WO1996033272A1 - Vektoren zur transfektion von eukaryotischen zellen, deren verwendung und damit transfizierte zielzellen - Google Patents

Vektoren zur transfektion von eukaryotischen zellen, deren verwendung und damit transfizierte zielzellen Download PDF

Info

Publication number
WO1996033272A1
WO1996033272A1 PCT/DE1996/000697 DE9600697W WO9633272A1 WO 1996033272 A1 WO1996033272 A1 WO 1996033272A1 DE 9600697 W DE9600697 W DE 9600697W WO 9633272 A1 WO9633272 A1 WO 9633272A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
gene
vector
vector according
vectors
Prior art date
Application number
PCT/DE1996/000697
Other languages
English (en)
French (fr)
Inventor
Peter Kulmburg
Felicia Rosenthal
Albrecht Lindemann
Hendrik Veelken
Roland Mertelsmann
Original Assignee
KLINIKUM DER ALBERT-LUDWIGS-UNIVERSITäT FREIBURG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KLINIKUM DER ALBERT-LUDWIGS-UNIVERSITäT FREIBURG filed Critical KLINIKUM DER ALBERT-LUDWIGS-UNIVERSITäT FREIBURG
Priority to AU53317/96A priority Critical patent/AU5331796A/en
Publication of WO1996033272A1 publication Critical patent/WO1996033272A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/53Colony-stimulating factor [CSF]
    • C07K14/535Granulocyte CSF; Granulocyte-macrophage CSF
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/54Interleukins [IL]
    • C07K14/55IL-2
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2840/00Vectors comprising a special translation-regulating system
    • C12N2840/20Vectors comprising a special translation-regulating system translation of more than one cistron
    • C12N2840/203Vectors comprising a special translation-regulating system translation of more than one cistron having an IRES

Definitions

  • the present invention relates to vectors which serve to introduce foreign DNA into eukaiyotic cells, in particular vertebrate target cells, in order to express the information encoded on this foreign DNA as efficiently as possible.
  • plasmid DNA can be introduced into the target cells by means of transfection, for example by electroporation, lipofection, calcium precipitation or particle resolution.
  • retroviruses Another way of introducing the foreign DNA into the target cells is to use retroviruses, in which the DNA is encased in a protein.
  • the DNA is stably built into the genome of dividing cells.
  • DNA transfer using retroviruses is more efficient, but it also carries greater biological dangers.
  • WO 94/24870 discloses retroviral vectors which, inter alia, also have IRES sequences.
  • EP-A-0 585 983 discloses nucleotide vectors which have a gene for a translation inhibition factor, an IRES region and a desired gene.
  • the cellular cytoplasmic mRNA carries a 7-methylguanylate CAP structure at its 5 'end. This structure is essential for the translation of the mRNA.
  • This type of translation can be inactivated by certain gene products (for example proteases) which are encoded by certain genes (for example viral RNA). Such gene products are called eukaryotic translation inhibition factors (TIF).
  • TIF eukaryotic translation inhibition factors
  • the vectors described in EP-A-0 585 983 have a eukaryotic translation inhibition factor which is incorporated in the vector after a eukaryotic CAP-dependent promoter.
  • the desired gene product contained in the vector is incorporated according to an IRES sequence.
  • the present invention therefore relates to vectors which are attributable to the plasmid vectors, their use and thus target cells transfected.
  • transfection efficiency in plasmid vectors leaves something to be desired.
  • the expression of the gene encoded by the foreign cell DNA which is referred to below as the transgene, is often not satisfactory.
  • the object of the present invention is therefore to provide vectors which overcome such disadvantages.
  • transfection vectors The efficiency of a transfection vector is largely determined by its components and the interaction of these components.
  • An essential component of transfection vectors is a selection marker, which allows the transfected cells to be distinguished from the non-transfected cells. This is usually a gene whose gene product causes resistance to an antibiotic. After transfection, only those cells can grow that successfully produce this gene product (resistance).
  • the neomycin resistance gene (“neo") is often used for vertebrate cells.
  • Vectors also have regulatory sequences that control the transcription and translation of the gene product that is to be generated in the target cell.
  • vectors have those genetic elements which are necessary for the multiplication of the vector, in particular in prokaryotes.
  • a transfection vector has the gene that is to be expressed in the target cells. This transgene is built into the target cell because of its gene product. If the transgene codes for a growth factor or a cytokine or another therapeutically relevant protein, the correspondingly transfected cell can also be used in gene therapy.
  • the present invention therefore relates to
  • Plasmid vectors for the transfection of cells which have an expression cassette with more than one cistron, which have the following components in the direction from the 5 'end to the 3' end:
  • IRES internal ribosome entry sequence
  • the regulatory element (a) can comprise a promoter, which is preferably selected from the group consisting of CMV promoter and ⁇ -actin promoter. Furthermore, the regulatory element can have further components which have a reinforcing effect (so-called “enhancers").
  • the gene (b) to be expressed is preferably genes which code for interleukin-1 (IL-1), interleukin-2 (IL-2), interleukin-3 (I -3), interleukin-4 (IL -4), interleukin-6 (IL-6), granulocyte colony stimulating factor (G-CSF), granulocyte macrophage colony stimulating factor (GM-CSF), erythropoietin (EPO), stem cell factor (SCF), tumor necrosis factor - ⁇ (TNF- ⁇ ), interferon- ⁇ (IFN- ⁇ ), interferon-ß (IFN-ß) or interferon-Y (IFN-Y).
  • IL-1 interleukin-1
  • IL-2 interleukin-2
  • I -3 interleukin-4
  • IL-6 interleukin-6
  • G-CSF granulocyte colony stimulating factor
  • GM-CSF granulocyte macrophage colony stimulating factor
  • EPO erythropoietin
  • SCF stem cell factor
  • the vector according to the invention has an internal ribosome entry sequence (IRES) (c) which, in a preferred embodiment, is selected from the internal ribosome entry sequences originally derived from picornaviruses or the encephalomyocarditis virus.
  • IRS internal ribosome entry sequence
  • the vectors according to the invention have a selection gene (d) which is preferably selected from resistance genes against antibiotics, in particular the neomycin phosphotransferase gene and the hygromycin phosphotransferase gene.
  • the vector according to the invention has a selection gene which comprises cDNA of the thymidine kinase gene from Herpes simplex, fused to DNA, coding for neomycin phosphotransferase or hygromycin phosphotransferase.
  • the chimeric gene has all of the DNA coding for the neomycin resistance and the entire cDNA coding for the thymidine kinase gene, these two genes being connected to one another by a "hinge".
  • This hinge is preferably a short amino acid sequence, which is particularly preferably formed by four glycine residues.
  • the vectors according to the invention have an intron / poly AD gene region in the transcription direction after the selection gene.
  • the section "Intron / poly AD" which is preferably used in the vectors according to the invention originates from the SV40 virus and contains its small intron and a very efficient polyadenylation part.
  • introns are small sections in DNA and primary RNA that interrupt the coding parts of the nucleic acids. As the RNA matures, these introns are removed (splicing) so that only the coding regions of the RNA remain.
  • RNA at least once is advantageous for efficient expression of transgenes. Therefore, in a preferred embodiment, a further intron can be present in the ⁇ -actin promoter, namely at the end of the ⁇ -actin promoter.
  • the polyadenylation site at the end of a transcription unit serves to terminate the RNA polymerase II activity and thus indicates the point at which the transcription is to be ended.
  • the polyadenylation site usually linked to an AATAAA sequence, forms the site at which the so-called poly-adenosine tail is attached to the immature RNA becomes. This poly-A tail is likely to serve the stability of the RNA and is a sign of mature eukaryotic messenger RNA.
  • the vectors according to the invention have an NTS sequence at the 3 'end of the construct.
  • the NTS sequence is a short murine DNA sequence with about 50 base pairs long AT-rich portions. This sequence originally comes from rDNA cistrons in the region of the RNA polymerase I transcription start site. If this sequence is integrated into plasmids and murine cells are transfected with these vectors, the vector DNA is amplified. The latter is then found in a high number of copies integrated in the genome. Corresponding human NTS sequences can be used for the transfection of human cells.
  • the vectors according to the invention have an expression cassette with more than one cistron; dicistronic expression cassettes are preferred.
  • a cistron is a region of DNA that codes for a specific polypeptide chain.
  • an expression cassette codes at least for two polypeptides, namely the transgene and the gene product of the selection gene.
  • the vectors according to the invention preferably have no factor that inhibits translation.
  • the cellular cytoplasmic mRNA is usually translated in that the ribosomal subunit binds near or at the 5 'end of the mRNA, the binding being caused by an interaction between the methylated CAP structure at the 5' end of the mRNA and the CAP binding protein complex is facilitated.
  • Such factors are known which can inhibit eukaryotic translation (TIF).
  • TIF eukaryotic translation
  • An example of a TIF is a protease encoded by poliovirus. Such proteases can be dramatic Reduce mRNA translation, with the protease inactivating a eukaryotic translation initiation factor.
  • the CAP-dependent translation can be inhibited by this translation inhibiting factor.
  • the plasmid vectors have no factor that inhibits translation, since according to the invention the CAP-dependent translation should not be disturbed.
  • the CAP-dependent translation has a relatively high efficiency, which should not be affected by the components of the vectors according to the invention.
  • the vectors according to the invention have an IRES sequence before the selection gene. However, the vectors according to the invention have no IRES sequence in front of the gene to be expressed, because this could reduce the translation efficiency.
  • An essential aspect of the present invention is that the 3'-end of the internal ribosome entry sequence is followed by the selection gene. This enables the transcription of the transgene and the selection gene to be coupled. If an efficient translation of the transgene is effected, then the selection gene is also translated to a sufficient extent via the coupling with the IRES sequence.
  • the selection gene is therefore located at the 3 'end of the construct according to the invention, so that the expression of the sequences arranged immediately before (gene to be expressed) is guaranteed to the best possible extent.
  • the invention also relates to eukaryotic cells which have been transfected with a vector according to the invention.
  • the eukaryotic cells are human cells which are particularly preferably selected from the group comprising fibroblasts, Bone marrow progenitor cells, progenitor cells of white blood cells, Langerhans' see cells and dendritic cells.
  • the cells can be used for the expression of genes in vitro, but also for the expression of genes in vivo, the transfected cells preferably being administered to patients and the cells expressing the cloned gene in the patient.
  • transfected eukaryotic cells according to the invention is for use in farm animals.
  • the vectors according to the invention can be used to transfect eukaiyotic cells, which preferably originate from the respective farm animal.
  • Fibroblasts bone marrow progenitor cells, progenitor cells of white blood cells, Langerhans's cells or dendritic cells can preferably be used as the starting material. These cells are then transfected with the vector according to the invention.
  • the vector according to the invention then contains the desired transgene. Depending on the purpose achieved, this can be a corresponding gene. For example, it is conceivable to introduce the appropriate growth hormone in this way into animals that are attracted to meat production. This enables faster growth to be achieved. Another application is for laboratory animals. In laboratory animals, a transgene can be introduced in this way without the need to change the germ lines of the animals (transgenic animals). It is particularly advantageous in this application if a vector is used which has a "suicide" gene.
  • the expression of the transgene can be switched off at the desired time.
  • Figure 1 the difference between a preferred vector according to the invention and the classic vector type is shown schematically.
  • the expression of the transgene is controlled independently of the expression of the resistance marker (here: neo), which is why two different promoters must also be used to regulate the expression.
  • both the transgene and the selection gene are linked to form a large cassette in which both the transgene and the selection gene are controlled by a single promoter.
  • the insertion of the IRES sequence between the transgene and the selection marker allows the translation of the common mRNA to be resumed by the ribosomes at the end of the IRES sequence.
  • the translation after the stop codon in the cDNA of the transgene would break off and thus prevent the translation of the selection marker.
  • the IRES sequence is of viral origin and forms an RNA hyperstructure which is recognized by ribosomes as a (new) translation start point, so that further proteins can be translated behind the IRES sequence despite the stop codon at the end of the transgene section.
  • IRES internal ribosome entry sequence
  • the selection gene is usually followed by an intron / poly AD region.
  • the vectors according to the invention have the so-called NTS sequence at the 3 'end, that is to say at the "rear" end of the construct.
  • the NTS sequence has a positive influence on the transcription of the construct by changing the local chromosome structure and can thus contribute to the amplification of the construct.
  • the vectors according to the invention have at least one regulatory element at the 5 'end, ie the "front" end.
  • the regulatory elements are promoters, the so-called CMV promoter or the human ⁇ -actin promoter being particularly preferably used.
  • the CMV promoter is a very strong promoter, with the help of which large amounts of transgene, for example G-CSF, could be produced in cell culture. In animal experiments, however, it was found that this promoter was quickly switched off again when the cells modified with the vector according to the invention were transplanted into mice.
  • the human ⁇ -actin promoter which is preferably used according to the invention is only switched off much later after the return of the transfected cells (more than 10 days). Compared to the CMV promoter, however, the ⁇ -actin promoter in human fibroblast cells only has about 50% of the activity of the CMV promoter. Depending on the intended use, a must accordingly suitable promoter can be used. In addition to the promoter, other transcription-enhancing elements, so-called enhancers, can be incorporated.
  • the selection gene is a fusion gene from the gene for thymidine kinase and the gene which brings about resistance to neomycin.
  • the co-expression of the thymidine kinase gene derived from herpes simplex virus allows cells which express the thymidine kinase to be selectively killed by gancyclovir (GCV).
  • GCV gancyclovir
  • fusion protein which is preferably used according to the invention by the parenteral application of gancyclovir.
  • suicide genes are particularly preferably used in the vectors according to the invention, since it must be possible to switch off genetically manipulated cells again during gene therapy. It could also be shown experimentally that the transfected cells can be switched off again in vivo.
  • the vector constructs according to the invention are relatively large. It is therefore not always easy to clone the corresponding transgenes. According to the invention, therefore, further constructs were developed which only contain parts of the overall construct.
  • Figure 2 shows schematically, it is possible to use only parts of the CMV promoter or the ⁇ -actin promoter and the gene to be cloned (here hu G-CSF).
  • Such partial vectors allow a simple replacement of the gene to be expressed (here hu G-CSF) with a desired new sequence, which is then followed by two singular interfaces (shown here as E, B) can be cloned into the overall construct. This can be demonstrated without problems using the ⁇ -galactosidase gene.
  • Figure 3 shows another vector in which the gene to be expressed is the marker gene GFP (Green fluorescent protein).
  • GFP Green fluorescent protein
  • the peculiarity of this vector can be seen in the fact that the vector has unique interfaces for restriction endonucleases, namely PinA I and BamH I, via which other transgenes can be cloned, so that this vector can be used excellently in practice. A quick exchange of promoters is also possible with this vector.
  • the use of the unique restriction site PinA I has the advantage that it is compatible with DNA ends that were generated by the restriction endonucleases X a I, SgrA I, Eco56 I, CfrlOl or BseAI.
  • BamH I is compatible with fragments that were generated by Bgl II or Bei I. With the use of GFP in the vector, it is possible to conveniently test whether the vector is suitable for the intended purposes.
  • the first step in testing a transfection vector is to investigate to what extent and in what quality the vector can bring its information into the target cell.
  • the determination of the transfection efficiency may serve as a measure for this, i.e. how many target cells contain the vector after the experiment and express (at least) the marker gene.
  • the neomycin resistance gene was used as the selection gene.
  • retroviruses generally show a very good efficiency, which means that up to 100% of all cells are reached. With plasmids, however, only one in 1,000 to 100,000 cells is transfected. With plasmid vectors in particular, an improvement in the transfection efficiency is therefore crucial.
  • Human fibroblasts from the KMST-6 line were used in the present experiment. In parallel, they were transfected once with the vectors according to the invention without NTS and once with the vectors according to the invention with an NTS sequence. The experiments were carried out by lipofection. Then, under neomycin selection, it was determined how many independent colonies in cell culture grew from the original cells. Since shortly after lipofection, a large number of colonies develop, in which the plasmid has not been stably integrated into the chromosome (transient transfection), the number of colonies may only be calculated after a long time. In the present example, the colonies were counted 14 days after the start of selection if the colonies consisted of more than 20 cells.
  • these colonies then stably integrated the plasmid into the chromosome and they no longer die even under continued selection pressure with neomycin.
  • the determination of the transfection efficiency is only a relative parameter because there are no standards for the selection pressure. It is therefore obvious that cells which synthesize high amounts of resistance gene product can survive even with higher amounts of inhibitors than cells which produce little or no resistance gene product. In a heterogeneous culture there will always be cells with different levels of resistance, so that the transfection efficiency can only be compared at an inhibitor concentration in the same cell type. The differences in the resistance level can also be used for an efficient selection.
  • the clones produced according to Examples 1 and 2 were used in this experiment. Small plastic cylinders were placed over well-insulated colonies, the cells in the cylinder were isolated and converted into new, separate culture vessels. These clones were expanded until they grew to an area of approximately 1 cm 2 . A 24-hole plate is used here. During growth, the cells continuously secrete the transgene (here: G-CSF) into the culture medium, in which it can then be detected. For the detection, the culture medium is completely removed from the cells and replaced by fresh medium.
  • G-CSF transgene
  • the medium for the G-CSF determination is removed and then checked for the cytokine content in the ELISA.
  • the transfected KMST-6 cells were selected at different neomycin concentrations. The use of high concentrations (up to 3 mg / ml neomycin sulfate) should guarantee better survival for the clones which could build up higher neo-resistance.
  • the increase in G-CSF production should appear as a side effect (high neo-yzine resistance only in the case of multiple copies, when the plasmid is installed at particularly favorable locations in the chromosome or - in the case of NTS - local activation of the Chromosome after installation of the plasmid).
  • the selection for high neomycin resistance is also intended to simultaneously select for high production of transgene (here: G-CSF), since the same RNA carries both information.
  • Figures 6 and 7 summarize the results of this experiment. Simply increasing the neomycin concentration when selecting the clones did not result in an increase in G-CSF production.
  • the values in columns G500 to G3000 ( Figure 6) apply to the double RNA plasmid and the values ⁇ act500 to ⁇ act2000 ( Figure 7) apply to the IRES construct according to the invention.
  • Figure 6 shows results obtained with a classic RNA vector.
  • the abbreviation G means without an NTS sequence
  • NG means: classic double RNA vector with an NTS sequence.
  • G 500 means: transfection with classic vector (2 promoters) without NTS sequence, selection with 500 ⁇ g / ml neomycin, CMV promoter.
  • the abbreviation NG 500 means transfection with classic vector (2 promoters) with NTS sequence, selection with 500 ⁇ g / ml neomycin, CMV promoter.
  • the higher numbers 1000, 2000 and 3000 mean selection with 1000, 2000 and 3000 ⁇ g / ml neomycin.
  • Figure 7 shows results that were achieved with the vector type according to the invention.
  • the abbreviation ⁇ act 500 means transfection with the vector according to the invention without an NTS sequence, selection with 500 ⁇ g / ml neomycin, ⁇ -actin promoter.
  • the abbreviation ⁇ + NTS 500 means transfection with the vector according to the invention with NTS sequence, selection with 500 ⁇ g / ml neomycin, ⁇ -actin promoter.
  • the numbers 1000 and 2000 indicate the selection with 1000 and 2000 ⁇ g / ml neomycin.
  • the number n 16 etc. relates to the amount of clones examined per experiment and proves the significance of the experiment.
  • Figures 6 and 7 clearly show that the vector according to the invention allows a significantly higher G-CSF production than the vector known from the prior art. While the vector of the classic type without NTS on average only about 5 ng / 24 hours and 24-hole plate produces, the mean value for the vector according to the invention is 50 ng. NTS and high neomycin selection pressure increase the production in the vector according to the invention to over 100 ng.
  • the classic double RNA vector allows a maximum of 100 ng / 24 hours and 24-hole plate, the IRES vector up to 450 ng G-CSF.
  • the ⁇ -actin promoter as used in the vector according to the invention, has only about 50% activity of the CMV promoter.
  • CMV former promoter of CMV
  • IL-2 cDNA for human interleukin-2
  • G-CSF cDNA stimulating factor for human granulocyte colony
  • Neo r cDNA for neomycin phosphotransferase
  • TK cDNA for thymidine kinase from herpes simplex virus
  • IRES internal ribosome entry sequence (from encephalomyocarditis virus)
  • poly A small intron and polyadenylation signal from virus SV40
  • Kinker "hinge”.
  • the vector pNeoCMVIL2.3 is a classic vector with two promoters.
  • the other vector constructs shown in Figure 8 represent embodiments of the vector according to the invention. Either interleukin-2 or G-CSF was used as the transgene.
  • mice were transfected by cationic lipofection with the plasmids pNeoCMVIL2.3, pCMV.IL2.iresNE0 and pCMV.NEO.iresIL2. All plasmids had been linearized by digestion with the restriction enzyme Seal prior to transfection. With the three No difference in the transfection efficiency could be observed in plasmids. From each transfection batch, 15 clones were selected at random, which had resistance to G 418 stably transfected (1 mg G 418 per ml growth medium). These clones were examined for selection of IL-2.
  • human G-CSF was selected, since the determination of leukocyte numbers in the peripheral blood of mice allows a simple determination of the activity of the transgene in vivo.
  • highly aggressive mouse CMS-5 fibrosarcoma cells were transfected with the vectors pCMV.GCSF.iresNEO, pCMV.GCSF.iresTK / NEO and pCMV.GCSF.iresNEO / TK. Since the latter plasmid mediated only a slight resistance to G 418, it was not used further in the experiments.
  • the following average secretion of G-CSF was determined for the transfected cells: For cells transfected with pCMV.GCSF.iresNEO: 1.2 ( ⁇ 1.5) mg / 10 6 cells x 24 hours and for pCMV.GCSF.iresTK / NEO: 0.37 ( ⁇ 0.12) ⁇ g / 10 6 Cells x 24 hours. A significant inhibition of the growth of the latter cells (with thymidine kinase gene) was observed by adding Gancyclovir, whereas there was hardly any inhibition in the cells transfected with pCMV.GCSF.iresNEO.
  • mice In order to test the function of the chimeric selection gene in vivo, the cells transfected as described above were injected into mice from the Balb / c strain. 2.5 x 10 ⁇ cells were injected into 6 mice.
  • mice from each test group were treated twice daily with 15 mg gancyclovir per kg body weight intraperitoneally for 18 days.
  • the tumor growth and the number of leukocytes in the peripheral blood were measured in all animals.
  • the group that received cells that had been transfected with the vector pCMV.GCSF.iresNEO (ie without the thymidine kinase gene) developed tumors with one exception and these animals had to be killed after 2 weeks. All the animals in this group that had GCSF-secreting tumors that did not regress under treatment with gancyclovir showed exponentially increasing leukocyte counts.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Offenbart werden Klonierungsvektoren für eukaryotische Zellen, die eine Expressionskassette umfassen, bei der das Transgen hinter dem regulatorischen Element angeordnet ist und das Transgen gefolgt wird von einer internen Ribosomen-Eintrittsequenz und einem Selektionsgen. Diese Vektoren eignen sich zur Transfektion von eukaryotischen Zellen, die bei der Gentherapie Verwendung finden können.

Description

Vektoren zur Transfektion von eukaryotischen Zellen, deren Verwendung und damit transfizierte Zielzellen
Gegenstand der vorliegenden Erfindung sind Vektoren, die dazu dienen, zellfremde DNA in eukaiyotische Zellen, insbesondere Vertebratenzielzellen, einzuschleusen, um die auf dieser zellfremden DNA kodierte Information möglichst effizient zu exprimieren.
Um die Zielzellen dazu zu bringen, ein fremdes Genprodukt zu exprimieren, muß die DNA zunächst in die Zielzellen eingebracht werden. Hierzu kann Plasmid-DNA mittels Transfektion, beispielsweise durch Elektroporation, Lipofektion, Kalciumpräzipitation oder Partikelbeschluß in die Zielzellen eingebracht werden.
Eine andere Möglichkeit, die Fremd-DNA in die Zielzellen einzubringen, ist die Verwendung von Retroviren, bei denen die DNA in ein Protein eingehüllt ist. Im Fall der Retroviren wird die DNA stabil in das Genom sich teilender Zellen eingebaut.
Bei der Verwendung von Plasmiden wird die Fremd-DNA nur bei einem geringen Teil der Zellen, die die Fremd-DNA aufgenommen haben, auch wirklich ins Genom eingebaut. - 2 -
Der DNA-Transfer mittels Retroviren ist zwar effizienter, birgt aber auch größere biologische Gefahren.
Sugimoto et al. (Bio/Technology 1994, 12 (7), 694-698) beschreiben ein retrovirales Vektorensystem, das eine interne Ribosomeneintrittsstelle aufweist. Die Vektoren beinhalten Selektionsgene unter der Translationskontrolle einer IRES (interne Ribosomen-Eintrittssequenz) . Die WO 94/24870 offenbart retrovirale Vektoren, die unter anderem auch IRES- Sequenzen aufweisen. Die EP-A-0 585 983 offenbart Nukleotidvektoren, die ein Gen für einen Translations- Inhibitionsfaktor, eine IRES-Region und ein gewünschtes Gen aufweisen. Bei eukaryotischen Zellen trägt die zelluläre zytoplasmatische mRNA eine 7-Methylguanylat CAP-Struktur an ihrem 5'-Ende. Diese Struktur ist für die Translation der mRNA essentiell. Diese Art der Translation kann durch bestimmte Genprodukte (beispielsweise Proteasen), die von bestimmten Genen (beispielsweise viraler RNA) kodiert werden, inaktiviert werden. Derartige Genprodukte werden als eukaryotische Translationsinhibierungsfaktoren (TIF) bezeichnet. Die in der EP-A-0 585 983 beschriebenen Vektoren weisen einen eukaryotischen Translationsinhibierungsfaktor auf, der in dem Vektor nach einem eukaryotischen CAP- abhängigen Promotor eingebaut ist. Das in dem Vektor enthaltene gewünschte Genprodukt ist nach einer IRES-Sequenz eingebaut.
Gegenstand der vorliegenden Erfindung sind daher Vektoren, die den Plasmidvektoren zuzurechnen sind, deren Verwendung und damit transfizierte Zielzellen.
Es ist bekannt, daß die Transfektionseffizienz bei Plasmidvektoren zu wünschen übrig läßt. Auch die Expression des von der zellfremden DNA kodierten Gens, das im folgenden als Transgen bezeichnet wird, ist häufig nicht zufriedenstellend. Aufgabe der vorliegenden Erfindung ist es daher, Vektoren bereitzustellen, die derartige Nachteile überwinden.
Die Effizienz eines Transfektionsvektors wird durch seine Bestandteile und das Zusammenwirken dieser Bestandteile maßgeblich bestimmt. Ein wesentlicher Bestandteil von Transfektionsvektoren ist ein Selektionsmarker, der es erlaubt, die transfizierten Zellen von den nicht transfizierten Zellen zu unterscheiden. Meist handelt es sich hierbei um ein Gen, dessen Genprodukt Resistenz gegen ein Antibiotikum bewirkt. Nach Transfektion können dann nur solche Zellen wachsen, die die-ses Genprodukt (Resistenz) erfolgreich produzieren. Für Vertebratenzellen wird häufig das Neomyzin-Resistenzgen ("neo") verwendet.
Weiterhin weisen Vektoren regulatorische Sequenzen auf, die die Transkription und Translation des Genproduktes, das in der Zielzelle erzeugt werden soll, steuern.
Außerdem weisen Vektoren solche genetischen Elemente auf, die zur Vermehrung des Vektors, insbesondere in Prokaryonten, erforderlich sind.
Schließlich besitzt ein Transfektionsvektor das Gen, das in den Zielzellen zur Expression gebracht werden soll. Dieses Transgen wird wegen seinem Genprodukt in die Zielzelle einge¬ baut. Wenn das Transgen für einen Wachstumsfaktor bzw. ein Zytokin oder ein anderes therapeutisch relevantes Protein ko¬ diert, kann die entsprechend transfizierte Zelle auch bei der Gentherapie verwendet werden.
Gegenstand der vorliegenden Erfindung sind daher
Plasmidvektoren zur Transfektion von Zellen, die eine Expressions-kassette mit mehr als einem Cistron aufweisen, die in Richtung vom 5'-Ende zum 3'-Ende folgende Bestandteile aufweisen:
a) wenigstens ein regulatorisches Element; b) wenigstens ein zu exprimierendes Gen; c) wenigstens eine interne Ribosomen-Eintrittssequenz (IRES); d) wenigstens ein Selektionsgen.
Das regulatorische Element (a) kann einen Promotor umfassen, der bevorzugt ausgewählt ist aus der Gruppe bestehend aus CMV-Promotor und ß-Aktinpromotor. Weiterhin kann das regulatorische Element weitere verstärkend wirkende Bestandteile (sog. "enhancer") aufweisen.
Bei dem zu exprimierenden Gen (b) handelt es sich bevorzugt um Gene, die kodieren für Interleukin-1 (IL-1), Interleukin-2 (IL-2), Interleukin-3 (I -3), Interleukin-4 (IL-4), Interleukin-6 (IL-6), Granulocyten-Kolonie stimulierendem Faktor (G-CSF), Granulocyten-Makrophagen-Kolonie stimulieren¬ dem Faktor (GM-CSF), Erythropoetin (EPO) , Stammzellfaktor (SCF), Tumornekrosefaktor-α (TNF-α), Interferon-α (IFN-α), Interferon-ß (IFN-ß) oder Interferon-Y (IFN-Y). Es ist jedoch auch möglich, andere Gene zur Expression zu bringen, beispielsweise das "green fluorescent protein" oder die ß- Galactosidase.
Wesentlich ist, daß der erfindungsgemäße Vektor eine interne Ribosomeneintrittssequenz (IRES) (c) aufweist, die in bevorzugter Ausführungsform ausgewählt ist aus den internen Ribosomeneintrittssequenzen, die ursprünglich aus Picornaviren oder dem Encephalomyocarditis-Virus herstammen.
Die erfindungsgemäßen Vektoren weisen ein Selektionsgen (d) auf, das bevorzugt ausgewählt ist aus Resistenzgenen gegen Antibiotika, insbesondere dem Neomycin-Phosphotransferase-Gen und dem Hygromycin-Phosphotransferase-Gen. In einer ganz besonders bevorzugten Ausführungsform weist der erfindungsgemäße Vektor ein Selektionsgen auf, das cDNA des Thymidin-Kinase-Gens von Herpes simplex, fusioniert an DNA, kodierend für Neomycin-Phosphotransferase oder Hygromycin- Phosphotransferase umfaßt. In einer dieser bevorzugten Ausführungsformen weist das Chimäre Gen die gesamte für die Neomycinresistenz kodierende DNA und die gesamte cDNA kodierend für das Thymidin-Kinase-Gen auf, wobei diese beiden Gene durch ein "Scharnier" miteinander verbunden sind. Bei diesem Scharnier handelt es sich vorzugsweise um eine kurze Aminosäuresequenz, die besonders bevorzugt durch vier Glycinreste gebildet wird.
Weiterhin weisen die erfindungsgemäßen Vektoren in bevorzugter Ausführungsform in Transkriptionsrichtung nach dem Selektionsgen einen Genbereich Intron/poly AD auf. Der bei den erfindungsgemäßen Vektoren bevorzugt verwendete Abschnitt "Intron/poly AD" entstammt dem Virus SV40 und enthält dessen kleines Intron und eine sehr effiziente Polyadenylierungssteile. Bekanntermaßen sind Introns kleine Abschnitte in der DNA und der primären RNA, die die kodierenden Teile der Nukleinsäuren unterbrechen. Im Zuge der Reifung der RNA werden diese Introns entfernt (Spleißen), so daß nur die kodierenden Bereiche der RNA übrig bleiben.
Es hat sich herausgestellt, daß für eine effiziente Expression von Transgenen ein mindestens einmaliges Spleißen der RNA vorteilhaft ist. Daher kann in einer bevorzugten Ausführungsform im ß-Aktinpromotor ein weiteres Intron vorhanden sein, und zwar am Ende des ß-Aktinpromotors.
Die Polyadenylierungsstelle am Ende einer Transkriptions¬ einheit dient dem Abschluß der RNA-Polymerase II-Tätigkeit und gibt so die Stelle an, an der die Transkription zu beenden ist. Die Polyadenylierungsstelle bildet, meist verbunden mit einer AATAAA-Sequenz die Stelle, an der der sogenannte Poly-Adenosin-Schwanz an die unreife RNA angehängt wird. Dieser Poly-A-Schwanz dient wahrscheinlich der Stabilität der RNA und ist ein Zeichen für reife eukaryontische Messenger-RNA.
Schließlich weisen die erfindungsgemäßen Vektoren in bevorzugter Ausführungsform am 3'-Ende des Konstruktes eine NTS-Sequenz auf. In bevorzugter Ausführungsform ist die NTS- Sequenz eine kurze murine DNA-Sequenz mit etwa 50 Basenpaaren langen AT-reichen Anteilen. Ursprünglich stammt diese Sequenz aus rDNA-Cistrons im Bereich der RNA-Polymerase I Transkriptions-Startstelle. Wenn diese Sequenz in Plasmide integriert wird und mit diesen Vektoren murine Zellen transfektiert werden, kommt es zu einer Amplifizierung der Vektor-DNA. Letztere wird dann, in hoher Kopienzahl im Genom integriert, wiedergefunden. Für die Transfizierung von humanen Zellen können entsprechende humane NTS-Sequenzen Verwendung finden.
Die erfindungsgemäßen Vektoren weisen eine Expressions¬ kassette mit mehr als einem Cistron auf; bevorzugt sind dicistronische Expressionskassetten. Unter einem Cistron versteht man einen DNA-Bereich, der für eine bestimmte Polypeptidkette kodiert. Erfindungsgemäß kodiert eine Expressionskassette wenigstens für zwei Polypeptide, nämlich das Transgen und das Genprodukt des Selektionsgens.
Die erfindungsgemäßen Vektoren weisen bevorzugterweise keinen die Translation inhibierenden Faktor auf. Bei eukaryotischen Zellen wird die zelluläre zytoplasmatische mRNA in der Regel dadurch translatiert, daß die ribosomale Untereinheit in der Nähe oder am 5'-Ende der mRNA bindet, wobei die Bindung durch eine Interaktion zwischen der methylierten CAP-Struktur am 5'-Ende der mRNA und dem CAP-Bindungs-Protein-Komplex erleichtert wird. Es sind solche Faktoren bekannt, die die eukaryotische Translation inhibieren können (TIF). Ein Beispiel für einen TIF ist eine durch Poliovirus kodierte Protease. Derartige Proteasen können eine dramatische Reduzierung der mRNA-Translation bewirken, wobei durch die Protease ein eukaryotischer Translationsinitiationsfaktor inaktiviert wird. Dies hat zur Folge, daß die CAP-abhängige Translation durch diesen die Translation inhibierenden Faktor inhibiert werden kann. Erfindungsgemäß weisen die Plasmidvektoren jedoch keinen die Translation inhibierenden Faktor auf, da erfindungsgemäß die CAP-abhängige Translation nicht gestört werden soll. Die CAP-abhängige Translation weist nämlich eine verhältnismäßig hohe Effizienz auf, die durch die Komponenten der erfindungsgemäßen Vektoren nicht beeinträchtigt werden soll.
Die erfindungsgemäßen Vektoren weisen eine IRES-Sequenz vor dem Selektionsgen auf. Vor dem zu exprimierenden Gen jedoch weisen die erfindungsgemäßen Vektoren keine IRES-Sequenz auf, weil hierdurch die Translationseffizienz reduziert werden könnte.
Ein wesentlicher Aspekt der vorliegenden Erfindung besteht darin, daß sich an das 3'-Ende der internen Ribosomen- Eintrittssequenz das Selektionsgen anschließt. Hierdurch wird die Koppelung der Transkription des Transgens und des Selektionsgens ermöglicht. Wenn also eine effiziente Translation des Transgens bewirkt wird, dann wird über die Koppelung mit der IRES-Sequenz auch das Selektionsgen in ausreichendem Ausmaß translatiert. Daher befindet sich das Selektionsgen am 3'-Ende des erfindungsgemäßen Konstrukts, damit die Expression der unmittelbar vorher angeordneten Sequenzen (zu exprimierendes Gen) in bestmöglichem Umfang gewährleistet wird.
Gegenstand der Erfindung sind auch eukaryotische Zellen, die mit einem erfindungsgemäßen Vektor transfiziert wurden.
Bei den eukaryotischen Zellen handelt es sich in bevorzugter Ausführungsform um humane Zellen, die besonders bevorzugt ausgewählt sind aus der Gruppe umfassend Fibroblasten, Knochenmarksvorläuferzellen, Vorläuferzellen von weißen Blutkörperchen, Langerhans'sehe Zellen und dendritische Zellen.
Erfindungsgemäß verwendet werden können die Zellen zur Expression von Genen in vitro, aber auch zur Expression von Genen in vivo, wobei bevorzugt die transfizierten Zellen Patienten verabreicht werden und die Zellen das klonierte Gen im Patienten exprimieren.
Eine andere Verwendung der erfindungsgemäßen transfizierten eukaryontischen Zellen bietet die Anwendung bei Nutztieren. Die erfindungsgemäßen Vektoren können dazu verwendet werden, eukaiyotische Zellen, die bevorzugt von dem jeweiligen Nutztier stammen, zu transfizieren.
Als Ausgangsmaterial können bevorzugt von dem jeweiligen Tier herstammende Fibroblasten, Knochenmarksvorläuferzellen, Vorlauferzellen von weißen Blutkörperchen, Langerhans'sehe Zellen oder dendritische Zellen verwendet werden. Diese Zellen werden dann mit dem erfindungsgemäßen Vektor transfiziert. Der erfindungsgemäße Vektor beinhaltet dann das gewünschte Transgen. Je nach dem erzielten Zweck kann es sich hierbei um ein entsprechendes Gen handeln. Es ist beispiels¬ weise denkbar, das geeignete Wachstumshormon auf diesem Weg in Tiere einzubringen, die zur Fleischproduktion angezogen werden. Dadurch kann ein schnelleres Wachstum erzielt werden. Eine andere Anwendungsmöglichkeit besteht bei Labortieren. Bei Labortieren kann auf diese Art und Weise ein Transgen eingeführt werden, ohne daß es erforderlich ist, die Keimbahnen der Tiere zu verändern (transgene Tiere). Besonders vorteilhaft ist bei dieser Anwendung, wenn ein Vektor verwendet wird, der ein "Suizid"-Gen aufweist. Dadurch kann die Expression des Transgenes zu dem gewünschten Zeitpunkt abgeschaltet werden. In Abbildung 1 ist der Unterschied zwischen einem bevorzugten erfindungsgemäßen Vektor und dem klassischen Vektortyp schematisch dargestellt. Bei dem aus dem Stand der Technik bekannten klassischen Vektortyp wird die Expression des Transgens unabhängig von der Expression des Resistenzmarkers (hier: neo) gesteuert, weshalb auch zwei verschiedene Promotoren zur Regulierung der Expression verwendet werden müssen.
Im Unterschied hierzu sind bei dem erfindungsgemäßen Vektor sowohl das Transgen wie auch das Selektionsgen zu einer großen Kassette verbunden, bei der sowohl das Transgen wie auch das Selektionsgen von einem einzigen Promotor kontrolliert werden.
Die Einfügung der IRES-Sequenz zwischen dem Transgen und dem Selektionsmarker erlaubt eine Wiederaufnahme der Translation der gemeinsamen mRNA durch die Ribosomen am Ende der IRES- Sequenz. Üblicherweise würde in eukaryontischen Zellen die Translation nach dem Stoppkodon in der cDNA des Transgens abbrechen und damit die Translation des Selektionsmarkers vereiteln. Die IRES-Sequenz ist viralen Ursprungs und bildet eine RNA-Hyperstruktur aus, die von Ribosomen als (neuer) Translationsstartpunkt erkannt wird, so daß trotz des Stoppkodons am Ende des Transgen-Abschnitts hinter der IRES- Sequenz weitere Proteine translatiert werden können.
Grundsätzlich wäre es auch möglich, hinter oder auch vor das Selektionsgen eine weitere IRES-Sequenz einzubauen und an diese weitere IRES-Sequenz ein weiteres Gen anzubinden. Dadurch könnten zusätzliche Gene in multicistronischen Expressionskassetten kloniert werden und es könnten mehrere Proteine zur Expression gebracht werden. Dies kann insbesondere dann eine Rolle spielen, wenn bei der Gentherapie mehrere Genprodukte in Zielzellen eingebracht werden sollen und diese Genprodukte gleichzeitig exprimiert werden sollen. Die interne Ribosomen-Eintrittssequenz (IRES) wurde bei mehreren Picorna-Viren aufgefunden. Die IRES bewirkt, daß für die Translation der mRNA die RNA nicht mit einer Kappe versehen sein muß (Unterschied zur CAP-abhängigen Translation) .
An das Selektionsgen schließt sich üblicherweise ein Bereich Intron/poly AD an.
In bevorzugter Ausführungsform weisen die erfindungsgemäßen Vektoren am 3'-Ende, also am "hinteren" Ende des Konstrukts die sogenannte NTS-Sequenz auf. Die NTS-Sequenz hat einen positiven Einfluß auf die Transkription des Konstrukts durch Veränderung der lokalen Chromosomenstruktur und kann so zur Amplifizierung des Konstrukts beitragen.
Die erfindungsgemäßen Vektoren weisen am 5'-Ende, also dem "vorderen" Ende, wenigstens ein regulatorisches Element auf. Bei den regulatorischen Elementen handelt es sich in bevorzugter Ausführungsform um Promotoren, wobei besonders bevorzugt der sogenannte CMV-Promotor oder der Human-ß-Aktin- Pro otor verwendet wird. Der CMV-Promotor ist ein sehr starker Promotor, mit dessen Hilfe in Zellkultur hohe Mengen an Transgen, beispielsweise G-CSF produziert werden konnten. Bei Tierversuchen wurde allerdings ermittelt, daß dieser Promotor schnell wieder abgeschaltet wurde, wenn die mit dem erfindungsgemäßen Vektor veränderten Zellen in Mäuse transplantiert wurden.
Der erfindungsgemäß bevorzugt verwendete humane ß-Aktin- Promotor wird nach der Rückführung der transfizierten Zellen erst wesentlich später abgeschaltet (mehr als 10 Tage). Verglichen mit dem CMV-Promotor hat der ß-Aktin-Promotor in humanen Fibroblastenzellen allerdings nur etwa 50 % der Aktivität des CMV-Promotors. In Abhängigkeit von dem beabsichtigten Verwendungszweck muß daher ein entsprechend geeigneter Promotor verwendet werden. Zusätzlich zu dem Promotor können noch weitere, die Transkription verstärkende Elemente, sogenannte Enhancer, eingebaut werden.
Als Selektionsgen kann ein Gen verwendet werden, dessen Genprodukt Resistenz gegenüber Antibiotika bewirkt. In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung ist das Selektionsgen ein Fusionsgen aus dem Gen für Thymidinkinase und dem Gen, das Resistenz gegenüber Neomyzin bewirkt. Die Koexpression des Thymidinkinase-Gens, das von Herpes simplex-Virus stammt, erlaubt es, Zellen, die die Thymidinkinase exprimieren, durch Gancyclovir (GCV) selektiv abzutöten. Wenn also die erfindungsgemäßen Vektoren dazu verwendet werden, Zellen zu transfizieren, die bei der Gentherapie Verwendung finden, ist es wünschenswert, ein Mittel an der Hand zu haben, diese Zellen auch wieder gezielt abzutöten. Dies ist bei Verwendung des erfindungsgemäß bevorzugt eingesetzten Fusionsprotein durch die parenterale Applikation von Gancyclovir möglich. Derartige "Suizid"-Gene werden bei den erfindungsgemäßen Vektoren besonders bevorzugt verwendet, da es möglich sein muß, genetisch manipulierte Zellen bei der Gentherapie auch wieder abzuschalten. Es konnte auch experimentell gezeigt werden, daß die transfizierten Zellen in vivo wieder abgeschaltet werden können.
Die erfindungsgemäßen Vektorkonstrukte sind verhältnismäßig groß. Daher ist es nicht immer leicht, die entsprechenden Transgene einzuklonieren. Erfindungsgemäß wurden daher weitere Konstrukte entwickelt, die nur Teile des Gesamtkonstrukts beinhalten. Wie Abbildung 2 schematisch zeigt, ist es möglich, nur Teile des CMV-Promotors bzw. des ß-Aktin-Promotors und das zu klonierende Gen (hier hu G-CSF) zu verwenden. Derartige Teilvektoren erlauben ein einfaches Ersetzen des zu exprimierenden Gens (hier hu G-CSF) durch eine gewünschte neue Sequenz, welche im Anschluß über zwei singuläre Schnittstellen (hier dargestellt als E, B) in das Gesamtkonstrukt umkloniert werden kann. Ohne Probleme kann dies beispielhaft am ß-Galactosidase-Gen gezeigt werden.
Abbildung 3 zeigt einen anderen Vektor, bei dem das zu exprimierende Gen das Markergen GFP (Green fluorescent protein) ist. Die Besonderheit dieses Vektors kann darin gesehen werden, daß der Vektor singuläre Schnittstellen für Restriktionsendonucleasen, nämlich PinA I und BamH I aufweist, über die andere Transgene einkloniert werden können, so daß dieser Vektor in der Praxis hervorragend verwendet werden kann. Auch ein schneller Austausch von Promotoren ist bei diesem Vektor möglich. Die Verwendung der singulären Restriktionsschnittstelle PinA I hat den Vorteil, daß sie kompatibel ist mit DNA-Enden, die erzeugt wurden durch die Restriktionsendonucleasen X a I, SgrA I, Eco56 I, CfrlOl oder BseAI. BamH I ist kompatibel mit Fragmenten, die erzeugt wurden durch Bgl II oder Bei I. Mit dem Einsatz von GFP in dem Vektor besteht die Möglichkeit, bequem zu testen, ob der Vektor für die beabsichtigten Einsatzzwecke geeignet ist.
Die Wirksamkeit der erfindungsgemäßen Vektoren wurde in den nachfolgenden Beispielen überprüft. Bei den nachfolgenden Beispielen wurden verschiedene Vektortypen miteinander verglichen. Bei der Testung der G-CSF Produktion wurden jeweils die gleichen Vektortypen einmal mit und einmal ohne NTS-Sequenz verglichen. Für die in Abbildung 6 aufgeführten Werte wurde der klassische Vektor (mit zwei Promotoren) verwendet, wohingegen Abbildung 7 Ergebnisse zeigt, die mit einem erfindungsgemäßen Vektor erhalten wurden.
Durch die nachfolgenden Beispiele soll einerseits der Einfluß der NTS-Sequenz gezeigt werden, um einen singulären Effekt z.B. nur auf den CMV-Promotor auszuschließen. Weiterhin wurden erfindungsgemäße Vektoren mit herkömmlichen Vektorkonstruktionen verglichen, aus denen sich ergibt, daß der erfindungsgemäße Vektor wesentlich mehr G-CSF bildet.
Beispiel 1
Transfektionseffizienz
Der erste Schritt bei der Testung eines Transfektionsvektors besteht darin zu untersuchen, in welchem Ausmaß und in welcher Güte der Vektor seine Information in die Zielzelle einbringen kann. Als Maß hierfür mag die Bestimmung der Transfektionseffizienz dienen, d.h. wie viele Zielzellen enthalten nach dem Versuch den Vektor und exprimieren (zumindest) das Markergen. Bei der vorliegenden Erfindung wurde als Selektionsgen das Neomyzin-Resistenzgen verwendet.
Allgemein kann gesagt werden, daß Retroviren in der Regel eine sehr gute Effizienz zeigen, was bedeutet, daß bis zu 100 % aller Zellen erreicht werden. Bei Plasmiden dagegen wird nur eine von 1.000 bis 100.000 Zellen transfiziert. Gerade bei Plasmidvektoren ist daher eine Verbesserung der Transfektionseffizienz entscheidend.
In dem vorliegenden Versuch wurden humane Fibroblasten der Linie KMST-6 verwendet. Parallel wurden sie einmal mit den erfindungsgemäßen Vektoren ohne NTS und einmal mit den erfindungsgemäßen Vektoren mit NTS-Sequenz transfiziert. Die Versuche wurden durch Lipofektion durchgeführt. Unter Neomyzinselektion wurde dann bestimmt, wie viele unabhängige Kolonien in Zellkultur aus den Ursprungszellen heranwuchsen. Da kurz nach Lipofektion sehr viele Kolonien entstehen, bei denen das Plasmid nicht stabil in das Chromosom integriert wurde (transiente Transfektion), darf erst nach längerer Zeit die Anzahl der Kolonien berechnet werden. Beim vorliegenden Beispiel wurden die Kolonien 14 Tage nach Selektionsbeginn gezählt, wenn die Kolonien aus mehr als 20 Zellen bestanden. Üblicherweise haben diese Kolonien dann das Plasmid stabil ins Chromosom integriert und sie sterben auch unter fortgesetztem Selektionsdruck mit Neomyzin nicht mehr ab. Die Bestimmung der Transfektionseffizienz ist nur ein relativer Parameter, weil es keine Standards für den Selektionsdruck gibt. Es ist also einleuchtend, daß Zellen, die hohe Mengen an Resistenzgenprodukt synthetisieren, auch noch bei höheren Hemmstoffen-Mengen zu überleben vermögen als Zellen, die kaum oder nur wenig Resistenzgenprodukt erzeugen. In einer heterogenen Kultur wird es also immer Zellen mit unterschiedlichen Resistenzniveaus geben, so daß die Transfektionseffizienz immer nur bei einer Hemmstoffkonzentration in derselben Zellgattung vergleichbar ist. Die Unterschiede im Resistenzniveau können aber auch für eine effiziente Selektion ausgenutzt werden.
In dem vorliegenden Beispiel wurden 10 KMST-6 Zellen mit 4 μg DNA lipofektiert und danach aufgeteilt. Dann erst wurde die Selektion mit Neomyzin begonnen, so daß zumindest die Ausgangsbedingungen für alle Zellen gleich waren. Die Ergebnisse der Versuche sind in den Abbildungen 4 und 5 dargestellt.
Diesen Ergebnissen kann man entnehmen, daß die NTS- enthaltenden Vektoren allgemein eine höhere Transfektionseffizienz haben als ihre NTS-losen Gegenstücke. Die NTS-enthaltenden Plasmide führen also nach Transfektion bei jedem Vektor in jedem Versuch zu mehr Kolonien als die NTS-losen Plasmide. Dieses "Mehr" wird umso bedeutender, je höher der Selektionsdruck durch Neomyzin ist. Die in Abbildung 4 dargestellten Versuche wurden mit dem CMV- Promotor durchgeführt. Die relative Verbesserung der Effizienz liegt zwischen 1,5- und 7-fach. Beispiel 2
Die in Abbildung 5 dargestellten Versuche wurden mit dem ß- Aktin-Promotor durchgeführt. Die relative Verbesserung der Effizienz liegt zwischen 2- und 4-fach. Wie erwartet, sind natürlich die scheinbaren Effizienzen mit steigendem Selektionsdruck deutlich geringer als beim Standardwert von 500 μg/ml Neomyzin. Der Effizienz-Unterschied zwischen NTS- enthaltenden und NTS-losen Vektoren ist statistisch signifikant. Zu beachten ist, daß das IRES-Konstrukt bei Selektion mit 500 μg/ml Neomyzin eine deutlich höhere Transfektionseffizienz ermöglicht als das klassische Konstrukt (160 gegenüber 260 Kolonien; beide Werte mit NTS) . Ohne NTS ist kein Unterschied zu erkennen.
Beispiel 3
Produktion des Transgens (hier: G-CSF)
In der Praxis ist nicht nur die Transfektionseffizienz bedeutend, viel wichtiger ist die hohe Expression des vom Transgen kodierten Proteins. Bei diesem Versuch wurden die gemäß Beispiel 1 und 2 erzeugten Klone weiterverwendet. Über gut isolierte Kolonien wurden kleine Plastikzylinder gestülpt, die im Zylinder liegenden Zellen isoliert und in neue, abgetrennte Kulturgefäße umgesetzt. Diese Klone wurden so weit expandiert, bis sie etwa eine Fläche von 1 cm2 bewuchsen. Hierbei wird eine 24-Lochplatte verwendet. Während des Wachstums sezernieren die Zellen laufend das Transgen (hier: G-CSF) ins Kulturmedium, in dem es dann nachgewiesen werden kann. Zum Nachweis wird das Kulturmedium vollständig von den Zellen entfernt und durch frisches Medium ersetzt. Nach einem bestimmten Zeitraum, hier 24 Stunden, wird das Medium für die G-CSF-Bestimmung entfernt und dann im ELISA auf den Zytokingehalt hin überprüft. Um möglichst hohe Expression des Transgens zu erhalten, wurden die transfizierten KMST-6-Zellen bei verschiedenen Neomyzinkonzentrationen selektioniert. Die Verwendung hoher Konzentrationen (bis 3 mg/ml Neomyzinsulfat) sollte den Klonen, die höhere Neo-Resistenz aufbauen konnten, besseres Überleben garantieren. Im Fall des Doppel-RNA-Plasmids beim klassischen Vektor soll die Steigerung der G-CSF-Produktion als Begleiterscheinung auftauchen (hohe Neo yzinresistenz nur bei multiplen Kopien, beim Einbau des Plasmids an besonders günstigen Stellen im Chromosom oder - bei NTS - lokale Aktivitierung des Chromosoms nach Einbau des Plasmids). Beim erfindungsgemäßen Konstrukt soll mit Hilfe der Selektion auf hohe Neomyzinresistenz gleichzeitig auch auf hohe Produktion an Transgen (hier: G-CSF) selektioniert werden, da dieselbe RNA ja beide Informationen trägt.
In den Abbildungen 6 und 7 sind die Ergebnisse dieses Versuches zusammengefaßt. Eine alleinige Erhöhung der Neomyzinkonzentration bei der Selektion der Klone erbrachte keine Erhöhung der G-CSF-Produktion. Die Werte in den Spalten G500 bis G3000 (Abbildung 6) gelten für das Doppel-RNA- Plasmid und die Werte ßact500 bis ßact2000 (Abbildung 7) für das erfindungsgemäße IRES-Konstrukt.
In Abbildung 6 werden Ergebnisse dargestellt, die mit einem klassischen RNA-Vektor erhalten wurden. Die Abkürzung G bedeutet dabei ohne NTS-Sequenz, wohingegen NG bedeutet: klassischer doppel RNA-Vektor mit NTS-Sequenz. In der oberen Grafik bedeutet dabei G 500: Transfektion mit klassischem Vektor (2 Promotoren) ohne NTS-Sequenz, Selektion mit 500 μg/ml Neomycin, CMV-Promotor. Die Abkürzung NG 500 bedeutet Transfektion mit klassischem Vektor (2 Promotoren) mit NTS- Sequenz, Selektion mit 500 μg/ml Neomycin, CMV-Promotor. Die höheren Zahlen 1000, 2000 bzw. 3000 bedeuten Selektion mit 1000, 2000 bzw. 3000 μg/ml Neomycin. In Abbildung 7 sind Ergebnisse dargestellt, die mit dem erfindungsgemäßen Vektortyp erzielt wurden. Die Abkürzung ßact 500 bedeutet dabei Transfektion mit erfindungsgemäßem Vektor ohne NTS-Sequenz, Selektion mit 500 μg/ml Neomycin, ß- Aktinpromotor. Die Abkürzung ß+NTS 500 bedeutet Transfektion mit erfindungsgemäßem Vektor mit NTS-Sequenz, Selektion mit 500 μg/ml Neomycin, ß-Aktinpromotor. Die Zahlen 1000 bzw. 2000 geben die Selektion mit 1000 bzw. 2000 μg/ml Neomycin an.
Die Anzahl n=16 usw. bezieht sich auf die Menge an untersuchten Klonen pro Experiment und belegt die Aussagekraft des Versuches.
Wenn die Vektoren die NTS-Sequenz aufwiesen, konnte eine deutliche Steigerung der Produktion mit steigender Neomyzin- Menge festgestellt werden. In Abbildung 6 sind die entsprechenden Vektoren in den Spalten NG500 bis NG3000 dargestellt und in Abbildung 7 in den Spalten ß+NTS500 bis ß+NTS2000. Die NTS-Sequenz scheint einen direkten Einfluß auf die Transkription auszuüben. Der Effekt einer Kopiezahlerhöhung kann fast ausgeschlossen werden, da alle sehr gut produzierenden Klone nur ein bis 2 Kopien pro Genom haben. Dies ist weniger als die durchschnittliche Anzahl der Kopien gemessen an Mischkulturen aus vielen Kolonien, die 7 bis 10 Kopien pro Genom beim Doppel-RNA-Vektor oder 2 bis 3 Kopien beim IRES-Vektor enthalten. Da die Erhöhung der Neomyzinkonzentration allein bei der Selektion keinen positiven Effekt auf die Transgenproduktion hat, könnte eine Erklärung darin gesehen werden, daß die NTS-Sequenz eine lokale Verbesserung der Chromosomenstruktur herbeiführt.
Die beiden Abbildungen 6 und 7 zeigen deutlich, daß der erfindungsgemäße Vektor eine signifikant höhere G-CSF- Produktion erlaubt als der aus dem Stand der Technik vorbekannte Vektor. Während der Vektor des klassischen Typs ohne NTS im Mittel nur etwa 5 ng/24 Stunden und 24-Lochplatte produziert, liegt der Mittelwert beim erfindungsgemäßen Vektor bei 50 ng. NTS und hoher Neomyzinselektionsdruck erhöhen die Produktion beim erfindungsgemäßen Vektor auf über 100 ng.
Auf der Ebene der Einzelklone erlaubt der klassische Doppel- RNA-Vektor maximal die Produktion von 100 ng/24 Stunden und 24-Lochplatte, der IRES-Vektor aber bis zu 450 ng G-CSF.
Nicht berücksichtigt wird hierbei, daß der ß-Aktin-Promotor, wie im erfindungsgemäßen Vektor verwendet, nur etwa 50 % Aktivität des CMV-Promotors besitzt.
Beispiel 4
Um die Expression eines Transgens in den erfindungsgemäßen Vektoren nachzuweisen, wurden verschiedene Vektoren konstruiert, die schematisch in Abbildung 8 dargestellt sind. Die dort verwendeten Abkürzungen haben folgende Bedeutungen: CMV = früher Promotor von CMV; IL-2 = cDNA für menschliches Interleukin-2; G-CSF = cDNA für menschlichen Granulocyten- Kolonie stimulierenden Faktor; Neor = cDNA für Neomycin- Phosphotransferase; TK = cDNA für Thymidinkinase von Herpes simplex Virus; IRES = interne Ribosomeneintrittssequenz (von Encephalomyocarditis-Virus); poly A = kleines Intron und Polyadenylierungssignal von Virus SV40; Kinker = "Scharnier". Bei dem Vektor pNeoCMVIL2.3 handelt es sich um einen klassischen Vektor mit zwei Promotoren. Die anderen in Abbildung 8 dargestellten Vektorkonstrukte stellen Ausführungsformen des erfindungsgemäßen Vektors dar. Als Transgen wurde entweder Interleukin-2 oder G-CSF verwendet.
Bei einem Transfektionsversuch wurden Balb3T3 Zellen durch kationische Lipofektion mit den Plasmiden pNeoCMVIL2.3, pCMV.IL2.iresNE0 und pCMV.NEO.iresIL2 transfiziert. Alle Plasmide waren vor der Transfektion durch Verdau mit dem Restriktionsenzym Seal linearisiert worden. Bei den drei Plasmiden konnte kein Unterschied in der Transfektionseffizienz beobachtet werden. Von jedem Transfektionsansatz wurden zufällig ausgewählt 15 Klone, die stabil transfiziert Resistenz gegenüber G 418 aufwiesen (1 mg G 418 pro ml Wachstumsmedium). Diese Klone wurden auf Selektion von IL-2 untersucht. Es zeigte sich, daß bei den Klonen, die mit Plasmid pCMV.IL2.iresNEO transfiziert wurden, eine Expression von 348 (± 293) internationale Einheiten IL-2 pro 106 Zeilklone und 24 Stunden aufgefunden wurde, wohingegen die IL-2-Produktion von mit pNeoCMVIL2.3 transfizierten Klonen (herkömmlicher Vektor) deutlich niedriger war (197 ± 299 internationale Einheiten/106 Klone x 24 Stunden) .
Ein anderes wichtiges Ergebnis dieses Versuches ist, daß alle mit erfindungsgemäßen Vektoren transfizierten Klone, die neomycinresistent waren, hohe Konzentrationen von IL-2 produzierten, wohingegen drei Klone, die mit herkömmlichem Vektor transfiziert wurden, kein IL-2 produzierten. Neomycinresistenz weisen diese Klone jedoch auf, da sie sonst nicht bei den Selektionsbedingungen hätten wachsen können.
Beispiel 5
Zur Überprüfung der in vivo Expression von Transgenen mit Hilfe der erfindungsgemäßen Vektoren wurde menschliches G-CSF ausgewählt, da die Bestimmung von Leukozytenzahlen im peripheren Blut von Mäusen eine einfache Bestimmung der Aktivität des Transgens in vivo erlaubt. Bei den Versuchen wurden hoch aggressive Mäuse-CMS-5-Fibrosarkomazellen mit den Vektoren pCMV.GCSF.iresNEO, pCMV.GCSF.iresTK/NEO bzw. pCMV.GCSF.iresNEO/TK transfiziert. Da das letztgenannte Plasmid nur eine geringe Resistenz gegenüber G 418 vermittelte, wurde es nicht weiter bei den Versuchen verwendet. Bei den transfizierten Zellen wurde folgende durchschnittliche Sekretion von G-CSF bestimmt: Bei Zellen transfiziert mit pCMV.GCSF.iresNEO: 1,2 (± 1,5) mg/106 Zellen x 24 Stunden und bei pCMV.GCSF.iresTK/NEO: 0,37 (± 0,12) μg/106 Zellen x 24 Stunden. Durch Zugabe von Gancyclovir konnte eine deutliche Hemmung des Wachstums der letztgenannten Zellen (mit Thymidinkinasegen) beobachtet werden, wohingegen kaum eine Hemmung bei den Zellen auftrat, die mit pCMV.GCSF.iresNEO transfiziert wurden.
Um die Funktion des Chimären Selektionsgenes in vivo zu testen, wurden die wie oben beschrieben transfizierten Zellen Mäusen vom Balb/c Stamm injiziert. Dabei wurden jeweils 2,5 x 10^ Zellen in je 6 Mäuse injiziert.
Sieben Tage nachdem die transfizierten Tumorzellen injiziert worden waren, wurden jeweils drei Mäuse von jeder Testgruppe 2 x täglich intraperitoneal mit 15 mg Gancyclovir pro kg Körpergewicht für 18 Tage behandelt. Bei allen Tieren wurde das Tumorwachstum und die Anzahl der Leukozyten im peripheren Blut gemessen.
Die Gruppe, die Zellen erhielten, die mit dem Vektor pCMV.GCSF.iresNEO transfiziert worden waren (also ohne Thymidinkinasegen) entwickelte bis auf eine Ausnahme Tumoren und diese Tiere mußten nach 2 Wochen getötet werden. All die Tiere aus dieser Gruppe, die GCSF-sekretierende Tumoren aufwiesen, die sich unter Gancyclovirbehandlung nicht zurückbildeten, zeigten exponentiell steigende Leukozytenzahlen.
Im Gegensatz dazu bildeten sich alle Tumoren, die das
TK/Neor-Fusionsprotein exprimierten, völlig unter
Gancyclovirbehandlung zurück, wobei auch die Leukozytenzahl zum Ausgangswert zurückkehrte.

Claims

Patentansprüche
1. Plasmidvektor zur Transfektion von Zellen, dadurch gekennzeichnet, daß er eine Expressionskassette mit mehr als einem Cistron aufweist, die in Richtung vom 5'-Ende zum 3'- Ende folgende Bestandteile aufweist:
a) wenigstens ein regulatorisches Element; b) ein zu exprimierendes Gen; c) eine interne Ribosomen-Eintrittssequenz (IRES); d) ein Selektionsgen.
2. Vektor nach Anspruch 1, dadurch gekennzeichnet, daß das regulatorische Element einen Promotor umfaßt, der ausgewählt sein kann aus der Gruppe bestehend aus CMV-Promotor und ß- Aktinpromotor und gegebenenfalls weitere verstärkend wirkende Bestandteile aufweist.
3. Vektor nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß das zu exprimierende Gen ausgewählt ist aus Genen, die kodieren für Interleukin-1 (IL-1), Interleukin-2 (IL-2), Interleukin-3 (IL-3), Interleukin-4 (IL-4), Interleukin-6 (IL-6), Granulocyten-Kolonie stimulierendem Faktor (G-CSF), Granulocyten-Makrophagen- Kolonie stimulierendem Faktor (GM-CSF), Stammzellfaktor (SCF), Erythropoetin (EPO), Tumornekrosefaktor-α (TNF-α), Interferon-α (IFN-α), Interferon-ß (IFN-ß) oder Interferon-γ (IFN-Y) .
4. Vektor nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die interne Ribosomeneintrittssequenz (IRES) ausgewählt ist aus den internen Ribosomeneintrittssequenzen, die ursprünglich aus Picornaviren oder dem Encephalomyocarditis-Virus herstammen.
5. Vektor nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Selektionsgen ausgewählt ist aus Resistenzgenen gegen Antibiotika, insbesondere dem Neomycin- Phosphotransferase-Gen und dem Hygromycin-Phosphotransferase- Gen.
6. Vektor nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Selektionsgen umfaßt cDNA des Thymidin-Kinase-Gens von Herpes simplex, fusioniert an DNA, kodierend für Neomycin-Phosphotransferase oder Hygromycin- Phosphotransferase.
7. Vektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Vektor in Transkriptionsrichtung nach dem Selektionsgen einen Genbereich Intron/poly AD aufweist.
8. Vektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Vektor am 3'-Ende des Konstruktes eine NTS-Sequenz aufweist.
9. Vektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Expressionskassette zwei Cistrons aufweist.
10. Vektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Vektor nicht ein Gen aufweist, das für translationsinhibierende Faktoren kodiert.
11. Vektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Plasmidvektor sowohl die CAP- abhängige Translation wie auch die CAP-unabhängige Translation mittels der internen Ribosomen-Eintrittssequenz ermöglicht.
12. Vektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Vektor vor dem zu exprimierenden Gen (b) keine interne Ribosomen-Eintrittssequenz aufweist.
13. Eukaiyotische Zelle, dadurch gekennzeichnet, daß sie mit einem Vektor nach einem der Ansprüche 1 bis 12 transfiziert wurde.
14. Eukaiyotische Zelle nach Anspruch 13, dadurch gekennzeichnet, daß es sich um eine humane Zelle handelt, ausgewählt aus der Gruppe umfassend Fibroblasten, Knochenmarkstammzellen, Vorläuferzellen von weißen Blutkörperchen, Langerhans'sehe Zellen und dendritische Zellen.
15. Verwendung von Zellen nach einem der Ansprüche 13 oder 14 zur Expression von Genen in vitro.
16. Verwendung von Zellen nach einem der Ansprüche 13 oder 14 zur Expression von Genen in vivo, wobei die transfizierten Zellen Patienten verabreicht werden und die Zellen das klonierte Gen im Patienten exprimieren.
17. Verwendung von Zellen nach Anspruch 13 zur Expression von Genen in vivo, wobei die Zellen Nutztieren verabreicht werden und die Zellen das klonierte Gen in den Nutztieren exprimieren.
PCT/DE1996/000697 1995-04-18 1996-04-17 Vektoren zur transfektion von eukaryotischen zellen, deren verwendung und damit transfizierte zielzellen WO1996033272A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU53317/96A AU5331796A (en) 1995-04-18 1996-04-17 Vectors for the transfection of eucaryotic cells, their use and target cells transfected thereby

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19514310.8 1995-04-18
DE1995114310 DE19514310A1 (de) 1995-04-18 1995-04-18 Vektoren zur Transfektion von eukaryotischen Zellen, deren Verwendung und damit transfizierte Zielzellen

Publications (1)

Publication Number Publication Date
WO1996033272A1 true WO1996033272A1 (de) 1996-10-24

Family

ID=7759829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1996/000697 WO1996033272A1 (de) 1995-04-18 1996-04-17 Vektoren zur transfektion von eukaryotischen zellen, deren verwendung und damit transfizierte zielzellen

Country Status (3)

Country Link
AU (1) AU5331796A (de)
DE (1) DE19514310A1 (de)
WO (1) WO1996033272A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998038322A1 (de) * 1997-02-25 1998-09-03 KLINIKUM DER ALBERT-LUDWIGS-UNIVERSITäT FREIBURG Nucleinsäurekonstrukte zur lang andauernden expression von transgenen
WO1999047690A2 (en) * 1998-03-16 1999-09-23 Introgen Therapeutics, Inc. Multigene vectors
WO2001027299A1 (en) * 1999-10-13 2001-04-19 Immunex Corporation Vectors and methods for recombinant protein expression
US6376745B1 (en) 1997-05-30 2002-04-23 Joseph Atabekov Methods for coexpression of more than one gene using at least one internal ribosome entry site (IRES)
US6933378B2 (en) 1997-05-30 2005-08-23 Joseph Atabekov Methods for coexpression of more than one gene in eukaryotic cells
WO2011113841A1 (en) * 2010-03-16 2011-09-22 Robert Steinfeld Eukaryotic vector

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19542051C2 (de) * 1995-11-10 2000-03-23 Asta Medica Ag Gentechnisch veränderte tumorigene Zellinien und Verwendung derselben für die Testung von Antitumor-Wirkstoffen
CA2309344A1 (en) * 1997-11-12 1999-05-20 Valentis, Inc. Expression plasmids for multiepitope nucleic acid-based vaccines
US6610508B1 (en) * 1999-03-08 2003-08-26 Anadys Pharmaceuticals, Inc. Translation driver system and methods for use thereof
EP1847611B1 (de) * 2003-10-03 2009-09-09 Promega Corporation Rhamnose-induzierbares Expressionssystem
US8293503B2 (en) 2003-10-03 2012-10-23 Promega Corporation Vectors for directional cloning

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990001550A1 (en) * 1988-07-29 1990-02-22 Zymogenetics, Inc. High efficiency translation of polycistronic messages in eucaryotic cells
WO1993003143A1 (en) * 1991-08-07 1993-02-18 Anderson W French Retroviral vectors containing internal ribosome entry sites
EP0585983A2 (de) * 1992-07-03 1994-03-09 Q.B.I. Enterprises Limited Nukleotid-Vektor, enthaltend ein Gen für einen Traduktion inhibierenden Faktor, ein IRES-Gebiet und ein gewünschtes Gen
WO1994005786A1 (de) * 1992-08-27 1994-03-17 Beiersdorf Ag Herstellung von heterodimerem pdgf-ab mit hilfe eines bicistronischen vektorsystems in säugerzellen
WO1994005785A1 (de) * 1992-08-27 1994-03-17 Beiersdorf Ag Multicistronische expressionseinheiten und deren verwendung
WO1994024301A1 (en) * 1993-04-21 1994-10-27 The University Of Edinburgh Expression of heterologous genes according to a targeted expression profile
WO1994024870A1 (en) * 1993-01-20 1994-11-10 Biotransplant, Inc. Retroviral vectors capable of expressing multimeric proteins from multiple translational initiation sites
DE4325699A1 (de) * 1993-07-30 1995-02-02 Hartmut Berns Rekombinantes DNA-Konstrukt
WO1996001324A2 (fr) * 1994-07-05 1996-01-18 Institut National De La Sante Et De La Recherche Medicale (Inserm) Nouveau site interne d'entree des ribosomes, vecteur le contenant et utilisation therapeutique
EP0711835A1 (de) * 1994-11-14 1996-05-15 Immuno Ag Selektion und Expression von Fremdproteinen mittels eines Selektions-Amplifikations-Systems

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990001550A1 (en) * 1988-07-29 1990-02-22 Zymogenetics, Inc. High efficiency translation of polycistronic messages in eucaryotic cells
WO1993003143A1 (en) * 1991-08-07 1993-02-18 Anderson W French Retroviral vectors containing internal ribosome entry sites
EP0585983A2 (de) * 1992-07-03 1994-03-09 Q.B.I. Enterprises Limited Nukleotid-Vektor, enthaltend ein Gen für einen Traduktion inhibierenden Faktor, ein IRES-Gebiet und ein gewünschtes Gen
WO1994005786A1 (de) * 1992-08-27 1994-03-17 Beiersdorf Ag Herstellung von heterodimerem pdgf-ab mit hilfe eines bicistronischen vektorsystems in säugerzellen
WO1994005785A1 (de) * 1992-08-27 1994-03-17 Beiersdorf Ag Multicistronische expressionseinheiten und deren verwendung
WO1994024870A1 (en) * 1993-01-20 1994-11-10 Biotransplant, Inc. Retroviral vectors capable of expressing multimeric proteins from multiple translational initiation sites
WO1994024301A1 (en) * 1993-04-21 1994-10-27 The University Of Edinburgh Expression of heterologous genes according to a targeted expression profile
DE4325699A1 (de) * 1993-07-30 1995-02-02 Hartmut Berns Rekombinantes DNA-Konstrukt
WO1996001324A2 (fr) * 1994-07-05 1996-01-18 Institut National De La Sante Et De La Recherche Medicale (Inserm) Nouveau site interne d'entree des ribosomes, vecteur le contenant et utilisation therapeutique
EP0711835A1 (de) * 1994-11-14 1996-05-15 Immuno Ag Selektion und Expression von Fremdproteinen mittels eines Selektions-Amplifikations-Systems

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
H.-M. KOO ET AL.: "A spleen necrosis virus-based retroviral vector which expresses two genes from a dicistronic mRNA", VIROLOGY, vol. 186, 1992, ACADEMIC PRESS, INC.,NEW YORK, US, pages 669 - 675, XP002008549 *
J. SMARDA AND J.S. LIPSICK: "Dicistronic selection for nuclear proteins in living animal cells", GENE, vol. 137, 1993, ELSEVIER SCIENCE PUBLISHERS,B.V.,AMSTERDAM,NL;, pages 145 - 149, XP002008548 *
M. WAGNER ET AL.: "Interaction of a protein with a palindromic sequence from murine rDNA increases the occurence of amplification-dependent transformation in mouse cells", J. BIOL. CHEM., vol. 265, no. 23, 15 August 1990 (1990-08-15), AM. SOC. BIOCHEM. MOL.BIOL.,INC.,BALTIMORE,US, pages 13925 - 13932, XP002008550 *
M. WEGNER ET AL.: "Cis-acting sequences from rDNA promote plasmid DNA amplification and persistence in mouse cells: implication of HMG-I in their function", NUCLEIC ACIDS RESEARCH, vol. 17, no. 23, 1989, IRL PRESS LIMITED,OXFORD,ENGLAND, pages 9909 - 9932, XP002008551 *
P. MOUNTFORD ET AL.: "Dicistronic targeting constructs: Reporters and modifiers of mammalian gene expression", PROC. NATL.ACAD SCI., vol. 91, May 1994 (1994-05-01), NATL. ACAD SCI.,WASHINGTON,DC,US;, pages 4303 - 4307, XP000563920 *
R.J. KAUFMAN ET AL.: "Improved vectors for stable expression of foreign genes in mammalian cells by use of the untranslated leader sequence from EMC virus", NUCLEIC ACIDS RESEARCH, vol. 19, no. 16, 1991, IRL PRESS LIMITED,OXFORD,ENGLAND, pages 4485 - 4490, XP002008547 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998038322A1 (de) * 1997-02-25 1998-09-03 KLINIKUM DER ALBERT-LUDWIGS-UNIVERSITäT FREIBURG Nucleinsäurekonstrukte zur lang andauernden expression von transgenen
US6376745B1 (en) 1997-05-30 2002-04-23 Joseph Atabekov Methods for coexpression of more than one gene using at least one internal ribosome entry site (IRES)
US6933378B2 (en) 1997-05-30 2005-08-23 Joseph Atabekov Methods for coexpression of more than one gene in eukaryotic cells
WO1999047690A2 (en) * 1998-03-16 1999-09-23 Introgen Therapeutics, Inc. Multigene vectors
WO1999047690A3 (en) * 1998-03-16 1999-11-18 Introgen Therapeutics Inc Multigene vectors
WO2001027299A1 (en) * 1999-10-13 2001-04-19 Immunex Corporation Vectors and methods for recombinant protein expression
US6632637B1 (en) 1999-10-13 2003-10-14 Immunex Corporation Vectors and methods for recombinant protein expression
WO2011113841A1 (en) * 2010-03-16 2011-09-22 Robert Steinfeld Eukaryotic vector

Also Published As

Publication number Publication date
DE19514310A1 (de) 1996-10-24
AU5331796A (en) 1996-11-07

Similar Documents

Publication Publication Date Title
DE69027526T3 (de) Herstellung von proteinen mittels homologer rekombination
DE69433034T2 (de) Expression von heterologen genen nach einem ziel-expressionsprofil
EP0711835B1 (de) Selektion und Expression von Fremdproteinen mittels eines Selektions-Amplifikations-Systems
DE69636032T2 (de) Plasmid zur verabreichung von nukleine säuren und verwendungsverfahren
DE69034238T2 (de) Verfahren zur Erreichung einer Expression, oder zur Verbesserung der Expression eines Gens
EP1776460B1 (de) Verfahren zur modulation der genexpression durch änderung des cpg gehalts
DE69432340T2 (de) Rekombinante DNS mit dem Interferon-alpha Promotor
DE69034135T2 (de) DNS-Konstrukten zur Aktivierung und Veränderung der Expression von endogenen Genen
DE69923983T2 (de) Expressionsvektoren die 'hot spots'für eine verstärkte rekombinante proteinexpression in transfizierten zellen enthalten
DE69433925T2 (de) Vektoren und Zelllinien von Säugetieren mit erhöhter Produktivität
WO1996033272A1 (de) Vektoren zur transfektion von eukaryotischen zellen, deren verwendung und damit transfizierte zielzellen
DE69926052T2 (de) Menschliche Suppressor-tRNA Oligonukleotide Verfahren für deren Verwendung
DE60312039T2 (de) Mittel und methoden zur produktion eines proteins durch chromatin-öffner, die chromatin zugänglicher für transkriptionsfaktoren machen können
EP0299303B1 (de) Eukaryotische Expressionsvektoren mit multimeren Enhancer-Subelementen, Verfahren zu ihrer Herstellung und Verwendung
EP1000167B1 (de) Herstellung humaner mutierter proteine in humanen zellen mittels homologer rekombination
DE60119386T2 (de) Verbessertes transfektionssystem
DE19707493C1 (de) Nucleinsäurekonstrukte zur lang andauernden Expression von Transgenen
DE19807265C2 (de) Adenoviraler Transfervektor für den Gentransport einer DNA-Sequenz
DE19822115A1 (de) Retrovirale Gentransfervektoren
DE3640550C2 (de)
WO2002068669A2 (de) Episomale vektoren enthaltend matrix-anheftungsregionen zur zellspezifischen genexpression
AT398433B (de) Transforming growth faktor beta1/transforming growth faktor beta2-hybrid-prekursor und dafür codierende nucleotidsequenz
EP0256302B1 (de) Verfahren zur Herstellung von humanem Antithrombin-III (ATIII) und dafür geeignete Vektoren
EP0330977A2 (de) Erzeugung hochexprimierender rekombinanter eukaryotischer Zellen
DE3702116A1 (de) Kassetten-vektor-system zur expression offener leserahmen in eukaryotischen zellen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA JP LT LV NO PL SI US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA