WO1996017978A1 - Procedimiento de tratamiento anticorrosivo para cables trenzados y sistema de arrastre - Google Patents

Procedimiento de tratamiento anticorrosivo para cables trenzados y sistema de arrastre Download PDF

Info

Publication number
WO1996017978A1
WO1996017978A1 PCT/ES1995/000142 ES9500142W WO9617978A1 WO 1996017978 A1 WO1996017978 A1 WO 1996017978A1 ES 9500142 W ES9500142 W ES 9500142W WO 9617978 A1 WO9617978 A1 WO 9617978A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
procedure
anticorrosive treatment
cables
washing
Prior art date
Application number
PCT/ES1995/000142
Other languages
English (en)
French (fr)
Inventor
Juan Reyes Fernandez
Original Assignee
Galol, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from ES9402488A external-priority patent/ES2089976B1/es
Priority to SK1010-96A priority Critical patent/SK101096A3/sk
Priority to BR9506703A priority patent/BR9506703A/pt
Priority to RU96118240A priority patent/RU2142022C1/ru
Priority to DE19581498T priority patent/DE19581498T1/de
Priority to GB9616349A priority patent/GB2301378B/en
Priority to JP8517340A priority patent/JPH09509223A/ja
Application filed by Galol, S.A. filed Critical Galol, S.A.
Priority to EP95938467A priority patent/EP0754778A1/en
Priority to AU39841/95A priority patent/AU709945B2/en
Publication of WO1996017978A1 publication Critical patent/WO1996017978A1/es
Priority to SE9602848A priority patent/SE9602848L/
Priority to NO963098A priority patent/NO963098L/no
Priority to DK082296A priority patent/DK82296A/da
Priority to FI963019A priority patent/FI963019A/fi
Priority to MXPA/A/1996/003160A priority patent/MXPA96003160A/es

Links

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B7/00Details of, or auxiliary devices incorporated in, rope- or cable-making machines; Auxiliary apparatus associated with such machines
    • D07B7/02Machine details; Auxiliary devices
    • D07B7/12Machine details; Auxiliary devices for softening, lubricating or impregnating ropes, cables, or component strands thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/24Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/14Ropes or cables with incorporated auxiliary elements, e.g. for marking, extending throughout the length of the rope or cable
    • D07B1/141Ropes or cables with incorporated auxiliary elements, e.g. for marking, extending throughout the length of the rope or cable comprising liquid, pasty or powder agents, e.g. lubricants or anti-corrosive oils or greases
    • D07B1/142Ropes or cables with incorporated auxiliary elements, e.g. for marking, extending throughout the length of the rope or cable comprising liquid, pasty or powder agents, e.g. lubricants or anti-corrosive oils or greases for ropes or rope components built-up from fibrous or filamentary material

Definitions

  • the present invention relates to a new process in the treatment of twisted cables, of which a layer of zinc is available, however scarce it may be. turning it into an anticorrosive barrier without modifying the mechanical properties of the cable, and a cable drag system. using an adjustable reduction motor for each pair of reels at each step of the procedure.
  • a normally used braided cable It is based on stainless steel wires. This cable is very thick after wire drawing. that is to say. when drawing metal wires. the greater the number of wires, the smaller the final diameter of the cable, since it can be bent better, supporting greater frictional stresses between the wires of the braided
  • This cable is ready to work once drawn, although with acceptable anticorrosive properties, it can also be said that the mechanical properties are quite deficient to work as glass-risers in car windows, clutch cables, etc ... that is. where there are minimum mechanical requirements such as traction. friction. torsion. compression, etc.
  • Stainless steel is therefore a hard material. difficult to draw, that is, if you want to draw for very fine threads, it is a delicate job since these would easily break because they are fragile. There is no ductility in the cable so it is difficult to bend and withstand the efforts.
  • This tinned cable improves the properties anticorrosive base metal, but still does not meet the requirements and requirements of certain sectors of the industry such as the automobile.
  • the anticorrosive protection is still weak and depending on the type of zinc (galvanized or electroplated). of its initial thickness prior to drawing.
  • the maximum corrosion resistance time in a salt spray chamber (ONS) in a 5% sodium chloride test according to DIN 50021 does not exceed 200 hours (corrosion of iron or base metal).
  • a commonly used cable is also galvanized steel. which has no post-drawing treatment, only with residual zinc. This cable is cheaper than stainless steel or tinned. however, it also does not meet the necessary requirements in the automobile industry.
  • the anticorrosive protection. of the type of zinc and thickness of the each is between 24 and 72 hours (iron or base metal connection).
  • the flanged cable also does not meet the corrosion requirements. When they bend a lot or are subjected to high mechanical stresses, the shelling resistances breaking this last layer making this scale a shear effect and causing a greater detachment of the layer. Icados plast if icados should not be made to work with harsh mechanical conditions because they are disinfected.
  • Another cable used in the automobile sector but without anticorrosive properties is a copper or brass cable used in the tires.
  • the braided product cable solves the aforementioned drawbacks at an economical price without the need for complex or polluting installations.
  • This treatment is based on the transformation of the zinc layer of a wire, although this layer is very scarce. the residual zinc after drawing the steel being transformed. Without the deposition of another metal. organic or synthetic resin. varnishes etc. .. a final product of high degree of corrosion resistance and without substantial variations in mechanical behavior is obtained, in a final stage of the process by means of special lubrication.
  • the chromium-silicon layer that is provided on the zinc layer generates an inactive microc ⁇ stal layer based on zinc, iron, chromium and silicon salts that greatly prevent the formation of corrosion oxide from the base metal even for large mechanical stresses in corrosive environments.
  • This hard layer consistent with friction, is migrant, that is, through moisture it has the property that once damaged, it partially recovers its anti-corrosive properties so it is ideal to maintain its anti-corrosive characteristics throughout the life of the cable .
  • the minimum corrosion resistance time is 240 to 800 hours, depending on the zinc layer, base material. and type of chromate applied or formed.
  • the passage of the chromate can be done either with chromium 6 (Cr6) or with chromium 3 (Cr3) depending on the degree of anti-corrosion desired. since the Cr6 allows. Under the same corrosion conditions, longer life than Cr3 treated cable. However, there are companies that do not support Cr6 parts in their mechanisms. Therefore, this procedure allows any of the two possibilities in its treatment. It can be used with any base material that supports a layer of zinc. such as galvanized or electroplated steels.
  • the cable (8) nasa by the process, from one step to another. by a drag system that is based on the use of an engine. preferably electric, independently for each step of the process.
  • engines spin. initially, at the same speed, so that there is no such high tension in the cable since the end of the process, this voltage increasing as the process is longer.
  • the tension in the cable can be reduced remarkably, since the drag force will receive it at each step of the process, at the same time that this force is not going to be traction but which is going to be through the rotation of the drum or reel with a large thrust surface involving a much greater distribution of forces and therefore less tension on it.
  • a motor speed regulator device is incorporated into this drive system, so that in the case of a cable reel being excessively tensioned or by default the motor would accelerate sufficiently to equalize tensions in the cable and reach again speed of rotation of regime.
  • This regulating device consists of a counterweight on the cable, a crank lever arm. a preferred analog detector. a variator regulator preferably vertical type and the motor itself.
  • Figure 2. View iogitudinai of the reels, with the engine, levers and regulating device.
  • Figure 3. Cross section of the reels, with the pulley system. counterweights, etc.
  • These cylinders (6) are hollow, preferably by weight, have a groove (7) through which the cable (8) passes.
  • These cylinders or reels (6) rotate on two support pieces (19) each, easily removable, which through a stud (20) form the point of attachment and support with the graphite teflon bearings (17) that can yield some inclination in its housing (21) of the bodies (16). joined together to all the bodies of the other cylinders, so that by raising this structure all the cylinders (6) are raised for replacement, cleaning, new cable placement, etc.
  • the cable which comes from a coil, is immersed in a container (1) where there is a double cylinder (6) on which the cable (8) is wound. being below the level of a degreasing liquid (10). so that this cable (8) is cleaned of all the dirt that it carries.
  • the fluid used (10) can be any of those commonly used for these purposes, it does not require any in particular.
  • An optimum temperature of this degreaser is between ambient and 90 ° C. With a time between 30 and 180 seconds .
  • the degreasing will be with neutral emulsifiers, detergents or preferably by slightly alkaline degreasers.
  • This step can be performed by immersion in the cuvette (1) wound in the drum (6) or by projection of these fluids on the cable (8). as a previous or substitute process for degreasing by detergents.
  • the cable continues to circulate, leaves the first step (1) and is subjected to a drain (11) by blowing, pro absorption by any known method. etc. .. continuing the cable through means that keep it tight, guiding it at all times by means of pulleys (9). rollers, etc. Subsequently, it passes to a second washing container (2) where it is rinsed of any possible dirt or degreaser from the previous step.
  • This second step of washing it can be replaced by a fine shower, or spray where the same results could be achieved but eliminating a container (2) with its corresponding cylinder (6). In either case, the residues of this washing step are biodegradable, so it does not constitute a source of contamination.
  • step (3) we ensure that there is no degreasing gap using any fluid according to this function. Also available in this step is one or several cylinders (6), which as in the previous steps. it is on which the cable is wound in said bathroom.
  • neutralizing materials can be dilute acids such as nitric, chloridric. sulfuric acid, etc. or appropriate acid salts in concentration and nature.
  • a chromate bath (4) This bath or treatment is preferably carried out in chromium 3 (Cr + 3) or chromium (Cr + 6) depending on the desired characteristics.
  • Chromium 6 allows a considerably higher corrosion resistance than that provided by chromium layer 3.
  • the temperature is between ambient and 40 ⁇ C with proportions in chrome or 1 to 10 gr / liter and a PH of 1 to 2.5 with a time of this step of 10 to 120 seconds.
  • the cuvette or container (4) of the chromate and add the desired fluid. It could also be done with two cables, so that one comes out of the neutralized towards the Cr + 3 cuvette and another cable from the same neutralized cuvette towards the Cr + 6 cuvette.
  • a drain (12) is applied to the cable, of the same characteristics as the previous drain (11) at the outlet of the degreasing (1).
  • a drying (13) where, by means of heating with forced air or preferably by induction, the moisture that the cable can carry after these baths is almost instantaneously removed.
  • the next step is the sealing (5) where the coiled cable is introduced in the double slotted cylinder (6) in a hot aqueous solution between 60 and 802 C of a silicate compound, which reacts in alkaline medium and at concentrations between 10 and 50 gr / liter and PH between 10.5 and 12. with the chromate layer, forming a complex of zinc and silica chromate (SO2) that form the definitive anticorrosive layer once dry in the subsequent step.
  • SO2 zinc and silica chromate
  • the time in this step ranges from 20 to 240 seconds. All chromate-if 1 ice remains in the treatment, there is no waste or contamination so it is not necessary to have expensive and necessary facilities because chromium is highly polluting.
  • the last step of the procedure consists of a drain (12) and drying (13) of similar characteristics to the deposits in the previous step (12 and 13).
  • This anticorrosive rod is formed as a result of an inaccurate zinc-based microcrystalline layer.
  • iron, chromium and silicon that greatly prevent the formation of corrosion oxide from the base metal even for large mechanical stresses in corrosive environments.
  • a lubrication step will be advised or not. if the cable has to withstand a friction in its work or friction by twisting of the cable, from thread to thread, against pulleys. glues, etc. .. then this last lubrication step will be preferred.
  • the cable pass it to a next bucket (18). where by spraying or immersion, the oil will be applied in conditions of temperatures, times. etc .. according to its function, returning to collect the oil not impregnated.
  • This lubricant may preferably be molybdenum sulfide. although others, organic or synthetic appropriate to these functions could be used. Finally, in the case of lubrication, a final draining and drying step will be reapplied.
  • the cable would be rewound, already treated, for commercialization and use.
  • the speed of the cable throughout the procedure in continuous. It will normally be constant, depending on the residence time in each bath or step of the number of turns that the cable to the drum (6) in each step.
  • the speed of drag will be adjustable conditioning the speed to each case in particular that will depend on the base metal. desired anticorrosive layer, diameter of the cylinders.
  • the cable (8) is wound around these reels a number of turns proportional to the time of each bath.
  • the reels like the other elements, are subject to a vertically movable structure to introduce or remove the reels from the corresponding bathroom.
  • the cable goes tangently to a drainer (22). a pulley (23). on whose cable another pulley (24) with a counterweight (25) supports a lever arm (26) attached to a bar (27). which acts as a crank-crank with the plate or arm (28) above which it carries a distance variation detector (29) which sends a signal to the motor (30) that supplies the movement to the reels.
  • the operation is simple, for this, when the process is started all the motors are connected (30) at a time. turning all of them, in principle, at the same speed for the cable, synchronize in each of the steps. There will preferably be a motor device for each set of reels exist at each step of the process.
  • This movement causes a small shot of the cable that is unwound from its coil at the time of the treatment object of the patent.
  • This cable (8) is wound by the turns of the reels (6) of the corresponding bath.
  • the cable (8) emerges tangentially from the upper reel, going towards the vessel (22) through which a current of air is forced into the cable, forcing all the liquid that it drags to fall into the same tank from which it started.
  • This pulley (23) can be any detector of the tension of the cable (24) at that point.
  • Said voltage detector (24) is attached to an arm (26) connected in turn on a bar (27) that can rotate on its axis.
  • This arm (26) can carry a counterweight (25) regulator of the desired tension in the cable.
  • the voltage detector (24) When for any reason the cable (8) is stretched, the voltage detector (24) will be tilted, in this case down. by the effect of the counterweight (24) causing a rotation of the crank rod (9. 10) by turning the plate or crank device (28). in a way that the relative position of its surface ⁇ 3i) with respect to the detector (29). preferably analog, it varies, sending a signal to the voltage reduction motor (30) which results in a decrease in its rotation speed, until the tension in the cable is correct again, the pulley (24) ascends originating a torque on the arm (26). the bar (27) and the crank (28) with what is again the same relative position with the detector (29) cutting off the signal that sent voltage reduction to the motor (30) by rotating it again or in the rotation regime original.
  • This device will be placed for each existing reel set in each step or bath of the process.
  • This treatment is adequate and multiplier of the anticorrosive effect in the case that it is applied to wire drawing with electrodeposition of zinc alloys, such as zinc-iron, zinc-niguel. etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Ropes Or Cables (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Coating With Molten Metal (AREA)
  • Braiding, Manufacturing Of Bobbin-Net Or Lace, And Manufacturing Of Nets By Knotting (AREA)
  • Electric Cable Installation (AREA)

Abstract

Este procedimiento de tratamiento anticorrosivo para cables trenzados y sistema de arrastre consiste en, partiendo de un cable trenzado, con una capa de cinc residual procedente del cincado o galvanizado de alambre que posteriormente se ha trefilado y trenzado, aunque ésta sea muy escasa, el que reste en los hilos o filamentos del cable, sin deposición de metal o, resina orgánica, sintética, etc., obtener un producto final de alto grado de resistencia a la corrosión sin variaciones del comportamiento mecánico. Se sigue los siguientes pasos: desengrase, escurrido, lavado, neutralizado, cromato, escurrido y lavado, sellado, escurrido y secado, pudiéndose eliminar el segundo lavado, posteriormente, según el caso, se procede a un último paso de lubricación. El sistema de arrastre se basa en unos motores independientes variables y autorregulables, conectado cada uno a un carrete en cada paso del procedimiento. Incorpora para cada motor un juego de brazo, contrapeso y un detector analógico regulador de la velocidad del motor cuando la tensión del cable varía.

Description

TITULO DE LA INVENCION
PROCEDIMIENTO DE TRATAMIENTO ANTICORROSIVO PARA CABLES TRENZADOS Y SISTEMA DE ARRASTRE.
La presente invención se refiere a un nuevo procedimiento en el tratamiento de cables trenzados, de los que se disponen de una capa de cinc, por escasa que ésta sea. convirtiéndola en una barrera anticorrosiva sin modificar las propiedades mecánicas del cable, y un sistema de arrastre del cable trenzado. utilizando un motor reductor regulable para cada par de carretes en cada paso del procedimiento.
En la actualidad se utiliza gran cantidad de cables en infinidad de aplicaciones . Basándose únicamente en los que se encargan de transmitir una fuerza y ser resistentes al medio donde vayan alojados, como ejemplo, en los tiradores de ventanillas en coches. cables de embragues, en motos, etc.. se Duede decir que actualmente el cable con buenas propiedades mecánicas tiene, normalmente baja resistencia a la corrosión y viceversa. Estos cables van instalados en conjuntos o ensamblajes, cuyas otras piezas poseen una vida más larga, soportando tanto el efecto de la corrosión como los esfuerzos mecánicos a los que están sometidos. Esto implica que estos cables estén provocando un mayor mantenimiento de un conjunto ya que estos cables se han de cambiar mas periódicamente que las demás piezas.
Un cable trenzado normalmente utilizado. es a base de hilos de acero inoxidable. Este cable resulta muy grueso después del trefilado. es decir. al trefilar unos hilos de metal. a mayor numero de hilos, cuanto menor sea el diámetro final del cable, ya que se puede doblar mejor aguantando mayores esfuerzos por fricción entre hilos del trenzado .
Este cable esta listo para trabajar una vez trefilado, si bien con unas propiedades anticorrosivas aceptables, también se puede decir que las propiedades mecánicas son bastante deficitarias para trabajar como alza-cristales en ventanillas de coches, cables de embrague, etc.. es decir. donde existen unas mínimas exigencias mecánicas como tracción. fricción. torsión. compresión, etc.
Estas malas características mecánicas son debidas. básicamente, a la dificultad que aparece en el trefilado cuando se pretende realizar con un numero de hilos elevado porque, tal y como se ha dicho anteriormente, mayor número de hilos en menor diámetro final implica mejores propiedades mecánicas del cable.
El acero inoxidable es pues un material duro. difícil de trefilar, es decir, si se quiere trefilar para hilos muy finos, es un trabajo delicado ya que fácilmente se romperían estos pues son frágiles. No hay ductilidad en el cable por lo que difícilmente se podrá doblar y aguantar los esfuerzos.
Otro cable que se utiliza en la actualidad. el cual mejora las propiedades mecánicas respecto al cable de acero inoxidable, toma como metal base un acero galvanizado o electrocincado al cual se le somete a un tratamiento de estañado, normalmente por electrodeposición.
Consiste en crear una fina capa de estaño sobre la de cinc del galvanizado o electrocincado del acero. Este estañado se suele dar por electrólisis, lo que implica un proceso caro y complejo, que repercute finalmente en el precio del cable en el mercado.
Este cable estañado mejora las propiedades anticorrosivas del metal base, pero aún asi no cumple con las exigencias y reαuisitos de ciertos sectores de la industria como es el del automóvil. La protección anticorrosiva sigue siendo débil y dependiendo del tipo de cinc (galvanización o electrocincado). de su espesor inicial anterior al trefilado. el tiempo máximo de resistencia a la corrosión en cámara de niebla salina (ONS) en un ensayo al 5% de cloruro sódico según la norma DIN 50021 no supera las 200 horas (corrosión del hierro o metal base).
Este cable estañado. implica pues. un procedimiento caro y lento ya que el paso de la electrodeposicion es compiejo. necesitando ademas de instalaciones de lavado, neutralizado. y depuración pues, los restos de productos utilizados en el procedimiento son altamente contaminantes con lo que requieren un tratamiento antes de desechar estos productos. Esto, implica además que parte de los productos utilizados se van a perder en el neutralizado y depuración de residuos. con lo que se encarece doblemente por las instalaciones y por el material que se deseche.
Independientemente de los procedimientos de obtención con material base de acero inoxidable. o los cables estañados, estos materiales son inestables en el mercado. en el sentido de que hay pocos productores de estos materiales con lo que los precios son elevados y fluctuantes. además de un suministro no siempre garantizado.
Un cable comunmente utilizado también es el de acero galvanizado. el cual no tiene ningún tratamiento posterior al trefilado, únicamente con el cinc residual. Este cable es mas barato que el de acero inoxidable o el estañado. sin embargo, tampoco cumple los requisitos necesarios en la industria del automóvil. La proteccion anticorrosiva. deDend.endo del tipo de cinc y espesor de la caDa . el tiempo máximo de resistencia a la corrosión en cámara de niebla salina (ONS) en un ensayo al 5% de cloruro sódico según la norma DIN 50021 esta entre 24 y 72 horas (conexión del hierro o metal base).
El ensayo de corrosión en clima industrial (camara climática. 2 litros de SO2 > según la norma DIN 50.018 no supera ei primer ciclo sin corrosión roja (o del metal base).
Otros cables que vienen utilizando en el sector del automovil, aunαue no tanto como los ya mencionados son los cables de acero fosfatado, sin cinc con el anima del cable en parte ferrosa. Después del trenzado se fosfata. dando buenas propiedades mecánicas pero mala resistencia a la corrosión.
El cable embreado tampoco cumple con las exigencias anticorrosivas. Cuando se doblan mucho o son sometidos a elevadas solicitaciones mecánicas se rompen las resistencias descascanllandose esta ultima capa haciendo esta cascarilla un efecto cizalla y provocando un mayor desprendimiento de la capa. A ios cables plast if icados no se les debe hacer trabajar con duras condiciones mecánicas pues se desplastifican.
Otro cable utilizado en el sector del automóvil pero sin propiedades anticorrosivas es un cable cobreado o latonado usado en ios neumáticos.
En conclusión se puede decir que actualmente, los cables trenzados no cumpien con los requisitos dei sector del automovil y motor en general, bien porgue no tiene gran resistencia a la corrosión o si la tiene este tratamiento merma sus propiedades mecánicas. implicando un mayor mantenimiento ademas de cable mas caros con menor vida. DESCRIPCION DE LA PATENTE
Con la utilización del procedimiento objeto de la presente invención, el cable trenzado producto resuelve los inconvenientes anteriormente citados a un precio económico sin necesidad de instalaciones complejas ni contaminantes.
Este tratamiento está basado en la transformación de la capa de cinc, de un alambre, aunque esta capa sea muy escasa. siendo el cinc residual después del trefilado del acero el que se transforma. sin la deposición de otro metal. resina orgánica o sintética. barnices. etc.. se obtiene un producto final de alto grado de resistencia a la corrosión y sin variaciones sustanciales del comportamiento mecánico, en una fase final del procedimiento mediante una lubricación especial.
Por ser un cable hecho de hilos de acero galvanizado. se puede trefilar sin problemas obteniendo cables de gran numero de hilos y escaso diámetro, por lo que se obtendrá un cable dúctil, maniobrable y de altas propiedades mecánicas ya que tampoco hay un tratamiento posterior de electrodeposición que merme sus propiedades. Por otro lado, la capa de cromo-silicio que se aporta sobre la de cinc genera una capa microcπstal ina a base de sales de cinc, hierro, cromo y silicio que impiden en gran medida la formación de óxido de corrosión del metal base incluso para grandes solicitaciones mecánicas en ambientes corrosivos. Esta capa dura consistente a la fricción, es migrante, es decir, a través de la humedad tiene la propiedad de que una vez dañada, recupera en parte sus propiedades anticorrosivas por lo que es ideal nara mantener sus características anticorrosivas durante toda la vida del cable.
Se ha comprobado αue la protección corrosiva αe este cable trenzado. en un ensavo de cámara de niebla salina según la norma DIN 50021 el tiempo mínimo de resistencia a la corrosión es de 240 a 800 horas, dependiendo de la capa de cinc, material base. y tipo de cromato aplicado o formado.
El paso del cromato se puede realizar bien con cromo 6 (Cr6) o con cromo 3 (Cr3) dependiendo del grado de ant icorrosión deseado. ya que el Cr6 permite. bajo las mismas condiciones de corrosión, mayor vida que el cable tratado con Cr3. Sin embargo hay compañías que no admiten en sus mecanismos piezas con Cr6. por lo que este procedimiento permite cualαuiera de las dos posibilidades en su tratamiento. Se puede utilizar con cualquier material base que admita una capa de cinc. como por ejemplo aceros galvanizados o electrocincados.
Se trata pues de un procedimiento de alto poder anticorrosivo. debido a la copa de cromato-silice. económico y sencillo pues no requiere pasos como electrodeposición que encarecen y complican el proceso, con escasa variación de las propiedades mecánicas. maniobrabilidad y flexibilidad, no hay pérdidas de masas por descascarillado. En un proceso en continuo cabe la posibilidad de eliminar el paso de lavado, lo cual elimina una posible contaminación y coste, mediante un escurrido y/o secado (por soplado o apsorción mecánica del arrastre) o método conocido como puede ser por inducción.
Todo el cromato-silice se queda en el tratamiento, no hay desechos ni contaminación en el proceso de trabajo. Por ultimo dependiendo del uso final del cable trenzado, se le puede dar un paso de lubricación a base de sulfuro de molidbeno preferiblemente u otro lubricante orgamco o sintéticos apropiados. Con todo esto resulta un cable:
- con menor coste de mantenimiento en el conjunto donde vayan alojados.
- de gran aplicación en ambientes salinos y muy corrosivos.
- económicos si se compara con la larga vida del mismo, pues las propiedades mecánicas se mantienen en la duración de ensayos reales sobre este tipo de cables.
- que admite la lubricación y colorante en el mismo o posterior tratamiento.
- menos contaminante
- las propiedades anticorrosivas permanecen en un porcentaje elevado después de las solicitudes mecánicas, recibidas a lo largo de su vida.
El cable (8) nasa por el proceso, de un paso a otro. por un sistema de arrastre que está basado en la utilización de un motor. preferentemente eléctrico, independientemente para cada paso del proceso. Estos motores giran. en un principio, a la misma velocidad, de manera que en el cable no exista una tensión tan elevada desde el final del proceso, incrementándose esta tensión a medida que el proceso es mas largo. Con la utilización de estos mecanismos que hacen girar a los carretes se consigue reducir la tensión en el cable notablemente, ya que ía fuerza de arrastre la va a recibir en cada paso del proceso, a la vez que esta fuerza no va a ser tracción sino que va a ser a través del giro del tambor o carrete con una superficie de empuje grande implicando un reparto de fuerzas mucho mayor y por tanto menor tensión sobre este.
Se le incorpora a este sistema de arrastre un dispositivo regulador de velocidad de caαa motor, de forma que en el caso de que en un carrete ei cable se tensase en exceso o por defecto el motor se aceleraría lo suficiente para igualar tensiones en el cable y alcanzar nuevamente la velocidad de giro de régimen.
Este dispositivo regulador consiste en un contrapeso sobre el cable, un brazo de palanca bielamanivela. un detector preferente analógico. un regulador variador preferiblemente tipo vertical y el motor propiamente.
Se comprendera mejor el diseño de la presente invención con ayuda de los dibujos siguientes donde se representan una esquema del procedimiento y diversas vistas y detalles del sistema de arrastre:
Figura 1.- Esquema del procedimiento en el tratamiento del cable trenzado.
Figura 2.- Vista iogitudinai de los carretes, con el motor, palancas y dispositivo regulador. Figura 3.- Corte transversal de ios carretes, con el sistema de poieas. contrapesos, etc.
Figura 4.- Detalle del dispositivo detector de la variación de tensión del cable.
Según se aprecia en la figura 1 se distinguen una serie de recicipientes (1. 2. 3. 4. 5). 5 en este caso. pudiéndose sustituir alguno según ei caso. en cuyos recipientes hay introducidos un doble cilindro ranurado (6) compuesto por unas ranuras (7) alrededor de las cuales se enreda y desenreda ei cable (8). Este cable va guiado a través de unas guias o poleas ( 9 ) .
Este proceso lleva una serie de nasos como el desengrase en cuyo recipiente (1) hay un detergente o similar (10). Un escurrido (11) a la salida de este. el cable sigue hacia un segundo recipiente (3) de neutralizado y uno αe cromato (4) c on otro escurrido (12) y un secado (13) pasando finalmente a un sellado (13) y otro escurrido
(14) y secado (15).
El tiempo que el cable ha de permanecer en cada paso no es el mismo para todos. por ello, ya que por economía todos los cilindros (6) serán preferentemente iguales y la velocidad de rotación también será la misma para todos ellos, la condición que va a dictar el tiempo de permanencia en cada paso sera el número de vueltas que el cable estará enrollado en cada cilindro o carrete (6). de forma que a mayor número de vueltas mayor es el tiempo que el cable permanecerá en el correspondiente baño. En la figura 2 se pueden ver dos cilindros ranurados por cuyas ranuras (7) se desplaza el cable (8) enrollado.
A su vez. estos cilindros (6) son huecos, preferentemente por peso, disponen de un ranurado (7) por donde pasa el cable (8). Estos cilindros o carretes (6) giran sobre dos piezas de apoyo (19) cada uno, desmontables fácilmente, los cuales a través de un tetón (20) forman el punto de unión y apoyo con los cojinetes (17) de teflon grafitados que pueden ceder cierta inclinación en su alojamiento (21) de los cuerpos (16). unida superiormente a todos los cuerpos de los demás cilindros, de manera que elevando esta estructura se elevan todos los cilindros (6) para su recambio, limpieza, colocación de nuevo cable, etc.
En el primer paso del proceso se sumerge el cable, que viene de una bobina, en un recipiente (1) donde se halla un doble cilindro (6) sobre el que se va enrollando el cable (8). estando este bajo el nivel de un líquido desengrasante (10). de manera que se limpia este cable (8) de toda la suciedad que éste transporta. el fluido utilizado (10) puede ser cualquiera de los comunmente usados para estos fines, no requiere de ninguno en concreto. Una temperatura óptima de este desengrasante es entre ambiente y 90ºC . Con un tiempo entre 30 y 180 segundos .
El desengrase será con emulsivos neutros, detergentes o preferentemente mediante desengrasantes levemente alcalinos. Este paso se puede realizar por inmersión en la cubeta (1) enrollado en el tambor (6) o bien por proyección de estos fluidos sobre el cable (8). como proceso previo o sustitutivo del desengrase por detergentes.
El cable sigue circulando, sale del primer paso (1) y se le somete a un escurrido (11) mediante soplado, pro absorción por cualquier método conocido. etc.. continuando el cable a través de medios que lo mantienen tirante, guiándolo en cada momento por medio de poleas (9). rodillos, etc. Posteriormente, pasa a un segundo recipiente de lavado (2) donde se enjuaga de cualquier posible resto de suciedad o desengrasante del paso anterior. Este segundo paso, de lavado. puede ser sustituido por una ducha fina, o aspersión donde se podrían conseguir los mismos resultados pero eliminando un recipiente (2) con su correspondiente cilindro (6). En cualquiera de los dos casos los residuos de este paso de lavado son biodegradables por lo que no constituye ninguna fuente de contaminación.
Con el siguiente paso de neutralizado (3) nos aseguramos de que no quede ningún resquicio de desengrasante utilizando para ello cualquier fluido acorde con esta función. También se dispone en este paso de uno o varios cilindros (6), que al igual que en los pasos anteriores. es sobre el que se enrolla el cable en dicho baño.
Estos materiales de neutralizado pueden ser ácidos diluidos como nítricos, cloridrico. sulfúrico, etc.. o sales acidas apropiadas en concentración y naturaleza. En el cuarto paso se procede a un baño de cromato (4). Este baño o tratamiento se realiza preferentemente en cromo 3 (Cr+3) o cromo (Cr+6) dependiendo de las características deseadas.
El cromo 6 permite una resistencia a la corrosión considerablemente mayor que la que proporciona la capa de cromo 3. sin embargo existen compañías que no admiten el cromo 6 en sus mecanismos, por lo que se admite la posibilidad de utilizar cualquiera de los dos compuestos. La temperatura esta entre ambiente y 40ΩC con proporciones en cromo ó de 1 a 10 gr/litro y un PH de 1 a 2,5 con un tiempo de este paso de 10 a 120 segundos. En el caso de cambio de la utilización de un baño en Cr+3 a Cr+6 ó viceversa sólo hay que limpiar, adecuadamente. la cubeta o recipiente (4) del cromato y añadir el fluido deseado. También se podría hacer con dos cables, de modo que uno saiga del neutralizado hacia la cubeta del Cr+3 y otro cable de la misma cubeta de neutralizado hacia la de Cr+6. obteniendo así de una sola atacada dos cables, cada uno con una capa anticorrosiva de diferentes características. Después del paso del cromato (4) se le aplica al cable un escurrido (12), de las mismas características que el escurrido anterior (11) a la salida del desengrase (1). Una vez escurrido pasa a un secado (13) donde por medio de calentamiento con aire forzado o preferentemente por inducción, se elimina casi instantáneamente la humedad que pueda portar el cable después de estos baños.
El siguiente paso es el de sellado (5) donde se introduce el cable enrollado en el doble cilindro ranurado (6) en una solución acuosa en caliente entre 60 y 802 C de un compuesto de silicato, que reacciona en medio alcalino y a concentraciones entre 10 y 50 gr/litro y PH entre 10,5 y 12. con la capa de cromato, formándose un complejo de cromato de cinc y sílice (SO2) que forman la capa definitiva anticorrosiva una vez seco en el paso posterior. El tiempo en este paso oscila entre 20 y 240 segundos. Todo el cromato-si 1 ice se queda en el tratamiento, no hay desechos ni contaminación por lo que no es preciso el disponer de instalaciones caras y necesarias pues el cromo es altamente contaminante. El último paso del procedimiento consiste en un escurrido (12) y secado (13) de características similares a los depósitos en el paso anterior (12 y 13).
Esta cana anticorrosiva se forma a raíz de una capa microcristal ina a base de cinc. hierro, cromo y silicio que impiden en gran medida la formación de oxido de corrosión del metal base incluso para grandes solicitaciones mecánicas en ambientes corrosivos. Posteriormente, dependiendo de las solicitaciones a las que vaya a ser sometido el cable, se aconsejará un paso de lubricación o no . si el cable tiene que soportar un rozamiento en su trabajo o fricción por torsión del cable, de hilo contra hilo, contra poleas. gulas, etc.. entonces se preferirá este último paso de lubricación. El cable pasarla a una siguiente cubeta (18). donde por aspersión o inmersión, se aplicará el aceite en condiciones de temperaturas, tiempos. etc.. acorde a su función, volviéndose a recoger el aceite no impregnado.
Este lubricante podrá ser preferiblemente de sulfuro de molibdeno. aunque se podrían utilizar otros, orgánicos o sintéticos apropiados a estas funciones. Finalmente, en el caso de lubricación, se volverá a aplicar un último escalón de escurrido y secado.
Oocionalmente durante el paso de cromato, con cromo 3. se permitirá añadir un colorante compatible, de tipo anilina e igualmente en la solución de silicato con lo que quedará un ligero teñido en cualquier color y tonalidad que servirá como identif icativo del proceso, siendo el azul, verde o rojo los más adecuados. Este color no influye en la reacción química ni resultado final.
Después de todo este tratamiento. el cable se volvería a enrollar, ya tratado, para su comercialización y uso.
La velocidad del cable a lo largo del procedimiento, en continuo. sera normalmente constante, dependiendo el tiempo de permanencia en cada baño o paso del numero de vueltas que el cable de al tambor (6) en cada paso. La velocidad de arrastre será regulable acondicionando la velocidad a cada caso en concreto que dependerá del metal base. capa anticorrosiva deseada, diámetro de los cilindros. En los dibujos se pueden apreciar los carretes (6) que están normalmente introducidas en el baño de la cuba (2). Alrededor de estos carretes se enrolla el cable (8) un número de vueltas proporcional al tiempo de cada baño. Los carretes al igual que los demás elementos van sujetos a una estructura desplazable verticálmente para introducir o sacar los carretes del baño correspondiente.
El cable sale tangentemente hacia un escurridor (22). una polea (23). sobre cuyo cable apoya otra polea (24) con un contrapeso (25) un brazo de palanca (26) unido a una barra (27). que hace de biela-manivela con la pletina o brazo (28) por encima del cual lleva un detector (29) de variación de distancia el cual manda una señal al motor (30) que suministra ei movimiento a los carretes.
El funcionamiento es sencillo, para ello, cuando se pone en marcha el proceso se conectan todos los motores (30) a la vez. girando todo ellos, en principio, a la misma velocidad para el cable vaya sincronizado en cada uno de los pasos. Habrá, preferentemente, un dispositivo motor por cada juego de carretes existen en cada paso del proceso.
Este movimiento origina un pequeño tiro del cable que se va desenrollando de su bobina a la hora del tratamiento objeto de la patente. Este cable (8) se enrolla por las espiras de los carretes (6) del baño correspondiente .
El cable (8) sale tangencialmente del carrete superior, dirigiéndose hacia vaso (22) por cuyo interior se fuerza una corriente de aire que incide sobre el cable obligando a que todo el liquido que arrastra caiga a la misma cuba de la que partió.
Después de este vaso (22) de escurrido pasa por una polea (23) hacia el carrete del baño contiguo. En dicho tramo se coloca una polea (24) que descansa sobre el vano del cable (8) entre la polea (23) y el siguiente carrete
(6) . Esta polea (23) puede ser cualquier detector de la tensión del cable (24) en ese punto. Dicho detector de tensión (24) va unido a un brazo (26) unido a su vez sobre una barra (27) que puede girar sobre su eje. Este brazo (26) puede llevar un contrapeso (25) reguiador de la tensión deseada en el cable.
Cuando por cualquier causa el cable (8) se destensa, el detector de tensión (24) se inclinara, en este caso hacia abajo. por el efecto del contrapeso (24) provocando un giro de la biela manivela (9. 10) haciendo girar a su vez la pletina o dispositivo-manivela (28). de ia manera que ia posición relativa de su superficie Í3i) con respecto al detector (29). preferentemente analógico, varía, mandando una señal al motor (30) de reducción de tensión lo que se traduce en una disminución de su velocidad de giro, hasta que la tensión en el cable vuelve a ser la correcta, la polea (24) asciende originando un par de giro sobre el brazo (26). la barra (27) y la manivela (28) con lo que vuelve a ser la misma posición relativa con el detector (29) cortando la señal que enviaba de reducción de tensión al motor (30) girando éste de nuevo o en régimen de giro original.
Ocurre lo mismo cuando el cable (8) se tensa demasiado. pero en sentido contrario. es decir. el movimiento del brazo (26). barra (27) y pietina (28) son al contrario. provocando en el detector (29) una señal que enviaría al motor (30) acelerándolo hasta que desapareciese esa sobretensión del cable (8).
Este dispositivo se colocara para cada juego de carretes existente en cada paso o baño del proceso.
Este tratamiento es adecuado y multiplicador del efecto anticorrosivo en el caso de que se aplique sobre trefilados de alambres con electrodenosicion de aleaciones de cinc, como cinc-hierro, cinc-niguel . etc.
A su vez. este tratamiento es perfectamente válido para procesos en discontinuo donde las madejas huecas de cable trenzado con capa de cinc residual . galvanizado o cincado. se van sumergiendo en los distintos pasos por medio de maquinas transfer o similares, permitiendo las reacciones químicas pertinentes que les confieren las propiedades anticorrosivas descritas. Una vez descrita suficientemente la naturaleza dei presente invento. asi como una forma de llevarlo a la práctica. sólo nos queda por añadir oue en su conjunto y partes oue io componen es oosibie introducir cambios de forma, materiales y de disposición, siempre y cuando dichas alteraciones no varíen sustancialmente las características del invento que se reivindican a continuación.

Claims

R E I V I N D I C A C I O N E S
1.- Procedimiento de tratamiento anticorrosivo para cables trenzados. partiendo de un hilo de metal base recubierto de una capa de cinc, caracterizado porque el proceso después del trenzado y trefilado consiste en un paso de desengrase, lavado, neutralizado. cromato, lavado, sellado y secado. siendo este procedimiento válido tanto para instalaciones en continuo como en discontinuo.
2.- Procedimiento de tratamiento anticorrosivo para cables trenzados. según reivindicación primera. caracterizado porque para tratamientos en continuo se puede sustituir el segundo paso de lavado por uno de escurrido y/o secado.
3.- Procedimiento de tratamiento anticorrosivo para cables trenzados. según reivindicaciones anteriores, caracterizado porque en ei escurrido, por soplado o método mecánico de absorción u otro conocido, el material sobrante vuelve a la unidad de la que partió no ocasionando de este modo pérdida alguna de material .
4.- Procedimiento de tratamiento anticorrosivo para cables trenzados, según reivindicaciones primera y segunda, caracterizado porque el secado consistirá en la evaporación del agua que contengan las capas superficiales del cable sin desprendimiento de estas capas, utilizándose para este fin preferentemente un sistema de inducción, aire forzado o cualquier método conocido.
5.- Procedimiento de tratamiento anticorrosivo para cables trenzados. según reivindicación primera, caracterizado porque después del último paso se puede dar uno posterior de lubrificación, que vendrá en función del trabajo que vaya a realizar dicho cable, siendo el aceite utilizado preferentemente a base de sulfuro de molibdeno u otros organicos o sintéticos apropi aαos a esta func i ón .
6 - Procedimiento de tratamiento anticorrosivo para cables trenzados. según reivindicación primera, caracterizado porgue los cilindros. carretes o sistema conocido que se utilizan en los correspondientes pasos para el enrollado del cable en cada baño, consiste en una sene de ranuras dispuestas en el sentido de giro del tambor.
7.- Procedimiento de tratamiento anticorrosivo para cables trenzados, según reivindicaciones primera y sexta. caracterizado porque el tiempo de permanencia del cable en cada baño o paso va venir determinado por el numero de vueltas de este cable sobre las ranuras del cilindro correspondiente.
8.- Procedimiento de tratamiento anticorrosivo para cables trenzados. según reivindicación primera, caracterizado porgue ei proceso en continuo llevara una velocidad constante originando porgue se tira del cable desde el final atravesando las distintas cubetas y rodar por los canales de los carretes o cilindros.
9.- Procedimiento de tratamiento anticorrosivo oara cables trenzados. según reivindicación primera. caracterizado ooroue en el paso de cromato, con cromo 3 se puede aplicar un teñido del cable sin influir en la reacción αuimica ni resultado final.
10.- Procedimiento de tratamiento anticorrosivo oara cables trenzados y sistema de arrastre. caracterizado por ser un sistema de arrastre acoplado al proceso, consistente en un detector de la tensión o tirantez dei cable a la entraαa de cada carrete en cada paso, dicho detector lleva un regulador de la tensión. regulable. un brazo-biela-maniveía un detector de variación de posición relativa respecto a la Pieza manivela de manera αue cualquier variación de esta posición relativa provoαue la emisión de una señal hasta un motor αue variara su velocidaα resoonαiendo a dicha señal hasta aαecuar la tensión en el cabl e .
11.- Procedimiento de tratamiento anticorrosivo para cables trenzados y sistema de arrastre, según reivindicaciones anteriores, caracterizado porque cada paso a baño dispone de un dispositivo regulador independiente de los demás, es decir, la regulación de la tensión del cable se efectuará variando la velocidad del motor en el paso correspondiente donde se haya ocasionado la diferencia de tensión del cable.
PCT/ES1995/000142 1994-12-03 1995-11-30 Procedimiento de tratamiento anticorrosivo para cables trenzados y sistema de arrastre WO1996017978A1 (es)

Priority Applications (13)

Application Number Priority Date Filing Date Title
AU39841/95A AU709945B2 (en) 1994-12-03 1995-11-30 Procedure for anticorrosive treatment
JP8517340A JPH09509223A (ja) 1994-12-03 1995-11-30 編組ケーブル用耐食処理及び引張りシステムのための処置法
BR9506703A BR9506703A (pt) 1994-12-03 1995-11-30 Processo de tratamento anti-corrosivo para cabos e trançados e processo de tratamento anti-corrosivo para cabos trançados e sistema de impulsão
RU96118240A RU2142022C1 (ru) 1994-12-03 1995-11-30 Способ антикоррозионной обработки кабеля с оплеткой с системой протяжки
DE19581498T DE19581498T1 (de) 1994-12-03 1995-11-30 Verfahren zur Antikorrosionsbehandlung für geflochtene Kabel und Ziehsystem für diese
GB9616349A GB2301378B (en) 1994-12-03 1995-11-30 Procedure for anticorrosive treatment for braided cables and pulling system
EP95938467A EP0754778A1 (en) 1994-12-03 1995-11-30 Anticorrosive treatment process for braided cables and drive system
SK1010-96A SK101096A3 (en) 1994-12-03 1995-11-30 Anticorrosive treatment process for braided cables and drive system
SE9602848A SE9602848L (sv) 1994-12-03 1996-07-23 Förfarande för antikorrosiv behandling av flätade kablar samt dragsystem
NO963098A NO963098L (no) 1994-12-03 1996-07-24 Antikorroderende behandlingsprosess for snodde kabler og trekksystem
DK082296A DK82296A (da) 1994-12-03 1996-07-30 Fremgangsmåde til korrosionsbeskyttende behandling af flettede kabler og træksystem
FI963019A FI963019A (fi) 1994-12-03 1996-07-31 Menetelmä punospäällysteisten kaapeleiden käsittelemiseksi korroosiota vastaan sekä vetojärjestelmä
MXPA/A/1996/003160A MXPA96003160A (es) 1994-12-03 1996-08-02 Procedimiento de tratamiento anticorrosivo para cables trenzados y sistema de arrastre

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
ES9402488A ES2089976B1 (es) 1994-12-03 1994-12-03 Procedimiento de tratamiento anticorrosivo para cables trenzados.
ESP9402488 1994-12-03
ESP9502310 1995-11-23
ES009502310A ES2125155B1 (es) 1994-12-03 1995-11-23 Mejoras introducidas a la patente n-9402488 po "procedimiento de tratamiento anticorrosivo para cables trenzados.

Publications (1)

Publication Number Publication Date
WO1996017978A1 true WO1996017978A1 (es) 1996-06-13

Family

ID=26154840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES1995/000142 WO1996017978A1 (es) 1994-12-03 1995-11-30 Procedimiento de tratamiento anticorrosivo para cables trenzados y sistema de arrastre

Country Status (19)

Country Link
EP (1) EP0754778A1 (es)
JP (1) JPH09509223A (es)
CN (1) CN1143395A (es)
AT (1) AT404738B (es)
AU (1) AU709945B2 (es)
BR (1) BR9506703A (es)
CA (1) CA2182567A1 (es)
CZ (1) CZ223396A3 (es)
DE (1) DE19581498T1 (es)
DK (1) DK82296A (es)
ES (1) ES2125155B1 (es)
FI (1) FI963019A (es)
GB (1) GB2301378B (es)
NO (1) NO963098L (es)
PL (1) PL315781A1 (es)
RU (1) RU2142022C1 (es)
SE (1) SE9602848L (es)
SK (1) SK101096A3 (es)
WO (1) WO1996017978A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110369353A (zh) * 2019-07-19 2019-10-25 安徽电缆股份有限公司 一种绝缘电力电缆生产用清洗装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3988884A (en) * 1974-10-10 1976-11-02 Shigeharu Kikugawa Method of making a wire rope
DE3151115A1 (de) * 1980-12-24 1982-09-02 Nippon Kokan K.K., Tokyo "mit einer ueberzugszusammensetzung versehene stahlbleche mit guter korrosionsbestaendigkeit, anstreichbarkeit und korrosionsbestaendigkeit nach dem aufbringen des ueberzugs"
EP0149461A1 (en) * 1984-01-17 1985-07-24 Kawasaki Steel Corporation Surface treatment of zinc alloy electroplated steel strips
EP0228807A1 (en) * 1985-12-03 1987-07-15 Beta Instrument Company Limited Apparatus for tension control of a flexible material during winding or unwinding from a drum or reel
JPH01100297A (ja) * 1987-10-14 1989-04-18 Osaka Prefecture ワイヤーロープの表面処理方法
WO1992005297A1 (en) * 1990-09-19 1992-04-02 Michigan Chrome And Chemical Company Corrosion resistant coated articles and process for making same
GB2255783A (en) * 1991-05-13 1992-11-18 Enthone Omi Inc Chromate conversion coatings containing an inorganic silicate; silicate compositions
US5221879A (en) * 1990-09-21 1993-06-22 Bando Chemical Industries, Ltd. Method and apparatus for winding a cord continuously in dip treating apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3988884A (en) * 1974-10-10 1976-11-02 Shigeharu Kikugawa Method of making a wire rope
DE3151115A1 (de) * 1980-12-24 1982-09-02 Nippon Kokan K.K., Tokyo "mit einer ueberzugszusammensetzung versehene stahlbleche mit guter korrosionsbestaendigkeit, anstreichbarkeit und korrosionsbestaendigkeit nach dem aufbringen des ueberzugs"
EP0149461A1 (en) * 1984-01-17 1985-07-24 Kawasaki Steel Corporation Surface treatment of zinc alloy electroplated steel strips
EP0228807A1 (en) * 1985-12-03 1987-07-15 Beta Instrument Company Limited Apparatus for tension control of a flexible material during winding or unwinding from a drum or reel
JPH01100297A (ja) * 1987-10-14 1989-04-18 Osaka Prefecture ワイヤーロープの表面処理方法
WO1992005297A1 (en) * 1990-09-19 1992-04-02 Michigan Chrome And Chemical Company Corrosion resistant coated articles and process for making same
US5221879A (en) * 1990-09-21 1993-06-22 Bando Chemical Industries, Ltd. Method and apparatus for winding a cord continuously in dip treating apparatus
US5350981A (en) * 1990-09-21 1994-09-27 Bando Chemical Industries, Ltd. Method and apparatus for winding a cord continuously in dip treating apparatus
GB2255783A (en) * 1991-05-13 1992-11-18 Enthone Omi Inc Chromate conversion coatings containing an inorganic silicate; silicate compositions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 2189, Derwent World Patents Index; Class M14, AN 89-156896 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110369353A (zh) * 2019-07-19 2019-10-25 安徽电缆股份有限公司 一种绝缘电力电缆生产用清洗装置

Also Published As

Publication number Publication date
JPH09509223A (ja) 1997-09-16
RU2142022C1 (ru) 1999-11-27
FI963019A0 (fi) 1996-07-31
BR9506703A (pt) 1997-09-16
DE19581498T1 (de) 1997-02-27
AU709945B2 (en) 1999-09-09
GB2301378B (en) 1998-12-30
CN1143395A (zh) 1997-02-19
PL315781A1 (en) 1996-12-09
FI963019A (fi) 1996-07-31
GB9616349D0 (en) 1996-09-11
ATA901495A (de) 1998-06-15
CZ223396A3 (en) 1996-12-11
AU3984195A (en) 1996-06-26
DK82296A (da) 1996-07-30
SE9602848L (sv) 1996-09-05
SE9602848D0 (sv) 1996-07-23
CA2182567A1 (en) 1996-06-13
ES2125155A1 (es) 1999-02-16
MX9603160A (es) 1997-12-31
EP0754778A1 (en) 1997-01-22
NO963098D0 (no) 1996-07-24
GB2301378A (en) 1996-12-04
AT404738B (de) 1999-02-25
NO963098L (no) 1996-09-16
ES2125155B1 (es) 1999-11-16
SK101096A3 (en) 1997-08-06

Similar Documents

Publication Publication Date Title
ES2787300T3 (es) Instalación de galvanización en caliente y procedimiento de galvanización en caliente
KR101665218B1 (ko) 관 코팅 방법
CN102421538B (zh) 具有薄的聚合物涂层的马氏体丝线
WO1996017978A1 (es) Procedimiento de tratamiento anticorrosivo para cables trenzados y sistema de arrastre
US2469123A (en) Apparatus for progressively enameling continuous metal sheeting
BE1019329A3 (nl) Werkwijze voor het vervaardigen van een gecoate metaaldraad.
HUP0302618A2 (hu) Eljárás és berendezés fémszalag rákristályosító bevonására
CN106714984A (zh) 用于形成电化学沉积到金属基底上的保护性涂层的电沉积介质
CA2176050C (en) Sludge collector method and drive with shared reel for taking up and paying out cables
US4714626A (en) Process for treating conductive profiles, particularly metallic conductive wires, the installation for carrying said process into effect, and treated profiles so obtained
CN108855802A (zh) 一种复合铜合金导线的镀银漆包生产工艺
ES2769068T3 (es) Alambre recubierto, procedimiento de obtención del mismo y malla que lo comprende
US1529713A (en) Wire-drawing machine
RU2779958C1 (ru) Канат стальной оцинкованный и способ изготовления стальной канатной оцинкованной проволоки для каната
CN220598308U (zh) 除雪设备
CN220596876U (zh) 一种用于卷扬启闭机钢丝绳的保养装置
CN220035035U (zh) 一种缆绳的合绳装置
JPH07300687A (ja) 防錆処理方法及び防錆処理装置
RU219223U1 (ru) Установка для мойки троса
CN101966943B (zh) 黑色不锈钢中丝的着色设备及着色方法
JPH0431026B2 (es)
RU96118240A (ru) Способ антикоррозионной обработки кабеля с оплеткой с системой протяжки
US296742A (en) Apparatus for galvanizing and coating wire
DE915766C (de) Verfahren und Vorrichtung zum Beizen von Bandeisen, Bandstahl od. dgl. durch Umspulen im Beizbad
GB1599212A (en) Hot galvanization of steel wire

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95191925.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AM AT AU BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IS JP KE KG KP KR KZ LK LR LT LU LV MD MG MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TT UA UG US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 96028485

Country of ref document: SE

WWE Wipo information: entry into national phase

Ref document number: PV1996-2233

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 101096

Country of ref document: SK

Ref document number: 963019

Country of ref document: FI

WWE Wipo information: entry into national phase

Ref document number: 2182567

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: PA/a/1996/003160

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 1995 9014

Country of ref document: AT

Date of ref document: 19960613

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 19959014

Country of ref document: AT

WWP Wipo information: published in national office

Ref document number: 96028485

Country of ref document: SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995938467

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV1996-2233

Country of ref document: CZ

WWP Wipo information: published in national office

Ref document number: 1995938467

Country of ref document: EP

RET De translation (de og part 6b)

Ref document number: 19581498

Country of ref document: DE

Date of ref document: 19970227

WWE Wipo information: entry into national phase

Ref document number: 19581498

Country of ref document: DE

WWW Wipo information: withdrawn in national office

Ref document number: 1995938467

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: PV1996-2233

Country of ref document: CZ