WO1996023232A1 - Analyseur de spectre - Google Patents

Analyseur de spectre Download PDF

Info

Publication number
WO1996023232A1
WO1996023232A1 PCT/JP1996/000131 JP9600131W WO9623232A1 WO 1996023232 A1 WO1996023232 A1 WO 1996023232A1 JP 9600131 W JP9600131 W JP 9600131W WO 9623232 A1 WO9623232 A1 WO 9623232A1
Authority
WO
WIPO (PCT)
Prior art keywords
sweep
linearity
frequency
voltage
local oscillator
Prior art date
Application number
PCT/JP1996/000131
Other languages
English (en)
French (fr)
Inventor
Hirobumi Musha
Original Assignee
Advantest Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corporation filed Critical Advantest Corporation
Priority to DE19680092T priority Critical patent/DE19680092C2/de
Publication of WO1996023232A1 publication Critical patent/WO1996023232A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • G01R23/173Wobbulating devices similar to swept panoramic receivers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B23/00Generation of oscillations periodically swept over a predetermined frequency range
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/18Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance
    • H03B5/1882Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance the frequency-determining element being a magnetic-field sensitive resonator, e.g. a Yttrium Iron Garnet or a magnetostatic surface wave resonator
    • H03B5/1888Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance the frequency-determining element being a magnetic-field sensitive resonator, e.g. a Yttrium Iron Garnet or a magnetostatic surface wave resonator the active element in the amplifier being a semiconductor device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03CMODULATION
    • H03C3/00Angle modulation
    • H03C3/02Details
    • H03C3/08Modifications of modulator to linearise modulation, e.g. by feedback, and clearly applicable to more than one type of modulator

Definitions

  • the present invention relates to a low-cost spectrum analyzer for configuring an oscillation source used for a local oscillator.
  • the present apparatus includes a frequency conversion section 50, a sweep control section 70, a detection section 62, a display calculation section 64, and a display section 68. It is composed.
  • the frequency conversion section 50 is a principle configuration of a frequency conversion section of a general spectrum analyzer, receives a signal under test 100, sweeps a desired frequency range with a local oscillator, and sets a constant intermediate frequency. After filtering into a desired bandwidth characteristic with a band pass filter (BPF), the signal is supplied to a detection unit 62.
  • the detection unit 62 detects the signal obtained by the sweeping, converts the signal into a digital signal, and supplies the digital signal to the display calculation unit 64.
  • the frequency converter 50 includes a local oscillator 30 that sweeps in response to the sweep ramp signal 76 sweep.
  • the sweep controller 70 supplies the local oscillator 30 with an analog ramp waveform for reference.
  • the ramp generator 7 2 supplies code data for ramp sweeping at a constant slope corresponding to the span frequency (chair range frequency) section to the DA converter 74 at time intervals corresponding to the sweep speed, and the analog staircase waveform And supplies a local oscillator 30 with a ramp signal 76 sweep filtered by a linear slope at LPF (low-pass filter) 76.
  • the local oscillator 30 receives the ramp signal 76 sweep and sweeps the sweep frequency range.
  • the internal configuration of the local oscillator 30 includes frequency dividers 34 and 37, It comprises a phase comparator 36, an integrator 35, an adder 38, and YT ⁇ (YIG-tuned Osci 1 lator) 40.
  • the YT 040 Before sweeping, the YT 040 forms a PLL (Phase Locked Loop) lock loop and oscillates the center frequency f O, which is the intermediate value of the sweep frequency, so that the phase is locked. .
  • the ramp signal 76 sweep voltage is in the 0 V state.
  • the analog potential 35 vosc at the output terminal of the integrator 35 is switched to the holding state and controlled.
  • the PLL lock loop is released, and a free-run state oscillating at the center frequency f O is established.
  • the control signal 38 vosc resulting from the addition of the ramp signal 76 sweep from the sweep controller 70 to one end of the analog adder 38 and the addition of the analog potential 35 vosc is applied to the YT 04 0.
  • an oscillating frequency for ramp sweep is generated.
  • the free-running state is set, and an analog voltage to which the ramp signal 76 sweep is added is applied to the voltage controlled oscillation input terminal to perform sweeping. Therefore, as Y T ⁇ 40, an oscillation source with good linearity that generates an oscillation frequency proportional to the input analog voltage is required.
  • V CO voltage controlled oscillator
  • ⁇ ⁇ ⁇ 4 0 is obtained by using 4 10 resonator 4 2 ⁇
  • the control voltage 38 vosc signal from the adder 38 is received, converted into a current by the IV converter 41, and then supplied to the coil 42b to apply a magnetic field to the YIG resonator 42.
  • the ⁇ 10 resonator 42 has a tuning frequency proportional to the magnetic field.
  • This is used as a resonance circuit, and a negative resistance circuit 49 composed of a transistor 43, a series feed knock element 44, and an output matching network (MN) is used.
  • MN output matching network
  • the negative resistance circuit 49 gives the parameters of each element so that the negative resistance satisfies the oscillation conditions in the oscillation frequency range to be used, for example, between 4 and 8 GHz.
  • the oscillation signal from this oscillation circuit is buffered by a buffer amplifier 48, and the oscillation frequency signal 4 O osc is output.
  • FIG. 4 shows an example of a voltage sensitivity characteristic curve of the oscillation frequency signal 40 osc of YT040 with respect to the control voltage 38 vosc signal.
  • the local oscillator 30 is set in a free-run state during sweeping, and is driven by an analog voltage obtained by adding the ramp signal 76 sweep to the voltage-controlled oscillation input terminal.
  • the VCO is configured by a VCO using a highly linear YIG element that generates an oscillation frequency proportional to an input analog voltage.
  • this YIG element is relatively expensive, and has a relatively large share of product cost.
  • the problem to be solved by the present invention is to use a low-linearity oscillator, such as a relatively inexpensive VC0 circuit, and configure a local oscillator that corrects this linearity and forms a filter. This allows for cheaper spectrum analysts The purpose is to realize a oscillating source. Disclosure of the invention
  • the oscillation frequency is configured to include a linearity correction unit 78 for linearly correcting the oscillation frequency so as to generate a sweep frequency having a constant slope.
  • a variable-capacitance diode 24 is used to provide a combination of a local oscillator 30 constituting a voltage-controlled oscillator VCO, and receives an analog sweep lamp signal 76 sweep to sweep with good linearity.
  • a relatively inexpensive local oscillator for a spectrum analyzer is realized.
  • the oscillation frequency of the voltage-controlled oscillator is increased by a constant slope in proportion to the ramp sweep.
  • a linearity correction unit that outputs the conversion code data 18 cod that has been subjected to the linearity correction processing and that corrects the linearity of the sweep frequency generated by the analog rising ramp signal 76 sweep.
  • the linearity correction unit 78 receives the code data from the ramp generation unit 72 ⁇ 2 cod, and for example, the oscillation frequency at the varactor tune VC 0 20 is proportional to the ramp sweep. It has the effect of outputting conversion code data 78 cod that has been linearly corrected to have a constant frequency increase slope.
  • variable capacitance diode 24 is used as a variable tuning element to form a VC ⁇ , which is converted into code data for correcting the sweep linearity of the oscillation frequency by the linearity correction unit 78 of the sweep control unit 70.
  • the local oscillator 30 that performs a sweep sweep has the effect of maintaining the frequency accuracy of spectrum measurement at the same level as in the past.
  • FIG. 1 is a configuration diagram of a local oscillator 30 and a sweep control unit 70 of the present invention.
  • FIG. 2 is a diagram showing the configuration of the Barraque Tuned VC020 of the present invention.
  • FIG. 3 is an example of a voltage sensitivity characteristic curve of the oscillation frequency of the variable capacitance diode 24.
  • FIG. 4 is an example of a voltage sensitivity characteristic curve example of the oscillation frequency of YT040.
  • FIG. 5 shows an example of setting a correction value of 79 dat.
  • FIG. 6 is a block diagram of a conventional spectrum analyzer.
  • FIG. 7 is an overall configuration diagram of a conventional local oscillator 30.
  • FIG. 8 is a configuration diagram of a conventional YT040. BEST MODE FOR CARRYING OUT THE INVENTION
  • the embodiment of the present invention is an example in the case where the local oscillator is constituted by varactor tuned VCO. This will be described with reference to FIGS.
  • the overall configuration of this device is the same as the conventional configuration shown in FIG. 6, except for the configuration of the local oscillator 30 of the frequency conversion unit 50 and the configuration of the sweep control unit 70.
  • the local oscillator 30 has a configuration in which Y T O 40 is replaced with a balanced tuned V CO 20 as shown in FIG.
  • the sweep control section 70 has a configuration in which a linearity correction section 78 is additionally provided in front of the DA converter 74.
  • the internal configuration of the VCO 20 is composed of a variable tuning circuit 21, a negative resistance circuit 49, and a knock amplifier 48. Therefore, the negative resistance circuit 49 and the buffer amplifier 48 are the same as those in the related art.
  • the tunable circuit 21 is a tank circuit (tank circuit) using the variable capacitance diode 24 as a tunable element. In this case, they are formed by the distribution constant of the microstrip line because it is in the microwave band.
  • the variable capacitance diode 24 is, for example, a tuning diode element (GaAs Tuning Diode chip) using gallium arsenide (GaAs), and uses an element applicable to several GHz band.
  • variable capacitance diode 24 is connected in series with this tank circuit and the capacitor 26 to form a resonance circuit as a whole.
  • the control voltage 38 vosc which is a DC voltage, is applied to the variable capacitance diode 24 through the high resistance 22.
  • variable volume! The characteristics of the oscillation frequency with respect to the control voltage 38 vosc applied to the diode 24 are shown in the voltage sensitivity characteristic curve example of the oscillation frequency in Fig. 3.
  • the variable capacitance diode has a different nonlinearity curve for each sample A and sample B. For this reason, as described later, the control voltage 38 vosc from the sweep control unit 70 is supplied with the control voltage 38 vosc corrected and converted from the non-linear curve to the linearity correction.
  • the internal configuration of the sweep control unit 70 includes a ramp generation unit 72, a linearity correction unit 78, a DA converter 74, and an LPF 76.
  • a linearity correction unit 78 has been added, and code data conversion processing for correcting the linearity of the varactor tuned VCO 20 has been added.
  • a correction value 79 dat for which the oscillation frequency characteristic curve for the control voltage 38 vosc has been obtained is stored in advance.
  • Figure 5 shows an example of setting a correction value of 79 dat.
  • the correction ( ⁇ ) is stored as a correction value of 79 dat.
  • a correction value of 79 dat is obtained for each of the other set values of the voltage V 1 and stored.
  • the DA converter 74 receives the code data 72 cod from the ramp generator 72, reads the correction value 79 dat of the linearity correction table 79 using this as the address, and reads the code data 72 cod
  • the conversion code data 78 cod that has been calculated and linearity corrected may be supplied to the DA converter 74.
  • variable tune V C020 can oscillate and output a sweep frequency having a linearity, which is an addition slope of a constant frequency.
  • linearity correction is within ⁇ 0.1% or less, so the correction value for the code data 72 cod at each desired interval is stored, and the code data in this section is applied to the linear interpolation method. And calculate the correction.
  • the storage of the correction value 79 dat in the linearity correction table 79 has been described in advance, but the frequency counter for measuring the oscillation frequency of the local oscillator 30 has been described.
  • the built-in oscillator oscillates at 72 cod for each code in the current environment, measures this oscillation frequency as needed, calculates the correction value 79 dat from this, and calculates the linearity correction table 79
  • the sweep may be performed, and the sweep can be performed in the same manner.
  • the embodiment of the present invention is an example in which the local oscillator is constituted by a conventional YTO 40 and the above-described linearity correction unit 78 is provided and combined.
  • YTO40 has a different nonlinearity curve for each sample C and sample D. Both samples have relatively good linearity in the middle region, that is, region B. However, in the regions at both ends, that is, regions A and C, the linearity is poor.
  • control voltage 38 vosc from the sweep control unit 70 is the control voltage obtained by correcting and converting the nonlinearity curve into the linearity correction, as in the first embodiment. 3 8 vosc are supplied.
  • the internal configuration of the sweep control unit 70 includes a ramp generation unit 72, a linearity correction unit 78, a DA converter 74, and an LPF 76.
  • a linearity correction unit 78 has been added to add a code data conversion process for correcting the linearity of the YTO 40.
  • a correction value 79 dat for which the oscillation frequency characteristic curve for the control voltage 38 vosc has been obtained is stored in advance.
  • the setting of the correction value 79 dat is performed in the same manner as in the first embodiment.
  • the correction (one ⁇ ) is stored as a correction value of 79 dat.
  • a correction value of 79 dat is obtained and stored.
  • it receives the code data 72 cod from the ramp generator 72, reads the correction value 79 dat of the linearity correction table 79 that uses this as the address, and reads the code data 72 cod
  • the converted code data 780 cod corrected by the linearity is supplied to the DA converter 7.
  • YTO 40 can oscillate and output a sweep frequency having a linearity with a constant frequency increasing slope.
  • span frequency sheep range frequency section
  • a simple and inexpensive broadband spectrum analyzer can be configured.
  • the present invention is configured as described above, and has the following effects.
  • the linearity corrector 780 of the sweep controller 70 corrects the nonlinearity of the oscillation frequency of the varactor tune VC020, and performs sweeping. This has the effect of enabling sweeping with linearity correction so that the frequency has a constant frequency increasing slope.
  • the linearity correction unit 78 of the sweep control unit 70 corrects the sweep linearity of the oscillation frequency.
  • the local oscillator 30 that converts the data into data and sweeps the lamp can maintain the same level of spectrum measurement frequency accuracy as before. A clear effect can be obtained.
  • the linearity correction unit 78 of the sweep control unit 70 converts the data into code data for correcting the sweep linearity of the oscillation frequency.
  • the local oscillator 30 that performs a sweep sweep has the effect of maintaining the same level of spectrum measurement frequency accuracy as in the past.

Landscapes

  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Description

明 細 害 スぺク トラムアナライザ 技術分野
本発明は、 局部発振器に使用される発振源を安価に構成するスぺク ト ラムアナライザに関する。 背景技術
従来において、 スペク トラムアナライザの局部発振器に使用される発 振源と して、 Y I G (Yttrium Iron Garnet) を用いたスペク ト ラムアナ ライザの例がある。 これについて、 図 6 と図 7 と図 8を参照して説明す る。
本装置は、 図 6のブロ ッ ク図に示すよう に、 周波数変換部 5 0と、 掃 引制御部 7 0 と、 検波部 6 2 と、 表示演算部 6 4 と、 表示部 6 8 とで構 成している。
周波数変換部 5 0は、 一般的なスペク ト ラムアナラ イザの周波数変換 部の原理構成であ り、 被測定信号 1 0 0を受けて、 局部発振器で所望の 周波数範囲を掃引 して一定の中間周波数に変換し、 B P F (バン ドパス · フ ィ ルタ) で所望の帯域幅特性にフ ィ ルタ した後、 検波部 6 2に供給 する。 検波部 6 2は、 この掃引 して得られた信号を検波した後、 デジ夕 ル信号に変換し、 表示演算部 64 に供給する。 この周波数変換部 5 0の 中に、 掃引ラ ンプ信号 7 6 sweepを受けて掃引する局部発振器 3 0がある 掃引制御部 7 0は、 局部発振器 3 0へ掃引用のアナログラ ンプ波形を 供給するものであって、 掃引開始信号 7 0 sttを受けて、 ラ ンプ発生部 7 2がスパン周波数 (椅引範囲周波数) 区間に対応して一定の傾斜でラ ン プ掃引するコー ドデータを、 掃引速度に対応した時間間隔で順次 D A変 換器 7 4 に供給してアナログ階段波形に変換し、 L P F (ローパスフ ィ ル夕) 7 6で直線的傾きにフ ィ ルタ したラ ンプ信号 7 6 sweepを局部発振 器 3 0へ供給する。
局部発振器 3 0は、 ラ ンプ信号 7 6 sweepを受けて、 掃引周波数範囲を 掃引する発振器であって、 この内部構成は、 図 7 に示すよ う に、 分周器 3 4、 3 7 と、 位相比較器 3 6 と、 積分器 3 5 と、 加算器 3 8 と、 Y T 〇 ( YIG-tuned Osci 1 lator) 4 0 とで構成している。
Y T 04 0 は、 掃引する前時点で、 P L L ( Phase Locked Loop) の口 ッ クループを形成させて掃引周波数の中間値である中心周波数 f Oを発振 して位相ロ ッ ク した状態に しておく。 このと きのラ ンプ信号 7 6 sweep電 圧は 0 V状態にある。
次に掃引開始する と きに、 積分器 3 5の出力端のアナログ電位 3 5 vo scを保持状態に切り替え制御する。 これによ り P L L ロ ッ クループが解 除されて中心周波数 f Oで発振するフ リ ーラ ン状態になる。 この状態で掃 引制御部 7 0からのラ ンプ信号 7 6 sweepをアナログ加算器 3 8の一端に 供給してアナログ電位 3 5 voscと を加算した結果の制御電圧 3 8 voscを Y T 04 0 に供給するこ とで、 ラ ンプ掃引する発振周波数を発生する。 即ち、 掃引時は、 フ リ ーラ ン状態に して電圧制御発振入力端にラ ンプ信 号 7 6 sweepを加算 したアナログ電圧を与えて掃引する。 この為、 Y T〇 4 0 と しては入力されるアナログ電圧に比例した発振周波数を発生する 直線性の良い発振源が必要と される。
こ こで、 V C O (電圧制御発振器) である Υ Τ Ο 4 0 について、 内部 回路構成を図 8 に示して説明する。
Υ Τ Ο 4 0 は、 丫 1 0共振器 4 2 を用ぃた ¥ 〇〇でぁっ て、 コイ ル 4 2 b に流す鼋流値と発振周波数値とが比例関係にある比較的直線性に優 れた発振器である。 上記加算器 3 8からの制御電圧 3 8 vosc信号を受け て、 I V変換器 4 1で電流に変換した後コイル 4 2 b に供給して Y I G 共振器 4 2に磁界を与える。 これによ つて、 丫 1 0共振器 4 2は、 磁界 に比例した同調周波数となる。 これを共振回路と して、 ト ラ ンジスタ 4 3 と直列フ ィ ー ドノ ッ ク素子 4 4 と出力マ ッチング · ネ ッ ト ワーク ( M N) とで構成する負性抵抗回路 4 9によ っ て発振回路を形成する。 この 負性抵抗回路 4 9は使用する発振周波数範囲、 例えば 4〜 8 G H zの間 で発振条件を満たす負性抵抗となるよ う に各素子のパラメ ータを与える 。 この発振回路からの発振信号をバッ フ ァ アンプ 4 8で緩衝增幅した発 振周波数信号 4 O oscを出力 している。
図 4 に、 制御電圧 3 8 vosc信号に対する Y T 04 0の発振周波数信号 4 0 oscの電圧感度特性曲線の例を示す。 直線性精度の十分に良い範囲、 例えば領域 Bの範囲に限って動作を行わせるこ と によ り、 搢引時におい て、 直線性精度の良い掃引周波数を発生でき、 スペク ト ラム測定の高い 周波数確度を維持している。
上記説明のよ う に、 局部発振器 3 0 と しては、 掃引時にフ リ ーラ ン状 態に して電圧制御発振入力端にラ ンプ信号 7 6 sweepを加算したアナログ 圧で搢引する為、 従来のスペク トラムアナラ イザでは、 V C Oと して 、 入力されるアナログ電圧に比例した発振周波数を発生する直線性の良 い Y I G素子を用いた V C Oで構成していた。 しかし、 この Y I G素子 は比較的高価であり、 製品原価費に占める割合が比較的大きいと いう難 点。、める。
そこで、 本発明が解決しょ う とする課題は、 例えば比較的安価な V C 0回路のよ う な、 直線性の劣る発振器を使用 し、 この直線性を補正して 搆成する局部発振器を構成するこ とで、 よ り安価なスぺク ト ラムアナラ ィザの発振源を実現するこ と を 目的とする。 発明の開示
本発明においては、 発振周波数を、 一定傾きの掃引周波数を発生する よう に直線性補正する直線性補正部 7 8手段を設ける構成手段にする。 これによ り、 例えば可変容量ダイオー ド 2 4 を使用 して電圧制御発振 器 V C Oを構成する局部発振器 3 0を組み合わせて設け、 アナログの掃 引ラ ンプ信号 7 6 sweepを受けて直線性良く 掃引する比較的安価なスぺク トラムアナライザ用の局部発振器を実現する。
具体的手段と しては、 掃引制御部 7 0のラ ンプ発生部 7 2からのコー ドデータ 7 2 codを受けて、 電圧制御発振器の発振周波数を、 ラ ンプ掃引 と比例した一定周波数の增加傾き となる直線性補正処理した変換コー ド データ 1 8 c o dを出力してアナログの掎引ラ ンプ信号 7 6 sweepによ る掃 引周波数を直線性補正する直線性補正部 7 8手段を設ける構成手段があ る。
直線性補正部 7 8は、 ラ ンプ発生部 7 2からのコー ドデ一夕 Ί 2 c odを 受けて、 例えばバラ クタチューン ド V C 0 2 0での発振周波数が、 ラ ン プ掃引 と比例した一定周波数の増加傾き となるよ う に直線性補正した変 換コー ドデータ 7 8 c o dを出力する作用がある。
可変容量ダイ オー ド 2 4 を可変同調素子と して V C 〇を構成 し、 掃引 制御部 7 0の直線性補正部 7 8で発振周波数の掃引直線性を補正するコ 一ドデータに変換してラ ンプ掃引する局部発振器 3 0は、 従来と同等レ ベルのスペク ト ラム測定の周波数確度を維持できる効果が得られる。 図面の簡単な説明
図 1 は、 本発明の、 局部発振器 3 0 と掃引制御部 7 0の構成図である 図 2は、 本発明の、 バラク 夕チューン ド V C 02 0の構成図である。 図 3は、 可変容量ダイ ォー ド 2 4の発振周波数の電圧感度特性曲線の 例である。
図 4は、 Y T 04 0の発振周波数の電圧感度特性曲線例の例である。 図 5は、 補正値 7 9 datの設定例を示す。
図 6は、 従来の、 スペク ト ラムアナアイザのブロ ッ ク図である。
図 7は、 従来の、 局部発振器 3 0の全体構成図である。
図 8は、 従来の、 Y T 04 0の構成図である。 発明を実施するための最良の形態
この発明の第 1 の実施例を図を参照して説明する。
本発明の実施例は、 局部発振器をバラク タチューン ド V C Oで構成し た場合の例である。 これについて、 図 1 と図 2を参照して説明する。 本装置全体の構成は、 図 6 に示す従来構成と 同様の構成であるが、 こ の中で、 周波数変換部 5 0の局部発振器 3 0 と掃引制御部 7 0の構成を 変えている。 局部発振器 3 0では、 図 1 に示すよ う に、 Y T O 4 0の代 わり にバラ ク 夕チューン ド V C O 2 0に置き換えた構成と している。 ま た、 掃引制御部 7 0では、 直線性補正部 7 8を D A変換器 74 の前に追 加して設けた構成と している。
バラ ク 夕チューン ド V C O 2 0の内部構成は、 図 2 に示すよ う に、 可 変同調回路 2 1 と、 負性抵抗回路 4 9 と、 ノ ッ フ ァ ア ンプ 4 8 とで構成 していて、 負性抵抗回路 4 9 と、 バッ フ ァ アンプ 4 8は従来と同様であ る。
可変同調回路 2 1 は、 可変容量ダイ オー ド 2 4 を可変同調素子と して 使用 したタン ク回路 (Tank Circuit) であ り、 集中定数の等価共振用コ ィル 2 9 と、 等価共振用容量 2 8 と している力;、 実際にはマイ クロ波帯 である為、 マイ クロス ト リ ップライ ンの分布定数でこれらを形成する。 可変容量ダイ オー ド 24は、 例えばガリ ひ素 ( GaAs) を使用 したチュ —ニング用ダイオー ド素子 (GaAs Tuning Diode chip) であり数 G H z 帯まで適用可能な素子を使用する。
可変容量ダイ オー ド 2 4は、 このタ ンク回路と コ ンデンサ 2 6 とで直 列に接続して、 全体で共振回路を形成している。 そして、 直流電圧であ る制御電圧 3 8 voscは、 高抵抗 2 2を通して可変容量ダイ オー ド 2 4 に 印加している。
こ こで、 可変容!:ダイ オー ド 2 4 に与える制御電圧 3 8 voscに対する 発振周波数の特性を、 図 3の発振周波数の電圧感度特性曲線例に示す。 可変容量ダイ オー ドは、 個々のサンプル A、 サンプル B毎に異なっ た非 直線性曲線を有している。 この為、 掃引制御部 7 0からの制御電圧 3 8 voscは、 後述するよ う に、 非直線性曲線を直線性補正に補正変換された 制御電圧 3 8 voscが供給される。
掃引制御部 7 0の内部構成は、 図 1 に示すよ う に、 ラ ンプ発生部 7 2 と、 直線性補正部 7 8と、 D A変換器 7 4 と、 L P F 7 6 とで構成して いて、 直線性補正部 7 8を追加して、 バラ クタチューン ド V C O 2 0の 直線性を補正するコー ドデータ変換処理を追加 している。
内部の直線性補正テーブル 7 9 には、 制御電圧 3 8 voscに対する発振 周波数特性曲線を求めておいた補正値 7 9 datを、 予め格納してお く。 図 5 に、 補正値 7 9 datの設定例を示す。
先ず、 測定時には、 周波数カウ ン夕のよ う な測定器を接続して、 発振 周波数を測定する。
すなわち、 制御電圧 3 8 voscに対する設定値を V 1 と し、 発振周波数 4 0 oscの測定値が F 1 であるとする。 次に、 真値 F 2を得るための電圧 (V I — A V I ) を求める。
これによ り、 補正分 (― Δ ν ΐ ) を補正値 7 9 datと して格納する。 同様に、 電圧 V 1 の他の設定値に対しても、 各々補正値 7 9 datを求め 、 格納してお く。
動作時には、 ラ ンプ発生部 7 2からのコー ドデータ 7 2 codを受けて、 これをァ ドレスとする直線性補正テーブル 7 9の補正値 7 9 datを読みだ して、 コー ドデータ 7 2 codと演算して直線性補正した変換コー ドデータ 7 8 codを D A変換器 7 4 に供給してもよい。
この結果、 バラ ク タチューン ド V C 02 0は一定周波数の增加傾き と なる直線性のある掃引周波数を発振出力できる。 と こ ろで、 ラ ンプ発生 部 7 2からのコー ドデ一夕全部に対する補正値を直線性補正テーブル 7 9に設けるのは大きなメモ リ 容量が必要となる。 そこで、 直線性補正は ± 0. 1 %以下に収まれば十分なので、 所望間隔毎のコー ドデータ 7 2 codに対する補正値を格納しておき、 この区間のコ一 ドデ一夕は直線補間 手法によ り算出して補正演算する。
上記実施例の説明では、 直線性補正テーブル 7 9への補正値 7 9 datの 格納を、 予め求めておく と して説明 したが、 局部発振器 3 0の発振周波 数を測定する周波数カウ ンタを内蔵するものにおいては、 現在環境で各 コー ドデ一夕 7 2 codで発振させ、 この発振周波数を所望によ り随時測定 し、 これから補正値 7 9 datを算出 して直線性補正テーブル 7 9 に格納し た後、 掃引実施するよ う に しても良く 、 同様に して実施できる。 この発明の第 2の実施例を図を参照して説明する。
本発明の実施例は、 局部発振器を従来の Y T O 4 0で構成し、 上述の 直線性補正部 7 8を設けて、 組み合わせた場合の例である。
こ こで、 丫丁 04 0に与ぇる制御電圧 3 8 voscに対する発振周波数の 特性を、 図 4の発振周波数の電圧感度特性曲線例に示す。 Y T O 4 0は 、 個々のサンプル C、 サンプル D毎に異なった非直線性曲線を有してい る。 両サンプル共に、 中間の領域、 すなわち領域 Bでは、 比較的直線性 が良好である。 しかし、 両端の領域、 すなわち、 領域 Aや領域 Cに於い ては、 直線性が劣っている。
従来のスぺク ト ラムアナライザの局部発振器に於いては、 この領域 A や領域 Cを避け、 比較的直線性の良好な領域 Bに限っ て、 動作を行わせ ていた。
本実施例に於いては、 掃引制御部 7 0からの制御電圧 3 8 voscと して は、 上述の実施例 1 と同様に、 非直線性曲線を直線性補正に補正変換さ れた制御電圧 3 8 voscが供給される。
掃引制御部 7 0の内部構成は、 図 1 に示すよ う に、 ラ ンプ発生部 7 2 と、 直線性補正部 7 8と、 D A変換器 7 4 と、 L P F 7 6 とで構成 して いて、 直線性補正部 7 8を追加して、 Y T O 4 0の直線性を補正するコ — ドデータ変換処理を追加している。
内部の直線性補正テーブル 7 9 には、 制御電圧 3 8 voscに対する発振 周波数特性曲線を求めておいた補正値 7 9 datを、 予め格納してお く。 補正値 7 9 datの設定は、 上述の実施例 1 と同様に行う。
先ず、 測定時には、 周波数カウ ン夕のよ う な測定器を接続して、 発振 周波数を測定する。
すなわち、 図 5 に示すよう に、 制御電圧 3 8 voscに対する設定値を V 1 と し、 発振周波数 4 O oscの測定値が F 1 である とする。
次に、 真値 F 2を得るための電圧 ( V I — A V I ) を求める。
これによ り、 補正分 (一 Δ ν ΐ ) を補正値 7 9 datと して格納する。 同様に、 電圧 V I の他の設定値に対しても、 各々補正値 7 9 datを求め 、 格納しておく。 動作時には、 ラ ンプ発生部 7 2からのコー ドデータ 7 2 codを受けて、 これをァ ド レスとする直線性補正テーブル 7 9の補正値 7 9datを読みだ して、 コー ドデータ 7 2 codと演算して直線性補正した変換コー ドデータ 7 8 codを D A変換器 7 に供給する。
この結果、 Y T O 4 0は一定周波数の増加傾き となる直線性のある掃 引周波数を発振出力できる。
このよ う に、 Y T 04 0の非線形領域、 すなわち図 4 に於ける、 領域 Aや領域 Cに於いても、 充分に直線性のある掃引周波数を発掘出力でき る。
このため、 スパン周波数 (掃引範囲周波数) 区間を広く カバーできる ので、 簡易で安価に広帯域のスぺク ト ラムアナライザを構成できる。 産業上の利用可能性
本発明は、 以上説明したよ う に構成されているので、 下記に記載され るよ う な効果を奏する。
掃引制御部 7 0の直線性補正部 7 8は、 例えばバラ ク タチューン ド V C 02 0を用いる場合には、 バラ ク夕チューン ド V C 02 0の発振周波 数の非直線性を補正して、 掃引周波数が一定周波数の増加傾き となるよ う に直線.性補正した掃引を可能にする効果が得られる。
また、 例えば Y T〇 4 0を用いる場合には、 Υ Τ Ο 4 0の発振周波数 の非直線性を補正して、 掃引周波数が一定周波数の増加傾き と なるよ う に直線性補正した掃引を可能にする効果が得られる。
このよ う に、 可変容量ダイ オー ド 2 4を可変同調素子と して V C Oを 構成 した場合には、 掃引制御部 7 0の直線性補正部 7 8で発振周波数の 掃引直線性を補正するコー ドデータに変換してラ ンプ掃引する局部発振 器 3 0は、 従来と同等レベルのスぺク 卜 ラム測定の周波数確度を維持で きる効果が得られる。
また、 Y T Oの非直線性の部分を用いて、 V C Oを構成した場合にも 、 掃引制御部 7 0の直線性補正部 7 8で発振周波数の掃引直線性を補正 するコー ドデータに変換してラ ンプ掃引する局部発振器 3 0は、 従来と 同等レベルのスぺク トラム測定の周波数確度を維持できる効果が得られ る。
これらから、 従来よ り も安価なスぺク ト ラムアナラ イザの発振源を実 現できる効果が得られる。

Claims

請 求 の 範 囲
1. ラ ンプ信号発生部 ( 7 2 ) の出力を、 D A変換器 ( 7 4 ) でアナ ログ信号に変換し、 局部発振器 ( 3 0 ) に与えて、 V C O発振周波数を 取り 出す掃引周波数発生部において、
当該ラ ンプ信号発生部 ( 7 2 ) と当該 D A変換器 ( 7 4 ) の間に、 設 定信号に対する発振周波数の直線性誤差の補正値を格納した、 直線性補 正テーブル ( 7 9 ) を有する、 直線性補正部 ( 7 8 ) を設け、
たこ と を特徴と したスぺク ト ラムアナライザ。
2. 局部発振器 ( 3 0 ) に於ける、 V C Oは、
可変容 fiダイオー ド ( 24 ) を使用 して、 電圧制御発振器と して構成 した、 請求の範囲第 1項記載のスペク ト ラムアナライザ。
3. 局部発振器 ( 3 0 ) に於ける、 V C Oは、
Y T O ( 4 0 ) を使用 して、 電圧制御発振器と して構成 した、 請求の 範囲第 1 項記載のスぺク ト ラムアナラ イザ。
PCT/JP1996/000131 1995-01-27 1996-01-25 Analyseur de spectre WO1996023232A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19680092T DE19680092C2 (de) 1995-01-27 1996-01-25 Spektrumanalysator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/31620 1995-01-27
JP3162095A JPH08201450A (ja) 1995-01-27 1995-01-27 スペクトラムアナライザ

Publications (1)

Publication Number Publication Date
WO1996023232A1 true WO1996023232A1 (fr) 1996-08-01

Family

ID=12336267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/000131 WO1996023232A1 (fr) 1995-01-27 1996-01-25 Analyseur de spectre

Country Status (3)

Country Link
JP (1) JPH08201450A (ja)
DE (1) DE19680092C2 (ja)
WO (1) WO1996023232A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004054261A1 (de) * 2004-11-09 2006-05-11 Hameg Gmbh Spektrumanalysator und Verfahren zum Messen von Frequenzpegeln
JP4824591B2 (ja) * 2007-02-05 2011-11-30 日本電波工業株式会社 同期掃引シンセサイザ
JP5973949B2 (ja) * 2013-03-29 2016-08-23 アンリツ株式会社 磁気同調デバイス駆動装置及びそれを用いた信号分析装置並びに磁気同調デバイス駆動方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01253658A (ja) * 1988-04-01 1989-10-09 Advantest Corp 周波数変換器
JPH0373021U (ja) * 1989-11-17 1991-07-23
JPH0750525A (ja) * 1993-02-17 1995-02-21 Hewlett Packard Co <Hp> ディジタル補正を備えたアナログランプ発生器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223591B2 (ja) * 1972-06-20 1977-06-25
US4129832A (en) * 1977-06-20 1978-12-12 Harris Corporation Method and means for linearizing a voltage controlled oscillator sweep generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01253658A (ja) * 1988-04-01 1989-10-09 Advantest Corp 周波数変換器
JPH0373021U (ja) * 1989-11-17 1991-07-23
JPH0750525A (ja) * 1993-02-17 1995-02-21 Hewlett Packard Co <Hp> ディジタル補正を備えたアナログランプ発生器

Also Published As

Publication number Publication date
DE19680092C2 (de) 2000-10-26
JPH08201450A (ja) 1996-08-09
DE19680092T1 (de) 1997-04-24

Similar Documents

Publication Publication Date Title
US4573026A (en) FM Modulator phase-locked loop with FM calibration
US7847644B2 (en) Modulation signal generation circuit, transmission/reception module, and radar device
US6985043B2 (en) Atomic oscillator
JP2000509219A (ja) 温度補償および周波数逓倍機能を備えた周波数シンセサイザおよびその製造方法
CN107257240B (zh) 一种晶体振荡器的数字温度补偿方法
KR101035827B1 (ko) 전압 제어형 발진기 사전 설정 회로 및 사전 설정 방법
US7587180B2 (en) FM modulator
US7236063B2 (en) Broadband modulation PLL, and modulation factor adjustment method thereof
US7902891B1 (en) Two point modulator using voltage control oscillator and calibration processing method
WO1996023232A1 (fr) Analyseur de spectre
JP3135867B2 (ja) 水晶振動子のci測定方法および水晶発振回路
US4920317A (en) Oscillator for measuring the ambient magnetic field
EP2600520A1 (en) Modulation signal generation circuit, transmission/reception module, and radar device
JP4591592B2 (ja) 変調信号発生回路、送受信モジュール、およびレーダ装置
JP4036636B2 (ja) 一巡利得を補償する機能を備えたフェーズ・ロックド・ループ発振装置
CN102611389B (zh) 调制信号发生电路、发送接收模块、以及雷达装置
Musch et al. Fractional divider concepts with phase-lock-control for the generation of precise linear frequency ramps
JP4306637B2 (ja) 変調信号発生回路、送受信モジュール、およびレーダ装置
Musch et al. Measurement of the ramp linearity of extremely linear frequency ramps using a fractional dual loop structure
JP2016161499A (ja) 周波数変調回路
JPH0718188Y2 (ja) 位相同期ループ回路
JP7491092B2 (ja) 位相同期回路及び位相同期方法
CN111010089B (zh) 一种抗振型晶体振荡器
KR101825038B1 (ko) 주파수 잠금 회로
Pichler et al. Frequency-sweep linearization for FMCW sensors with high measurement rate

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE US

ENP Entry into the national phase

Ref document number: 1996 704575

Country of ref document: US

Date of ref document: 19961119

Kind code of ref document: A

RET De translation (de og part 6b)

Ref document number: 19680092

Country of ref document: DE

Date of ref document: 19970424

WWE Wipo information: entry into national phase

Ref document number: 19680092

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: CA