WO1996039469A1 - Cyanacrylat-klebstoff - Google Patents

Cyanacrylat-klebstoff Download PDF

Info

Publication number
WO1996039469A1
WO1996039469A1 PCT/EP1995/004399 EP9504399W WO9639469A1 WO 1996039469 A1 WO1996039469 A1 WO 1996039469A1 EP 9504399 W EP9504399 W EP 9504399W WO 9639469 A1 WO9639469 A1 WO 9639469A1
Authority
WO
WIPO (PCT)
Prior art keywords
biscyanoacrylates
cyanoacrylate
cyanoacrylate adhesive
adhesive according
adhesives
Prior art date
Application number
PCT/EP1995/004399
Other languages
English (en)
French (fr)
Inventor
Werner Gruber
Heinz Christian Nicolaisen
Hanns Misiak
Original Assignee
Henkel Kommanditgesellschaft Auf Aktien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19519958A external-priority patent/DE19519958A1/de
Application filed by Henkel Kommanditgesellschaft Auf Aktien filed Critical Henkel Kommanditgesellschaft Auf Aktien
Publication of WO1996039469A1 publication Critical patent/WO1996039469A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/23Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and carboxyl groups, other than cyano groups, bound to the same unsaturated acyclic carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/303Surface mounted components, e.g. affixing before soldering, aligning means, spacing means
    • H05K3/305Affixing by adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01016Sulfur [S]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01068Erbium [Er]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a cyanoacrylate adhesive with improved heat resistance as well as its production and use.
  • Cyanoacrylate adhesives are one-component reaction adhesives based on monomeric 2-cyanoacrylic acid esters. They have conquered the market with their extremely fast curing, which takes only a few seconds depending on the substrate. The resulting properties meet many of the requirements placed in industrial practice. Nevertheless, they are still in need of improvement in special applications. For example, Depolymerization is possible even at temperatures around 100 ° C., which is why longer temperature loads of more than 80 ° C. should be avoided.
  • cyanoacrylate adhesives with improved thermal properties are obtained if a) at least one polymerizable cyanoacrylate monomer, b) about 0.1 to about 10% by weight of at least one polymerizable acrylate ester and c) about 0.1 to about 20 wt .-% of a certain additive mixes.
  • the addition is e.g. around Maleini id.
  • cyclic or linear sulfur compounds should be added to the cyanoacrylates in an amount of 0.1 to 10% by weight.
  • the sulfur compounds are, for example, compounds of the following general formulas: R10-S02-0R 1 , RiO-SO-OR 1 , Rl-SO-R *, RlSO-OR.
  • aro atene with at least 3 electron-attracting substituents should be added to the cyanoacrylate adhesives.
  • WO 94/15907 published on July 21, 1994 also describes cyanoacrylate adhesives with improved resistance to heat and moisture. The effect is achieved by using linear polymers - e.g. Polyisobutylene or polyalkyl methacrylates - achieved with cyanoacrylate end groups (see page 4 from line 16 to page 5, line 7 and page 10 from line 27 to page 11, line 12). Specific information about the composition and the adhesive properties are not given.
  • the task was to provide a cyanoacrylate adhesive with increased heat resistance, but with practically unchanged storage behavior and curing time.
  • the solution according to the invention can be found in the patent claims. It essentially consists in that the adhesive also contains an effective amount of at least one biscyanoacrylate in addition to at least one conventional monocyanoacrylic acid ester.
  • customary monocyanoacrylic acid esters means the following substances of the general formulas:
  • H 2 C C (CN) -C0-0-R (I).
  • R is an alkyl, alkenyl, cycloalkyl, aryl, alkoxyalkyl, aralkyl or haloalkyl group, in particular a methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, pentyl, hexyl, allyl, methailyl, crotyl, propargyl, cyclohexyl, benzyl, phenyl, cresyl, 2-chloroethyl, 3-chloropropyl, 2-chlorobutyl -, trifluoroethyl, 2-methoxyethyl, 3-methoxybutyl and 2-ethoxyethyl group.
  • cyanoacrylates are known to the adhesive specialist, cf. Ullmanns's Encyclopaedia of Industrial Che ystry, vol. AI, p. 240, Verlag Chemie Weinheim (1985) as well as US Pat. No. 3,254,111 and PS-PS 3,654,340.
  • Preferred monomers are the allyl, methoxyethyl, Ethoxyethyl, methyl, ethyl, propyl, isopropyl or butyl esters of 2-cyanoacrylic acid.
  • R is a branched or unbranched divalent alkane radical with 2 to 18, in particular 6 to 12, carbon atoms, which also contains heteroatoms such as halogens and oxygen or aliphatic or aromatic rings.
  • R1 is preferably a pure hydrocarbon.
  • biscyanoacrylates are particularly pure. This requirement is met, for example by the following manufacturing and Cleaning methods: Essentially "monocyanoacrylates are transesterified with diols and the reaction mixtures by fractional crystallization then worked up.
  • H 2 C C (CN) -C0-0-R 2 (III)
  • R ⁇ is a branched or unbranched alkyl radical having 1 to 6 carbon atoms, with diols of the general formula
  • Rl is a branched or unbranched divalent alkane radical having 2 to 18 carbon atoms, which may also contain heteroatoms such as halogens and oxygen or aliphatic or aromatic rings, to give biscyanoacrylates of the general formula II transesterified and then the reaction mixture is purified by fractional crystallization.
  • a starting product is monofunctional cyanoacrylic acid or its alkyl ester according to formula III.
  • the alkyl group should be chosen so that the alcohol can be easily removed. The person skilled in the art is aware of the suitable possibilities for this from the general esterification reaction.
  • the alcohol is preferably removed by distillation.
  • R ⁇ is therefore a branched or unbranched alcohol radical having 1 to 6 carbon atoms, preferably having one or two carbon atoms.
  • the monofunctional cyanoacrylic acid ester is stabilized as usual.
  • the diols are dihydric primary or secondary alcohols, preferably primary alcohols.
  • the hydroxyl groups can be in any position relative to one another, but preferably in the alpha / omega position.
  • the diols contain 2 to 18 carbon atoms, preferably 6 to 12 carbon atoms. They can be linear, branched or cyclical.
  • the aliphatic radical can also contain an aromatic group or, in addition to the hydrogen and carbon atoms, also heteroatoms, such as chlorine or oxygen atoms, preferably in the form of polyethylene or polypropylene glycol units. The following may be mentioned as specific diols: hexanediol, octanediol, decanediol and dodecanediol.
  • the cyanoacrylic acid ester is used in excess.
  • the molar ratio of monofunctional cyanoacrylic acid ester to the diol is therefore at least 2.0: 1.0, but preferably 2.5: 1.0, in particular 2.2: 1.0.
  • the transesterification is catalyzed by strong acids, especially by sulfonic acids, preferably by aromatic sulfonic acids, e.g. p-toluenesulfonic acid. But naphthalenesulfonic acid and benzenesulfonic acid as well as acidic ion exchangers are also possible.
  • the concentration of the transesterification catalyst should be between 1 and 20% by weight, based on the monofunctional cyanoacrylate.
  • the transesterification takes place - as usual - in solution.
  • Aromatics and halogenated hydrocarbons serve as solvents.
  • the preferred solvent is toluene and xylene.
  • the concentration of the solution is in the range from 10 to 50, preferably from 10 to 20%.
  • the resulting monohydric alcohol or water is removed in a known manner, preferably distilled off with the solvent.
  • the conversion of the transesterification is checked, for example using NMR spectra. As usual, the reaction takes several hours. In the case of toluene as a solvent and p-Toluenesulfonic acid as a catalyst the reaction is complete after 10 to 15 hours, ie no more alcohol separates out.
  • the biscyanoacrylate obtained is stable in storage with the usual stabilizers and in the usual concentrations, i.e. it practically does not change its melting point within 6 months at 20 ° C.
  • the biscyanoacrylates obtained polymerize very quickly in the presence of bases, preferably practically at the same rate as the corresponding monocyanoacrylates.
  • traces of water are already sufficient. The result is a three-dimensionally cross-linked polymer with relatively good thermal properties.
  • cyanoacrylate adhesives in an amount of 0.5 to 50, preferably 1 to 10 and in particular 2 to 5% by weight, based on the adhesive as a whole.
  • the adhesive can contain additives, for example plasticizers, thickeners, stabilizers, activators, dyes, etc.
  • the adhesive preferably does not contain any anionic polymerization initiator.
  • the adhesive is produced as usual by mixing the components.
  • the storage stability of the new adhesives was in all examined cases over 1 year at room temperature or over 10 days at 80 ° C.
  • the curing rate is not affected by the biscyanoacrylates.
  • the new cyanoacrylate adhesive according to the invention is particularly suitable for bonds with high thermal requirements, e.g. for gluing electrical and electronic components.
  • the curing speed was determined as follows: An EPDM round cord is cut with a steel blade. The cyanoacrylate adhesive is applied to a freshly cut surface. Both parts are put together under pressure. From 3 seconds the strength is checked by hand every second.

Abstract

Die erfindungsgemäßen Klebstoffe enthalten neben den üblichen Monocyanoacrylsäureestern auch noch eine wirksame Menge an Biscyanoacrylaten. Die Biscyanoacrylate werden durch Reaktion von 2-Cyanoacrylsäure oder deren Alkylester mit Diolen in Gegenwart von Sulfonsäuren als Katalysator in Lösung erhalten. Das Reaktionsgemisch wird durch Austausch des aromatischen Lösungsmittels gegen ein aliphatisches Lösungsmittel sowie durch eine nachfolgende zweimalige fraktionierte Kristallisation aufgearbeitet. Die erhaltenen Biscyanoacrylate zeichnen sich durch eine hohe Reinheit aus. Daher können sie zur Herstellung von lagerstabilen Cyanacrylat-Klebstoffen verwendet werden. Ihr Zusatz erhöht die Wärmebeständigkeit, was insbesondere bei elektrischen und elektronischen Bauteilen von Bedeutung ist.

Description

"Cvanacrylat-K1ebstoff"
Die Erfindung betrifft einen Cyanacrylat-Klebstoff mit verbesserter Wärmebelastbarkeit sowie seine Herstellung und Verwendung.
Cyanacrylat-Klebstoffe sind einkomponentige Reaktionsklebstoffe auf der Basis von monomeren 2-Cyanoacrylsäureestern. Sie haben sich den Markt durch ihre äußerst schnelle Aushärtung erobert, die je nach Substrat nur wenige Sekunden erfordert. Die resultierenden Eigen¬ schaften erfüllen viele der in der industriellen Praxis gestellten Anforderungen. Dennoch sind sie in speziellen Anwendungsfällen noch verbesserungsbedürftig. So ist z.B. schon bei Temperaturen um 100 °C eine Depolymerisation möglich, weswegen längere Temperatur¬ belastungen von mehr als 80 °C vermieden werden sollten.
Dieses Problem wurde schon mehrfach bearbeitet. Gemäß der DE 3220591 erhält man Cyanacrylat-Klebstoffe mit verbesserten thermischen Eigenschaften, wenn man a) mindestens ein poly eri- sierbares Cyanoacrylat-Monomer, b) etwa 0,1 bis etwa 10 Gew.-% mindestens eines poly erisierbaren Acrylatesters und c) etwa 0,1 bis etwa 20 Gew.-% eines bestimmten Zusatzes mischt. Bei dem Zusatz handelt es sich z.B. um Maleini id.
Gemäß der EP 579476 sollen cyclische oder lineare SchwefelVerbin¬ dungen in einer Menge von 0,1 bis 10 Gew.-% zu den Cyanoacrylaten gegeben werden. Bei den Schwefelverbindungen handelt es sich z.B. um Verbindungen folgender allgemeiner Formeln: R10-S02-0R1, RiO-SO-OR1, Rl-SO-R*, RlSO-OR .
Gemäß der EP 594317 sollen Aro aten mit mindestens 3 Elektronen¬ anziehenden Substituenten den Cyanacrylat-Klebstoffen zugesetzt werden.
Die am 21.07.1994 veröffentlichte WO 94/15907 beschreibt ebenfalls Cyanacrylat-Klebstoffe mit verbesserter Beständigkeit gegen Wärme und Feuchtigkeit. Der Effekt wird durch Verwendung von linearen Polymeren - z.B. Polyisobutylen oder Polyalkylmethacrylaten - mit Cyanoacrylat-Endgruppen erzielt (siehe Seite 4 ab Zeile 16 bis Seite 5, Zeile 7 sowie Seite 10 ab Zeile 27 bis Seite 11, Zeile 12). Konkrete Angaben über die Zusammensetzung und die Klebeeigen¬ schaften werden nicht gemacht.
Daß ein Zusatz von Biscyanoacrylaten zu Cyanacrylat-Klebstoffen zu Problemen führen kann, ist bekannt, insbesondere zu Problemen be¬ züglich der Lagerzeit und der Aushärtungsgeschwindigkeit. Carl J. Bück beschreibt in Journal of Polymer Science: Polymer Che istry Edition, Vol. 16, S. 2475-2507 (1978) eine Mischung aus Cyanoacrylsäure-Isobutylester und Bis(2-cyanoacrylaten). Sie benö¬ tigen zur Initiierung der Polymerisation N,N-Dimethyl-p-toluidin (DMPT). Eine Zusammensetzung aus 90 Gew.-% Cyanoacrylsäuremethylester und 10 % Octandiol-biscyanoacrylat be¬ nötigt zum Aushärten bei 38 °C einen Tag (siehe Seite 2504, letzter Absatz, und Seite 2505).
Ausgehend von diesem Stand der Technik ergab sich als Aufgabe einen Cyanacrylat-Klebstoff mit erhöhter Wärmefestigkeit, aber mit prak¬ tisch unverändertem Lagerverhalten und Aushärtungszeit bereitzu¬ stellen. Die erfindungsgemäße Lösung ist den Patentansprüchen zu entnehmen. Sie besteht im wesentlichen darin, daß der Klebstoff neben minde¬ stens einem üblichen Monocyanoacrylsäureester auch eine wirksame Menge an mindestens einem Biscyanoacrylat enthält.
Unter "üblichen Monocyanoacrylsäureestern" sind folgende Stoffe der allgemeinen Formeln zu verstehen:
H2C = C(CN)-C0-0-R (I). In ihr ist R eine Alkyl-, Alkenyl-, Cycloalkyl-, Aryl-, Alkoxyalkyl-, Aralkyl- oder Haloalkylgruppe, insbesondere eine Me¬ thyl-, Ethyl-, n-Propyl-, iso-Propyl-, n-Butyl-, iso-Butyl-, Pentyl-, Hexyl-, Allyl-, Methailyl-, Crotyl-, Propargyl-, Cyclohexyl-, Benzyl-, Phenyl-, Cresyl-, 2-Chlorethyl-, 3-Chlorpro- pyl-, 2-Chlorbutyl-, Trifluorethyl-, 2-Methoxyethyl-, 3- Methoxybutyl- und 2-Ethoxyethylgruppe. Die vorgenannten Cyano- acrylate sind dem Klebstoffachmann bekannt, vgl. Ullmanns's Encyclopaedia of Industrial Che ystry, Bd. AI, S. 240, Verlag Che¬ mie Weinheim (1985) sowie US-PS 3 254 111 und PS-PS 3 654 340. Be¬ vorzugte Monomere sind die Allyl-, Methoxyethyl-, Ethoxyethyl-, Methyl-, Ethyl-, Propyl-, Isopropyl- oder Butyl-Ester der 2- Cyanoacrylsäure.
Unter "Biscyanoacrylaten" sind Stoffe mit folgender allgemeiner Formel zu verstehen:
[H2C = C(CN)-C0-0]2R1 (II) Darin ist R ein verzweigter oder unverzweigter zweiwertiger Alk- an-Rest mit 2 bis 18, insbesondere 6 bis 12 C-Atomen, der auch noch Heteroatome wie Halogene und Sauerstoff oder aliphatische oder aromatische Ringe enthalten kann. Vorzugsweise ist Rl jedoch ein reiner Kohlenwasserstoff.
Es ist wichtig, daß die Biscyanoacrylate besonders rein sind. Diese Forderung wird erfüllt, z.B. durch folgende Herstellungs- und Reinigungsmethoden: Im wesentlichen werden "Monocyanoacrylate mit Diolen umgeestert und die Reaktionsgemische durch fraktionierte Kristallisation anschließend aufgearbeitet.
Ein geeignetes Verfahren zur Herstellung von Biscyanoacrylaten be¬ steht also darin, daß man 2-Cyanoacrylsäure oder deren Alkylester der allgemeinen Formel
H2C = C(CN)-C0-0-R2 (III)
worin R^ ein verzweigter oder unverzweigter Alkylrest mit 1 bis 6 C-Atomen ist, mit Diolen der allgemeinen Formel
[H0]2Rl (IV) wobei Rl ein verzweigter oder unverzweigter zweiwertiger Alkan-Rest mit 2 bis 18 C-Atomen ist, der auch noch Heteroato e wie Halogene und Sauerstoff oder aliphatische oder aromatische Ringe enthalten kann, zu Biscyanoacrylate der allgemeinen Formel II umestert und dann das Reaktionsgemisch durch fraktionierte Kristallisation rei¬ nigt.
Ein Ausgangsprodukt ist also die monofunktionelle Cyanoacrylsäure oder deren Alkylester gemäß der Formel III. Der Alkylrest ist so zu wählen, daß der entstehende Alkohol leicht entfernt werden kann. Die dazu geeigneten Möglichkeiten sind dem Fachmann aus der allge¬ meinen U esterungsreaktion bekannt. Vorzugsweise wird der Alkohol destillativ entfernt. Daher ist R^ ein verzweigter oder unverzweigter Alkoholrest mit 1 bis 6 C-Atomen, vorzugsweise mit einem oder zwei C-Atomen. Der monofunktionelle Cyanoacrylsäureester ist wie üblich stabilisiert.
Bei den Diolen (Formel IV) handelt es sich um zweiwertige primäre oder sekundäre Alkohole, vorzugsweise um primäre Alkohole. Die Hy¬ droxylgruppen können zueinander in beliebiger Stellung stehen, vorzugsweise jedoch in Alpha/Omega-Stellung. Die Diole enthalten 2 bis 18 C-Atome, vorzugsweise 6 bis 12 C-Atome. Sie können linear, verzweigt oder zyklisch angeordnet sein. Der aliphatische Rest kann auch eine aromatische Gruppe enthalten oder neben den Wasserstoff- und Kohlenstoffatomen auch noch Heteroatome, wie z.B. Chlor- oder Sauerstoff-Atome, vorzugsweise in Form von Polyethylen- oder Polypropylenglykoleinheiten. Als konkrete Diole seien genannt: Hexandiol, Octandiol, Dekandiol und Dodecandiol.
Der Cyanoacrylsäureester wird im Überschuß eingesetzt. Das molare Verhältnis von monofunktionellem Cyanoacrylsäureester zum Diol be¬ trägt also mindestens 2,0 : 1,0, vorzugsweise jedoch 2,5 : 1,0, insbesondere 2,2 : 1,0.
Die Umesterung wird durch starke Stäuren katalysiert, insbesondere durch Sulfonsäuren, vorzugsweise durch aromatische Sulfonsäuren, wie z.B. p-Toluolsulfonsäure. Aber auch Naphthalinsulfonsäure und Benzolsulfonsäure sowie saure Ionenaustauscher sind möglich. Die Konzentration des Umesterungskatalysators sollte zwischen 1 und 20 Gew.-% liegen, bezogen auf das monofunktionelle Cyanoacrylat.
Die Umesterung erfolgt - wie auch sonst üblich - in Lösung. Als Lösungsmittel dienen Aromaten und Halogenkohlenwasserstoffe. Be¬ vorzugtes Lösungsmittel ist Toluol und Xylol. Die Konzentration der Lösung liegt im Bereich von 10 bis 50, vorzugsweise von 10 bis 20 %.
Der entstehende einwertige Alkohol bzw. das entstehende Wasser werden auf bekannte Art und Weise entfernt, vorzugsweise mit dem Lösungsmittel abdest lliert. Der Umsatz der Umesterung wird kon¬ trolliert z.B. anhand von NMR-Spektren. Wie auch sonst dauert die Reaktion mehrere Stunden. Im Falle von Toluol als Lösungsmittel und p-Toluolsulfonsäure als Katalysator ist die Reaktion nach 10 bis 15 Stunden beendet, d.h. es scheidet sich kein Alkohol mehr ab.
Sehr wichtig ist nun die Aufarbeitung des Reaktionsgemisches. Im Falle von sauren Ionenaustauschern als Katalysator können diese einfach abfiltriert werden. Im Falle von löslichen Sulfonsäuren als Katalysator z.B. von p-Toluolsulfonsäure wird diese durch Lösungs¬ mittelsubstitution abgetrennt: Toluol wird gegen eine Mischung aus Hexan, Heptan oder Dekan ersetzt. Nach zweimaliger fraktionierter Kristallisation erhält man reines Biscyanoacrylat. Die Reinheit beträgt nach NMR-Spektren mehr als 99 %.
Das erhaltene Biscyanoacrylat ist mit den üblichen Stabilisatoren und in den üblichen Konzentrationen lagerstabil, d.h. es verändert bei 20 °C innerhalb von 6 Monaten seinen Schmelzpunkt praktisch nicht.
Die erhaltenen Biscyanoacrylate polymerisieren aber in Gegenwart von Basen sehr schnell, vorzugsweise praktisch gleich schnell wie die entsprechenden Monocyanoacrylate. Wie bei den onofunktionellen Cyanoacrylaten reichen Spuren von Wasser bereits aus. Es entsteht dann ein dreidimensional vernetztes Polymer mit relativ guten thermischen Eigenschaften.
Erfindungsgemäß wird es daher in bekannten Cyanoacrylat-Klebstoffen mitverwendet und zwar in einer Menge von 0,5 bis 50, vorzugsweise von 1 bis 10 und insbesondere von 2 bis 5 Gew.-%, bezogen auf den Klebstoff insgesamt. Der Klebstoff kann Additive enthalten z.B. Weichmacher, Verdicker, Stabilisatoren, Aktivatoren, Farbstoffe usw. Vorzugsweise enthält der Klebstoff keinen anionischen Polymerisations-Initiator.
Der Klebstoff wird wie üblich durch Mischen der Komponenten herge¬ stellt.
Die Lagerstabilität der neuen Klebstoffe lag in allen untersuchten Fällen über 1 Jahr bei Raumtemperatur bzw. über 10 Tage bei 80 °C.
Die Aushärtungsgeschwindigkeit wird durch die Biscyanoacrylate nicht beeinträchtigt.
Der erfindungsgemäße neue Cyanoacrylatklebstoff eignet sich beson¬ ders für Verklebungen mit hohen thermischen Anforderungen z.B. zum Verkleben von elektrischen und elektronischen Bauteilen.
Die Erfindung wird nun anhand von Beispielen im einzelnen erläu¬ tert:
I. Herstellung von Biscyanoacrylaten
Im Rahmen des vorbeschriebenen allgemeinen Herstellungsverfahrens wurden die in der Tabelle 1 angegebenen Ausgangsprodukte in 1 Kg Toluol mit p-Toluol-Sulfonsäure als Katalysator umgesetzt. Nach 6 Stunden war die Umesterung beendet. Das Toluol wurde nun durch He¬ xan ersetzt. Nach zweimaliger fraktionierter Kristallisation wurden die entsprechenden Biscyanoacrylate mit denen in der Tabelle ange¬ gebenen Schmelzpunkten erhalten.
Tabelle 1
lfd. Ausgangsprodu te a) 1,0 : 0,5 b) 1,2 : 0,4 Schmelz¬ Nr. Ansatz g Ansatz g punkt
1. Cyanacry1säuremethy1ester 65,96 69,99 59-60 1,6-Hexaπdiol 35,05 27,68
2. Cyanacry1säuremethy1ester 60,92 65,24 65-67 1,8-Octandiol 40,08 35,76
3. Cyanacrylsäuremethylester 55,63 61,10 74-75 1,10-Decandiol 44,38 39,91
4. Cyanacrylsäuremethylester 52,89 57,45 79-80 1,12-Dodecahdiol 48,12 43,56 II. Verwendung der Biscyanoacrylate in Cyanoacrylat-Klebstoffen
1. Zugscherfestigkeit
Auf die gereinigten (gestrahlten) Aluminium- oder Stahl-Bleche wurden einige Tropfen des Cyanoacrylatklebstoffes auf der Basis von Cyanoacrylsäureethylester mit den angegebenen Zusätzen an Biscyanoacrylaten gegeben und bei 20 °C in 24 Stunden ausgehärtet. Danach wurden die verklebten Bleche bei 20, 100, 130 und 150 °C 3 Tage gelagert und bei diesen Temperaturen auf Festigkeit nach DIN 53283 und DIN 53286 geprüft.
Tabelle 2: Zuαscherfestiokeit (in N/mm2)
Lfd. Biscyanoacrylate Substrat Zugscherfestigkeit
Nr. Art Menge [%] 20 °C 100 °C 130 °C 150 °C
1 a) 0 Stahl 18 5 3 3 b) 0 AI 6 2
2 Hexandiol- 5 Stahl 21 18 12 Biscyanoacrylat
3 a) Octandiol 10 AI 18 16 10 Biscyanoacrylat b) 5 Stahl 17 12 c) 2 Stahl 18 10
4 a) Decandiol- 5 Stahl 17 15 b) Biscyanacrylat 2 Stahl 18 11 2. Abdampfverluste von ausgehärteten Cyanacrylsäureethylester / Biscyanacrylat-Mischungen
Dieser Test gibt die in der Praxis vorhandenen Temperaturbela¬ stungen sehr gut wieder und zeigt die wirksame Verhinderung der Depoly erisation oberhalb der Ceiling-Te peratur.
Rahmenbedingungen:
Je Ansatz wurden 4 AI-Streifen (unbehandelt, 25 x 100 m) mit je¬ weils ca. 500 mg Klebstoff benetzt. Die Streifen wurden vorher 1 Sek. lang mit "Sicomet Beschleuniger"-Spray behandelt. Ofenlage¬ rung: 150 °C, 48 h.
Tabelle 3
Zusatz Gewichtsverlust in % in % Bis -Cß-Produkt Bis -Cio-Produkt Bis-Cι2-Produkt
0 39,8 39,8 39,8
1 8,8 8,2 9,4
2 7,3 6,4 8,6
5 4,5 4,2 2,5
Tabel le 4
AbdampfVerluste von Cyanacrylsäureethylester mit literaturbekannten
Substanzen.
Bedingungen wie oben. Trotz höherer Konzentration des Zusatzes ist die Wirkung geringer.
Substanz Zusatz in % Gewichtsverlust in %
Glykolsulfit 5 48,4
Diethylsulfit 5 96,3
Dimethylsulfit 5 80,3
Diethylsulfat 5 18,4
Pentafluorbenzonitril 8 14,7
Pentaf1uornitrobenzo1 8 10,4
3. Bestimmung der Glasübergangstemperatur und des Schubmoduls von ausgehärteten Cyanacrylsäureethylester/Biscyanacrylat-Mischungen per DTA-Methode. Der Schubmodul wurde per DTA ermittelt.
Tabelle 5
Cyanacrylsäureethylester Schubmodul 80 °C Tg 140 °C
Cyanacrylsäureethylester/ Schubmodul 114 °C 10 % Bis-CiQ-Cyanacrylat Tg 149 °C 4. Bestimmung der Aushärtungsgeschwindigkeit von Gemischen an Cyanacrylsäureethylester und Biscyanacrylat-Mischungen (BCA).
Für "Biscyanoacrylate von Diolen mit 8 C-Atomen" wird verkürzt ge¬ schrieben "Bis-Cg-Produkte". Analoges gilt für Produkte mit einer anderen Anzahl der C-Atome.
Die Aushärtungsgeschwindigkeit wurde folgendermaßen bestimmt: Eine EPDM-Rundschnur wird mit einer Stahlklinge geschnitten. Auf eine frisch geschnittene Fläche wird der Cyanacrylat-Klebstoff appliziert. Beide Teile werden unter Druck zusammengefügt. Ab 3 Sekunden wird die Festigkeit sekundenweise per Hand geprüft.
Wenn beide Teile nicht mehr getrennt werden können, ist die Verklebung erfolgreich und die angegebene Anpreßzeit erreicht.
BCA Anpreßzeit ari EPDM in Sekunden
Gew.-% Bis -c8- •Produkt Bis- -Cio- •Produkt Bis-Cι2-Produkt
0 5 5 5
1 5 5 5
2 4 5 6
5 6 5 6

Claims

Patentansprüche
1. Cyanacrylat-Klebstoff mit hoher Wärmebelastbarkeit, dadurch gekennzeichnet, daß er neben mindestens einem üblichen Monocyanoacrylsäureester auch noch eine wirksame Menge minde¬ stens eines BiscyanoacrylSäureesters enthält.
2. Cyanacrylat-Klebstoff nach Anspruch 1, gekennzeichnet durch 0,5 bis 50, vorzugsweise 1 bis 20 und insbesondere 2 bis 5 Gew.-% an Biscyanoacrylaten, bezogen auf den Klebstoff insgesamt.
3. Cyanacrylat-Klebstoff nach Anspruch 1 oder 2, gekennzeichnet durch Biscyanoacrylate der allgemeinen Formel II
[H C = C(CN)-C0-0]2Rl (II)
wobei R ein verzweigter oder unverzweigter zweiwertiger Alkan-Rest mit 2 bis 18, insbesondere 6 bis 12 C-Atomen ist, der auch noch Heteroatome wie Halogene und Sauerstoff oder aliphatische oder aromatische Ringe enthalten kann.
4. Cyanacrylat-Klebstoff nach mindestens einem der Ansprüche 1 bis
3, dadurch gekennzeichnet, daß die Biscyanoacrylate durch Umesterung von Monocyanoacrylaten mit Diolen sowie durch an¬ schließende Aufarbeitung des Reaktionsgemisches durch fraktio¬ nierte Kristallisation herstellbar sind.
5. Cyanacrylat-Klebstoff nach mindestens einem der Ansprüche 1 bis
4, gekennzeichnet durch Monocyanoacrylsäureester der allge¬ meinen Formel I
H2C = C(CN)-C0-0-R (I), wobei R eine Allyl-, Methoxyethyl-, Ethoxyethyl-, Methyl-, Ethyl-, Propyl-, Isopropyl- oder Butyl-Gruppe ist.
6. Cyanacrylat-Klebstoff nach mindestens einem der Ansprüche 1 bis
5, gekennzeichnet durch Zusätze wie z.B. Weichmacher, Verdicker, Stab lisatoren, Aktivatoren und Farbstoffe.
7. Cyanacrylat-Klebstoff nach mindestens einem der Ansprüche 1 bis
6, dadurch gekennzeichnet, daß seine Zugscherfestigkeit bei 150 °C nach 3 Tagen mindestens noch halb so groß ist wie seine Zugscherfestigkeit bei 20 °C nach 3 Tagen.
8. Verwendung der Cyanacrylat-Klebstoffe nach mindestens einem der Ansprüche 1 bis 7 zum Verkleben von elektrischen und elektro¬ nischen Bauteilen.
PCT/EP1995/004399 1995-06-06 1995-11-08 Cyanacrylat-klebstoff WO1996039469A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19519958.8 1995-06-06
DE19519958A DE19519958A1 (de) 1994-06-06 1995-06-06 Cyanacrylat-Klebstoff

Publications (1)

Publication Number Publication Date
WO1996039469A1 true WO1996039469A1 (de) 1996-12-12

Family

ID=7763320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1995/004399 WO1996039469A1 (de) 1995-06-06 1995-11-08 Cyanacrylat-klebstoff

Country Status (1)

Country Link
WO (1) WO1996039469A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003087042A1 (en) * 2002-04-12 2003-10-23 Boston Scientific Limited Occlusive composition comprising a poly (2-cyanoacrylate) monomer
EP4086294A1 (de) * 2021-05-07 2022-11-09 Bostik SA Zweiteilige härtbare zusammensetzung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3975422A (en) * 1972-11-21 1976-08-17 Johnson & Johnson Preparation of bis (2-cyanoacrylate)monomers
US4041063A (en) * 1975-11-18 1977-08-09 Johnson & Johnson Modified cyanoacrylate monomers and methods of preparation
WO1994015907A1 (en) * 1993-01-11 1994-07-21 Eurotax Limited Process for the preparation of esters of 2-cyanoacrylic acid and use of the esters so prepared as adhesives

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3975422A (en) * 1972-11-21 1976-08-17 Johnson & Johnson Preparation of bis (2-cyanoacrylate)monomers
US4041063A (en) * 1975-11-18 1977-08-09 Johnson & Johnson Modified cyanoacrylate monomers and methods of preparation
WO1994015907A1 (en) * 1993-01-11 1994-07-21 Eurotax Limited Process for the preparation of esters of 2-cyanoacrylic acid and use of the esters so prepared as adhesives

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 96, no. 2, 11 January 1982, Columbus, Ohio, US; abstract no. 11629, WANG ET AL.: "Modification of cyanoacrylate-based adhesives by ethylene glycol bis (.alpha. - cyanoacrylate) and its application in oral surgery" *
PEI-CHING I HSUEH YUAN HSUEH PAO, vol. 13, no. 3, pages 190 - 194 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003087042A1 (en) * 2002-04-12 2003-10-23 Boston Scientific Limited Occlusive composition comprising a poly (2-cyanoacrylate) monomer
US7341716B2 (en) 2002-04-12 2008-03-11 Boston Scientific Scimed, Inc. Occlusive composition
EP4086294A1 (de) * 2021-05-07 2022-11-09 Bostik SA Zweiteilige härtbare zusammensetzung
WO2022234017A1 (en) * 2021-05-07 2022-11-10 Bostik Sa Two-part curable composition

Similar Documents

Publication Publication Date Title
DE19519958A1 (de) Cyanacrylat-Klebstoff
EP0163858B1 (de) Stabilisierte Klebstoffe
DE3008258C2 (de) Verfahren zur Herstellung einer anaerob härtenden chemischen Zusammensetzung
DE2849965C3 (de) Klebstoff auf der Basis von Cyanacrylsäureestern
DE3518965A1 (de) Schmelzbare und dabei aerob aushaertende kunststoffmassen und verfahren zu ihrer herstellung
DE3111974A1 (de) Neue 2-cyanacrylate, verfahren zu deren herstellung und deren verwendung
DE102009000861A1 (de) Verfahren zur Herstellung von Cyanacrylsäureestern
DE2451350B2 (de) Anaerob härtende Masse
DE19612188A1 (de) Verfahren zur Herstellung von 2-Cyanacrylsäure
EP0003045A2 (de) Verwendung von Gemischen oligomerer Acrylsäuren in Klebstoffen
EP0086401B1 (de) Schwerflüchtige (Meth)-acrylate und ihre Verwendung
DE2607959A1 (de) Bei sauerstoffausschluss erhaertende klebstoffe und dichtungsmassen
DE2944416A1 (de) Klebstoffmasse bzw. klebstoffzubereitung
WO1996039469A1 (de) Cyanacrylat-klebstoff
EP0054807B1 (de) Thermoplastische Blockcopolyester
EP0222165A2 (de) Wärmehärtbare Klebstoff- und Dichtungsmassen
EP0641846B1 (de) Durch radikalische Polymerisation aushärtende, geruchsarme (Meth-)acrylatzubereitungen und ihre Verwendung
DE1811266C3 (de) Fluoralkyl-2-cyanacrylate, Verfahren zu deren Herstellung und Mittel zum Abdecken und Verkleben von Wunden
DE2006630C3 (de) Anaerob härtbare Polyesterpolyacrylat-Massen
DE2649372C3 (de) Anaerob härtende an der Luft stabile Massen und Verwendung derselben als Klebe- und Dichtungsmittel
EP0594671B1 (de) Zusammensetzung mit olefinisch ungesättigten verbindungen und hydrazonen
DE1916648C (de) Bei Sauerstoffausschluß erhärtende Klebstoffe oder Dichtungsmittel
EP0210607B1 (de) Neue (Meth)acrylsäureester sowie deren Verwendung
EP1005513B1 (de) Thermostabile cyanacrylat-verklebungen
DE1570690B2 (de) Hochmolekulare lineare mischpolyester

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA JP SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

NENP Non-entry into the national phase

Ref country code: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase