1 und 2). Die Kotransfektion des IE86-Expressionsplasmids pHM134 führte zu einer etwa 60fachen Aktivierung dieses Promotors (Abb. 4, A, Spur 3).
Wurde jedoch eine Kombination von pcDNAUL84 und pHM137 eingesetzt, so kam es zu einer starken Reduktion der durch IE86-vermittelten Transaktivierung des
HlV-Promotors (Abb. 4, A, Spur 4). Dieser Negativ-Effekt von UL84 war spezifisch, da die Transaktivierung durch den homologen Transaktivator des HIV, das tat-
Protein, nicht durch Kotransfektion von pcDNAUL84 beeinflußt wurde (Abb. 4, A,
Spuren 5 und 6). Negativ-Regulation der IE86-Transaktivierung ließ sich nicht nur am HlV-Promotor beobachten, sondern auch an einem frühen Promotor des
HCMV, dem UL112-Promotor; auch hier führte die Kotransfektion von pcDNAUL84 zusammen mit pHM137 zu einer drastischen Reduktion der Aktivierung, die mit pHM137 allein zu sehen war (Abb. 4, B, Spuren 3 und 4). Dieser Effekt erwies sich als dosis-abhängig: wurden steigende Mengen an pcDNA-UL84 mit einer konstanten Menge pHM137 verwendet, so kam es zu einer deutlichen Verstärkung des Negativ-Effekts (Abb. 4, C, Spuren 4 bis 10). Neben einer transaktivierenden Wirkung hat das IE86-Protein auch eine negativ-autoregulatorische Funktion: es kann seine eigene Expression reprimieren, indem es die Aktivtät des dafür verantwortlichen Promotors, des IE-1/2 Enhancer/Promotors, negativ beeinflußt (Pizzorno et al. (1990) The IE2 gene products of human cytomegalovirus specifically down-regulate expression from the major immediate-early promoter through a target sequence located near the cap site, J. Virol. 64:6154-6165). Wurde dieser Promotor als Fusion mit Luciferase in Kotransfektionsexperimenten verwendet, so zeigte sich, daß pUL84 die durch IE86 bewirkte Repression dieses Promotors nicht aufhob, sondern sogar verstärkte (Abb. 4, D, Spuren 3 und 4). pUL84 neutralisiert damit ganz spezifisch die transaktivierende Funktion von IE86 während die negativ-autoregulatorische Funktion erhalten bleibt bzw. sogar verstärkt wird.
Beispiel 4
Hemmung der HCMV-Replikation nach transienter Expression von pUL84
Aufgrund der oben genannten Befunde ergab sich die Hypothese, daß eine Expression von pUL84 zu Beginn des Replikationszyklus zu einer Aufhebung der transaktivierenden Wirkung von IE86 und damit zu einer Hemmung der HCMV- Replikation führen müßte. Dies wurde zunächst durch transiente Expression von pUL84, Überinfektion mit HCMV und anschließender Immunfluoreszenzanalyse der Proteinexpression untersucht. U373-Zellen wurden mit 10 μg pcDNAUL84 unter Verwendung der Calciumphosphat-Kopräzipitationsmethode transfiziert. Etwa 24 h später wurden die Zellen mit HCMV mit einer M.O.I. (multiplicity of infection) von 2 infiziert. Nach weiteren 60 h wurden die Zellen durch 10minütige Inkubation in eiskaltem Methanol fixiert. Es folgte dann eine Doppelfärbung der Zellen für die Immunfluoreszenz-Analyse: die Expression des transient exprimierten pUL84 ließ sich durch den gegen das FLAGR-TAG gerichteten Maus-monoklonalen Antikörper M2 (Integra BioSciences, Tecnomara Deutschland GmbH) nachweisen; die frühe virale Genexpression wurde durch ein im Kaninchen hergestelltes Antiserum gegen das früh-spät exprimierte UL69-Protein analysiert (Winkler et al. (1994) UL69 of human cytomegalovirus, an open reading frame with homology to ICP27 of herpes simplex virus, encodes a transactivator of gene expression, J. Virol. 68:3943-3954). Die Antikörper wurden in PBSo-Puffer (138 mM NaCI, 2.7 mM Kel, 6.5 mM Na2HPθ4, 1.5 mM KH2PO4 ) verdünnt (M2-Antikörper: 1:1000; UL69-Antiserum: 1:200) und für 30 min bei 37°C mit den Zellen inkubiert. Nach dreimaligem Waschen mit PBSO4 wurden ein Rhodamin (TRITC)-konjugierter Ziege-Anti-Maus- Antikörper (Dianova, Hamburg) und ein Fluorescein (FΙTC)-konjugierter Schwein- Anti-Hase-Antikörper (Dako, Glostrup, Dänemark) je 1:40 in PBSo verdünnt und wiederum 30 min bei 37° zusammen mit den Zellen inkubiert. Nach drei weiteren Wasch-Schritten wurden die Zellen eingedeckt und spezifisch gefärbte Zellen mit Hilfe der konfokalen Lasermikroskopie unter Verwendung des Systems MRC600 der Firma Bio-Rad, München, analysiert. Hierbei wurden zunächst Rhodamin- (rote Färbung, spezifisch für UL84) und Fluorescein- (grüne Färbung, spezifisch für UL69) gefärbte Zellen separat nachgewiesen (Abb. 5, A, B) und anschließend die beiden Fluoreszenzmuster übereinandergelagert (Abb. 5, C). Wie exemplarisch in Figur 5 zu sehen ist, zeigte dieses Experiment, daß in Zellen, die UL84 synthe¬ tisierten, das früh exprimierte UL69-Antigen nicht nachweisbar war. Dies war der erste Hinweis auf eine Hemmung der HCMV-Replikation durch Expression von pUL84.
Beispiel 5
Hemmung der HCMV-Replikation nach stabiler Expression von pUL84
Um den hemmenden Effekt von pUL84 auf die HCMV-Replikation weiter abzuklären, wurden U373-MG-Zellinien etabliert, die pUL84 stabil exprimierten. Hierzu wurden U373-Zellen mit 10 μg des Vektors pcDNAUL84 oder des Klonierungsvektors pcDNA3, die beide das Neo-Gen als Selektionsmarker enthielten, durch Calciumphosphat-Kopräzipitation transfiziert. Etwa 48 h nach Transfektion wurde Geneticin (500 μg/ml) zum Zellkulturmedium zugegeben. Nach etwa 4 Wochen Selektionsdauer hatten sich Zellklone gebildet, die isoliert und in 24-Loch-Platten subkultiviert wurden. Anschließend wurde mit Hilfe der indirekten Immunfluoreszenz und des monoklonalen Antikörpers M2 die pUL84- Genexpression dieser Zellklone überprüft. Dadurch gelang es, 10 Zellinien zu etablieren, die pUL84 mit unterschiedlicher Effizienz exprimierten. Stark exprimierende Zellinien wurden für Infektionsversuche eingesetzt: dazu wurden pUL84-exprimierende Zellinien und parallel selektionierte Linien, die kein UL84 synthetisierten, mit HCMV mit einer M.O.I von 2 infiziert. Etwa 60 h nach Infektion wurden die Zellen durch Methanolbehandlung fixiert und durch indirekte Immunfluoreszenz analysiert. Wie in Abb. 6 exemplarisch für zwei Zellinien gezeigt ist, ließ sich in der Linie IXB1 mit Hilfe des monoklonalen Antikörpers M2 eine deutliche UL84-Expression nachweisen, während DC1 negativ war (Abb. 6, A, B). Die Anfärbung der Zellen mit einem monoklonalen Antikörper gegen das immediate ear/y-Antigen IE1 des HCMV ergab mit beiden Zellinien eine starke Reaktivität; dies zeigte, daß HCMV beide Zellinien infiziert hatte (Abb. 6, C, D). Wurde jedoch jetzt das Antiserum gegen das früh-spät exprimierte UL69-Protein verwendet, so konnten in der UL84-negativen DC1 -Zellinie starke Signale beobachtet werden, während in der UL84-positiven Linie IXB1 keine signifikante Antigenexpression vorhanden war. Damit war in IXB1 durch die UL84-Expression der Replikationszyklus auf Ebene der immediate ear/y-Genexpression arretiert. Dies konnte auch bei längerer Infektionsdauer bestätigt werden. Dazu wurden die UL84- positive Zellinie IXC5 und die negative Linie DC2 mit HCMV mit einer M.O.I von 2 infiziert und hinsichtlich ihrer morphologischen Veränderungen, die typisch sind für den Replikationszyklus des HCMV, beurteilt. Nach 5 Tagen Infektionsdauer konnte in der Linie DC2 eine starker cytopathogener Effekt (CPE) nachgewiesen werden, während die Linie IXC5 keine Veränderungen erkennen ließ (Abb. 7, B, E). Nach 23 Tagen Infektionsdauer waren nahezu alle Zellen der Linie DC1 lysiert; für IXC5 ließ sich nach wie vor kein CPE erkennen (Abb. 7, C, F).
Zur Analyse der Virusproduktion wurden die Linien DC1 (keine UL84 Expression), sowie IXB6 und IXC5 (UL84-Expression) mit HCMV mit einer Multiplizität der In¬ fektion von 0,1 /Zelle infiziert. Nach unterschiedlichen Zeiten nach Infektion wurde Zellkultur-Überstand entnommen und bis zur Analyse bei -80 C weggefroren. Zur Bestimmung der sog. "Tissue Culture Infectious Dose" 50 (TCID50) wurden hu¬ mane Vorhaut-Fibroblasten auf 96-Loch-Platten ausgesät (2x104 Zellen pro Loch). Am nächsten Tag, nach subkonfluentem Anwachsen der Zellen, wurden Verdün¬ nungsreihen der einzelnen infektiösen Überstände hergestellt. (10-1 -10"9 in 10er Schritten) und jeweils in Vierfach-Ansätzen zur Infektion der Zellen verwendet. Nach 24-stündiger Inkubation bei 37°C wurden die Zellen zur weiteren Analyse mit Methanol (-20°C/10 Min.) fixiert. Zum Nachweis der Expression des immediate- early Proteins IE1-pp72 wurde Kulturüberstand des monoklonalen Antikörpers BS500 (Biotest) unverdünnt zu den Zellen gegeben und für 45 Min. bei 37°C in ei- ner feuchten Kammer inkubiert. Nach mehrfachen Waschschritten in PBS wurde zum Nachweis der spezifischen Antigen-Antikörperreaktion ein sekundärer, gegen Maus-Immunglobulin gerichteter Antikörper, welcher mit Peroxidase gekoppelt war (Dako HRP P 0260; 1:500 verd.) zugegeben und in der feuchten Kammer für 45 Min. bei 37°C inkubiert. Nach erneuten Waschschritten wurde die Anwesenheit von Peroxidase-Aktivität durch die Zugabe von AEC und H2O nachgewiesen. An¬ schließend wurde im Umkehrmikroskop die Zahl der Kulturen (Löcher), in welchen HCMV-Antigen nachweisbar war, bei der jeweiligen Verdünnung bestimmt und nach dem unten angegebenen Auswertungsschema die TCID50 für die jeweiligen Zellinien und die verschiedenen Zeitpunkte bestimmt.
TCID 50-Aus Wertung:
Figure imgf000019_0001
log TCID 50/ 100μl = Summe Produkte / Zahl der Einzelkulturen pro Verdünnung (z.B. 4)
Titer TCID 50 /ml = log TCID 50 / 100μl + 1
Die Ergebnisse der Experimente sind in Abb. 8 dargestellt. Nach Infektion der UL84-negativen Zellinie DC1 kam es beginnend nach 7 Tagen zur Freisetzung von infektiösem Virus in den Kulturüberstand. Nach 12 Tagen nach Infektion ergab sich eine TCID50 von 10.000. Dagegen zeigten die beiden Zellinien IXB6 und IXC5 (UL84-Expression) eine TCID50, welche um zwei Größenordnungen niedriger lag. Darüber hinaus fand sich in beiden Kulturen kein Anstieg in der Virusproduktion nach 10 und 12 Tagen.
Diese Ergebnisse zeigen, daß die Expression von UL84 in Zellen die Produktion von infektiösem Virus nahezu vollständig inhibiert. Darüber hinaus zeigte sich im Gegensatz zur UL84-negativen Zellinie kein signifikanter Anstieg der Virusproduktion nach 10 und 12 Tagen. Dies deutet darauf hin, daß aufgrund von Variationen in der Expression von UL84 einzelne Zellen in den Linien IXB1 und IXC5 produktiv mit HCMV infiziert sind und geringe Mengen an Virus synthetisieren, daß sich das freigesetzte Virus hier jedoch aufgrund des Replikationsblocks in der überwiegenden Mehrzahl der Zellen der Population nicht vermehren kann.
Insgesamt zeigen damit diese Experimente, daß pUL84 effizient die Replikation des HCMV inhibieren kann.
Beispiel 6
Einführung des UL84-Gens mit Hilfe replikationsdefekter Adenovirus- Vektoren
Das für das Protein UL84 kodierende Gen kann in die gewünschten Zielzellen mit Hilfe von replikationsdefekten Adenovirus-Vektoren eingebracht werden. Derartige replikationsdefekte Adenovirus-Vektoren wurden z.B. zur Einführung des Retinoblastom-Genprodukts in glatte Gefäßmuskelzellen in vivo eingesetzt, um damit die Entstehung von Restenosen nach PTCA zu verhindern (Chang et al. (1995) Cytostatic gene therapy for vascular proliferative disorders with a constitutively active form of the retinoblastoma gene product, Science 267:518- 522). Da HCMV als ätiologisches Agens dieses Prozesses angesehen wird, kann das für UL84 kodierende Gen mit Hilfe der oben erwähnten Adenovirus-Vektoren in die Zellen eingeführt werden. Damit steht eine therapeutische Interventionsmöglichkeit der Entstehung von Restenosen zur Verfügung.
Das replikationsdefekte Adenovirus-Vektorensystem wurde ebenfalls zur Einbringung eines alpha-1-Antitrypsingens in Lungenepithelzellen in vivo und in vitro verwendet (Rosenfeld et al. (1991) Adenovirus-mediated transfer of a recombinant alpha 1-antitrypsin gene to the lung epithelium in vivo, Science 252:431-434). Bei durch HCMV bedingter Pneumonie sind
insbesondere die Epithelzellen infiziert. Die Einführung des Gens für UL84 mit Hilfe der oben beschriebenen Vektoren führt daher zu dem gewünschten therapeutischen Effekt.
Beispiel 7
Einführung des UL84-Gens mit Hilfe Adeno-assoziierter Virusvektoren
Adeno-assoziierte Virusvektoren wurden von McLaughlin et al. (1988) Adeno- associated virus general transduction vectors: analysis of proviral structures, J. Virol. 62:1963-1973, beschrieben. Diese Vektoren haben den Vorteil des stabilen Transfers von genetischer Information in Zielzellen, da sie in das zelluläre Genom integrieren.
Solche Vektoren wurden z.B. zum Transfer eines menschlichen Gamma- Globulingens in hämatopoetische Stammzellen verwendet (Miller et al. (1994) Recombinant adeno-associated virus (rAAV)-mediated expression of a human gamma-globin gene in human progenitor-derived erythroid cells, Proc. Natl. Acad. Sei. U.S.A. 91:10183-10187). Die CMV-induzierten Erkrankungen stellen insbesondere nach Knochenmarkstransplantationen ein erhebliches Problem dar. Die Blutzellen und deren Vorläuferzellen sind aber ein Zielorgan der CMV- Replikation und maßgeblich an der Dissemination des Virus beteiligt. Die Einbringung von UL84 in Knochenmarks-Stammzellen mit Hilfe der oben erwähnten Adeno-assoziierten Virusvektoren stellt eine weitere Ausführungsform der vorliegenden Erfindung dar.
Adeno-assoziierte Virusvektoren (AAV-Vektoren) können auch zur Einbringung von Genen in post-mitotische Zellen, wie z.B. neuronales Gewebe verwendet werden (Kaplitt et al. (1994) Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain, Nat. Genet. 8:148-154). CMV infiziert vor allem bei AIDS und nach pränataler Infektion unterschiedliche Bereiche des zentralen Nervensystems. Insbesondere eine intraokuläre Einbringung von UL84 mit Adeno-assoziierten Vektoren bei Retinitis erscheint daher erfolgversprechend, da hier die derzeitige medikamentöse Therapie keinen langdauernden Erfolg verspricht.
Beispiel 8
Einführung von UL84 mit Hilfe retroviraler Vektorsysteme
Retrovirale Vektorsysteme bieten, ähnlich wie Adeno-assoziierte Virusvektoren, den Vorteil der Integration und sind für ein breites Zellspektrum (außer post- mitotischen Zellen) anwendbar (Salmons et al. (1993) Targeting of retroviral vectors for gene therapy, Hum. Gene Ther. 4: 129-141 ). Die retroviralen Vektorsysteme können für den Transfer von genetischer Information in hämatopoetische Stammzellen oder Zellen des Gastrointestinaltrakts verwendet werden (Bagnis et al. (1994) Retroviral transfer of the nlsLacZ gene into human CD34+ cell populations and into TF-1 cells: future prospects in gene therapy, Hum. Gene Ther. 5:1325-1333; Yoshida, et al. (1995) Retrovirally transmitted gene therapy for gastric carcinoma using herpes Simplex virus thymidine kinase gene, Cancer 75:1467-1471). Die dort beschriebenen retroviralen Vektorsysteme können auch zum Transfer von UL84 eingesetzt werden.
Beispiel 9
Einführung von UL84 mit Hilfe von Liposomen-Transfersystemen
Liposomen-Transfer wurde insbesondere zur Einführung von Genen in Lungenepithelzellen und Gefäße verwendet (Alton et al. (1993) Non-invasive liposome-mediated gene delivery can correct the ion transport defect in cystic fibrosis mutant mice, Nat. Genet. 5:135-142; Canonico et al. (1994) Aerosol and intravenous transfection of human alpha 1 -antitrypsin gene to lungs of rabbits, Am. J. Respir. Cell Mol. Biol. 10:24-29; Canonico et al. (1994) No lung toxicity after repeated aerosol or intravenous delivery of plasmid-cationic complexes, J. Appl. Physiol. 77:415-419; von der Leyen et al. (1995) Gene therapy inhibiting neointimal vascular lesion: in vivo transfer of endothelial cell nitric oxide synthase gene, Proc. Natl. Acad. Sei. U.S.A. 92:1137-1141 ). Besonders vorteilhaft dürfte hier die Applikation per Inhalation bei Erkrankungen der Lunge sein. Mit Hilfe der in den erwähnten Literaturstellen offenbarten Technik kann die CMV- induzierte Pneumonie therapiert werden. Diese Technik kann aber auch zur Einführung von UL84 bei sämtlichen lokalisierten Prozessen verwendet werden, wie beispielsweise bei Hautulzerationen, die durch HCMV hervorgerufen wurden, oder gastrointestinalen Ulzera, die durch HCMV verursacht wurden.
In den angeführten Vektorsystemen ist die Einbringung Zelltyp-spezifischer Promotoren möglich, so daß eine gezielte Expression von UL84 in bestimmten Zellen erreicht werden kann.
Im Rahmen der vorliegenden Erfindung können auch weitere Transfersysteme bzw. Modifikationen der oben näher beschriebenen Transfersysteme zum Einsatz gelangen. Beispielsweise können Liposomen kombiniert mit Sendai-Virus verwendet werden.
SEQUENZPROTOKOLL
(1) ALLGEMEINE ANGABEN:
(i) ANMELDER:
(A) NAME: Behringwerke Aktiengesellschaft
(B) STRASSE: Emil-von-Behring-Str. 76
(C) ORT: Marburg
(E) LAND: Deutschland
(F) POSTLEITZAHL: 35041
(G) TELEFON: 06421-39-2205 (H) TELEFAX: 06421-39-4558
(ii) BEZEICHNUNG DER ERFINDUNG: Arzneimittel enthaltend wenigstens einen des UL84-Proteins des Cytomegalovirus, Verwendung von Polypeptiden entsprechend der Aminosaeuresequenz des UL84-Proteins und Verfahren zur Einfuehrung...
(iii) ANZAHL DER SEQUENZEN: 2
(iv) COMPUTER-LESBARE FASSUNG:
(A) DATENTRÄGER: Floppy disk
(B) COMPUTER: IBM PC compatible
(C) BETRIEBSSYSTEM: PC-DOS/MS-DOS
(D) SOFTWARE: Patentin Release #1.0, Version #1.30 (EPA)
(vi) DATEN DER URANMELDUNG:
(A) ANMELDENUMMER: DE 19527129.7
(B) ANMELDETAG: 25-JUL-1995
(2) ANGABEN ZU SEQ ID NO: 1:
(i) SEQUENZKENNZEICHEN:
(A) LANGE: 39 Basenpaare
(B) ART: Nucleotid
(C) STRANGFORM: Einzelstrang
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: Genom-DNA (Üi) HYPOTHETISCH: JA (iv) ANTISENSE: NEIN
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1: TAAGAATTCA TGCCACGCGT CGACCCCAAC CTTCGGAAT 39
(2) ANGABEN ZU SEQ ID NO: 2:
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 54 Basenpaare
(B) ART: Nucleotid
(C) STRANGFORM: Einzelstrang
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: Genom-DNA (iii) HYPOTHETISCH: JA (iv) ANTISENSE: NEIN (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2: TAATCTAGAT CCCTAGGTAC CTTCGAGATC GCCGCAGACC ATGGCTAAAG TGAC 54

Claims

Patentansprüche:
1. Arzneimittel, dadurch gekennzeichnet, daß es ein Polypeptid aufweist, das zu¬ mindest einen Teil der Aminosäuresequenz des Proteins UL84 des Cytomegalovirus oder ein dazu homologes Polypeptid umfaßt, wobei eine Homologie von wenigstens 80 % vorliegt.
2. Arzneimittel nach Anspruch 1, dadurch gekennzeichnet, daß die Aminosäuresequenz des Proteins UL84 wenigstens zum Teil der Aminosäuresequenz entspricht, die in Abbildung 1 dargestellt ist.
3. Arzneimittel nach Anspruch 2, dadurch gekennzeichnet, daß der Teil der Ami¬ nosäuresequenz wenigstens den N-terminalen Bereich des UL84-Proteins um¬ faßt.
4. Arzneimittel nach Anspruch 3, dadurch gekennzeichnet, daß der Teil der Ami¬ nosäuresequenz wenigstens die 180 N-terminalen Aminosäuren des UL84-Pro- teins umfaßt.
5. Arzneimittel nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß es zur Behandlung einer Infektion von humanem Cytomegalovirus dient.
6. Verwendung eines Polypeptids, das zumindest einen Teil der Aminosäurese¬ quenz des UL84-Proteins des humanen Cytomegalovirus umfaßt oder einer dafür kodierenden Nucleinsäure zur Therapie oder Prophylaxe einer Infektion von humanem Cytomegalovirus.
7. Verfahren zur Einbringung von Nucleinsäure in Zellen, dadurch gekennzeichnet, daß ein für wenigstens einen Teil des Proteins UL84 kodierendes Gen mit Hilfe geeigneter Vektoren in die gewünschten Zielzellen eingeführt wird und, daß das UL84-Protein in dieser Zelle exprimiert wird.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Einbringung von Nucleinsäure in Zellen durch Transfektion erfolgt.
9. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Einbringung von Nucleinsäure in Zellen durch Infektion erfolgt.
10. Verfahren nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß es zur Verhinderung der Vermehrung von humanen Cytomegaloviren dient.
PCT/EP1996/001428 1995-07-25 1996-04-01 Arzneimittel enthaltend wenigstens einen teil des ul84-proteins des cytomegalovirus, verwendung von polypeptiden entsprechend der aminosäuresequenz des ul84-proteins und verfahren zur einführung von ul84 in zielzellen WO1997005262A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE59611330T DE59611330D1 (de) 1995-07-25 1996-04-01 Arzneimittel enthaltend wenigstens einen teil des ul84-proteins des cytomegalovirus, verwendung von polypeptiden entsprechend der aminosäuresequenz des ul84-proteins und verfahren zur einführung von ul84 in zielzellen
EP96909160A EP0840794B1 (de) 1995-07-25 1996-04-01 Arzneimittel enthaltend wenigstens einen teil des ul84-proteins des cytomegalovirus, verwendung von polypeptiden entsprechend der aminosäuresequenz des ul84-proteins und verfahren zur einführung von ul84 in zielzellen
AU52762/96A AU5276296A (en) 1995-07-25 1996-04-01 Medicament containing at least one part of the ul84 protein of the cytomegalovirus, use of polypeptides corresponding to the amino acid sequence of the ul84 protein, and process for introducing ul84 into target cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19527129.7 1995-07-25
DE19527129A DE19527129A1 (de) 1995-07-25 1995-07-25 Arzneimittel enthaltend wenigstens einen Teil des UL84-Proteins des Cytomegalovirus, Verwendung von Polypeptiden entsprechend der Aminosäuresequenz des UL84-Proteins und Verfahren zur Einführung von UL84 in Zielzellen

Publications (1)

Publication Number Publication Date
WO1997005262A1 true WO1997005262A1 (de) 1997-02-13

Family

ID=7767728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/001428 WO1997005262A1 (de) 1995-07-25 1996-04-01 Arzneimittel enthaltend wenigstens einen teil des ul84-proteins des cytomegalovirus, verwendung von polypeptiden entsprechend der aminosäuresequenz des ul84-proteins und verfahren zur einführung von ul84 in zielzellen

Country Status (7)

Country Link
EP (1) EP0840794B1 (de)
AT (1) ATE317905T1 (de)
AU (1) AU5276296A (de)
DE (2) DE19527129A1 (de)
ES (1) ES2258773T3 (de)
PT (1) PT840794E (de)
WO (1) WO1997005262A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10611800B2 (en) 2016-03-11 2020-04-07 Pfizer Inc. Human cytomegalovirus gB polypeptide
US11629172B2 (en) 2018-12-21 2023-04-18 Pfizer Inc. Human cytomegalovirus gB polypeptide
US11857622B2 (en) 2020-06-21 2024-01-02 Pfizer Inc. Human cytomegalovirus GB polypeptide

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0534102A1 (de) * 1991-08-29 1993-03-31 BEHRINGWERKE Aktiengesellschaft HCMV-spezifische Peptide und ihre Verwendung

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0534102A1 (de) * 1991-08-29 1993-03-31 BEHRINGWERKE Aktiengesellschaft HCMV-spezifische Peptide und ihre Verwendung

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HE Y S ET AL: "CHARACTERIZATION OF HUMAN CYTOMEGALOVIRUS UL84 EARLY GENE AND IDENTIFICATION OF ITS PUTATIVE PROTEIN PRODUCT.", J VIROL 66 (2). 1992. 1098-1108, XP000578057 *
PLOTKIN S.A.: "Vaccines for Varicella-Zoster Virus and Cytomegalovirus: Recent Progress", SCIENCE, vol. 265, no. 5177, 2 September 1994 (1994-09-02), LANCASTER, PA US, pages 1383 - 1385, XP000461836 *
SPECTOR D J ET AL: "Protein-protein interactions between human cytomegalovirus IE2-580aa and pUL84 in lytically infected cells.", JOURNAL OF VIROLOGY 68 (11). 1994. 7549-7553, XP002010431 *
YUO, CHUNG YEE ET AL: "Stable expression of functional human cytomegalovirus immediate-early proteins IE1 and IE2 in HeLa cells", INTERVIROLOGY (1993), VOLUME DATE 1992, 34(2), 94-104, 1993, XP000578142 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10611800B2 (en) 2016-03-11 2020-04-07 Pfizer Inc. Human cytomegalovirus gB polypeptide
US11629172B2 (en) 2018-12-21 2023-04-18 Pfizer Inc. Human cytomegalovirus gB polypeptide
US11857622B2 (en) 2020-06-21 2024-01-02 Pfizer Inc. Human cytomegalovirus GB polypeptide

Also Published As

Publication number Publication date
EP0840794B1 (de) 2006-02-15
DE59611330D1 (de) 2006-04-20
EP0840794A1 (de) 1998-05-13
ATE317905T1 (de) 2006-03-15
ES2258773T3 (es) 2006-09-01
DE19527129A1 (de) 1997-01-30
AU5276296A (en) 1997-02-26
PT840794E (pt) 2006-07-31

Similar Documents

Publication Publication Date Title
DE69834022T2 (de) Fusionproteine für intra- und interzelluläre transport und deren verwendungen
DE60038011T2 (de) Verbesserung der immunantwort als anwendung in impfstoff und gentherapie
DE69637147T2 (de) Transportproteine und deren verwendungen
DE69931391T2 (de) Trans-aktivierung und cis-aktivierung um die dauer der expression eines transgens zu modulieren
DE69534902T2 (de) Rekombinanter viraler DNS Vektor zur Transfektion tierischer Zellen
DE69836139T2 (de) Verfahren zur behandlung von vaskulären proliferativen erkrankungen mit p27 und fusionen davon
EP0778349A2 (de) Genkonstrukt und dessen Verwendung
DE69839326T2 (de) ZUSAMMENSETZUNGEN UND METHODEN ZUR MODULIERUNG DER ZELLULÄREN AKTIVITÄT VON NF-kappaB
EP0986644B1 (de) Herstellung von erythropoietin durch endogene genaktivierung mit viralen promotoren
DE60302356T2 (de) Fusionsprotein regulatorischer/akzessorischer hiv-proteine
WO1993007282A1 (de) Neue konjugate zum einführen von nukleinsäure in höhere eukaryotische zellen
DE69636066T2 (de) Variante von herpesvirus-glycoprotein d
EP1774008A2 (de) Induzierbare genexpression
DE4318387A1 (de) Rekombinante Foamy Virus Vektoren für medizinische und diagnostische Anwendungen sowie Verfahren zur Herstellung von rekombinanten Foamy Virus Vektoren
EP0763124B1 (de) Verfahren zum einbringen von nukleinsäure in höhere eukaryotische zellen
DE69734387T2 (de) Ein kombiniertes antigen vom menschlichen cytomegalievirus und seine anwendung
EP0746624B1 (de) Vektor für die leberspezifische genexpression
EP0840794B1 (de) Arzneimittel enthaltend wenigstens einen teil des ul84-proteins des cytomegalovirus, verwendung von polypeptiden entsprechend der aminosäuresequenz des ul84-proteins und verfahren zur einführung von ul84 in zielzellen
DE10059631A1 (de) T-Zellepitope des Papillomavirus L1-und E7-Proteins und ihre Verwendung in Diagnostik und Therapie
DE60222265T2 (de) Zelltod-induktoren für mastzellen
DE19925199A1 (de) Zytotoxische T-Zellepitope des Papillomavirus L1-Proteins und ihre Verwendung in Diagnostik und Therapie
DE69733948T2 (de) In vivo herstellung von replicativen molekülen
EP0915166B1 (de) DNA-Virus-Vektoren und Verfahren zu ihrer Herstellung
EP1181381A2 (de) Organ-, gewebs- und zellspezifisches immuntherapeutikum für chronische virale infektionen, sowie entzündliche, degenerative und proliferative erkrankungen insbesondere der leber sowie krebs auf der basis von rekombinantem parapoxvirus
DE19508672A1 (de) Neue cyclische Parathormonfragmente, Verfahren zu deren Herstellung und diese enthaltende Arzneimittel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN CZ HU JP KR MX PL SI SK US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996909160

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1996909160

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996909160

Country of ref document: EP