WO1996040873A1 - Standardisierte, primäre osteoblastenzellkulturen aus osteoporotischen patienten und deren verwendung zur osteoporosediagnose und zur testung potentieller osteoporose-therapeutika - Google Patents

Standardisierte, primäre osteoblastenzellkulturen aus osteoporotischen patienten und deren verwendung zur osteoporosediagnose und zur testung potentieller osteoporose-therapeutika Download PDF

Info

Publication number
WO1996040873A1
WO1996040873A1 PCT/DE1996/001042 DE9601042W WO9640873A1 WO 1996040873 A1 WO1996040873 A1 WO 1996040873A1 DE 9601042 W DE9601042 W DE 9601042W WO 9640873 A1 WO9640873 A1 WO 9640873A1
Authority
WO
WIPO (PCT)
Prior art keywords
osteoporosis
cell cultures
osteoblast
expression
cell
Prior art date
Application number
PCT/DE1996/001042
Other languages
English (en)
French (fr)
Inventor
Olivera Josimovic-Alasevic
Karl-Gerd Fritsch
Jochen Ittner
Original Assignee
Co.Don Gmbh Gesellschaft Für Molekulare Medizin Und Biotechnologie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19601052A external-priority patent/DE19601052A1/de
Application filed by Co.Don Gmbh Gesellschaft Für Molekulare Medizin Und Biotechnologie filed Critical Co.Don Gmbh Gesellschaft Für Molekulare Medizin Und Biotechnologie
Priority to AT96917341T priority Critical patent/ATE309330T1/de
Priority to AU59961/96A priority patent/AU733637B2/en
Priority to US08/973,116 priority patent/US6713269B2/en
Priority to DE59611292T priority patent/DE59611292D1/de
Priority to EP96917341A priority patent/EP0832195B1/de
Priority to JP9500085A priority patent/JPH11506010A/ja
Publication of WO1996040873A1 publication Critical patent/WO1996040873A1/de
Priority to NO19975673A priority patent/NO322971B1/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0654Osteocytes, Osteoblasts, Odontocytes; Bones, Teeth
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5091Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing the pathological state of an organism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/105Insulin-like growth factors [IGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/15Transforming growth factor beta (TGF-β)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2503/00Use of cells in diagnostics

Definitions

  • the invention relates to standardized, primary osteoblast cell cultures from subjects with differential diagnosis who are suspected of having osteoporosis, their use for osteoporosis diagnosis and for testing potential osteoporosis therapeutics, and a method for osteoporosis diagnosis, with which a 95% reliable statement regarding the presence of osteoporosis can be made a method for testing potential osteoporosis therapeutic agents, with which an effective osteoporosis therapeutic agent can be determined for each individual case.
  • Osteoporosis is a serious systemic disease of the skeleton, which is characterized by a mosaic-like decrease in bone density
  • the currently used therapeutic agents against osteoporosis such as estrogens, progesterones, calcitonin, di / bisphosphonates and calcium, can only slow or reduce the bone loss in their action as anti-bone absorbers. It is not possible to replace the already lost bone substance with this.
  • PTH Parathyroid hormone
  • GH growth hormone
  • SPA single photon absorptiometry
  • SXA single and dual X-ray absorptiometry
  • QCT quantitative computed tomography
  • the new methods for estimating bone resorption such as the measurement of deoxypyridinoline in urine, or the methods for determining bone formation, such as the measurement of bone-specific alkaline phosphatase and the procollagen peptides in serum, should provide more information.
  • the object of the invention was therefore to make it inexpensive and simple for the person skilled in the art to develop a manageable method for the diagnosis of osteoporosis that in each individual case provides an at least 95% reliable assignment to the group of those suffering from osteoporosis or not to osteoporosis or to the success of therapy by means of parameters that can be interpreted and reproduced without any doubt.
  • the object of the invention is achieved by establishing standardized osteoblast cell cultures from osteoporotic patients for the first time, which are viable for months and can be used excellently for osteoporosis diagnosis. It has been found that osteoblast cells according to the invention show pathological changes in their proliferation and differentiation in osteoporotic patients compared to the osteoblast cells from non-osteoporotic patients. With the discriminant analysis, the data on the proliferation rate and the expression intensity of osteoblast-specific differentiation markers are assigned to the osteoporosis and non-osteoporosis patients with an accuracy of over 95%. Thereby, those with osteoporosis differ from those not with osteoporosis in a highly significant way.
  • these cell cultures are also very suitable for testing potential osteoporosis therapeutic agents, which makes it possible to determine an individually effective therapeutic agent for each patient.
  • the bone cell cultures are made by taking osteoporotic from transiliac bone biopsies
  • the osteological bone biopsies are taken from clinically characterized patients, preferably from the iliac crest or from other bones (bone punches).
  • the approx. 1 - 2 cm long and 1 - 5 mm thick bone biopsies are mechanically separated from any fat and connective tissue that may be present, divided into several pieces, treated several times enzymatically (preferably with collagenase) and the isolated osteoblast precursor cells are cultivated as monolayers.
  • three-dimensional cell cultures can be created on denatured collagen type 1 sponges. This results in standardized bone cell cultures.
  • the primary bone cells obtained from non-osteoporotic patients of the same sex and about the same age serve as controls.
  • the cell culture medium preferably consists of ⁇ -MEM medium and HAM-F12 medium (from Gibco) and optionally contains a serum additive.
  • the ratio of ⁇ -MEM medium and HAM-F12 medium is preferably 1: 2, but ratios between 3: 1 to 1: 3 also lead to the desired result.
  • Fetal calf serum, human serum, bovine serum albumin or Ultroser is used as a serum additive, which can be between 1 - 12%.
  • 2-7% Ultroser, particularly preferably 2-5% Ultroser are used.
  • the choice of the described cell culture conditions has made it possible to keep the standardized osteoblast cell cultures of osteoporotic patients viable for months to 2 years, the diagnostic method according to the invention being carried out with the cell cultures up to the second passage, since they best reflect the situation in the human body.
  • the cell extracts obtained from primary osteoblast cell cultures according to the invention were examined by means of high-resolution 2D gel electrophoresis and silver staining and compared with the cell extracts obtained from osteoblast cell cultures of non-osteoporotic patients.
  • This protein expression pattern is identical to the protein expression pattern from osteoblastic cell cultures of non-osteoporotic patients (see FIG. 2).
  • FIG. 2 When comparing the intensities of the individual spots in Fig. 1 and in Fig. 2, however, reproducible and quantifiable measurable differences were found in at least six spots (cf. identification by arrows in Fig. 1 and Fig. 2).
  • a lower expression of five proteins and an increased expression of one protein in the osteoblast cell cultures according to the invention compared to the osteoblast cell cultures of non-osteoporotic patients can be found.
  • a supplementary statement about the presence of osteoporosis is thus possible about the intensities of the spots.
  • the protein expression patterns of the osteoblastic cell cultures obtained according to the invention were also compared with those of human fibroarcomas and human osteoarcomas compared. It was shown that the protein expression patterns of the fibrosarcomas and osteosarcomas differ from the expression pattern of the osteoblasts. This made it clear that the osteoblastic cell cultures according to the invention are pure cultures which are not contaminated by other cell types.
  • the method according to the invention for osteoporosis diagnosis is based on the determination of suitable osteoblast-specific differentiation markers which allow statements to be made regarding the early differentiation phase of the osteoblasts, the bio-synthesis and maturation of the extracellular matrix and the late differentiation phase of the osteoblasts. It was found that in order to obtain a statement which is at least 95% reliable, the cell proliferation rate and the expression of at least six osteoblast-specific differentiation markers should be determined quantitatively, and besides the cell proliferation rate, at least one parameter of the early differentiation phase of the osteoblasts should be determined, at least one parameter of the late differentiation phase and at least four parameters of the matrix synthesis.
  • the expression of one of the three oncogenes c-myc, c-fo ⁇ or c-jun, in particular c-fo ⁇ is preferably determined in order to investigate the early differentiation phase, and the expression of the intracellular alkaline phosphate to examine the formation and maturation of the extracellular matrix , de collagen type I and type IV and of chondroitin sulfate or hyaluronic acid and to investigate the late differentiation phase the intracellular synthesis of osteocalcin.
  • the expression intensities of these parameters are compared with those from primary osteoblast cell cultures of non-osteoporotic subjects of the same gender and approximately the same age and evaluated statistically, for example by means of discriminant analysis.
  • additional differentiation markers such as growth factors (eg TGF ⁇ ), cytokines (eg IGF I, IGF II), alkaline phosphatase secreted in the cell supernatant and secreted type I and type IV collagen can of course be determined.
  • growth factors eg TGF ⁇
  • cytokines eg IGF I, IGF II
  • the cell proliferation rate in parallel cultures is measured after 48-196 hours of incubation, preferably after 72 hours of incubation.
  • the measurement is carried out using conventional cell proliferation assays, e.g. by incorporating a radioactively-labeled substance such as [ ⁇ H] thymidine into the DNA.
  • the assay developed by Boehringer Mannheim GmbH for the incorporation of bromodeoxyuridine is also suitable for the determination. It was shown that a 4 - 6-fold reduced cell proliferation capacity indicates an osteoporotic patient (see Fig. 3).
  • the expression of the three oncogenes c-fos, c-myc and c-jun is specific for the early differentiation of osteoblasts.
  • the expression of c-fos was preferably determined.
  • the oncogene expression is determined quantitatively after the same incubation time as at the cell proliferation rate by immunohistochemical staining of its protein products and spectrophotometry in the monolayer cell cultures.
  • the steady-state level of each specific mRNA can also be quantified by quantitative PCR and possibly Northern blot analysis (if the number of cells allows it).
  • the cell proliferation rate and the oncogene expression intensity in the osteoporotic and non-osteoporotic cells are compared and a statement is made as to the presence of osteoporosis, or these parameters are subjected to a static evaluation together with those from the late differentiation phase and the matrix synthesis.
  • Membrane-bound chondroitin sulfate is from
  • Osteoblasts from osteoporotic patients were also more strongly expressed.
  • the determination according to the invention of the expression of the alkaline phosphatase in osteoblast cell cultures of osteoporotic and non-osteoporotic patients allows not only statements to be made about a ready manifest, but also to begin an osteoporosis.
  • a beginning osteoporosis is characterized by the fact that preferably the endogenous expression of the alkaline phosphatase is slightly increased, whereas in the case of manifest osteoporosis the endogenous expression of the alkaline phosphatase is greatly increased.
  • TGF ß in particular TGF ß 2
  • cytokines such as IGF I and IGF II
  • the determination of the BMPs (bone morphogenetic proteins) in the osteoblastic cells can additionally provide information about the disease.
  • the specific mRNA can also be determined additionally by quantitative PCR and Northern blot.
  • the alkaline phosphatase and collagen types I and IV secreted in the cell culture supernatant can optionally be quantified as additional parameters.
  • reagents requiring mineralization are added to the parallel bone cell cultures and the intracellular synthesis of osteocalcin is quantitative certainly. This determination is preferably carried out by means of immunohistochemical staining and spectrophotometry.
  • the detection of osteocalcin-specific mRNA can also be carried out and is carried out by means of quantitative PCR.
  • the evaluation is carried out by comparison with those from non-osteoporotic cells and possibly statistical, whereby here the discriminant analysis has proven to be particularly suitable.
  • the proliferation rate of the cells that were obtained from osteoporosis patients was significantly lower in comparison to the proliferation rate of the healthy patients.
  • the synthesis rate of alkaline phosphatase in the osteoblasts, which were obtained from osteoporosis patients, is significantly higher than that the alkaline phosphatase expression in the osteoblasts of non-osteoporotic patients.
  • the method according to the invention already allows a 95% reliable statement regarding the presence of osteoporosis based on the cell cultures according to the invention by determining the 7 parameters mentioned, which are measured using methods customary for the person skilled in the art.
  • the cell cultures according to the invention are also outstandingly suitable for testing potential osteoporosis therapeutics and thus an in vitro test system is available with which the direct effect of potential therapeutics on individual human osteoblast progenitor cells is examined by healthy subjects and patients can.
  • the present invention thus also relates to the method for testing potential osteoporosis therapeutics according to claim 7 and claim 8. It was found that the mitogenic effect of potential osteoporosis therapeutics can also be determined by measuring the cell proliferation rate using the conventional methods described (cf. Fig 5).
  • the effect of potential osteoporosis therapeutic agents on the differentiation of the "osteoporotic" osteoblastic precursor cells can also be determined by measuring the minimum parameters described above for the diagnosis of osteoporosis.
  • reliable determination is obtained by determining the parameters mentioned using immunohistochemical staining and spectrophotometry.
  • the influence of potential osteoporosis therapeutics on the regulation of matrix synthesis can be determined by the detection of specific mRNA by quantitative PCR.
  • RNA is isolated from the cells
  • a cDNA bank is produced from mRNA by means of oligo and / or random primers and reverse transcriptase and the specific amount of each specific single strand of cDNA is amplified by means of specific primer pairs.
  • the ⁇ -ACTIN fragment as HOUSE-KEEPING gene is amplified in parallel by means of PCR.
  • This Te ⁇ t complements the z.Z. animal models used for the investigation of osteoporosis therapeutic agents which can only correspond to the clinical picture in humans to a limited extent and which do not allow individual determination of particularly suitable therapeutic agents. If the bone substances are removed from patients with other keletal diseases, it is possible to test the effect of potential therapeutic agents against these skeletal diseases with the cell cultures established therefrom according to the invention.
  • the standardized primary osteoblastic cell cultures of osteoporotic patients according to the invention can be obtained reproducibly by the described method and can be kept viable for up to two years. They represent pure cultures which can be clearly identified by means of high-resolution 2D SDS gel electrophoresis and can be distinguished from the osteoblastic cell cultures of non-osteoporotic patients.
  • the object of the invention is also the use of these primary osteoblast cell cultures
  • Fig. 1 High-resolution 2D-SDS-PAGE gel of standardized, primary osteoblast cell cultures of osteoporotic patients
  • Fig. 2 High-resolution 2D SDS page gel of standardized, primary osteoblast cell cultures of non-osteoporotic patients
  • Fig. 3 Evidence of the reduced proliferation rate of osteoblast precursor cells from osteoporotic patients (OP cells) compared to Proliferation rate of osteoblast precursor cells from non-osteoporotic patients (NOP cells)
  • OP cells osteoporotic patients
  • NOP cells non-osteoporotic patients
  • xl - x3 treatment with FCS (fetal calf serum) 48 h, 120 h, 192 h x4 - x ⁇ : treatment with inactivated human control serum, 48 h, 120 h, 192 H
  • Fig. 4 Detection of the increased expression of intracellular alkaline phosphatase in osteoblast precursor cells from osteoporotic patients (pOP and OP cells)
  • pOP preclinical osteoporosis
  • n 12
  • osteoporosis 14
  • Fig. 5 Different dose-response curves (stimulability) of the proliferation of NOP and OP
  • TGF ß 2 growth factor 1
  • Fig. 6 Discriminant analysis (25 samples) of osteoblastic cells from patients with osteoporosis (OP) and non-patients (NOP)
  • the cell culture model is based on primary cell cultures that were obtained from pelvic crest biopsies of patients with differential diagnosis who were suspected of having osteoporosis.
  • the pelvic crest biopsies were taken from 26 osteoporotic and 18 non-osteoporotic patients aged 50-70 years.
  • the piece of bone was connective tissue five times with diluted Collagenase solution (0.5 mg / ml) from Worthington (CLS 2) in each case for 30 min. treated at 37 ° C.
  • Ratio 1 2 MEM medium and HAM-F12 medium from Gibco used without the addition of serum.
  • the cells were cultivated in medium containing serum, consisting of equal parts of ⁇ -MEM medium and HAM-F12 medium from Gibco, the medium being changed twice a week.
  • the number of intact cells was determined by trypan blue staining and counting in a counting chamber.
  • the cells were cultured for three days under the conditions already described and then cultured further for one day in the medium without serum until subconfluence.
  • the proliferation test was evaluated by measuring the optical density (OD) at 405 nm in the ELISA reader. After 60 min of color development, the absorbance was checked every 5 min. Measured 12 times.
  • Fig. 5 shows the measured extinctions of the three growth factors as a function of the concentration.
  • TGFß 2 100 ng / ml 0.190 0.002
  • IGF II 100ng / ml 0.140 0.000
  • IEF isoelectric focusing
  • Second dimension SDS-PAGE under reducing conditions
  • the intensities of the spots were evaluated by means of scanning denitometry and statistically.
  • 3000 osteoblastic cells from fractions 1 and 2 to the second passage which were obtained from osteoporotic patients (OP cells), each well of a 96-well microtiter plate, were in the presence of 10% FCS and 10% inactivated human control serum in cell culture medium ( ⁇ - MEM - and HAM S F12 medium) pre-incubated for 24h.
  • 3000 osteoblastic cells from non-osteoporotic patients were cultivated under the same conditions.
  • the cells were cultivated for three days under the conditions described and the AP assay was then carried out.
  • the cells are washed twice with phosphate buffer from Dulbecco and then lysed with 100 ⁇ l of a solution consisting of 0.1 M glycine, pH 10.3, 1 mM ZnCl 2 , 1 mM MgCl 2 , 0.1% Triton X-100.
  • 50 ⁇ l of a 2.5 mM solution of di-sodium-4-nitrophenylphosphate hexahydrate (AP reagent) were added to all wells of a microtiter plate and the color development that occurred within one hour at intervals of 15 min at 405 nm in a TITERTEK ELISA Reader measured.
  • the enzymatic activity correlates with the color intensity and is shown as nM of para-nitrophenyl phosphate as a substrate per specific cell number.
  • a dilution series of a 1mM 4-nitrophenol solution was used Standard pipetted. Cells in 10% FCS-containing medium served as controls.
  • RT-PCR reverse transcriptase polymerase chain reaction
  • RNA from 1-2 million osteoblasts and osteoblast-like cells was isolated (Trizol kit, Gibco Life Technologie).
  • RNA or 5-50 ng of the mRNA per sample were randomized with Superscript II reverse transcriptase using 500 ng oligo-dT or 500 pg random primer (Superscript II Rever ⁇ e Transcript kit, Gibco, Life Technologie) rewritten at 42 ° C for 50 min.
  • the resulting cDNA are used as templates for amplification in PCR.
  • the sequences of the primer pairs which are specific for cDNA encoding osteoblast differentiation markers, were selected by co.don GmbH using MacMollyTetra software (Prof. B. Wittig).
  • the detection of certain mRNA sequences by hybridization is carried out by separating the total RNA in an agarose gel matrix, transferring it and then fixing it to a filter and hybridizing it with a specific DNA probe.
  • the total RNA from 10-20 million osteoblasts and osteoblast-like cells was isolated (Trizol kit from Gibco).
  • RNA Five to ten micrograms of the total RNA were separated in 1.2% formaldehyde agarose gel for one hour at 100 V constant voltage.
  • the gels were blotted overnight on an amphoteric Nytran membrane (Schleicher & Schuell) and the nucleic acids were then crosslinked by the UV radiation. Label the DNA probe
  • cDNA fragment each which is 40 bases long and specific for the osteoblast differentiation markers to be investigated, was implanted by means of polymerase chain reaction (PCR) and then with biotin reagent Bio-ULS (Dianova GmbH) for one hour at 87 ° C incubated.
  • PCR polymerase chain reaction
  • Bio-ULS Bio-ULS
  • the nitrocellulose membrane was treated with 75 mM sodium citrate buffer, 750 mM NaCl, 5% polyvinylpyrolidone, 0.1% BSA, 5 mM EDTA, 0.5% SDS, 0.1 mg / ml herring sperm DNA at 42 ° C prehybridized for 15 min and then at 42 ° C with a solution of 50% formamide, 1% bovine serum albimine, 1mM EDTA, 0.5 mM sodium phosphate and 5% sodium dodecyl sulfate for 16 hours with a specific biotin-labeled DNA probe (approx. 100 ng) incubated.
  • the membrane was washed, blocked with 1.5% dry milk solution and incubated with a streptavidin / alkaline phosphatase (Schleicher & Schuell) solution for 15 min to 3 hours. The membrane was then washed with 0.5% Tween-20, PBS solution for 5 min and the color was formed by incubating the membrane in a 0.1 M Tri ⁇ -HC1; 0.1 M NaCl; 5 mg MgCl, NBT (32 mg / ml) in 70% dimethylformamide, BCIP (16 mg / ml) for one hour to 16 hours.
  • Hybridization probes the cDNA coding for osteoblast differentiation marker were selected using MacMollyTetra software (Prof. B. Witting).
  • the specific antibodies used were hyaluronic acid - mou ⁇ e-anti-hyaluronate MAK
  • Type I MAK (Chemicon # MAK 1340) for collagen type IV - mouse-anti-collagen type IV-MAK (Sigma # C 1926) for TGF ß - mouse-anti-TGF ß-l, 2,3-MAK
  • an osteoblast culture is based on the cellular
  • the goal is to determine the coefficients that the

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Organic Chemistry (AREA)
  • Cell Biology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rheumatology (AREA)
  • Physiology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

Die Erfindung betrifft standardisierte, primäre Osteoblastenzellkulturen aus diffentialdiagnostisch untersuchten Probanden mit Verdacht auf Osteoporose, deren Verwendung zur Osteoporosediagnostik sowie zur Testung potentieller Osteoporose-Therapeutika sowie ein Verfahren zur Osteoporosediagnose, mit dem eine zu 95 % verläßliche Aussage zum Vorhandensein einer Osteoporose getroffen werden kann, und ein Verfahren zur Testung potentieller Osteoporose-Therapeutika, mit dem für jeden individuellen Fall ein wirksames Osteoporose-Therapeutikum ermittelt werden kann.

Description

Standardisierte, primäre Osteoblastenzellkulturen aus osteoporotischen Patienten und deren Verwendung zur Osteoporosediagnose und zur Testung potentieller Osteoporose-Therapeutika
Beschreibung
Die Erfindung betrifft standardisierte, primäre Osteoblastenzellkulturen aus diffentialdiagnoεtisch untersuchten Probanden mit Verdacht auf Osteoporose, deren Verwendung zur Osteoporosediagnostik sowie zur Testung potentieller Osteoporose-Therapeutika sowie ein Verfahren zur Osteoporosediagnose, mit dem eine zu 95% verläßliche Aussage zum Vorhandensein einer Osteoporose getroffen werden kann, und ein Verfahren zur Testung potentieller Osteoporose-Therapeutika, mit dem für jeden individuellen Fall ein wirksames Osteoporose- Therapeutikum ermittelt werden kann.
Osteoporose (Knochenschwund) ist eine schwere systemische Erkrankung des Skeletts, die sich durch mosaikartig auftretende verringerte Knochendichte
(Masse) und mikroarchitektonische Veränderungen im Knochengewebe auszeichne . Das Knochengewebe eines gesunden erwachsenen Menschen wird auch nach Beendigung seiner Entwicklung ständig weiter auf- und abgebaut. Die zwei entgegengesetzten Prozesse befinden sich normalerweise im Gleichgewicht. Überwiegt jedoch die Abbauphase (Knochenresorption) , kommt es zunächst zum Knochenschwund - der Osteoporose-, einer verminderten Knochenfestigkeit . Die Erkrankung geht einher mit meist lebenslangen Schmerzen, gehäuften Frakturen, die begleitende Komplikationen bis hin zu tödlichen Verläufen nach sich ziehen können. Es wird geschätzt, daß weltweit über 200 Millionen, in der Bundesrepublik 7-8 Millionen, Menschen an dieser Krankheit leiden.
Die zur Zeit eingesetzten Therapeutika gegen Osteoporose, wie Östrogene, Progesterone, Calcitonin, Di/Bisphosphonate und Calcium können in ihrer Wirkung als Anti-Bone-Resorbers den Knochenschwund nur verlangsamen oder verringern. Hiermit gelingt es nicht, die bereits verlorene Knochensubstanz zu ersetzen.
Die Wirkung folgender Faktoren auf das Knochenwachstum wird zur Zeit untersucht:
Parathyroidhormon (PTH) und seine Derivate, Vitamin D3 , anabole Steroide, Fluoride, Insulin-ähnliche Wachstumsfaktoren I und II, Prostaglandine und Wachstumshormon (GH) . Die bisher veröffentlichten Ergebnisse der klinischen Studien sind bei weitem nicht zufriedenstellend, da bei den meisten Faktoren der Zuwachs an Knochendichte nur 1 bis 3% pro 1 - 3 Jahre beträgt (klinische Symptome der Osteoporose zeigen sich häufig erst nach dem Verlust von 50% der Knochenmasse) und die Frakturraten häufig nicht verringert werden. Um also einem massiven Fortschreiten der Krankheit rechzeitig entgegenwirken zu können, spielt die Früherkennung der Osteoporose sowie die Osteoporosediagnose überhaupt eine wichtige Rolle.
Die zur Zeit eingesetzten diagnostischen physikalischen Methoden wie single photon absorptiometry (SPA) , Single- und dual X-ray absorptiometry (SXA; DXA) und quantitative computed tomographie (QCT) sind teuer, sie stehen nur in größeren klinischen Zentren zur Verfügung und sind äußerst schwierig zu interpretieren. Die Ultraschalluntersuchungen sowie X-ray photodensitometry sind kostengünstige Methoden, jedoch mit ähnlichen Nachteilen behaftet.
Die zur Zeit eingesetzten klassischen biochemischen Methoden zur Oεteoporose-Diagnostik basieren auf der Bestimmung des Hydroxyprolins im Urin, der Calciumexkretion, der Alkalischen Phosphatase und des Osteocalcinε im Serum. Die Bestimmung dieser Parameter im Serum ist unspezifiεch, da die gemeεεenen Werte hoch variabel sind.
Die neuen Methoden zur Schätzung der Knochenresorption, wie die Mesεung deε Deoxypyridinolins im Urin, bzw. die Methoden zur Bestimmung der Knochenbildung, wie die Meεεung der knochenεpezifiεchen Alkalischen Phosphatase und der Prokollagen-Peptide im Serum, sollten mehr Informationen geben.
Alle erwähnten Methoden haben jedoch den Nachteil, daß sie erst dann Hinweise liefern, wenn schon ein Teil der Knochenmasse verlorengegangen ist.
Aufgabe der Erfindung war es deshalb, ein kostengünstiges und für den Fachmann einfach handhabbares Verfahren zur Osteoporosediagnose zu entwickeln, daß in jedem individuellen Fall eine zu mindestens 95% sichere Zuordnung zur Gruppe der an Osteoporose Erkrankten oder nicht an Osteoporose Erkrankten bzw. zum Therapieerfolg durch zweifelsfrei interpretierbare und reproduzierbare Parameter liefert.
Die Aufgabe der Erfindung wird durch erstmalige Etablierung von standardisierten Osteoblastenzell- kulturen aus osteoporotischen Patienten gemäß Anspruch 1 gelöst, die über Monate lebensfähig sind und zur Osteoporoεediagnoεe hervorragend eingesetzt werden können. Es wurde gefunden, daß erfindungsgemäße Osteoblaεtenzellen auε osteoporotischen Patienten pathologische Veränderungen in ihrer Proliferation und ihrer Differenzierung im Vergleich zu den Osteoblaεtenzellen aus nicht osteoporotiεchen Patienten zeigen. Mit der Diεkriminanzanalyεe werden die Daten über die Proliferationsrate und der Expressionsintensität von osteoblastenspezifischen Differenzierungεmarkern mit einer Genauigkeit von über 95% den Oεteoporoεe- und Nicht-Osteoporoεe-Patienten zugeordnet. Dabei unterscheiden sich an Osteoporose Erkrankte von nicht an Osteoporose Erkrankten in höchst signifikanter Weise.
Überraschenderweise sind diese Zellkulturen auch zur Testung potentieller Osteoporoεe-Therapeutika εehr gut geeignet, wodurch eε möglich ist, für jeden Patienten ein individuell wirksames Therapeutikum zu ermitteln.
Die Knochenzellkulturen werden hergestellt, indem man aus transiliakalen Knochenbiopsien osteoporotischer
Probanden die Oεteoblasten-Vorläuferzellen durch sequenziellen enzymatiεchen Verdau gewinnt, dieεe kultiviert und als standardisierte Zellkulturen (gleiche Zellpopulation) etabliert. Die osteologischen Knochenbiopsien werden aus klinisch charakterisierten Patienten vorzugsweise aus dem Beckenkamm oder auch aus anderen Knochen entnommen (Knochenstanzen) . Die ca. 1 - 2 cm langen und 1 - 5 mm dicken Knochenbiopεien werden mechaniεch von eventuell vorhandenem Fett- und Bindegewebe getrennt, in mehrere Stücke aufgeteilt, mehrmalε enzymatisch (vorzugsweise mit Collagenase) behandelt und die isolierten Osteoblasten- Vorläuferzellen als Monolayer kultiviert. Parallel dazu können dreidimensionale Zellkulturen auf denaturierten Kollagen Typ 1-Schwämmchen angelegt werden. Daraus entstehen standardisierte Knochenzellkulturen. Die primären Knochenzellen, die aus nicht-osteoporotischen Patienten gleichen Geschlechts und etwa gleichen Alters gewonnen werden, dienen als Kontrolle.
Das Zellkulturmedium besteht vorzugsweiεe aus α-MEM- Medium und HAM-F12-Medium (von Gibco) und enthält gegebenenfalls einen Serumzusatz. Das Verhältnis aus α- MEM-Medium und HAM-F12-Medium beträgt vorzugsweiεe 1:2, aber auch Verhältnisse zwischen 3:1 bis 1:3 führen zum gewünschten Ergebnis. Als Serumzusatz, der zwischen 1 - 12% betragen kann, dient fetales Kälberserum, humanes Serum, bovines Serumalbumin oder Ultroser. Bevorzugt werden 2 - 7% Ultroser, besonders bevorzugt 2 - 5% Ultroser, eingesetzt.
Erfindungsgemäß ist es durch die Wahl der beschriebenen Zellkulturbedingungen gelungen, die standardiεierten Oεteoblastenzellkulturen osteoporotischer Patienten über Monate biε zu 2 Jahren lebensfähig zu halten, wobei das erfindungsgemäße Diagnoseverfahren mit den Zellkulturen bis zur 2. Pasεage durchgeführt wird, da diese die Situation im menschlichen Körper am besten widerspiegeln.
Die aus erfindungsgemäßen primären Osteoblastenzellkulturen gewonnenen Zellextrakte wurden mittels hochauflösender 2D-Gelelektrophorese und Silver-Staining untersucht und mit den aus Osteoblaεtenzellkulturen nicht-osteoporotiεcher Patienten gewonnenen Zellextrakten verglichen.
Es wurde gefunden, daß die erfindungsgemäßen
Zellkulturen osteoporotischer Patienten im hochaufgelösten 2D-SDS-PAGE-Gel ein typischeε, reproduzierbares Expresεionsmuster von ca. 700 intrazellulären Proteinen gemäß der Spotverteilung in Abb. 1 zeigen.
Dieseε Proteinexpreεεionsmuster iεt mit dem Protein- expreεsionsmuεter aus Osteoblaεtenzellkulturen nicht- oεteoporotiεcher Patienten identisch (vgl. Abb. 2) . Beim Vergleich der Intensitäten der einzelnen Spots in Abb.1 und in Abb. 2 zeigten sich jedoch reproduzierbare und quantitativ meßbare Unterschiede in mindestenε sechs Spots (vgl. Kennzeichnung durch Pfeile in Abb. 1 und Abb. 2) . Dabei ist eine erniedrigte Expression von fünf Proteinen und eine erhöhte Expression von einem Protein in den erfindungsgemäßen Osteoblastenzellkultu¬ ren gegenüber den Osteoblastenzellkulturen nicht- osteoporotischer Patienten festzuεtellen. Über die Intenεitäten der Spots ist damit eine ergänzende Aussage über das Vorliegen einer Osteoporose möglich.
Die erfindungsgemäß gewonnenen Proteinexpressionεmuεter der Oεteoblaεtenzellkulturen wurden auch mit denen von humanen Fibroεarkomen und humanen Oεteoεarkomen verglichen. Es zeigte sich, daß sich die Proteinexpresεionsmuster der Fibroεarkome und Oεteoεarkome von dem Expressionsmuster der Osteoblasten unterscheiden. Dadurch wurde deutlich, daß es sich bei den erfindungsgemäßen Osteoblaεtenzellkulturen um Reinkulturen handelt, die nicht durch andere Zellarten verunreinigt sind.
Das erfindungsgemäße Verfahren zur Oεteoporoεediagnose basiert auf der Bestimmung geeigneter osteoblastenspezifischer Differenzierungεmarker, die Aussagen zur frühen Differenzierungsphase der Osteoblaεten, zur Bioεyntheεe und Reifung der extrazellulären Matrix und zur εpäten Differenzierungsphase der Osteoblasten erlauben. Es wurde gefunden, daß man zum Erhalt einer zu mindestens 95% zuverläsεigen Aussage die Zellproliferationεrate und die Expreεεion von mindestens sechs osteoblastenspezifisehen Differenzierungsmarkern quantitativ bestimmen sollte, wobei man neben der Zellproliferationεrate noch mindestens einen Parameter der frühen Differenzierungεphase der Osteoblasten bestimmen sollte, mindeεtenε einen Parameter der späten Differenzierungsphase und mindestenε vier Parameter der Matrixεyntheεe. Vorzugsweise werden zur Untersuchung der frühen Differenzierungsphase neben der Zellproliferationsrate die Expresεion einer der drei Onkogene c-myc, c-foε oder c-jun, inεbeεondere c-foε, bestimmt, zur Untersuchung der Bildung und Reifung der extrazellulären Matrix die Expresεion der intrazellulären alkaliεchen Phoεphataεe, deε Kollagen Typ I und Typ IV und von Chondroitinεulfat oder Hyaluronsäure und zur Untersuchung der späten Differenzierungsphaεe die intrazelluläre Synthese von Osteocalcin. Die Expressionsintenεitäten dieεer Parameter werden mit denen aus primären Osteoblastenzellkulturen nicht- oεteoporotiεcher Probanden gleichen Geεchlechtε und etwa gleichen Alters verglichen und statistiεch auεgewertet, zum Beiεpiel mittels Diskriminanzanalyse. Selbstverständlich können zur weiteren Erhöhung der Ausεage - Zuverlässigkeit zusätzliche Differenzierungsmarker wie zum Beispiel Wachstumsfaktoren (z.B. TGF ß) , Cytokine (z.B. IGF I, IGF II) , in den Zeilüberstand sekretierte alkalische Phosphatase sowie sekretiertes Kollagen Typ I und Typ IV bestimmt werden.
Zur Untersuchung der frühen Differenzierungsphaεe der Oεteoblasten wird die Zellproliferationsrate in parallelen Kulturen nach 48 - 196 Stunden Inkubation, vorzugsweise nach 72 Stunden Inkubation, gemesεen. Die Messung erfolgt mit üblichen Zellproliferationsassayε, z.B. durch Einbau einer radioaktiv-markierten Subεtanz wie [^H] -Thymidin in die DNA. Auch der von der Fa. Boehringer Mannheim GmbH entwickelte Assay zum Einbau von Bromdesoxyuridin ist zur Bestimmung geeignet. Es zeigte sich, daß eine 4 - 6-fach verringerte Zellproliferationskapazität auf einen osteoporotischen Patienten hinweist (s. Abb. 3) .
Daneben ist die Expression der drei Onkogene c-fos, c- myc und c-jun εpezifiεch für die frühe Differenzierung von Oεteoblaεten. Vorzugsweise wurde die Expresεion von c-fos bestimmt. Die Onkogenexpression wird nach der gleichen Inkubationszeit wie bei der Zellproliferationsrate mittels immunhistochemiεcher Färbung ihrer Proteinprodukte und Spektralphotometrie in den Monolayer-Zellkulturen quantitativ beεtimmt. Zur Untersuchung der frühen Differenzierungsphase der Osteoblasten kann zusätzlich die Quantifizierung der steady-state-level von jeweilε spezifischer mRNA durch quantitative PCR und eventuell Northern blot-Analyse (falls die Zellzahl es erlaubt) durchgeführt werden.
Die Zellproliferationsrate und die Onkogen- Expresεionsintensität in den osteoporotischen und nicht-osteoporotiεchen Zellen werden verglichen und eine Aussage zum Vorliegen von Osteoporose getroffen, beziehungsweise diese Parameter zusammen mit denen auε der εpäten Differenzierungsphaεe und der Matrixsynthese einer εtatiεtiεchen Auεwertung unterzogen.
Bei der Unterεuchung der Bioεynthese und Reifung der extrazellulären Matrix, die durch osteoporotische und nicht-osteoporotische Zellen produziert wird, werden nach 3 bis 14 Tagen Inkubationszeit, vorzugsweise nach 3 und 7 Tagen, mindestens die intrazelluläre alkaliεche Phoεphataεe, Kollagen Typ I und Typ IV, Chondroitinsulfat oder Hyaluronsäure mittels immunhistochemiεcher Färbung ihrer Proteinprodukte und Spektralphotometrie quantitativ bestimmt. Es zeigte sich, daß Oεteoblaεten- aus osteoporotischen Patienten 4
5mal mehr alkalische Phosphataεe exprimieren als
Osteoblasten gesunder Patienten (s. Abb. 4) .
Membrangebundenes Chondroitinsulfat wird von
Oεteoblasten aus osteoporotischen Patienten ebenfalls stärker exprimiert.
Die erfindungsgemäße Bestimmung der Expresεion der alkaliεchen Phoεphatase in Osteoblastenzellkulturen osteoporotischer und nicht-osteoporotiεcher Patienten erlaubt es, nicht nur Ausεagen zu einer bereitε manifesten, sondern auch über eine beginnende Osteoporose zu treffen.
Eine beginnende Osteoporose zeichnet sich dadurch aus, daß vorzugsweise die endogene Expresεion der alkaliεchen Phoεphatase leicht erhöht ist, bei einer manifesten Osteoporose dagegen ist die endogene Expresεion der alkalischen Phosphatase stark erhöht.
Die quantitative Bestimmung von Wachstumsfaktoren wie z.B. TGF ß, insbesondere TGF ß2, und Cytokinen, wie z.B. IGF I und IGF II, mittels immunhistochemischer Färbung ihrer Proteinprodukte und Spektralphotometrie kann neben den genannten Parametern der weiteren Untersuchung der Bildung und Reifung der extrazellulären Matrix dienen.
Die Bestimmung der BMP's (bone morphogenetic proteins) in den oεteoblaεtiεchen Zellen kann zuεätzlich Informationen über die Erkrankung geben.
Die jeweils spezifische mRNA kann zur Untersuchung der Bildung und Reifung der extrazellulären Matrix ebenfalls zusätzlich durch quantitative PCR und Northern blot beεtimmt werden.
Die in den Zellkulturüberεtand εekretierte alkalische Phosphatase und Kollagen Typ I und IV können gegebenenfalls als zusätzliche Parameter quantifiert werden.
Zur Unterεuchung der εpäten Differenzierungsphase der Osteoblasten (dem Mineralisationsprozeß) werden den parallelen Knochenzellkulturen mineraliεierungsfordernde Reagenzien zugesetzt und die intrazelluläre Synthese von Oεteocalcin quantitativ bestimmt. Diese Bestimmung erfolgt vorzugsweise mittels immunohistochemischer Färbung und Spektralphotometrie.
Der Nachweiε Osteocalcin-spezifischer-mRNA kann zuεätzlich durchgeführt werden und erfolgt mittels quantitativer PCR.
Als zusätzliche Maßnahme kann in der späten Differenzierungsphase auch neu synthetisierte Mineralmatrix und die Bildung der Mineraliεierungεknoten durch Färbung mit Silbernitrat nach VAN KOSSA nachgewieεen werden.
Nachdem die alε Minimum genannten 7 Parameter (Zellproliferation, ein Onkogen, alkalische Phosphotaεe, Kollagen Typ I und IV, Chondroitinεulfat oder Hyaluronεäure, Oεteocalcin) beεtimmt sind, erfolgt die Auswertung durch Gegenüberstellung mit denen aus nicht-osteoporotischen Zellen und gegebenenfalls statistiεch, wobei εich hier die Diεkriminanzanalyεe alε beεonderε geeignet erwiesen hat.
Es zeigte sich, daß die Proliferationsrate der Zellen, die aus Oεteoporose-Patienten gewonnen wurden, in εignifikanter Weise niedriger ist im Vergleich zu der Proliferationεrate der geεunden Patienten. Iεt die c- foε-Onkogen- und TGF ß2-Expression der Zellen, die aus Osteoporose-Patienten gewonnen wurden, in signifikanter Weise niedriger und die Chondroitinsulfat- und Osteocalcin-Expression höher im Vergleich zur Expresεionsrate der jeweiligen Differenzierungsmarker aus Zellen von nicht-oεteoporotischen Patienten, so handelt eε εich hierbei um eine osteoporotische Erkrankung. Die Syntheserate der alkalischen Phosphatase in den Osteoblasten, die aus Osteoporoεe- Patienten gewonnen wurden, liegt εignifikant höher alε die alkaliεche Phosphatase-Expreεεion in den Osteoblasten von nicht-osteoporotischen Kranken.
Somit erlaubt das erfindungsgemäße Verfahren bereits durch die Bestimmung der genannten 7 Parameter, die mit für den Fachmann üblichen Methoden gemessen werden, eine zu 95% verläßliche Aussage zum Vorhandensein einer Osteoporose basierend auf den erfindungsgemäßen Zellkulturen.
Überraschenderweise zeigte sich, daß die erfindungsgemäßen Zellkulturen auch hervorragend zur Testung potentieller Osteoporose-Therapeutika geeignet sind und damit ein in vitro-Testεyεtem zur Verfügung εteht, mit dem die direkte Wirkung von potentiellen Therapeutika auf individuelle menschliche Osteoblaεten- Vorläuferzellen von geεunden Probanden und Patienten unterεucht werden kann.
Gegenεtand der vorliegenden Erfindung iεt somit auch das Verfahren zur Testung potentieller Osteoporose- Therapeutika gemäß Anspruch 7 und Anspruch 8. Es zeigte sich, daß auch die mitogene Wirkung potentieller Oεteoporose-Therapeutika durch Mesεung der Zellproliferationεrate mit den beschriebenen üblichen Methoden bestimmbar ist (vgl. Abb. 5) .
Die Wirkung potentieller Osteoporoεe-Therapeutika auf die Differenzierung der "oεteoporotiεchen" Oεteoblaεten-Vorläuferzellen kann ebenfallε durch die Meεsung der für die Osteoporoεe-Diagnose oben beschriebenen Mindestparameter bestimmt werden. Auch hier erhält man bereits durch Bestimmung der genannten Parameter mittels immunhistochemiεcher Färbung und Spektralphotometrie eine zuverläεεige Auεεage. Zusätzlich kann der Einfluß potentieller Osteoporose- Therapeutika auf die Regulation der Matrixsynthese über den Nachweis spezifischer mRNA durch quantitative PCR bestimmt werden. Diese Bestimmung erfolgt derart, daß die gesamte RNA aus den Zellen isoliert wird, aus mRNA mittels oligo und/oder random primers und reverser Transkriptase eine cDNA Bank hergestellt wird und die bestimmte Menge jeweils spezifischer Einzelstrang cDNA mittels spezifiεcher Primer-Paare amplifiziert wird. Zur Quantifizierung wird parallel daε ß-ACTIN Fragment alε HOUSE-KEEPING Gen mittels PCR amplifiziert .
Dieser Teεt ergänzt in hervorragender Weiεe die z.Z. eingesetzten Tiermodelle zur Untersuchung von Osteoporoεe-Therapeutika, die nur eingeεchränkt dem Krankheitεbild beim Menεchen entεprechen können und keineεfallε eine individuelle Ermittlung besonders geeigneter Therapeutika erlauben. Werden die Knochensubεtanzen von Patienten mit anderen εkeletalen Erkrankungen entnommen, so ist es möglich, mit den daraus erfindungsgemäß etablierten Zellkulturen die Wirkung von potentiellen Therapeutika auch gegen diese skeletalen Erkrankungen zu teεten.
Die erfindungεgemäßen, standardisierten primären Osteoblaεtenzellkulturen oεteoporotischer Patienten können durch das beschriebene Verfahren reproduzierbar gewonnen und bis zu zwei Jahren lebensfähig gehalten werden. Sie stellen Reinkulturen dar, die mittels hochauflösender 2D-SDS-Gelelektrophorese eindeutig identifizierbar und von den Oεteoblaεtenzellkulturen nicht-osteoporotischer Patienten unterscheidbar sind. Gegenεtand der Erfindung iεt auch die Verwendung dieεer primären Oεteoblastenzellkulturen zur
Osteoporosediagnose und zur Testung potentieller Osteoporose-Therapeutika.
Nachfolgend soll die Erfindung durch Abbildungen und Ausführungsbeispiele näher erläutert werden, ohne sie darauf einzuschränken.
Abbildungen:
Abb. 1: Hochaufgelöstes 2D-SDS-PAGE-Gel standardisier¬ ter, primärer Oεteoblastenzellkulturen osteopo- rotiεcher Patienten
Expreεεionεmuεter der intrazellulären Proteine gemäß Spotverteilung
Pfeile: Intenεitätεunterεchiede von εechs Proteinen im Vergleich mit Abb. 2
Abb. 2 : Hochaufgelöstes 2D-SDS-Page-Gel standardisier¬ ter, primärer Osteoblastenzellkulturen nicht- oεteoporotiεcher Patienten
Expressionεmuster der intrazellulären Proteine gemäß Spotverteilung
Pfeile: Intensitätsunterschiede von εechε Proteinen im Vergleich mit Abb. 1
Abb. 3 : Nachweiε der verminderten Proliferationεrate von Oεteoblaεtenvorläuferzellen oεteoporo- tischer Patienten (OP-Zellen) im Vergleich zur Proliferationεrate von Oεteoblastenvorläufer- zellen nicht-osteoporotischer Patienten (NOP- Zellen) xl - x3 : Behandlung mit FCS (fetalem Kälberserum) 48 h, 120 h, 192 h x4 - xβ : Behandlung mit inaktiviertem humanen Kontrollserum, 48 h, 120 h, 192 h
(vgl. Beispiel 3)
Abb . 4 : Nachweis der erhöhten Expreεεion intrazellulä¬ rer alkalischer Phosphatase in Osteoblastenvor- läuferzellen von osteoporotischen Patienten (pOP- und OP-Zellen) pOP: präklinische Osteoporose , n= 12 OP: Osteoporose, n=14
NOP: nicht-osteoporotiεch, n=18
10 % FCS, 192 h
Abb . 5 : Unterschiedliche Dosiswirkungskurven (Stimu- lierbarkeit) der Proliferation von NOP- und OP-
Zellen durch Proteine (Wachstumεfaktoren 1, 2 und 3) .
Es wird eine signifikante dosisabhängige mitogene Wirkung des Wachstumsfaktors 1 (TGF ß2) auf osteoblaεtiεche Zellen auε
Oεteoporoεe-Patienten deutlich.
Abb. 6 : Diεkriminanzanalyse (25 Proben) von osteoblastischen Zellen von an Osteoporose erkrankten (OP) und nicht erkrankten (NOP)
Patienten AusführuiK-Tsbeispiele
1. Zellkultivierunα
Das Zellkulturmodell basiert auf primären Zellkulturen, die aus Beckenkammbiopsien differenzialdiagnostisch charakterisierter Patienten mit Verdacht auf Oεteoporoεe gewonnen wurden. Die Beckenkammbiopsien stammten von jeweils 26 osteoporotischen und 18 nicht-osteoporotiεchen Patientinnen im Alter von 50-70 Jahren.
Alle Knochenstanzen wurden wie folgt behandelt:
- Nach vorangegangenem Spülen der Stanze mit PBS und
Befreiung von eventuell vorhandenem Fett- und
Bindegewebe wurde das Knochenεtück fünfmal mit verdünnter Collagenaεe-Lösung (0,5 mg/ml) von Worthington (CLS 2) jeweils 30 min. bei 37°C behandelt.
Zur Verdünnung der Collagenaεe-Löεung wurde im
Verhältnis 1:2 -MEM-Medium und HAM-F12-Medium von Gibco ohne Zusatz von Serum verwendet.
- Jede dabei gewonnene Fraktion wurde in serumhaltigern Medium (Medium wie oben beschrieben) gewaschen und in 3% Ultroser enthaltendem Medium aufgenommen und kultiviert. 2. Zellkulturbedincrunαen
- Über den gesamten Zeitraum des Versuches wurden die Zellen in Serum enthaltendem Medium bestehend aus gleichen Teilen α-MEM-Medium und HAM-F12-Medium von Gibco kultiviert, wobei zweimal wöchentlich das Medium gewechselt wurde.
- Die Zellen der Fraktionen 1 bis 3 wurden vermehrt und fortlaufend pasεagiert.
3. Bestimmung der Zellproliferationsrate
- 3000 oεteoblaεtiεche Zellen der Fraktionen 1 bis 2 bis zur zweiten Passage, die aus osteoporotiεchen
Patienten gewonnen wurden (OP-Zellen) , je
Vertiefung einer 96 well Mikrotiterplatte wurden in
Anwesenheit von 10% FCS und von 10% inaktiviertem humanen Kontrollserum in Zellkulturmedium (α-MEM- und HAM'S F12-Medium 1:12) für 48 h, 120 h und 192 h inkubiert. Parallel dazu wurden 3000 osteoblastische Zellen nicht-oεteoporotischer
Patienten unter gleichen Bedingungen kultiviert.
Die Anzahl intakter Zellen wurde mittels Trypan- Blau-Färbung und Auszählen in einer Zählkammer bestimmt .
4. Bestimmung der Zellproliferationsrate unter Einfluß der drei Wachstumsfaktoren 1, 2 und 3 mittels
Bromdesoxyuridin-Einbau (BrdU-Einbau)
Wachstumsfaktor 1 = TGF ß2
2 = IGF I
3 = IGF II - Für den Proliferationstest wurden die Zellen auε der Fraktion 1 und/oder 2 jeder Knochenεtanze biε zur 2. Passage verwendet .
- Zur Anwendung kamen 3xl03 Zellen der ersten und/oder zweiten Passage/well einer 96 well-Platte und 200μl Medium.
- Die Zellen wurden drei Tage unter bereits beschriebenen Bedingungen kultiviert und danach für einen Tag im Medium ohne Serum bis zur Subkonfluenz weiterkultiviert .
- Danach wurden drei Wachstumsfaktoren 1, 2 und 3 in vier verschiedenen Endkonzentrationen (100, 10, 1 und 0,1 ng/ml in Medium) zu den Zellen gegeben.
- Alε Kontrollen dienten Zellen in 10%igem FKS haltigem Medium und in 5% Ultroser enthaltendem Medium.
- Von allen Konzentrationen und Kontrollen wurden Tripletts angesetzt.
- Als Blankkontrollen dienten sechε wellε mit Zellen, denen während deε Proliferationstestes kein Bromdesoxyuridin dazugegeben wurde.
- Nach 54stündiger Inkubation mit den Wachstumεfaktoren begann der Proliferationstest (5-
Bromo-2 ' -desoxy-uridine Labeling and Detection Kit III von Boehringer Mannheim) mit der Zugabe von 20 μl 1:90 in l%igem BSA-Medium verdünnter Labeling- Solution und anschließender Inkubation für 18 Stunden. - Der Proliferationstest erfolgte nach Vorschrift des Herstellers .
- Die Auswertung des Proliferationstestes erfolgte durch Messung der optischen Dichte (OD) bei 405 nm im ELISA-Reader. Die Extinktion wurde nach 60 min Farbentwicklung alle 5 min. 12malig gemesεen.
Die erhaltenen Werte εind auε Tabelle 1 erεichtlich.
In Abb. 5 wurden die gemessenen Extinktionen der drei Wachstumsfaktoren in Abhängigkeit von der Konzentration dargestellt.
Tab. 1 : Wirkung von TFGß , IGF II und IFG I auf humane Osteoblasten- Vorläuferzellen
Wachstums¬ Extinktions¬ Standard¬ faktor mittelwerte abweichung
TGFß2 100 ng/ml 0,190 0,002
10 ng/ml 0,190 0,002
1 ng/ml 0,170 0,008
0,1 ng/ml 0,150 0,004
IGFI 100 ng/ml 0,140 0,008
10 ng/ml 0,140 0,002
1 ng/ml 0,148 0,006
0,1 ng/ml 0,151 0,005
IGF II 100 ng/ml 0,140 0,000
10 ng/ml 0,139 0,001
1 ng/ml 0,150 0,001
0,1 ng/ml 0,148 0,004
10% FKS 0,194 0,014
5% Ultroser 0,157 0,003
3% Ultroser 0,144 0,008
1 % BSA 0,145 0,001
Blank 0,131 0,001 5. Durchführung der hochauflösenden 2D-SDS- Gelelektrophorese (IEF-SDS-PAGE)
Die 2D-SDS-Gelektrophorese der NOP- und OP-Zellextrakte wurde wie in "Electrophoreεis 1994, 15., 685-707, S. 686" beschrieben, durchgeführt.
Erste Dimension: isoelektriεche Fokussierung (IEF) (linke Seite des Gels: εaure Proteine mit IP z.B. 4; rechte Seite deε Gelε: Proteine mit einem IP von z.B. 8)
Zweite Dimension: SDS-PAGE unter reduzierenden Bedingungen
(Proteine mit kleinem Molekulargewicht erscheinen im unteren Bereich, mit großem Molekulargewicht im oberen)
Die Auswertung der Intensitäten der Spots erfolgte mittels Scanning Denεitometry und εtatistisch.
Untersuchunqsmethoden und Materialien
Bestimmung der intrazellulären und sekretierten alkalischen Phosphatase (AP)
Zellkulturbedingungen:
3000 osteoblastische Zellen der Fraktionen 1 und 2 bis zur zweiten Pasεage, die aus osteoporotiεchen Patienten gewonnen wurden (OP-Zellen) , je Vertiefung einer 96- well Mikrotiterplatte, wurden in Anweεenheit von 10% FCS und von 10% inaktivierten humanen Kontrollserum in Zellkulturmedium (α - MEM - und HAM S F12- Medium) für 24h vorinkubiert . Parallel dazu wurden 3000 osteoblaεtiεche Zellen Nicht-osteoporotischer Patienten unter gleichen Bedingungen kultiviert.
AP-Assay:
Die Zellen wurden drei Tage unter den beεchriebenen Bedingungen kultiviert und anεchließend der AP-Aεεay durchgeführt. Die Zellen werden mit Phoεphatpuffer von Dulbecco 2x gewaεchen und anschließend mit je 100 μl einer Lösung bestehend aus 0.1 M Glycin, pH 10.3, 1 mM ZnCl2, lmM MgCl2, 0.1% Triton X-100 lysiert . In alle Vertiefungen einer Mikrotiterplatte wurden je 50 μl einer 2.5 mM Löεung an Di-Natrium-4-nitrophenyl- phoεphat Hexahydrat (AP-Reagenz) hinzugegeben und die dabei auftretende Farbentwicklung innerhalb einer Stunde in Abständen von 15 min bei 405 nm in einem TITERTEK ELISA Reader gemessen. Die enzymatische Aktivität korreliert mit der Farbintenεität und wird alε nM von para-Nitrophenylphoεphat als Substrat pro bestimmter Zellzahl dargestellt. Parallel wurde eine Verdünnungsreihe einer lmM 4-Nitrophenollösung als Standard pipettiert. Als Kontrollen dienten Zellen in 10%-igem FCS-haltigern Medium.
PCR;
Amplifikation von mRNA, die osteoblastenspezifische Differenzierunαsmarker kodieren, mittels Reverse- Transkriptase-Polvmerase-Ketten-Reaktion (RT-PCR) Die Amplifikation bestimmter mRNA-Sequenzen mittels RT- PCR erfolgt durch a) Gesamt-RNA-Isolierung, b) Synthese von Einzelεtrang-cDNA durch Umεchreibung von mRNA in cDNA mit Superεcript II Reverεe Tranεkriptaεe unter Anwendung von oligo-dT- beziehungsweise random primer, c) Amplifikation von cDNA-Fragmenten, die spezifisch die Osteoblastendifferenzierungsmarker kodieren mittelε PCR, d) Nachweiε spezifisch amplifizierter PCR-Produkte in Agarosegelen.
Gesamt-RNA-Isolierung
Die Gesamt-RNA aus 1-2 Millionen Oεteoblaεten und oεteoblaεt-like-cellε wurde iεoliert (Trizol-Kit, Gibco Life Technologieε) .
Synthese von Einzelstrang-cDNA durch Umschreibung von m-RNA in c-DNA mit Superscript II Reverse Transkriptase unter Anwendung von oligo-dT- bzw. random primer
Bis zu einem halben Mikrogramm der Gesamt-RNA oder 5-50 ng der mRNA pro Probe wurden mit Superscript II Reverse Tranεkriptase unter Anwendung von 500 ng oligo-dT- bzw. 500 pg random primer (Superscript II Reverεe Tranεkriptaεe Kit, Gibco, Life Technologieε) bei 42°c für 50 min umgeεchrieben.
Die darauε resultierende cDNA werden als Matrizen(template) für Amplifikation in PCR eingesetzt.
Amplifikation von cDNA-Fragmenten, die spezifisch die Osteoblastendifferenzierungsmarker kodieren mittels PCR
Ein Zehntel der Einzelstrang-cDNA Probe (s.o.) wurde in 2 mM Tris-HCl; pH 8,4; 5 mM KC1; 1,5 mM MgCl2; 10 nM Amplifikationεprimer sense, 10 nM Amplifikationsprimer antisense unter folgenden PCR-Bedingungen (vorzugsweiεe) amplifiziert:
Denaturation: 10 min
Acht PCR-Zyklen wurden wie folgt durchgeführt: Denaturation 94°C, 45 Sek.,
Annealing: 58°C, 1 min, 45 Sek.; Extenεion bei 72°C, 3 min;
25 PCR-Zyklen folgten darauf:
Denaturation 94°C, 45 Sek. Annealing: 55°C, 45 Sek.; Extenεion bei 72°C, 3min
Extenεion: 72°C, 10 min
Gelektrophorese von PCR-Produkten Ein Zehntel bis ein Zwanzigstel des PCR-Produkteε wurden in 0,7%- biε 1,2%-igem Agarosegel für eine halbe Stunde bei 60V konstanter Spannung aufgetrennt, und das Molekulargewicht amplifizierter PCR-Produkte mit einem DNA-Marker verglichen. Sense- und Antisense Primer-Sequenzen
Die Sequenzen der Primerpaare, die εpezifiεch für Oεteoblastendifferenzierungsmarker-kodierende cDNA εind, wurden von der co.don GmbH mit Hilfe von MacMollyTetra Software (Prof. B. Wittig) ausgesucht .
Northern Blotting
Nachweis von Osteoblasten-Differenzierungsmarker- spezifischen mRNA:
Die Detektion bestimmter mRNA-Sequenzen durch Hybridisierung erfolgt durch die Auftrennung der Gesamt-RNA in einer Agarosegelmatrix, deren Übertragung und anschließende Fixierung auf ein Filter und Hybridisierung mit einer spezifiεchen DNA-Sonde.
Gesamt-RNA-Isolierung
Die Gesamt-RNA aus 10-20 Millionen Osteoblasten und osteoblaεt-like-cells wurde isoliert (Trizol-Kit von Gibco) .
RNA-Gelektrophorese
Je fünf bis zehn Mikrogramm der Gesamt-RNA wurden in 1,2%-tigem Formaldehyd-Agarose Gel für eine Stunde bei 100 V konstanter Spannung aufgetrennt.
Transfer
Nach der Elektrophorese wurden die Gele für eine Stunde auf eine amphotere Nytran-Membran (Schleicher & Schuell) über Nacht geblottet und anεchließend die Nukleinεäuren durch die UV-Strahlung vernetzt. Markieren der DNA-Sonde
Je ein cDNA-Fragment, daε 40 Basen lang ist und spezifisch für die zu untersuchenden Osteoblasten- Differenzierungεmarker, wurde mittels Polymerase- Ketten-Reaktion (PCR) ampfliziert und anschließend mit Biotin -Reagenz Bio-ULS (Dianova GmbH) für eine Stunde bei 87°C inkubiert.
Hybridisierung Die Nitrozellulose-Membran wurde nach UV-Vernetzung mit 75 mM Natriumzytratpuffer, 750 mM NaCl, 5% Polyvinylpyrolidone, 0,1% BSA, 5 mM EDTA, 0,5% SDS, 0,1 mg/ml Heringspermien-DNA bei 42°C 15 min prähybridiεiert und danach bei 42°C mit einer Löεung von 50% Formamid, 1% Rinderεerumalbimin, lmM EDTA, 0,5 mM Natrium-Phosphat und 5% Natrium-Dodecylsulfat für 16 Stunden mit spezifischer Biotin-markierter DNA- Sonde (ca. 100 ng) inkubiert.
Detektion von mRNA
Die Membran wurde nach Hybridisierung gewaschen, mit 1,5% Trockenmilchlösung geblockt und mit einer Streptavidin/alkalische Phosphatase (Schleicher & Schuell) Lösung für 15 min biε 3 Stunden inkubiert. Die Membran wurde anschließend mit 0,5% Tween-20, PBS- Lösung für 5 min gewaschen und die Farbbildung erfolgte durch eine Inkubation der Membran in einer 0,1 M Triε- HC1; 0,1 M NaCl; 5 mg MgCl, NBT (32 mg/ml) in 70% Dimethylformamide, BCIP (16 mg/ml) für eine Stunde bis 16 Stunden.
Primer/DNA-Sonden Sequenzen
Die Sequenzen der Primerpaare und/oder DNA-
Hybridiεierungεεonden, die εpezifiεch für Osteoblastendifferenzierungsmarker-kodierende cDNA sind, wurden mit Hilfe von MacMollyTetra Software (Prof. B. Witting) ausgeεucht .
Durchführung der immunhistochemisehen Färbung Prinzip: Detektion der zellulären Antigene in einem konfluenten Zellrasen mittels spezifiεcher
Antikörper über einen zweiten Antikörper
(Enzym- oder Biotin-Konjugat) und nachfolgendem Nachweiε durch Substratspaltung - Zellen werden in einer Konzentration lxlO3 bis 5xl04 Zellen/well ausgesät und solange im Brutschrank bei 37°C inkubiert, bis εich ein konfluenter Zellraεen gebildet hat
- Medium abεaugen und 3x mit PBS waschen - Fixieren der Zellen: 100 μl eiskalteε Methanol/well zugeben und 10 biε 20 Min. bei 4°C inkubieren, 3x mit PBS waεchen
- Abεättigen der freien Bindungεεtellen im well: 100 μl 2% Magermilch in
PBS/well zugeben und 1 Std. bei Raumtemperatur (RT) oder über Nacht bei 4°C εchütteln, Platte auεklopfen oder abεaugen
- 50 μl des jeweils spezifiεchen Antikörpers zugeben und 1 Std. bei RT oder über Nacht bei 4°C schütteln, 3x mit PBS waschen
- 50 μl des 2. Antikörpers (Peroxidase-Konjugat; eε werden die spezifiεchen Antikörper goat-anti-rabbit oder goat-anti-mouεe von Sigma verwendet) zugeben und 1 Std. bei RT oder über Nacht bei 4°C εchütteln, 5x mit PBS waschen Substrat-Zugabe: 100 μl (löslich, ABTS) Substrat- Lösung
(ABTS = 2, 2' -Azino-biε- (3-Ethylbenzthiazolin-6- sulfonsäure) Tablette lösen in 100 ml 0.05 M Phosphat-Citrat-Puffer, pH 5,0;
(25,7 ml Di-natriumhydrogenphoεphat + 24,3 ml Citronensaure) und 25 μl 30% Waεεerεtoffperoxid ad 100 ml mit deεtiliertem H20; 60 Min. im Dunkeln inkubieren
in well AI2 100 μl Subεtrat geben (Background) ; Optische Dichte (OD) mesεen bei 405 nm im ELISA- Reader
Als εpezifiεche Antikörper wurden eingeεetzt für Hyaluronsäure - mouεe-Anti-Hyaluronat-MAK
(Camon/Serotec # MCA 277) für Chondroitinsulfat - mouse-Anti-Chondroitinsulfat- MAK (Sigma # C 8035) für Kollagen Typ I - mouse-Anti-Human-Collagen
Typ I MAK (Chemicon # MAK 1340) für Kollagen Typ IV - mouse-Anti-Collagen Typ IV- MAK (Sigma # C 1926) für TGF ß - mouse-Anti-TGF ß-l,2,3-MAK
(Genzyme # B 3026) für c-foε - rabbit-Anti-c-fos-AK, polyclonal (Dianova # PC 05) für c-jun - rabbit-Anti-c-jun-AK, polyclonal (Dianova # PC 07) für c-myc - mouse-Anti-c-myc-MAK
(Dianova # OP 10) für Osteocalcin - rabbit-Anti-Human- Oεteocalcin-AK (Paeεel+Lorei # 14-143-0071) 7. Statistische Auswertung mittels Diskriminanzanalyse
Mit Hilfe der Diskriminanzanalyse wird eine Osteoblastenkultur aufgrund der zellulären
Proliferationεrate und der Expreεεionεintenεitäten zellulärer Differenzierungεmarker der Gruppe der an
Oεteoporoεe erkrankten Patienten oder der Gruppe der geεunden Individuen zugeordnet . Ziel iεt eε, die Koeffizienten zu ermitteln, die die
Werte der Diskriminanzfunktion beider Gruppen möglichst gut trennen.
Die Diskriminanzanalyse der osteoblastischen Zellen von an Osteoporose erkrankten und nicht erkrankten Patienten, bei der die 7 erfindungsgemäßen getesteten
Variablen einfließen, ergibt folgende Daten:
Richtige Gruppenzuordnung: 95,1%
Koeffizient der Diskriminanzanalyse: 0,8217 Signifikanz p der Diskriminanz : 0,0000
Eigenvalue: 2,0792
Es ist anhand der Daten zu erkennen, daß eine sehr gute Trennung zwischen den NOP und OP erfolgt.
Tabelle 2 Klassifikationstabelle der Diskriminanzanalyse
Gruppe Anzahl der Zuordnung Zuordnung Proben zu OP zu NOP osteoporotische 25 24 1 Zellen (96,0%) (4,0%) nichtosteoporotische 16 1 15 Zellen (6,2%) (93,8%) Der Eigenvalue, das Verhältniε der Quadratsumme zwischen den Gruppen zu der Quadratsumme innerhalb der Gruppen, iεt sehr hoch. Hohe Eigenwerte zeigen gute Diskriminanzfunktionen an. Die Ergebnisse der Diskriminanzanalyse werden in der Abb. 6 gezeigt.

Claims

Patentansprüche
1. Standardiεierte, primäre Oεteoblaεtenzellkulturen, dadurch gekennzeichnet, daß sie durch sequenziellen enzymatischen Verdau transiliakaler Knochenbiopsien oεteoporotischer Patienten und anschließende Kultivierung der so isolierten Osteoblasten-Vorläuferzellen hergestellt sind und im hochaufgelösten zweidimenεionalen SDS-
PAGE-Gel ein typiεcheε, reproduzierbares Expressionsmuεter der intrazellulären Proteine gemäß der Spotverteilung in Abbildung 1 zeigen.
2. Oεteoblastenzellkulturen nach Anspruch 1, dadurch gekennzeichnet, daß sie in einem Zellkulturmedium, das aus α-MEM- Medium und HAM-Fl2-Medium besteht und gegebenenfalls einen Serumzusatz enthält, kultiviert sind.
3. Osteoblaεtenzellkulturen nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß sie in einem Zellkulturmedium, das 1 - 12% eines Serumzusatzes enthält und desεen Verhältniε von α-MEM-Medium zu HAM-F12-Medium zwiεchen 3:1 biε
1:3 beträgt, kultiviert εind. 4. Osteoblastenzellkulturen nach Anspruch 1, dadurch gekennzeichnet, daß das Proteinexpreεεionsmuster gemäß Anspruch 1 mit dem Proteinexpresεionεmuster aus Osteoblasten¬ zellkulturen nicht-osteoporotiεcher Patienten identiεch ist, jedoch die Intensitäten von mindestens sechε Spots unterschiedlich εind.
5. Verfahren zur Osteoporosediagnoεe, dadurch gekennzeichnet, daß man zum Erhalt einer zu mindestens 95% verläßlichen Aussage in etablierten, primären Osteoblastenzellkulturen gemäß Anspruch 1, die durch sequenziellen enzymatischen Verdau tranεiliakaler Knochenbiopεien eineε oεteoporotischen Patienten und anschließende Kultivierung der so isolierten Oεteoblaεten- Vorläuferzellen hergeεtellt sind, die
Zellproliferationsrate und die Expresεion von mindestens sechs osteoblastenεpezifischen Differenzierungεmarkern quantitativ mit an εich üblichen Methoden bestimmt, wobei man neben der Zellproliferationsrate noch mindestens einen
Parameter der frühen Differenzierungsphase der Osteoblaεten bestimmt, mindestens einen Parameter der späten Differenzierungsphase und mindestens vier Parameter der Matrixsyntheεe, und dieεe Parameter mit denen auε primären
Oεteoblaεtenzellkulturen nicht-oεteoporotiεeher Probanden gleichen Geεchlechts und etwa gleichen Alterε vergleicht und gegebenenfallε εtatiεtiεch auεwertet . Verfahren gemäß Anspruch 5, dadurch gekennzeichnet, daß man zur Untersuchung der frühen Differenzierungsphase der Osteoblasten neben der Zellproliferationsrate die Expression einer der drei Onkogene c-myc, c-fos oder c-jun, vorzugsweise c-fos, bestimmt zur Untersuchung der Bildung und Reifung der extrazellulären Matrix die Expreεεion der intrazellulären alkaliεchen Phosphatase, des Kollagen Typ I und Typ IV und von Chondroitin- Sulfat oder Hyaluronsäure mißt und zur Untersuchung der späten Differenzierungsphase die intrazelluläre Synthese von Osteocalcin bestimmt.
Verfahren zur Testung potentieller Osteoporoεe- Therapeutika, dadurch gekennzeichnet, daß man die mitogene Wirkung der potentiellen Wirkstoffe und/oder ihre Wirkung auf die Differenzierung der Oεteoblaεten-Vorläuferzellen in εtandardisierten, primären Osteoblaεtenzellkulturen osteoporotiεcher Patienten gemäß Anεpruch 1 durch quantitative Beεtimmung der Zellproliferationεrate und der Expreεεion von mindestens sechs osteoblastenspezifischen Differenzierungsmarkern quantitativ mit an sich üblichen Methoden bestimmt, wobei man neben der Zellproliferationsrate noch mindestenε einen Parameter der frühen Differenzierungεphase der Oεteoblasten bestimmt, mindeεtenε einen Parameter der εpäten Differenzierungsphase und mindestens vier Parameter der Matrixsynthese, und diese Parameter mit denen aus primären Osteoblaεtenzellkulturen nicht- oεteoporotiεcher Probanden gleichen Geεchlechtε und etwa gleichen Alters vergleicht und gegebenenfalls statistisch auswertet.
8. Verfahren gemäß Anspruch 7 , dadurch gekennzeichnet, daß man zur Untersuchung der frühen Differenzierungεphaεe der Oεteoblaεten neben der Zellproliferationεrate die Expression einer der drei Onkogene c-myc, c-fos oder c-jun, vorzugεweiεe c-foε, beεtimmt zur Untersuchung der Bildung und Reifung der extrazellulären Matrix die Expression der intrazellulären alkalischen Phosphatase, des
Kollagen Typ I und Typ IV und von Chondroitin- Sulfat oder Hyaluronsäure mißt und zur Unterεuchung der εpäten Differenzierungεphaεe die intrazelluläre Syntheεe von Osteocalcin bestimmt.
9. Verwendung von Oεteoblaεtenzellkulturen gemäß Anεpruch 1 zur Oεteoporoεediagnoεe .
10. Verwendung von Osteoblastenzellkulturen gemäß Anspruch 1 zur Testung potentieller Osteoporoεe- Therapeutika.
PCT/DE1996/001042 1995-06-07 1996-06-07 Standardisierte, primäre osteoblastenzellkulturen aus osteoporotischen patienten und deren verwendung zur osteoporosediagnose und zur testung potentieller osteoporose-therapeutika WO1996040873A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AT96917341T ATE309330T1 (de) 1995-06-07 1996-06-07 Verfahren zur osteoporosediagnose und zur testung potentieller osteoporose-therapeutika unter verwendung von standardisierten, primären osteoblastenzellkulturen aus osteoporotischen patienten
AU59961/96A AU733637B2 (en) 1995-06-07 1996-06-07 Standardized, primary osteoblast cell cultures from osteoporotic patients and their use in the diagnosis of osteoporosis and in testing potential osteoporosis therapeutic agents
US08/973,116 US6713269B2 (en) 1995-06-07 1996-06-07 Methods for identifying potential therapeutic agents for treatment of osteoporosis using mitogenic indices
DE59611292T DE59611292D1 (de) 1995-06-07 1996-06-07 Verfahren zur osteoporosediagnose und zur testung potentieller osteoporose-therapeutika unter verwendung von standardisierten, primären osteoblastenzellkulturen aus osteoporotischen patienten
EP96917341A EP0832195B1 (de) 1995-06-07 1996-06-07 Verfahren zur osteoporosediagnose und zur testung potentieller osteoporose-therapeutika unter verwendung von standardisierten, primären osteoblastenzellkulturen aus osteoporotischen patienten
JP9500085A JPH11506010A (ja) 1995-06-07 1996-06-07 骨粗鬆症患者からの標準化された一次骨芽細胞培養物、および骨粗鬆症の診断および潜在的骨粗鬆症治療薬の試験におけるその使用
NO19975673A NO322971B1 (no) 1995-06-07 1997-12-05 Fremgangsmate for diagnostisering av osteoporose og testing av potensielle terapeutiske midler mot osteoporose.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19521942 1995-06-07
DE19521942.2 1995-06-07
DE19601052.7 1996-01-05
DE19601052A DE19601052A1 (de) 1995-06-07 1996-01-05 Standardisierte, primäre Osteoblastenzellkulturen aus osteoporotischen Patienten und deren Verwendung zur Osteoporosediagnose und zur Testung potentieller Osteoporose-Therapeutika

Publications (1)

Publication Number Publication Date
WO1996040873A1 true WO1996040873A1 (de) 1996-12-19

Family

ID=26016033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1996/001042 WO1996040873A1 (de) 1995-06-07 1996-06-07 Standardisierte, primäre osteoblastenzellkulturen aus osteoporotischen patienten und deren verwendung zur osteoporosediagnose und zur testung potentieller osteoporose-therapeutika

Country Status (9)

Country Link
US (1) US6713269B2 (de)
EP (1) EP0832195B1 (de)
JP (1) JPH11506010A (de)
AT (1) ATE309330T1 (de)
AU (1) AU733637B2 (de)
CA (1) CA2223101A1 (de)
DE (1) DE59611292D1 (de)
NO (1) NO322971B1 (de)
WO (1) WO1996040873A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0994184A2 (de) * 1998-09-18 2000-04-19 Christoph Dr. Gaissmaier Kultursystem zur optimierten Anregung des Wachstums und der Differenzierung von Knorpelzellen und/oder Knochenzellen
FR2833270A1 (fr) * 2001-12-10 2003-06-13 Sympathos Modele de developpement osseux

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL371264A1 (en) * 2001-12-21 2005-06-13 The Procter & Gamble Company Method for the treatment of bone disorders
WO2007104724A2 (en) * 2006-03-10 2007-09-20 Universitá Degli Studi Di Siena Identification of osteoblast cells differentiation and bone tumor markers and uses thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3560252B2 (ja) 1992-08-28 2004-09-02 アベンティス ファーマ株式会社 骨関連カドヘリン様タンパク質およびその製造法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
KASSEM M ET AL: "Human marrow stromal osteoblast-like cells do not show reduced responsiveness to in vitro stimulation with growth hormone in patients with postmenopauseal osteoporosis", CALCIFIED TISSUE INTERNATIONAL, vol. 54, 1994, pages 1 - 6, XP000605179 *
LEILA RISTELI ET AL: "biochemical markers of bone metabolism", ANNALS OF MEDICINE, vol. 25, 1993, pages 385 - 393, XP000605177 *
PIERRE J. MARIE ET AL: "Osteocalcin and deoxyribonucleic acid synthesis in vitro and histomorphometric indices of bone formation in postmenopauseal osteoporosis", THE JOURNAL OF CLINICAL ENDOCRINOLOGY AND METABOLISM, vol. 69, no. 2, 1989, pages 272 - 279, XP000605184 *
PIERRE J. MARIE: "Decreased DNA synthesis by cultured osteoblastic cells in eugonadal osteoporotic men with defective bone formation", THE JOURNAL OF CLINICAL INVESTIGATION, vol. 88, 1991, pages 1167 - 1172, XP000605181 *
WONG M.M. ET AL: "In vitro study of osteoblastic cells from patients with idiopathic osteoporosis and comparison with cells from non-osteoporotic controls", OSTEOPOROSIS INTERNATIONAL, vol. 4, 1994, pages 21 - 31, XP000605170 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0994184A2 (de) * 1998-09-18 2000-04-19 Christoph Dr. Gaissmaier Kultursystem zur optimierten Anregung des Wachstums und der Differenzierung von Knorpelzellen und/oder Knochenzellen
EP0994184A3 (de) * 1998-09-18 2001-02-07 Christoph Dr. Gaissmaier Kultursystem zur optimierten Anregung des Wachstums und der Differenzierung von Knorpelzellen und/oder Knochenzellen
FR2833270A1 (fr) * 2001-12-10 2003-06-13 Sympathos Modele de developpement osseux
WO2003050272A2 (fr) * 2001-12-10 2003-06-19 Sympathos Modele de developpement osseux
WO2003050272A3 (fr) * 2001-12-10 2003-12-24 Sympathos Modele de developpement osseux

Also Published As

Publication number Publication date
EP0832195A1 (de) 1998-04-01
AU5996196A (en) 1996-12-30
DE59611292D1 (de) 2005-12-15
US20020076730A1 (en) 2002-06-20
JPH11506010A (ja) 1999-06-02
EP0832195B1 (de) 2005-11-09
ATE309330T1 (de) 2005-11-15
AU733637B2 (en) 2001-05-17
CA2223101A1 (en) 1996-12-19
US6713269B2 (en) 2004-03-30
NO322971B1 (no) 2006-12-18
NO975673D0 (no) 1997-12-05
NO975673L (no) 1998-01-30

Similar Documents

Publication Publication Date Title
DE69534847T2 (de) Knochen-vorläufer-zellen: zusammensetzungen und methoden
Cueto-Manzano et al. Bone loss in long-term renal transplantation: histopathology and densitometry analysis
Fedarko et al. Cell proliferation of human fibroblasts and osteoblasts in osteogenesis imperfecta: influence of age
DE4130545C2 (de) Verwendung einer knochenwachstumsfördernden Zusammensetzung
Chavassieux et al. Influence of experimental conditions on osteoblast activity in human primary bone cell cultures
Castro‐Alamancos et al. Transfer of function to a specific area of the cortex after induced recovery from brain damage
Wolf et al. Regulation of macrophage migration and activity by high-mobility group box 1 protein released from periodontal ligament cells during orthodontically induced periodontal repair: an in vitro and in vivo experimental study.
DE3626414C2 (de) Präparat zur Stimulierung von Chondrocyten und Osteoblasten (Ossein-Hydroxyapatit-Komplex), Verfahren zu seiner Herstellung und dieses enthaltende Arzneimittel
EP0832195B1 (de) Verfahren zur osteoporosediagnose und zur testung potentieller osteoporose-therapeutika unter verwendung von standardisierten, primären osteoblastenzellkulturen aus osteoporotischen patienten
DE69734894T2 (de) Testverfahren für antifibrotischen wirkstoff
Caplan The site and sequence of action of 6-aminonicotinamide in causing bone malformations of embryonic chick limb and its relationship to normal development
Kumar et al. Gentamicin reduces calcific nodule formation by aortic valve interstitial cells in vitro
Jalenques et al. Age-related changes in GFAP-immunoreactive astrocytes in the rat ventral cochlear nucleus
EP1873236B1 (de) Verfahren zur Qualitätskontrolle von in einem Kulturmedium kultivierten Zellen mittels SERPINA1als Qualitätsmarker für die chondrogene Potenz von Chondrozyten
Tuttle et al. Target influences on [3H] ACh synthesis and release by ciliary ganglion neurons in vitro
DE10002820A1 (de) Aminopeptidasen-Inhibitor
DE19601052A1 (de) Standardisierte, primäre Osteoblastenzellkulturen aus osteoporotischen Patienten und deren Verwendung zur Osteoporosediagnose und zur Testung potentieller Osteoporose-Therapeutika
Legido et al. Expression of somatostatin and GABA immunoreactivity in cultures of rat hippocampus
Melotti et al. The natural involution of the sheep proximal sesamoidean ligament is due to depletion of satellite cells and simultaneous proliferation of fibroblasts: ultrastructural evidence
WO2005063966A2 (de) Verfahren zur in vitro differenzierung neuronaler stammzellen oder von neuronalen stammzellen abgeleiteter zellen
Matsukura et al. The characteristics of bone turnover in the second decade in relation to age and puberty development in healthy Japanese male and female subjects-Japanese Population-based Osteoporosis Study
König et al. Lysosomale Enzyme in Lymphozyten
DE69735374T2 (de) Methode zur auffindung physiologisch aktiver substanzen und verfahren zu deren herstellung
Sato et al. Effect of systemic calcium deficiency on the expression of transforming growth factor‐β in chick embryonic calvaria
Oda et al. Immunolocalization of muscarinic receptor subtypes in the reticular thalamic nucleus of rats

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP NO US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2223101

Country of ref document: CA

Ref country code: CA

Ref document number: 2223101

Kind code of ref document: A

Format of ref document f/p: F

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1997 500085

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1996917341

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08973116

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996917341

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996917341

Country of ref document: EP