EP0849451B1 - Verfahren zur Verbrennungsstabilisierung bei einem Gasturbinenkraftwerk - Google Patents
Verfahren zur Verbrennungsstabilisierung bei einem Gasturbinenkraftwerk Download PDFInfo
- Publication number
- EP0849451B1 EP0849451B1 EP97810916A EP97810916A EP0849451B1 EP 0849451 B1 EP0849451 B1 EP 0849451B1 EP 97810916 A EP97810916 A EP 97810916A EP 97810916 A EP97810916 A EP 97810916A EP 0849451 B1 EP0849451 B1 EP 0849451B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fuel
- air
- combustion chamber
- reactor
- synthesis gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000002485 combustion reaction Methods 0.000 title claims description 28
- 238000000034 method Methods 0.000 title claims description 17
- 239000000446 fuel Substances 0.000 claims description 41
- 239000007789 gas Substances 0.000 claims description 35
- 230000015572 biosynthetic process Effects 0.000 claims description 21
- 238000003786 synthesis reaction Methods 0.000 claims description 20
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 16
- 229910052739 hydrogen Inorganic materials 0.000 claims description 12
- 239000003054 catalyst Substances 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 10
- 239000001257 hydrogen Substances 0.000 claims description 9
- 230000003197 catalytic effect Effects 0.000 claims description 7
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 239000010763 heavy fuel oil Substances 0.000 claims description 2
- 239000003345 natural gas Substances 0.000 claims description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 description 16
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 9
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 238000002156 mixing Methods 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000000629 steam reforming Methods 0.000 description 2
- 241001156002 Anthonomus pomorum Species 0.000 description 1
- 241000237942 Conidae Species 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007806 chemical reaction intermediate Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/40—Continuous combustion chambers using liquid or gaseous fuel characterised by the use of catalytic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C3/00—Gas-turbine plants characterised by the use of combustion products as the working fluid
- F02C3/20—Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C3/00—Gas-turbine plants characterised by the use of combustion products as the working fluid
- F02C3/20—Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
- F02C3/30—Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C6/00—Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/22—Fuel supply systems
- F02C7/224—Heating fuel before feeding to the burner
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C2900/00—Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
- F23C2900/9901—Combustion process using hydrogen, hydrogen peroxide water or brown gas as fuel
Definitions
- the invention is based on a method for operating a gas turbine group according to the preamble of the first claim.
- the invention has for its object in a method for operating a Gas turbine group of the type mentioned a lean combustion with low To ensure emissions and a stable at all times To allow flame.
- the essence of the invention is therefore that compression supplied via a partial air line Air mixed with fuel supplied via a partial fuel line and is introduced into a reactor with a catalyst coating, that in the reactor the fuel-air mixture into a synthesis gas, essentially consisting of hydrogen, carbon monoxide, residual air and residual fuel, is converted and that this synthesis gas into the zones of the combustion chamber is injected where the flame is stabilized.
- the advantages of the invention can be seen, inter alia, in that, owing to the high reactivity of hydrogen the flame of the lean premix burner is stabilized much more efficiently than with a conventional pilot flame, i.e. the flame no longer moves periodically and thus pressure pulsations in the burner avoided.
- the hydrogen pilot flame results in higher local flame temperatures and due to their effect on the OH concentration, the local ones Response rates increased.
- the total fuel required is much less than with conventional diffusion pilot flames. By the lesser Fuel consumption of the flame reduces nitrogen oxide emissions, this even with part-load operation of the gas turbine system.
- a common shaft train 4 connects a gas turbine, essentially consisting Compressor 1, combustion chamber 5 and actual turbine 2 and one Generator 3.
- the common shaft train 4 can be formed from individual waves be connected via couplings, not shown.
- the air drawn in via an air inlet 20 is compressed in the compressor 1 and the compressed air is passed into the combustion chamber 5 via an air line 21.
- Fuel is introduced into the combustion chamber 5 via a fuel line 6.
- a premixer 18 for mixing fuel and compressed air arranged.
- the fuel-air mixture thus obtained is in a combustion chamber 19 of the combustion chamber 5 burned.
- the resulting hot gas is passed via a hot gas line 22 into the turbine 2, where it is expanded and part of the energy of the hot gas is converted into rotational energy.
- the still hot exhaust gases are discharged via an exhaust pipe 23.
- a portion of the compressed air from the air line 21 is via a partial air line 15 dissipated.
- the diverted amount of compressed air can be via a valve 15V in the partial air line 15 and via one after branching in the air line 21 arranged valve 21V can be set.
- the over the partial air line 15 branched-off air is further compressed in an additional compressor 7 and can be heated in a preheater 8 with the supply of thermal energy 12 become.
- the air is then introduced into a mixer 9, where the air is mixed with a Part of the fuel, especially natural gas or methane, is mixed.
- a heat exchanger 11 also in the mixer 9.
- the fuel-air mixture with an excess of fuel ( ⁇ ⁇ 1) is fed into a catalytic reactor 10 and partially oxidized there.
- the hydrogen-carbon monoxide-methane-residual air mixture thus obtained, in the following Called synthesis gas, is via a catalytic gas line 17 and Heat exchanger 11, where the heat of reaction of the synthesis gas to the inflowing Fuel is released into the combustion chamber 5, in particular in the Combustion chamber 19 initiated.
- the reactor 10 contains a honeycomb-shaped ceramic body with a coating of a noble metal catalyst, for example based on the elements Rh, Pt, Ru or Ir.
- a noble metal catalyst for example based on the elements Rh, Pt, Ru or Ir.
- the ceramic body that carries the catalyst can also be made from other materials and can have any channels.
- US Pat. No. 5,149,464 discloses a process for the selective oxidation of methane to hydrogen and carbon monoxide. For this purpose, the methane-air mixture is heated to at least 600 ° C.
- M at least one element consisting of the elements Mg, B, Al, La, Ga, Si, Ti, Zr and Hf and M 'is a transition metal from the d series.
- the equilibrium conversion of methane as well as the product selectivity for CO and H 2 increases with increasing reaction temperature, ie the higher the temperature, the more methane is converted and the more CO and H 2 is produced.
- the reaction temperature should be between 550 to 850 ° C, preferably between 700 and 800 ° C.
- a small reaction pressure of less than or equal to 20 bar favors the conversion selectivity for hydrogen.
- the risk of an explosion in the reactor 10 is further reduced by a low pressure.
- fuel with high pressure which can be set by means of the additional compressor, is required for injection into the combustion chamber 5 in order to ensure a sufficient penetration depth and mixing of the fuel in the burner.
- a lower ⁇ ratio may be desirable at higher reaction pressures to reduce the risk of explosion as this prevents residual oxygen and improve reaction selectivity.
- a higher methane / air ratio reduces the reaction temperature due to the additional dilution of the products.
- the flow rate through the reactor must be selected so that the highest possible yield can be achieved.
- the selectivity for the formation of the reaction intermediates CO and H 2 ie the prevention of further reaction with the residual O 2 in the air to CO 2 and H 2 O, can be improved by increasing the flow rate through the catalyst of the reactor 10. It is therefore advantageous to work with the highest possible flow rates that ensure almost complete conversion, so that the residence time inside the catalytic converter is at most 1 ms. It is also advantageous to work with catalysts that have a residence time spectrum that is as narrow as possible.
- the synthesis gas obtained is injected into the regions of the premixer, where the flame is stabilized.
- a row of nozzles is arranged at the transition to the combustion chamber which the gas mixture can be injected. Because the flame on this burner essentially by a cross-sectional jump at the downstream end of the Burner is stabilized, the injection openings can also be made on the front panel, arranged essentially circumferentially around the outlet of the burner his.
- the reactor 10 To start the synthesis gas reaction, the reactor 10 must be preheated to over 500 ° C. This can be achieved either by preheating the compressed air by means of preheating 8 or by directly heating the catalyst in reactor 10, preheating 8 then no longer being required.
- the direct heating of the catalytic converter electrically by applying a current to the metal of the catalytic converter or to a metallic honeycomb body, or chemically, for example by means of H 2 oxidation by means of additional hydrogen injection 24 and mixing upstream of the catalytic converter, requires much less energy. When the exothermic reaction has started, it should proceed without adding additional energy. Furthermore, the heat of reaction of the synthesis gas can be given off to the inflowing fuel via the heat exchanger 11.
- the synthesis gas production can take place centrally or locally, whereby a central production is more economical.
- the partial air line 15 and the partial fuel line 16 do not have to branch off from the air line 21 and the fuel line 6, they can also be fed separately.
- the steam reforming process can also be operated autothermally.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Description
Ein kleiner Reaktionsdruck von kleiner gleich 20 bar begünstigt die Umsatz-Selektivität für Wasserstoff. Weiter wird durch einen geringen Druck die Gefahr einer Explosion im Reaktor 10 reduziert. Andererseits wird Brennstoff mit hohem Druck, der mittels des Zusatzverdichters eingestellt werden kann, zur Einspritzung in die Brennkammer 5 benötigt, um eine genügende Eindringtiefe und Vermischung des Brennstoffes im Brenner zu gewährleisten.
Die Durchflussgeschwindigkeit durch den Reaktor muss so gewählt werden, dass eine möglichst hohe Ausbeute erzielt werden kann. Die Selektivität zur Bildung der Reaktionszwischenprodukte CO und H2, d.h. die Verhinderung der weiteren Reaktion mit dem Rest-O2 der Luft zu CO2 und H2O, kann durch eine Erhöhung der Durchflussgeschwindigkeit durch den Katalysator des Reaktors 10 verbessert werden. Es ist deshalb vorteilhaft, mit höchstmöglichen Durchflussgeschwindigkeiten die einen nahezu vollständigen Umsatz gewährleisten zu arbeiten, so dass die Aufenthaltszeit im Innern des Katalysators bei höchstens einer 1 ms liegt. Es ist auch vorteilhaft mit Katalysatoren zu arbeiten, die ein möglichst schmales Verweilzeitspektrum aufweisen.
Das Synthesegas kann auch mittels Dampf-Reformierung gewonnen werden.
- 1
- Verdichter
- 2
- Turbine
- 3
- Generator
- 4
- Welle
- 5
- Brennkammer
- 6
- Brennstoffleitung
- 6V
- Ventil in 6
- 7
- Zusatzverdichter
- 8
- Vorheizung
- 9
- Mischer
- 10
- Reaktor
- 11
- Wärmetauscher
- 12
- Wärmeenergie
- 15
- Teil-Luftleitung zu 10
- 15V
- Ventil in 15
- 16
- Teil-Brennstoffleitung zu 10
- 16V
- Ventil in 16
- 17
- Katalysegas-Leitung
- 18
- Vormischer
- 19
- Brennraum
- 20
- Lufteinlass
- 21
- Luft-Leitung
- 21V
- Ventil in 21
- 22
- Heissgasleitung
- 23
- Abgasleitung
- 24
- Wasserstoffeindüsung
Claims (9)
- Verfahren zum Betrieb einer Gasturbogruppe, wobei die Gasturbogruppe im wesentlichen aus einem Verdichter (1), einer Brennkammer (5), einer Turbine (2) und einem Generator (3) besteht, wobei in einem Vormischer (18) der Brennkammer (5) vorgängig der Verbrennung Brennstoff mit im Verdichter (1) verdichteter Luft vermischt und danach in einem Brennraum (19) verbrannt wird, und wobei
über eine Teil-Luftleitung (15)zugeführte verdichtete Luft mit über eine Teil-Brennstoffleitung (16) zugeführtem Brennstoff vermischt wird und in einen Reaktor (10) mit einer Katalysator-Beschichtung eingeleitet wird, dass im Reaktor (10) das Brennstoff-Luft-Gemisch in ein Synthesegas, umfassend Wasserstoff, Kohlenmonoxid, Restluft und Restbrennstoff, umgewandelt wird, dadurch gekennzeichnet, dass dieses Synthesegas in die Zonen der Brennkammer (5) eingedüst wird, wo die Flamme stabilisiert wird. - Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass der über eine Teil-Brennstoffleitung (16) zugeführte Brennstoff Erdgas und / oder Methan ist. - Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass die Teil-Luftleitung (15) von einer Luftleitung (21) abzweigt, die die verdichtete Luft aus dem Verdichter (1) in die Brennkammer (5) leitet und / oder dass die Teil-Brennstoffleitung (16) von einer Brennstoffleitung (6) abzweigt, die Brennstoff der Brennkammer (5) zuführt. - Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass der dem Reaktor (10) zugeführte Brennstoff vor der Vermischung mit der verdichteten Luft in einem Wärmetauscher (11) vorgewärmt wird. - Verfahren nach Anspruch 4,
dadurch gekennzeichnet, dass die Wärmeenergie des Synthesegases zur Erwärmung des Brennstoffes im Wärmetauscher (11) verwendet wird. - Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass beim Starten der Synthesegas-Produktion die verdichtete Luft vorgängig der Einleitung in den Reaktor (10) erwärmt wird und / oder dass der Katalysator erwärmt wird. - Verfahren nach Anspruch 6,
dadurch gekennzeichnet, dass der Katalysator elektrisch und / oder chemisch erwärmt wird. - Verfahren nach Anspruch 1 oder 3,
dadurch gekennzeichnet, dass die über die Teil-Luftleitung (15) dem Reaktor (10) zugeführte verdichtete Luft mit einem Zusatzverdichter (7) verdichtet wird. - Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass das Synthesegas in den Brennraum (19) der Brennkammer (5) eingedüst wird.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19654022A DE19654022A1 (de) | 1996-12-21 | 1996-12-21 | Verfahren zum Betrieb einer Gasturbogruppe |
DE19654022 | 1996-12-21 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0849451A2 EP0849451A2 (de) | 1998-06-24 |
EP0849451A3 EP0849451A3 (de) | 1999-11-03 |
EP0849451B1 true EP0849451B1 (de) | 2003-05-07 |
Family
ID=7816014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97810916A Expired - Lifetime EP0849451B1 (de) | 1996-12-21 | 1997-11-26 | Verfahren zur Verbrennungsstabilisierung bei einem Gasturbinenkraftwerk |
Country Status (4)
Country | Link |
---|---|
US (1) | US5937632A (de) |
EP (1) | EP0849451B1 (de) |
JP (1) | JPH10184392A (de) |
DE (2) | DE19654022A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7568907B2 (en) | 2005-12-22 | 2009-08-04 | Alstom Technology Ltd. | Combustion chamber with burner and associated operating method |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6125625A (en) * | 1997-12-20 | 2000-10-03 | Alliedsignal, Inc. | Low NOx conditioner system for a microturbine power generating system |
BE1011844A6 (fr) * | 1998-03-19 | 2000-02-01 | Oxipar Sprl | Topping de turbines a gaz existantes. |
EP1010947A3 (de) * | 1998-12-14 | 2002-03-20 | United Technologies Corporation | Gasturbine mit einer katalytischen Brennkammer und Methode zu derem Betrieb |
DE19951585C2 (de) * | 1999-10-27 | 2002-04-11 | Daimler Chrysler Ag | Reaktoranlage zur katalytischen Brennstoffumsetzung mit Wasser und Sauerstoff |
US6908297B2 (en) * | 2000-05-26 | 2005-06-21 | Rohm And Haas Company | Hydrogen-fueled flare system |
US6718772B2 (en) | 2000-10-27 | 2004-04-13 | Catalytica Energy Systems, Inc. | Method of thermal NOx reduction in catalytic combustion systems |
US7121097B2 (en) | 2001-01-16 | 2006-10-17 | Catalytica Energy Systems, Inc. | Control strategy for flexible catalytic combustion system |
DE10061526A1 (de) | 2000-12-11 | 2002-06-20 | Alstom Switzerland Ltd | Vormischbrenneranordnung zum Betrieb einer Brennkammer |
US6532743B1 (en) | 2001-04-30 | 2003-03-18 | Pratt & Whitney Canada Corp. | Ultra low NOx emissions combustion system for gas turbine engines |
US6796129B2 (en) | 2001-08-29 | 2004-09-28 | Catalytica Energy Systems, Inc. | Design and control strategy for catalytic combustion system with a wide operating range |
US6658856B2 (en) | 2002-01-17 | 2003-12-09 | Vericor Power Systems Llc | Hybrid lean premixing catalytic combustion system for gas turbines |
EP1532394B1 (de) | 2002-08-30 | 2016-11-23 | General Electric Technology GmbH | Hybridbrenner und zugehöriges betriebsverfahren |
EP1532395B1 (de) | 2002-08-30 | 2016-11-16 | General Electric Technology GmbH | Verfahren und vorrichtung zum vermischen von fluidströmungen |
EP1532400B1 (de) | 2002-08-30 | 2017-07-26 | Ansaldo Energia Switzerland AG | Verfahren und vorrichtung zum verbrennen eines brennstoff-oxidator-gemischs |
US20040255588A1 (en) * | 2002-12-11 | 2004-12-23 | Kare Lundberg | Catalytic preburner and associated methods of operation |
JP2006515659A (ja) * | 2003-01-17 | 2006-06-01 | カタリティカ エナジー システムズ, インコーポレイテッド | 複数燃焼室触媒ガスタービンエンジンのための動的制御システムおよび方法 |
US6993912B2 (en) * | 2003-01-23 | 2006-02-07 | Pratt & Whitney Canada Corp. | Ultra low Nox emissions combustion system for gas turbine engines |
EP1664696A2 (de) * | 2003-09-05 | 2006-06-07 | Catalytica Energy Systems, Inc. | Katalysator-modul-überhitzungs-detektion und ansprechverfahren |
WO2005095855A1 (de) * | 2004-03-30 | 2005-10-13 | Alstom Technology Ltd | Vorrichtung und verfahren zur flammenstabilisierung in einem brenner |
US8146367B2 (en) * | 2004-12-22 | 2012-04-03 | Commonwealth Scientific And Industrial Research Organisation | Production of synthesis gas using catalyst-coated turbine blades |
GB2429516B (en) * | 2005-08-27 | 2010-12-29 | Siemens Ind Turbomachinery Ltd | An apparatus for modifying the content of a gaseous fuel |
US20070089417A1 (en) * | 2005-10-06 | 2007-04-26 | Khanna Vivek K | Catalytic reformer with upstream and downstream supports, and method of assembling same |
US20070130956A1 (en) * | 2005-12-08 | 2007-06-14 | Chen Alexander G | Rich catalytic clean burn for liquid fuel with fuel stabilization unit |
EP2058590B1 (de) * | 2007-11-09 | 2016-03-23 | Alstom Technology Ltd | Verfahren zum Betrieb eines Brenners |
JP5574969B2 (ja) * | 2007-11-27 | 2014-08-20 | アルストム テクノロジー リミテッド | 予混合バーナ内で水素を燃焼させるための方法および装置 |
EP2220438B1 (de) | 2007-11-27 | 2019-07-24 | Ansaldo Energia Switzerland AG | Verfahren zum betrieb einer kombikraftwerkseinheit mit einer gasturbinenanlage unter verwendung eines zweiten, wasserstoffreichen brennstoffs |
JP5075900B2 (ja) * | 2009-09-30 | 2012-11-21 | 株式会社日立製作所 | 水素含有燃料対応燃焼器および、その低NOx運転方法 |
US8869502B2 (en) * | 2011-01-13 | 2014-10-28 | General Electric Company | Fuel reformer system for a turbomachine system |
US11015808B2 (en) | 2011-12-13 | 2021-05-25 | General Electric Company | Aerodynamically enhanced premixer with purge slots for reduced emissions |
US10578307B2 (en) * | 2015-10-09 | 2020-03-03 | Dresser-Rand Company | System and method for operating a gas turbine assembly including heating a reaction/oxidation chamber |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0610722A1 (de) * | 1993-02-12 | 1994-08-17 | Abb Research Ltd. | Brenner zum Betrieb einer Brennkraftmaschine, einer Brennkammer einer Gasturbogruppe oder Feuerungsanlage |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2655786A (en) * | 1950-09-18 | 1953-10-20 | Phillips Petroleum Co | Method of operating jet engines with fuel reforming |
DE1219732B (de) * | 1958-07-12 | 1966-06-23 | Maschf Augsburg Nuernberg Ag | Verfahren zum Betrieb einer Brennkraftmaschine mit kontinuierlicher Verbrennung, beispielsweise einer Gasturbine |
US3765167A (en) * | 1972-03-06 | 1973-10-16 | Metallgesellschaft Ag | Power plant process |
US5048284A (en) * | 1986-05-27 | 1991-09-17 | Imperial Chemical Industries Plc | Method of operating gas turbines with reformed fuel |
DE19521356C2 (de) * | 1995-06-12 | 1999-04-01 | Siemens Ag | Gasturbine, umfassend einen Verdichterteil, einen Brennerteil und einen Turbinenteil |
DE19536836C2 (de) * | 1995-10-02 | 2003-11-13 | Alstom | Verfahren zum Betrieb einer Kraftwerksanlage |
-
1996
- 1996-12-21 DE DE19654022A patent/DE19654022A1/de not_active Withdrawn
-
1997
- 1997-11-26 EP EP97810916A patent/EP0849451B1/de not_active Expired - Lifetime
- 1997-11-26 DE DE59710031T patent/DE59710031D1/de not_active Expired - Lifetime
- 1997-12-03 US US08/984,658 patent/US5937632A/en not_active Expired - Fee Related
- 1997-12-19 JP JP9351301A patent/JPH10184392A/ja active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0610722A1 (de) * | 1993-02-12 | 1994-08-17 | Abb Research Ltd. | Brenner zum Betrieb einer Brennkraftmaschine, einer Brennkammer einer Gasturbogruppe oder Feuerungsanlage |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7568907B2 (en) | 2005-12-22 | 2009-08-04 | Alstom Technology Ltd. | Combustion chamber with burner and associated operating method |
DE102005061486B4 (de) * | 2005-12-22 | 2018-07-12 | Ansaldo Energia Switzerland AG | Verfahren zum Betreiben einer Brennkammer einer Gasturbine |
Also Published As
Publication number | Publication date |
---|---|
EP0849451A2 (de) | 1998-06-24 |
DE59710031D1 (de) | 2003-06-12 |
JPH10184392A (ja) | 1998-07-14 |
EP0849451A3 (de) | 1999-11-03 |
US5937632A (en) | 1999-08-17 |
DE19654022A1 (de) | 1998-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0849451B1 (de) | Verfahren zur Verbrennungsstabilisierung bei einem Gasturbinenkraftwerk | |
EP1532400B1 (de) | Verfahren und vorrichtung zum verbrennen eines brennstoff-oxidator-gemischs | |
EP1497589B1 (de) | Brennkammer mit flammenloser oxidation | |
DE69100910T2 (de) | Katalytische Gasturbinenbrennkammer mit Vorbrenner und niedrigem NOX-Ausstoss. | |
EP1730441B1 (de) | Vorrichtung und verfahren zur flammenstabilisierung in einem brenner | |
DE69724031T2 (de) | Vormischbrennkammer mit magerer Direkteinspritzung und geringem NOx-Ausstoss | |
EP1702176B1 (de) | Wärmekraftanlage mit sequentieller verbrennung und reduziertem co2-ausstoss sowie verfahren zum betreiben einer derartigen anlage | |
DE3835415A1 (de) | Brennstoffinjektor fuer eine brennkammer eines gasturbinentriebwerks | |
CA2151095A1 (en) | Method and apparatus for sequentially staged combustion using a catalyst | |
US20010049932A1 (en) | Premixing dry low NOx emissions combustor with lean direct injection of gas fuel | |
DE2757049A1 (de) | Verfahren zur erzielung einer ununterbrochenen verbrennung von kohlenstoffhaltigem brennstoff | |
EP1738109A1 (de) | Katalytischer reaktor und verfahren zur verbrennung von brennstoff-luft-gemischen mittels eines katalytischen reaktors | |
EP1861657A1 (de) | Verfahren und vorrichtung zur verbrennung von wasserstoff in einem vormischbrenner | |
CH703761A2 (de) | System und Verfahren zum Produzieren wasserstoffreichen Brennstoffes. | |
EP3246559B1 (de) | Raketenantriebssystem und verfahren zum betreiben eines raketenantriebssystems | |
DE19727730A1 (de) | Gasturbinenaufbau | |
EP3246557B1 (de) | Raketenantriebssystem und verfahren zum betreiben eines raketenantriebssystems | |
WO1996041990A1 (de) | Katalytische gasturbinenbrenner | |
DE19934927A1 (de) | Verfahren zum Kühlen von Leit- und/oder Laufschaufeln in den Turbinenstufen einer Gasturbinenanlage sowie Gasturbinenanlage zur Durchführung des Verfahrens | |
DE102006019409B4 (de) | Reformer-Reaktor, seine Verwendung und Verfahren zum Betrieb des Reformers | |
JP2757966B2 (ja) | ガスタービン | |
EP1654497B1 (de) | Verfahren zur verbrennung eines fluidischen brennstoffs sowie brenner, insbesondere für eine gasturbine, zur durchführung des verfahrens | |
US4230278A (en) | Apparatus for reducing hydrocarbon fuel requirement for Haber ammonia synthesis | |
US20240400921A1 (en) | Method of mixing a fuel with an oxidant, and method of decomposing a feedstock | |
DE4325802A1 (de) | Verfahren zum Betrieb einer Gasturbinenanlage mit flüssigem oder gasförmigem Brennstoff |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB IT |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20000502 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ABB ALSTOM POWER (SCHWEIZ) AG |
|
AKX | Designation fees paid |
Free format text: DE FR GB IT |
|
17Q | First examination report despatched |
Effective date: 20011016 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM (SWITZERLAND) LTD |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 59710031 Country of ref document: DE Date of ref document: 20030612 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20040210 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20091130 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20101109 Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES Effective date: 20101102 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20101122 Year of fee payment: 14 Ref country code: GB Payment date: 20101022 Year of fee payment: 14 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20111126 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20120731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111130 |