WO1996041990A1 - Katalytische gasturbinenbrenner - Google Patents
Katalytische gasturbinenbrenner Download PDFInfo
- Publication number
- WO1996041990A1 WO1996041990A1 PCT/DE1996/001018 DE9601018W WO9641990A1 WO 1996041990 A1 WO1996041990 A1 WO 1996041990A1 DE 9601018 W DE9601018 W DE 9601018W WO 9641990 A1 WO9641990 A1 WO 9641990A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- fuel gas
- catalytic
- gas turbine
- combustion
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
- F23R3/34—Feeding into different combustion zones
- F23R3/343—Pilot flames, i.e. fuel nozzles or injectors using only a very small proportion of the total fuel to insure continuous combustion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C3/00—Gas-turbine plants characterised by the use of combustion products as the working fluid
- F02C3/20—Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
- F02C3/26—Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension
- F02C3/28—Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension using a separate gas producer for gasifying the fuel before combustion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/40—Continuous combustion chambers using liquid or gaseous fuel characterised by the use of catalytic means
Definitions
- the invention relates to a gas turbine for combusting a fuel gas.
- a gas turbine usually consists of a compressor part, a burner part and a turbine part.
- the compressor part and the turbine part are usually located on a common shaft which at the same time drives a generator for generating electricity.
- preheated fresh air is compressed to the pressure required in the burner section.
- the compressed and preheated fresh air is mixed with a fuel, e.g. Natural gas or petroleum, burned.
- the hot burner exhaust gas is fed to the turbine part and expanded there.
- nitrogen oxides NO x When the compressed and preheated fresh air is burned with the fuel gas, nitrogen oxides NO x also form as particularly undesirable combustion products. In addition to sulfur dioxide, these nitrogen oxides are regarded as the main cause of the environmental problem of acid rain. One is therefore - also due to strict legal limit values for NO x emissions - willing to keep the NO x emissions particularly low by a gas turbine and at the same time largely not influence the performance of the gas turbine.
- the reduction in flame temperature in the burner section reduces nitrogen oxide.
- water vapor is added to the fuel gas or the compressed and preheated fresh air or water is injected into the combustion chamber.
- Measures which reduce the nitrogen oxide emissions of the gas turbine per se are referred to as primary measures for reducing nitrogen oxides.
- Recent considerations with regard to the design of the burner part are based on the fact that the diffusion burners or swirl-stabilized premix burners usually used are replaced by a catalytic combustion chamber. With a catalytic combustion chamber, lower nitrogen oxide emissions are achieved than is possible with the above-mentioned burner types. In this way, the known disadvantages of the SCR process (large catalyst volumes, reducing agent consumption, high pressure loss) can be overcome.
- a disadvantage of a catalytic combustion chamber and also a conventional combustion chamber is the ignition temperature necessary for combustion, which in the case of use of natural gas is around 400 ° C. This fact restricts the working range of the combustion chamber in a gas turbine too much and requires the use of an auxiliary burner, which naturally represents a nitrogen oxide source.
- the invention is based, to reduce the ignition temperature and without using an auxiliary burner, even better catalytically convert the part of the fuel gas passed through the catalytic stage.
- a gas turbine is provided for the combustion of a fuel gas, in which a line system is provided such that part of the fuel gas is drawn off, passed through a catalytic stage and then fed back to the fuel gas to lower its ignition temperature, whereby the catalytic stage is a preforming stage which comprises a catalyst system which is provided for converting the hydrocarbon contained in the fuel gas into an alcohol and / or an aldehyde.
- the partial fuel stream withdrawn in the preforming step becomes alcohol in the catalytically easily combustible substances and / or aldehyde decomposed.
- other substances such as hydrogen
- the preformed fuel gas partial stream is fed back to the rest of the fuel gas stream, so that the mixture produced in this way has a lower ignition temperature than is the case with the original fuel gas, such as natural gas.
- the partially oxidized compounds alcohol and aldehyde mentioned additionally lead to a lowering of the ignition temperature and thus to an improved nitrogen oxide reduction in the exhaust gas of a gas turbine compared to the prior art.
- the supply of this preformed fuel gas partial flow for lowering the ignition temperature of the fuel gas is understood on the one hand to mean that the preformed fuel gas partial flow is first supplied to the fuel gas and then mixed with the compressor air. On the other hand, it can also be provided that the preformed fuel gas partial flow is fed to a gas mixture which consists of the compressor air and the remaining fuel gas partial flow.
- the comparatively easy-to-ignite gas mixtures obtained in this way have an ignition temperature in the range from 200 to 350 ° C., depending on the amount of the sub-stream of fuel gas that is drawn off and then preformed.
- the preforming stage in the flow direction of the fuel gas partial stream comprises a preheating device for the fuel gas partial stream.
- the preheating device can be provided in particular if the fuel gas partial stream enters the preforming stage without preheating.
- a temperature of the fuel gas substream at the inlet of the catalyst system which is advantageous for the subsequent preforming in the catalyst system can be approximately 100 ° C.
- the catalyst system comprises a honeycomb and / or plate-shaped catalyst which consists essentially of titanium dioxide TiC> 2 and comprises at least one transition metal oxide and / or at least one noble metal.
- Transition metal oxides are understood in particular to be the oxides of the 3d series and the 4f series (lanthanides, rare earth metals) in the periodic system of the elements.
- Suitable noble metals are in particular rhodium, iridium, palladium, platinum.
- Molybdenum oxide, tungsten oxide, vanadium oxide, chromium oxide, iron oxide, cerium oxide, manganese oxide, nickel oxide and cobalt oxide are particularly suitable.
- metal oxides of the spin type of the aforementioned metals and metal oxides can also be used.
- a solution which is particularly advantageous in terms of process engineering provides for a maximum of 25% by volume of the fuel gas to be drawn off and then passed over the preforming stage. This limitation defines a preferred range in which the effort (catalyst volume) is balanced with respect to the benefit (catalytic ignition temperature reduction).
- FIG. 1 shows a schematic illustration of a gas turbine 2 with a line system 4 for achieving a comparatively low catalytic ignition temperature of a fuel gas 6.
- the gas turbine consists of a compressor part 8, a catalytic combustion chamber 10 and an expansion part 12.
- the compressor part 8 and the relaxation part 12 are arranged on a common shaft 14, via which a generator for generating electricity, which is not shown here, is driven.
- preheated air 16 is compressed to the inlet pressure of the catalytic combustion chamber 10.
- a line system 4 is provided for the fuel gas 6, in the exemplary embodiment natural gas, with which a part of the fuel gas 6, here about 15% by volume, of a preforming stage 18 as a fuel gas part Stream 20 is supplied.
- the remaining fuel gas 6 is fed directly to the catalytic combustion chamber 10.
- the fuel gas partial flow 20 is first heated in the preforming stage 18 to approximately 100 ° C. by means of a heat exchanger 22.
- the heated fuel gas partial stream 20 then flows through honeycomb catalysts 24, which essentially consist of titanium dioxide and comprise a mixture of vanadium oxide, tungsten oxide, molybdenum oxide, platinum and rhodium. Due to the catalytic action of the honeycomb catalysts 24, most of the fuel gas partial stream 20 is preformed, i.e. The catalytically easily ignitable substances alcohol, aldehyde and hydrogen form from the natural gas 6.
- the fuel gas partial stream 20 preformed in this way is likewise fed to the catalytic combustion chamber 10.
- the fuel gas 6, the preformed fuel gas partial stream 20 and the preheated and compressed air 16 are mixed by means of a mixing element, e.g. a static mixer 26, mixed and then supplied to suitable catalysts, here honeycomb catalysts 28.
- the honeycomb catalysts 28 have a particularly strong oxidation effect for the catalytic combustion of fuel gas 6, fuel gas partial stream 20 and preheated, compressed air 16.
- they have titanium dioxide TiC> 2 as the base material and comprise platinum, rhodium, iridium as well as cerium oxide and chromium oxide as the catalytically active components.
- the aforementioned noble metals are each 1% by weight and the aforementioned metal oxides are each 3 % By weight is present in the honeycomb catalysts 28.
- other compositions of the catalytically active components are also possible.
- the gas mixture mixed by means of the static mixer 26 ignites at a temperature of approximately 250 ° C. and then burns completely in the honeycomb catalysts 28 the hot burner outlet 30 of the catalytic combustion chamber 10 entering the expansion section has a temperature of approximately 1100 ° C. and is expanded in the expansion section 12.
- a heat recovery steam generator which is not shown here. Due to the comparatively low catalytic ignition temperature of the gas mixture burned in the catalytic combustion chamber 10, the use of an auxiliary burner which generates a support or pilot flame can be dispensed with entirely. This auxiliary burner is therefore also eliminated as a nitrogen oxide source, so that the burner exhaust gas 30 has a comparatively low nitrogen oxide content when it emerges from the expansion part 12.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Catalysts (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU98100425A RU2142566C1 (ru) | 1995-06-12 | 1996-06-11 | Газовая турбина для сжигания горючего газа |
DE59604547T DE59604547D1 (de) | 1995-06-12 | 1996-06-11 | Katalytische gasturbinenbrenner |
JP9502489A JPH11507428A (ja) | 1995-06-12 | 1996-06-11 | 燃料ガスを燃焼するガスタービン |
EP96915990A EP0832397B1 (de) | 1995-06-12 | 1996-06-11 | Katalytische gasturbinenbrenner |
US08/990,033 US5904040A (en) | 1995-06-12 | 1997-12-12 | Gas turbine for the combustion of reformed fuel gas |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19521308A DE19521308A1 (de) | 1995-06-12 | 1995-06-12 | Gasturbine zur Verbrennung eines Brenngases |
DE19521308.4 | 1995-06-12 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/990,033 Continuation US5904040A (en) | 1995-06-12 | 1997-12-12 | Gas turbine for the combustion of reformed fuel gas |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996041990A1 true WO1996041990A1 (de) | 1996-12-27 |
Family
ID=7764160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE1996/001018 WO1996041990A1 (de) | 1995-06-12 | 1996-06-11 | Katalytische gasturbinenbrenner |
Country Status (8)
Country | Link |
---|---|
US (1) | US5904040A (de) |
EP (1) | EP0832397B1 (de) |
JP (1) | JPH11507428A (de) |
DE (2) | DE19521308A1 (de) |
ES (1) | ES2143760T3 (de) |
IN (1) | IN189223B (de) |
RU (1) | RU2142566C1 (de) |
WO (1) | WO1996041990A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2791415A1 (fr) * | 1999-03-25 | 2000-09-29 | Sunkiss Aeronautique | Procede de combustion catalytique emettant un rayonnement infrarouge, avec controle de la puissance de ce dernier |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5740667A (en) * | 1994-12-15 | 1998-04-21 | Amoco Corporation | Process for abatement of nitrogen oxides in exhaust from gas turbine power generation |
DE50212753D1 (de) | 2001-07-26 | 2008-10-23 | Alstom Technology Ltd | Vormischbrenner mit hoher Flammenstabilität |
DE10164097A1 (de) * | 2001-12-24 | 2003-07-03 | Alstom Switzerland Ltd | Vormischbrenner mit hoher Flammenstabilität |
DE10160837B4 (de) * | 2001-12-12 | 2006-03-02 | Daimlerchrysler Ag | Verfahren der Mischung von heißen Brennergasen mit Sekundärluft zur Temperaturbegrenzung |
JP4167039B2 (ja) * | 2002-04-10 | 2008-10-15 | 三菱重工業株式会社 | ガスタービン単独プラントの改造方法、触媒の再利用方法 |
EP1510761A1 (de) | 2003-08-13 | 2005-03-02 | Siemens Aktiengesellschaft | Verfahren zur Verbrennung eines fluidischen Brennstoffs sowie Brenner, insbesondere für eine Gasturbine, zur Durchführung des Verfahrens |
US20050144961A1 (en) * | 2003-12-24 | 2005-07-07 | General Electric Company | System and method for cogeneration of hydrogen and electricity |
US7444820B2 (en) * | 2004-10-20 | 2008-11-04 | United Technologies Corporation | Method and system for rich-lean catalytic combustion |
CN101307915B (zh) * | 2008-06-24 | 2010-06-02 | 北京航空航天大学 | 一种燃用乙醇燃料的燃气轮机预蒸发燃烧室 |
US8381531B2 (en) | 2008-11-07 | 2013-02-26 | Solar Turbines Inc. | Gas turbine fuel injector with a rich catalyst |
US20120055168A1 (en) | 2010-09-08 | 2012-03-08 | General Electric Company | System and method for producing hydrogen rich fuel |
PL2630342T3 (pl) * | 2010-10-19 | 2015-03-31 | General Electric Technology Gmbh | Sposób działania pracującego w cyklu połączonym zakładu energetycznego z produkcją skojarzoną, oraz pracujący w cyklu połączonym zakład energetyczny do wykonywania tego sposobu |
US8869502B2 (en) | 2011-01-13 | 2014-10-28 | General Electric Company | Fuel reformer system for a turbomachine system |
US20130305738A1 (en) * | 2012-05-17 | 2013-11-21 | General Electric Company | System and method for producing hydrogen rich fuel |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB209128A (en) * | 1922-08-01 | 1924-01-01 | Clarence Parshall Byrnes | Improved manufacture of liquid fuel |
FR2209892A1 (de) * | 1972-12-11 | 1974-07-05 | Siemens Ag | |
FR2228535A1 (en) * | 1973-05-08 | 1974-12-06 | Engelhard Min & Chem | Adiabatic combustion of carbonaceous fuels - e.g. used I.C. engine and gas turbines |
US4202169A (en) * | 1977-04-28 | 1980-05-13 | Gulf Research & Development Company | System for combustion of gases of low heating value |
US4519992A (en) * | 1983-05-26 | 1985-05-28 | Alkhazov Tofik G O | Process for purifying gases from hydrogen sulphide |
JPS6153425A (ja) * | 1984-08-24 | 1986-03-17 | Hitachi Ltd | ガスタ−ビン用の燃焼器並びにその燃焼方法 |
US5048284A (en) * | 1986-05-27 | 1991-09-17 | Imperial Chemical Industries Plc | Method of operating gas turbines with reformed fuel |
GB2268694A (en) * | 1992-07-14 | 1994-01-19 | Rolls Royce Plc | A catalytic combustion chamber |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2839892A (en) * | 1947-10-04 | 1958-06-24 | Rosenthal Henry | Gas turbine cycle employing secondary fuel as a coolant, and utilizing the turbine exhaust gases in chemical reactions |
DE3741887A1 (de) * | 1987-12-10 | 1989-06-22 | Asea Brown Boveri | Katalysator und verfahren zu seiner herstellung |
DE4133337A1 (de) * | 1990-10-08 | 1992-04-09 | Riken Kk | Abgasreiniger und verfahren zum reinigen von abgasen |
DE19536836C2 (de) * | 1995-10-02 | 2003-11-13 | Alstom | Verfahren zum Betrieb einer Kraftwerksanlage |
-
1995
- 1995-06-12 DE DE19521308A patent/DE19521308A1/de not_active Withdrawn
-
1996
- 1996-06-11 EP EP96915990A patent/EP0832397B1/de not_active Expired - Lifetime
- 1996-06-11 WO PCT/DE1996/001018 patent/WO1996041990A1/de active IP Right Grant
- 1996-06-11 JP JP9502489A patent/JPH11507428A/ja not_active Ceased
- 1996-06-11 DE DE59604547T patent/DE59604547D1/de not_active Expired - Fee Related
- 1996-06-11 RU RU98100425A patent/RU2142566C1/ru not_active IP Right Cessation
- 1996-06-11 ES ES96915990T patent/ES2143760T3/es not_active Expired - Lifetime
- 1996-06-12 IN IN1092CA1996 patent/IN189223B/en unknown
-
1997
- 1997-12-12 US US08/990,033 patent/US5904040A/en not_active Expired - Lifetime
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB209128A (en) * | 1922-08-01 | 1924-01-01 | Clarence Parshall Byrnes | Improved manufacture of liquid fuel |
FR2209892A1 (de) * | 1972-12-11 | 1974-07-05 | Siemens Ag | |
FR2228535A1 (en) * | 1973-05-08 | 1974-12-06 | Engelhard Min & Chem | Adiabatic combustion of carbonaceous fuels - e.g. used I.C. engine and gas turbines |
US4202169A (en) * | 1977-04-28 | 1980-05-13 | Gulf Research & Development Company | System for combustion of gases of low heating value |
US4519992A (en) * | 1983-05-26 | 1985-05-28 | Alkhazov Tofik G O | Process for purifying gases from hydrogen sulphide |
JPS6153425A (ja) * | 1984-08-24 | 1986-03-17 | Hitachi Ltd | ガスタ−ビン用の燃焼器並びにその燃焼方法 |
US5048284A (en) * | 1986-05-27 | 1991-09-17 | Imperial Chemical Industries Plc | Method of operating gas turbines with reformed fuel |
GB2268694A (en) * | 1992-07-14 | 1994-01-19 | Rolls Royce Plc | A catalytic combustion chamber |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 010, no. 216 (M - 502) 29 July 1986 (1986-07-29) * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2791415A1 (fr) * | 1999-03-25 | 2000-09-29 | Sunkiss Aeronautique | Procede de combustion catalytique emettant un rayonnement infrarouge, avec controle de la puissance de ce dernier |
Also Published As
Publication number | Publication date |
---|---|
DE19521308A1 (de) | 1996-12-19 |
IN189223B (de) | 2003-02-01 |
RU2142566C1 (ru) | 1999-12-10 |
JPH11507428A (ja) | 1999-06-29 |
EP0832397B1 (de) | 2000-03-01 |
DE59604547D1 (de) | 2000-04-06 |
ES2143760T3 (es) | 2000-05-16 |
US5904040A (en) | 1999-05-18 |
EP0832397A1 (de) | 1998-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1702176B1 (de) | Wärmekraftanlage mit sequentieller verbrennung und reduziertem co2-ausstoss sowie verfahren zum betreiben einer derartigen anlage | |
EP0832397B1 (de) | Katalytische gasturbinenbrenner | |
EP0849451B1 (de) | Verfahren zur Verbrennungsstabilisierung bei einem Gasturbinenkraftwerk | |
EP1532400B1 (de) | Verfahren und vorrichtung zum verbrennen eines brennstoff-oxidator-gemischs | |
EP0767345B1 (de) | Verfahren zum Betrieb einer Kraftwerksanlage | |
DE69201563T2 (de) | Verfahren und anlage für kohlenwasserstoffverbrennung mit niedrigen schadstoffemissionen. | |
EP1203750B1 (de) | Verfahren und Vorrichtung zum Starten eines Reaktors in einem Gaserzeugungssystem | |
WO2006100176A1 (de) | Verfahren und vorrichtung zur verbrennung von wasserstoff in einem vormischbrenner | |
CH703761A2 (de) | System und Verfahren zum Produzieren wasserstoffreichen Brennstoffes. | |
DE60016352T2 (de) | Gasturbinensystem und Kombianlage mit einer solchen Gasturbine | |
DE69503781T2 (de) | Verfahren zur herstellung von synthesegas durch teiloxidation enes flüssigen kohlenwasserstoff enthaltenden brennstoffes, wobei ein brenner mit mehreren (konzentrisch, ringförmig) auslassöffnungen benutzt wird | |
EP1072758B1 (de) | Verfahren zum Kühlen von Gasturbinenschaufeln | |
EP0832398B1 (de) | Katalytische gasturbinenbrennkammer | |
EP1256141B1 (de) | System zur vorsorgung von wenigstens zwei komponenten eines gaserzeugungssystems | |
EP0832399B1 (de) | Katalytische zündbrenner einer gasturbine | |
EP1654497B1 (de) | Verfahren zur verbrennung eines fluidischen brennstoffs sowie brenner, insbesondere für eine gasturbine, zur durchführung des verfahrens | |
DE2708940A1 (de) | Verfahren zum betreiben einer gasturbine sowie verbesserte gasturbinen- verbrennungskammer | |
DE69919620T2 (de) | Verfahren und Vorrichtung zur kombinierten Herstellung von Ammoniak-Synthesegas und Leistung | |
DE10253930A1 (de) | Verfahren zur Erzeugung eines wasserstoffhaltigen Brenngases für Brennstoffzellen sowie Vorrichtung dafür | |
DE102007055135A1 (de) | Verfahren zum Betreiben eines Brennstoffzellensystems | |
DE2307742A1 (de) | Verfahren zum betreiben einer gasturbine | |
EP0901568A1 (de) | Verfahren zum betreiben einer gasturbine und danach arbeitende gasturbine | |
DE102007026923A1 (de) | Zweistufiger Gasreformer | |
EP3650757A1 (de) | Gasturbine und verfahren zum betreiben einer gasturbine | |
AT202550B (de) | Verfahren zur endothermen katalytischen Spaltung von kohlenwasserstoffhaltigen Gasen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN CZ JP KR RU UA US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1996915990 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 1997 502489 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 08990033 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 1996915990 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1996915990 Country of ref document: EP |