WO1996017417A1 - Groupement emetteur-recepteur pour systeme duplex optique - Google Patents

Groupement emetteur-recepteur pour systeme duplex optique Download PDF

Info

Publication number
WO1996017417A1
WO1996017417A1 PCT/DE1995/001757 DE9501757W WO9617417A1 WO 1996017417 A1 WO1996017417 A1 WO 1996017417A1 DE 9501757 W DE9501757 W DE 9501757W WO 9617417 A1 WO9617417 A1 WO 9617417A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmitter
laser
receiver arrangement
optical
arrangement according
Prior art date
Application number
PCT/DE1995/001757
Other languages
German (de)
English (en)
Inventor
Norbert Grote
Original Assignee
HEINRICH-HERTZ-INSTITUT FüR NACHRICHTENTECHNIK BERLIN GMBH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HEINRICH-HERTZ-INSTITUT FüR NACHRICHTENTECHNIK BERLIN GMBH filed Critical HEINRICH-HERTZ-INSTITUT FüR NACHRICHTENTECHNIK BERLIN GMBH
Publication of WO1996017417A1 publication Critical patent/WO1996017417A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/125Composite devices with photosensitive elements and electroluminescent elements within one single body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]

Definitions

  • the invention relates to a transmitter / receiver arrangement, which is provided in the form of two complementary types for an optical duplex system with two operating wavelengths to be transmitted in opposite directions via an optical fiber and whose transmitting laser and receiving diode are optically in series and based on III -V materials with different transmission or absorption properties with respect to the two operating wavelengths are constructed.
  • Optical fibers which are operated bidirectionally as optical connecting lines in the subscriber level, with a first light wavelength ⁇ ⁇ in one direction and a second light wavelength ⁇ 2 in the opposite direction, enable collision-free two-way communication traffic.
  • two transmitter and two receiver types are required, which are mutually assigned and each designed for one or the other light wavelength.
  • Wavelength range 1300 nm transmission direction between 1270 nm and 1300 nm, reception direction between 1310 nm and 1340 nm) and for receiving a
  • the optical waveguides with the couplers formed from them require space.
  • the transmitter laser for 1300 nm with a monitor diode is located at one end of an optical waveguide.
  • Five further waveguide ends form one of the network-side chip / fiber interfaces , two others lead to the receive diode components for 1300 nm and 1530 nm
  • III-V materials used with different amplification or vapor properties for different light wavelengths lead to considerable structural simplifications compared to PIC concepts, the interferometer and / or grating arrangements, couplers and other passive Need elements in addition to the transmit lasers and receive diodes.
  • complex chip production and high-precision micromechanical adjustments are still required at the chip / fiber interface.
  • the invention is based on the technical problem of reducing both the adjustment and the manufacturing outlay, further increasing the area yield of wafers, hybrid and integrated structures and testability of the chips already on the wafer and completely polarization-independent operation of the transmitters / Allow receiver arrangement.
  • the solution according to the invention for a transmitter-receiver arrangement of the type mentioned initially provides that the transmitter laser and the receiver diode consist of layers of material which are oriented essentially perpendicular to the common optical axis.
  • the required structuring within the chip boundaries is considerably less complex than in horizontal arrangements and thus requires less manufacturing effort.
  • the chip area is extremely small in terms of absolute space requirements, for example (0.3 x 0.3) mni * . All optical and electrical connections can be arranged on the top and bottom of the chips, so they are freely accessible at all times. Since the transmission and absorption properties of the material layers used for the transmitting laser and receiving diode are polarization-independent and an efficient fiber can be coupled in and small chip areas can be implemented, the transmitter / receiver arrangement according to the invention can be operated completely independently of the polarization.
  • the two operating wavelengths are separated without special optical filters due to the transparency of semiconductor layers above and the absorption below the band edge wavelength.
  • a wavelength difference of not significantly less than 250 nm in the wavelength range between 1.3 ⁇ m and 1.6 ⁇ m values of greater than 40 dB can be achieved for the ratio of absorption and transmission.
  • Such transmitter / receiver chips are key components, can be produced at low cost due to the vertical integration structure in large numbers per wafer, for example 20,000 pieces per 2-inch wafer, and in principle with regard to the monomodal transmitter lasers with integrated electrical driver stage and with regard to the receiving diodes Equip photodiodes with a downstream electronic amplifier stage
  • the transmission laser is designed as a surface-emitting component. Because of the low divergence of the emitted light, the tolerance limits for an efficient fiber coupling in such a component are large.
  • such surface-emitting transmission lasers can be formed with a vertical resonator whose mirror layers consist of material layers lying parallel to the laser layer.
  • transmitter / receiver arrangements according to the invention and their advantageous design forms mentioned above represents a basic concept for further modifications.
  • a medium that is transparent for both operating wavelengths can be arranged between the transmitting laser and the receiving diode.
  • a medium represents e.g. Air, through which the operating temperature can be influenced as a cooling medium.
  • the transmitting laser and the receiving diode can be monolithically integrated on a chip, whereby they are arranged on the same or on opposite sides of a common substrate.
  • the channel spacing is 250 nm, so that the separation of and return channel in the transmitter / receiver arrangements can be brought about due to the different optical transmission or absorption properties of the materials in question for the transmission laser and the receiving diode.
  • the 'high-pass' behavior of III-V materials leads to that in the complementary ones
  • Types of transmitter / receiver arrangements are those components which are designed for the shorter operating wavelength, must be located at the fiber / chip interface and have to transmit the longer-wave light to the optically arranged components
  • Chip assemblies consist for example of one type in a) (T ⁇ ⁇ .2)
  • the substrate made of InP and - A detector layer made of InGaAs for 1550 nm, in addition a filter layer with a cut-off wavelength between about 1350 nm and 1400 nm is provided directly on the top and / or bottom of the InP substrate for absorption of the rear residual light radiation of the laser can be, and with the other type b) (T ⁇ 2 / ⁇ * ⁇ l) off - a laser diode for 1550 nm with a vertical resonator,
  • a detector layer made of InGaAsP or InGaAlAs for 1300 nm at the chip / fiber interface
  • the importance of the invention is also evident in the fact that for types of duplex systems, one type - a) or b) - for the equipment of all subscriber stations and the other type - b) or a) - of the transmitter / receiver arrangements for the equipment of one Switching point can be provided.
  • the electrical signals with which the transmission lasers located in a chip are optically arranged in series or which deliver the receiving diodes are in the subscriber stations the relevant signal sources, e.g. microphone, camera, or signal sinks, e.g. speakers, Screen, assigned in the exchange these signals are fed from the relevant receiving diodes via a switching matrix to the transmission lasers, so that any point-to-point connections between two - or more - subscriber stations can be realized
  • identical transmitter / receiver chips of the one type are to be provided at all subscriber stations and also identical transmitter / receiver chips of the other, complementary type are to be provided in the switching center, each type of chip being required in terms of the number of subscriber stations
  • 1 shows a block diagram for optical wavelength duplex traffic over the same fiber between two stations which are equipped with complementary transmitter / receiver chips
  • FIG. 2 shows a block diagram of a duplex system for any number of subscriber stations, all subscriber stations being equipped with one type of identical transceiver chip and one switching center with another complementary type of identical transceiver chip, and
  • FIG. 3 shows a cross-sectional representation - for an example of the invention - the designs of the two chip types of complementary, monolithically integrated transmitter / receiver arrangements in a vertical integration structure using "vertical cavity” laser diodes
  • FIG. 1 shows two types of complementary transmitter / receiver arrangements for optical wavelength duplex traffic, each of which has a transmitting laser T and a receiving diode R in optical series connection.
  • the outgoing and return channels are implemented by means of two operating wavelengths ⁇ j, ⁇ via an optical fiber
  • any number of subscriber stations are equipped with identical transmitter / receiver arrangements and are connected to one another by separate optical fibers
  • the exchange is complementary with the Type, also identical transmitter / receiver arrangements and built with a switching matrix E.
  • the electrical signals supplied by the receiving diodes R ( ⁇ ) reach the inputs of this switching matrix E and are switched through there to the output of the switching matrix E that leads to the transmission laser T (2) that is responsible for the selected connection.
  • the structure and function of the switching center is independent of the signal transmission in the optical area between the individual subscriber stations and the switching center.
  • the subscriber stations send their optical signals in the channel with the operating wavelength ⁇ j to the exchange and receive from there the optical signals intended for them in the channel with the operating wavelength X2 * - * ⁇ re transmitter / receiver chips accordingly contain receiving diodes R ( ⁇ 2 und - - transmitting lasers T (j) in optical series connection.
  • the respective sense of direction of the two channels with the operating wavelengths X ⁇ and ⁇ in the optical fibers is then reversed compared to the example shown in FIG. 2.
  • FIG 3 illustrates the structure and mode of operation of the two complementary transmitter-receiver chip types for optical wavelength duplex traffic shown as an example for the invention.
  • the transmission lasers ⁇ ⁇ l, ⁇ ⁇ 2 are on the top of an InP substrate S and the ones on the bottom
  • any medium, including air, that is transparent for both operating wavelengths can be arranged.
  • the optical wave generated in the laser layer of the transmission laser T ⁇ j initially spreads to both sides in the vertical direction, but is reflected in a mirror layer between the laser layer and the substrate. Another mirror layer above the laser layer is partially transparent, so that both the laser resonance conditions can be met and the radiation can be carried out with sufficient optical power for the application.
  • Operating wavelength ⁇ 2 1.55 ⁇ m occurs at the same chip / fiber interface, penetrates the latter and the InP substrate S due to the low absorption of longer-wave light in the material layers of the shorter-wave laser T ⁇ j and reaches the InGaAs consisting of ternary material, the receiving diode R ⁇ 2 forming layer is a prerequisite that the spectral reflection curves of
  • the transmission laser T 2 is open the top with a highly reflective layer and a partially transparent mirror layer between the laser layer and InP substrate S.
  • Operating wavelength ⁇ l 1.3 ⁇ m comes directly from the optical fiber L into the receiving diode R ⁇ 2 formed from the quaternary layer and is absorbed there, i.e. optically / electrically converted.
  • the thickness of the quaternary layer must be selected so that complete absorption is ensured
  • the function of the monomodal lasers of the transmitter / receiver arrangements are not influenced by light of the other operating wavelength
  • Filter layer F are provided, the cut-off wavelength of which is approximately between 1350 nm and 1400 nm.
  • the quaternary layer for the receiving diode R ⁇ j has the corresponding cutoff wavelength of between approximately 1350 nm and
  • electrical driver stages for the transmission lasers T and amplifier stages for the receiving diodes R can be integrated. All connections, both the optical and the electrical ones, can be arranged in the vertical integration structure of these chips on their upper or lower side and thus enable the chips to be tested directly during and / or after completion on the wafer.
  • the fiber / chip coupling does not require tight tolerances, so it can be done with little effort.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Composite Materials (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Communication System (AREA)

Abstract

Les groupements émetteur-récepteur comportant chacun des lasers d'émission (T) et des diodes de réception (R) réalisés dans des éléments des groupes III-V de la classification périodique, et montés optiquement en série, doivent être faciles à régler et à fabriquer, et permettre un rendement surfacique élevé des plaquettes, faciliter les essais sur plaquettes et présenter un fonctionnement totalement indépendant de la polarisation. La présente invention concerne des émetteurs-récepteurs sous forme de deux types complémentaires, présentant une structure d'intégration verticale, c'est-à-dire des lasers d'émission (Tμ1 ou Tμ2) et des diodes de réception (Rμ1 ou Rμ2) constitués de couches de matériaux orientées de façon pratiquement perpendiculaire par rapport à l'axe optique commun. Ces émetteurs sont situés de préférence sur des faces opposées d'un substrat commun (S) et possèdent chacun une interface fibre/puce. La séparation des deux longueurs d'ondes de service (μ1, μ2) s'appuie sur différentes propriétés de transmission ou d'absorption des éléments des groupes III-V de la classification périodique, en ce qui concerne les deux longueurs d'ondes de service. Ces deux types sont conçus de façon identique, de sorte que toutes les stations d'abonnés peuvent être équipées d'un type et un point de commutation associé peut être équipé d'un autre type.
PCT/DE1995/001757 1994-11-29 1995-11-29 Groupement emetteur-recepteur pour systeme duplex optique WO1996017417A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4444470.2 1994-11-29
DE19944444470 DE4444470A1 (de) 1994-11-29 1994-11-29 Sender/Empfänger-Anordnung für ein optisches Duplexsystem

Publications (1)

Publication Number Publication Date
WO1996017417A1 true WO1996017417A1 (fr) 1996-06-06

Family

ID=6535757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1995/001757 WO1996017417A1 (fr) 1994-11-29 1995-11-29 Groupement emetteur-recepteur pour systeme duplex optique

Country Status (2)

Country Link
DE (1) DE4444470A1 (fr)
WO (1) WO1996017417A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2378069A (en) * 2001-07-12 2003-01-29 Bookham Technology Plc Vertically integrated optical transmitter and receiver
US6580533B1 (en) 1998-05-25 2003-06-17 Infineon Technologies Ag Two-way optical transmission and reception device

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5914976A (en) * 1997-01-08 1999-06-22 W. L. Gore & Associates, Inc. VCSEL-based multi-wavelength transmitter and receiver modules for serial and parallel optical links
DE19807782A1 (de) * 1998-02-18 1999-09-02 Siemens Ag Bauelement mit einem Lichtsender und einem Lichtempfänger
DE19807783A1 (de) * 1998-02-18 1999-09-02 Siemens Ag Bauelement mit einem Lichtsender und einem Lichtempfänger
US6424669B1 (en) 1999-10-29 2002-07-23 E20 Communications, Inc. Integrated optically pumped vertical cavity surface emitting laser
US6717964B2 (en) 2001-07-02 2004-04-06 E20 Communications, Inc. Method and apparatus for wavelength tuning of optically pumped vertical cavity surface emitting lasers
US7831152B2 (en) * 2002-06-04 2010-11-09 Finisar Corporation Optical transceiver
US7505688B2 (en) 2002-06-04 2009-03-17 Finisar Corporation Optical transceiver
DE10348675B3 (de) 2003-10-15 2005-06-09 Infineon Technologies Ag Modul für eine bidirektionale optische Signalübertragung
EP1524786B1 (fr) * 2003-10-15 2008-09-10 Finisar Corporation Emetteur-recepteur optoelectronique pour la transmission optique bidirectionelle
DE102004037362A1 (de) * 2004-07-30 2006-03-23 Photeon Technologies Gmbh Integrierter optischer Halbleiterchip
US7606499B2 (en) 2005-08-01 2009-10-20 Massachusetts Institute Of Technology Bidirectional transceiver assembly for POF application
US20160226591A1 (en) 2015-02-04 2016-08-04 International Business Machines Corporation Integrated parallel optical transceiver
DE102019103155A1 (de) * 2019-02-08 2020-08-13 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronische sensoranordnung und optisches messverfahren

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0053742A1 (fr) * 1980-12-06 1982-06-16 Licentia Patent-Verwaltungs-GmbH Procédé de transmission de signaux, dispositif semiconducteur et dispositif électro-optique pour la réalisation de ce procédé
DE3217610A1 (de) * 1982-05-11 1983-11-17 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Optische koppelanordnung
US5031188A (en) * 1990-04-30 1991-07-09 At&T Bell Laboratories Inline diplex lightwave transceiver
US5136603A (en) * 1991-04-29 1992-08-04 At&T Bell Laboratories Self-monitoring semiconductor laser device
JPH0637299A (ja) * 1992-07-15 1994-02-10 Nippon Telegr & Teleph Corp <Ntt> 光集積回路
FR2694988A1 (fr) * 1992-08-18 1994-02-25 Fujitsu Ltd Dispositif optique d'émission et de réception et procédé de fabrication.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0053742A1 (fr) * 1980-12-06 1982-06-16 Licentia Patent-Verwaltungs-GmbH Procédé de transmission de signaux, dispositif semiconducteur et dispositif électro-optique pour la réalisation de ce procédé
DE3217610A1 (de) * 1982-05-11 1983-11-17 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Optische koppelanordnung
US5031188A (en) * 1990-04-30 1991-07-09 At&T Bell Laboratories Inline diplex lightwave transceiver
US5136603A (en) * 1991-04-29 1992-08-04 At&T Bell Laboratories Self-monitoring semiconductor laser device
JPH0637299A (ja) * 1992-07-15 1994-02-10 Nippon Telegr & Teleph Corp <Ntt> 光集積回路
FR2694988A1 (fr) * 1992-08-18 1994-02-25 Fujitsu Ltd Dispositif optique d'émission et de réception et procédé de fabrication.
JPH0669491A (ja) * 1992-08-18 1994-03-11 Fujitsu Ltd 光送受信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 018, no. 255 (E - 1548) 16 May 1994 (1994-05-16) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6580533B1 (en) 1998-05-25 2003-06-17 Infineon Technologies Ag Two-way optical transmission and reception device
GB2378069A (en) * 2001-07-12 2003-01-29 Bookham Technology Plc Vertically integrated optical transmitter and receiver

Also Published As

Publication number Publication date
DE4444470A1 (de) 1996-05-30

Similar Documents

Publication Publication Date Title
DE60208225T2 (de) Integrierte optische schaltung mit einem integrierten wellenleiterarray (awg) und wenigstens einem integrierten optischen verstärker
EP0834095B1 (fr) Circuit optoelectronique
DE60208416T2 (de) Digitale optische netzwerkarchitektur
DE69737348T2 (de) Optisches Querverbindungssystem
WO1996017417A1 (fr) Groupement emetteur-recepteur pour systeme duplex optique
DE69937014T2 (de) Lichtwellenleiterverzweigung mit Reflektor
EP0105177B1 (fr) Elément de couplage optique
EP0360177B1 (fr) Elément d&#39;émission et/ou réception optique
DE102014103330A1 (de) Bidirektionales optisches Datenkommunikationsmodul
EP0600267A1 (fr) Module optique émetteur-récepteur bidirectionnel
EP0040706B1 (fr) Système de communication optique
DE102007057494A1 (de) Optische Kommunikation über parallele Kanäle unter Verwendung einer Modulatoranordnung und eines gemeinsam genutzten Lasers
EP0383138A2 (fr) Dispositif pour la réception optique directe d&#39;une pluralité de longueurs d&#39;ondes
EP0497358A1 (fr) Dispositif optique intégré pour démultiplexage de plusieurs canaux de longueurs d&#39;onde différents et méthode de sa fabrication
DE102016221806B4 (de) Wellenlängen-Multiplexeinheit, Wellenlängen-Multiplexsystem und Verfahren zum Bilden einer Wellenlängen-Multiplexeinheit
DE112008001461T5 (de) Optischer Halbleiterverstärker für einen Diodenlaser mit externen Resonator
EP1425616B1 (fr) Dispositif optique et module emetteur/recepteur destine a des systemes wdm optiques bidirectionnels et a des transmissions de donnees optiques
DE4038654A1 (de) Integrierter optischer multiplexer/demultiplexer mit hoher dichte
DE112004000304T5 (de) Modul mit zwei bidirektionalen optischen Sendern/Empfängern
DE60209841T2 (de) Dispersionskompensierter optischer Faserverstärker
DE60311984T2 (de) Optische filtrierungseinrichtung
DE102020204641A1 (de) Optische Kopplung und modenselektive Trennung oder Überlagerung von optischen Feldern
DE102005062735B4 (de) Elektrooptische Baugruppe zum Multiplexen bzw. Demultiplexen eines optischen Signals
EP1358514A2 (fr) Element semi-conducteur a transmission optoelectronique de signaux, et procede de realisation d&#39;un element semi-conducteur de ce type
EP1332395B1 (fr) Systeme optique de transmission de signaux

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase