WO1996003019A1 - Dispositif de traitement au plasma - Google Patents

Dispositif de traitement au plasma Download PDF

Info

Publication number
WO1996003019A1
WO1996003019A1 PCT/JP1995/001403 JP9501403W WO9603019A1 WO 1996003019 A1 WO1996003019 A1 WO 1996003019A1 JP 9501403 W JP9501403 W JP 9501403W WO 9603019 A1 WO9603019 A1 WO 9603019A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
plasma processing
dielectric layer
plasma
processing apparatus
Prior art date
Application number
PCT/JP1995/001403
Other languages
English (en)
French (fr)
Inventor
Hiroshi Mabuchi
Takahiro Yoshiki
Naoki Matsumoto
Kyoichi Komachi
Syuta Kanayama
Toshiki Ebata
Original Assignee
Sumitomo Metal Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP6162021A external-priority patent/JP2932942B2/ja
Priority claimed from JP11733495A external-priority patent/JP3703877B2/ja
Application filed by Sumitomo Metal Industries, Ltd. filed Critical Sumitomo Metal Industries, Ltd.
Priority to US08/605,216 priority Critical patent/US5788798A/en
Priority to DE69512376T priority patent/DE69512376D1/de
Priority to KR1019960701293A priority patent/KR100205476B1/ko
Priority to EP95925123A priority patent/EP0723386B1/en
Priority to TW088203124U priority patent/TW397320U/zh
Publication of WO1996003019A1 publication Critical patent/WO1996003019A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/32229Waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/32238Windows

Definitions

  • the present invention relates to a plasma processing apparatus suitable for performing processes such as etching, asshing, and CVD on a semiconductor element substrate, a glass substrate for a liquid crystal display (LCD), and the like using plasma.
  • a plasma processing apparatus suitable for performing processes such as etching, asshing, and CVD on a semiconductor element substrate, a glass substrate for a liquid crystal display (LCD), and the like using plasma.
  • Reactive gas plasmas are widely used in LSI and LCD manufacturing processes.
  • dry etching technology using plasma has become an indispensable basic technology for LSI and LCD manufacturing processes.
  • the present applicant discloses a plasma processing apparatus capable of uniformly generating microwave plasma over a large area, as disclosed in Japanese Patent Application Laid-Open Nos. 62-5600 and 62-99481. Proposed a method using a dielectric layer.
  • FIGS. 1, 2 and 3 are schematic plan views of a plasma processing apparatus having a dielectric layer proposed in the above-mentioned publication, AA partial sectional view, and BB sectional view. It is.
  • the microwave mouth wave is oscillated by the microphone mouth wave oscillator 26 and is transmitted to the dielectric layer 21 via the microwave waveguide 23 composed of a waveguide. be introduced.
  • An electric field is formed in the lower hollow layer 20 by the microwaves propagating through the dielectric layer 21. This electric field passes through the microwave introduction window 4 and is supplied into the reaction chamber 2 to excite the reactive gas to generate plasma.
  • the plasma is applied to the surface of the sample S by this plasma.
  • the dielectric layer 21 includes an introduction part 211, a tapered part 212, and a flat part 213.
  • Microwave introduction from the microwave waveguide 23 to the dielectric layer 21 is performed as follows. Microwaves are introduced into the dielectric layer from the waveguide at the introduction section 211.
  • the tapered portion 2 12 is expanded in the width direction.
  • the expanded microwave is introduced into the flat plate portion 2 13. In this way, the microwave can be uniformly transmitted in the width direction in the large-area flat plate portion 2 13.
  • the microwave can be uniformly propagated to the large-area flat plate portion 21 3, the microwave introduction window 4 and the micro-wave introduction window 4 facing the flat plate portion 21 3 are formed. If the microwave inlet 3 is expanded, a large-area microwave plasma can be generated in the reaction chamber 2.
  • the taper angle at which the dielectric layer of the tapered portion is spread in the width direction becomes steep (that is, large).
  • the microwave cannot be spread uniformly in the width direction of the dielectric layer, and the electric field strength of the microwave becomes weak at the end in the width direction of the dielectric layer, resulting in plasma in the width direction of the dielectric layer.
  • the attenuation of the electric field strength of the micro mouth wave increases in accordance with the traveling direction of the micro wave, and the distribution of the plasma in the traveling direction of the micro wave becomes non-uniform.
  • the taper angle at which the dielectric layer in the tapered portion of the dielectric layer is widened in the width direction is set to a gentler angle (that is, It is necessary to make it smaller. However, if the taper angle is reduced, this taper part becomes very long.
  • the distance between the dielectric layer and the window for introducing the microwaves is increased to increase the coupling between the microwaves and the plasma. You can weaken it. When this coupling is weakened, the plasma density itself is greatly reduced, and the plasma processing speed is reduced.
  • the present invention has been made in view of such a problem, and enables a large-area substrate such as a glass substrate for a liquid crystal display (LCD) to be stably and uniformly plasma-treated with a simple configuration. It is intended to provide a plasma processing apparatus. Disclosure of the invention
  • the dielectric layer facing the microwave introduction window is divided into a plurality of layers, and the microwave waveguide is provided on each of the divided dielectric layers.
  • One or more microwave oscillators are connected via the switch.
  • FIGS. 4, 8, and 12 show examples of devices in which the dielectric layer is divided in the width direction of the dielectric layer. The detailed configuration of the device will be described later.
  • the dielectric layer is divided in the width direction of the dielectric layer, and microwaves are introduced into each of the dielectric layers, thereby making the tapered portion of the dielectric layer longer without increasing the width of the dielectric layer.
  • Microwaves can be introduced so as to be uniform.
  • the propagation area of each microwave is reduced, the attenuation of the electric field strength of the microwave in the traveling direction of the microwave can be suppressed.
  • Fig. 14 shows an example of a device in which a dielectric layer is divided in the direction in which microwaves travel.
  • the dielectric layer is divided in the traveling direction of the microwave, and the microwave is introduced into each of them.
  • the attenuation of the electric field strength of the mouth wave can be reduced.
  • the propagation area of each microwave is reduced, it is possible to suppress the electric field strength of the microwave from becoming weak at the end in the width direction of the dielectric layer.
  • the microwave propagation in the dielectric layer can be made uniform, so that deformation of the dielectric layer due to non-uniform in-plane temperature distribution of the dielectric layer and deterioration of the reproducibility of plasma processing can be prevented. Can be.
  • the divided dielectric layers are separated by a metal plate so that each of the dielectric layers can be separated.
  • the interference of the propagating microwave can be suppressed.
  • the dielectric layer is divided in the width direction of the dielectric layer, and a microwave is introduced into each of the dielectric layers, thereby forming a tapered portion of the dielectric layer.
  • a microwave is introduced into each of the dielectric layers, thereby forming a tapered portion of the dielectric layer.
  • one microwave oscillator is connected to a plurality of divided dielectric layers by a microwave waveguide having a branch, and the microwave is branched and propagated.
  • FIG. 1 is a schematic plan view showing a conventional plasma processing apparatus
  • FIG. 2 is a partial cross-sectional view taken along line AA of the conventional plasma processing apparatus
  • FIG. 3 is a cross-sectional view taken along line BB of the conventional plasma processing apparatus.
  • FIG. 4 is a schematic plan view showing a plasma processing apparatus according to the first embodiment of the present invention
  • FIG. 5 is a C-C partial cross-sectional view showing the plasma processing apparatus according to the first embodiment of the present invention
  • FIG. FIG. 2 is a sectional view taken along line DD of the plasma processing apparatus of the first embodiment.
  • FIG. 7 is a graph showing the measurement results of the ion current density distribution of the plasma processing apparatus according to the first embodiment of the present invention.
  • FIG. 8 is a schematic plan view showing a plasma processing apparatus according to the second embodiment of the present invention
  • FIG. 9 is a partial cross-sectional view taken along line E--E of the plasma processing apparatus according to the second embodiment of the present invention
  • FIG. FIG. 8 is an FF cross-sectional view showing a plasma processing apparatus according to a second embodiment of the present invention
  • FIG. 11 is a diagram showing the ion voltage of the plasma processing apparatus according to the second embodiment of the present invention. It is a graph which shows the measurement result of flow density distribution.
  • FIG. 12 is a schematic plan view showing a plasma processing apparatus according to a third embodiment of the present invention
  • FIG. 13 is a GG sectional view showing a plasma processing apparatus according to the third embodiment of the present invention.
  • FIG. 14 is a schematic plan view showing a plasma processing apparatus according to a fourth embodiment of the present invention
  • FIG. 15 is an HH partial cross-sectional view showing a plasma processing apparatus according to the fourth embodiment of the present invention.
  • FIG. 16 is a graph showing the measurement results of the ion current density distribution of the conventional plasma processing apparatus.
  • FIG. 4 is a schematic plan view of the plasma processing apparatus of the first embodiment of the present invention.
  • the dielectric layer is divided into two in the width direction of the dielectric layer.
  • the microwave waveguide 23 is constituted by a waveguide.
  • a microwave distributor (not shown) is provided in the middle of the microwave waveguide 23, and the microwave is supplied to the two waveguides evenly.
  • the microwave oscillator 26 and the divided dielectric layers 21 a and 21 b are connected via the microwave waveguide 23.
  • the upper surfaces of the two dielectric layers 21a and 21b are covered with a metal plate 22.
  • a fluorine-based resin such as Teflon (registered trademark) is used.
  • the metal plate 22 is made of aluminum or the like.
  • the microwave oscillated by the microwave oscillator 26 is branched into two on the way of the microwave waveguide 23 and introduced into the dielectric layers 21a and 21b, respectively.
  • Microwaves are introduced into the dielectric layer from the waveguide at the introduction sections 21 la and 211 b, and spread in the width direction at the taper sections 212 a and 212 b. Introduced in parts 2 13 a, 2 13 b. In this way, the microwaves are uniformly propagated in the flat plates 2 13 a and 2 13 b facing the microwave introduction window 4.
  • FIG. 5 is a partial CC sectional view of the plasma processing apparatus of the first embodiment.
  • the reaction container and the arrangement of the reaction container and the dielectric layer will be described.
  • the reaction vessel 1 has a hollow rectangular parallelepiped shape, and is formed using a metal such as aluminum (A 1).
  • a reaction chamber 2 is provided inside the reaction vessel 1.
  • a microwave inlet 3 is opened.
  • the microwave inlet 3 is hermetically sealed by sandwiching a 0-ring 9 between the microwave inlet window 4 and the upper wall of the reaction vessel 1.
  • Microstrip click port microwave introduction window 4 has a heat resistance and microphone filtering permeability, and small dielectric dielectric loss, such as quartz glass (S i 0, alumina (A 1 2 0 3) or the like, Is formed.
  • a sample table 7 on which the sample S is mounted is disposed at a position facing the microwave introduction window 4.
  • a gas inlet 5 for introducing a reaction gas and an exhaust port 6 connected to an exhaust device (not shown) are provided.
  • a solvent passage 8 is formed in the peripheral wall of the reaction vessel 1 and By circulating a solvent at a predetermined temperature through the medium passage 8, the surrounding wall of the reaction vessel 1 can be maintained at a predetermined temperature.
  • a gate valve (not shown) for carrying the sample S into and out of the reaction chamber 2 is provided on a side wall of the reaction vessel 1.
  • Dielectric layers 21 a and 21 b are arranged so as to cover the microwave introduction window 4 with the hollow layer 20 interposed therebetween, facing the microwave introduction window 4. I have.
  • FIG. 6 is a schematic DD sectional view of the plasma processing apparatus of the first embodiment. Dielectric layers 2 la and 2 lb are arranged in parallel to microwave introduction window 4.
  • the apparatus of this example had a plasma generation area of 50 Omm x 50 Omm, and the dimensions and materials of its main parts were as follows. That is, the microwave introduction port 3 was 500 mm x 500 mm, and the microwave introduction window 4 was a 600 mm x 600 mm quartz plate having a thickness of 20 mm.
  • the flat plate portions 21a and 21b of the dielectric layers 21a and 21b were each made of Teflon having a thickness of 600 mm x 30 Omm and a thickness of 2 Omm.
  • a solvent at a predetermined temperature is circulated in the solvent passage 8. After exhausting from the exhaust port 6 to exhaust the inside of the reaction chamber 2 to a required pressure, a reaction gas is supplied from a gas introduction hole 5 provided in a peripheral wall to keep the inside of the reaction chamber 2 at a predetermined pressure.
  • Microwaves are oscillated by the microwave oscillator 26, and the generated microwaves are branched into two waveguides in the middle of the microwave waveguide 23 and introduced into the dielectric layers 21a and 21b. I do.
  • An electric field is formed in the lower hollow layer 20 by the microwaves propagating through the dielectric layers 21a and 21b. This electric field passes through the microwave introduction window 4 and is supplied into the reaction chamber 2 to generate plasma. This plasma causes plasma treatment on the surface of sample S. Will be applied.
  • the ion current density distribution was measured. Measurements were made in the Z direction, which is the direction in which the microwave travels, and the Y direction perpendicular to the center of the sample stage. The measurement position was 100 mm from the microwave introduction window. Plasma generation was performed using Ar gas, at a pressure of 10 mT orr, and at a microwave mouth wave power of 3 kW.
  • ion current density For the measurement of ion current density, a stainless steel probe with a circular plate electrode with a diameter of 2.0 mm was used. In the measurement, a DC voltage of ⁇ 50 V was applied between the probe and the reaction chamber wall, and the current i flowing into the probe was measured. The ion current density was determined by dividing the current i at this time by the electrode area of the probe.
  • FIG. 7 is a graph showing the measurement results of the ion current density distribution of this example. As is clear from Fig. 7, plasma was generated almost uniformly. Not only plasma was generated uniformly in the Y direction, but also plasma was generated uniformly in the Z direction.
  • FIGS. 8, 9, and 10 are a schematic plan view, a partial EE sectional view, and a FF sectional view of a plasma processing apparatus according to a second embodiment of the present invention.
  • This embodiment is different from the first embodiment in that a dielectric layer is divided into dielectric layers 21a and 21b and a hollow layer is divided into a hollow layer 20a and a hollow layer 20b by a metal wall 30. Only the second embodiment differs from the first embodiment. Since the dielectric layer 2la and the dielectric layer 2lb are separated by the metal wall 30, the microwaves propagate independently through the respective dielectric layers 21a and 21b. That is, the interference of microwaves propagating through the respective dielectric layers 21a and 21b is suppressed.
  • Microwave introduction into dielectric layer 21a, 2lb and plasma generation Is the same as in the first embodiment.
  • the microwave oscillated by the microwave oscillator 26 branches into two waveguides in the middle of the microwave waveguide 23 and is introduced into the dielectric layers 21 a and 21 b, respectively.
  • An electric field is formed in the hollow layers 20a and 20b by the micro waves propagating through the dielectric layers 21a and 21b. This electric field is transmitted through the microwave introduction window 4 and supplied into the reaction chamber 2 to generate plasma.
  • the apparatus of this example had a plasma generation area of 500 mm ⁇ 500 mm, and the dimensions and materials of its main parts were as follows.
  • the microwave inlet 3 was 500 mm x 500 mm
  • the microwave inlet 4 was a 600 mm x 600 mm quartz plate with a thickness of 20 mm.
  • the flat plate portions 2 13 a and 21 3 of the dielectric layers 2 1 a and 21 b are made of Teflon having a thickness of 20 mm and having a thickness of 20 mm
  • the metal wall 30 is made of aluminum having a width of 6 mm (A 1). It was a plate.
  • the ion current density distribution was measured as in the first embodiment.
  • the Z direction which is the traveling direction of the microwave, and the Y direction perpendicular to it, were measured at a position 100 mm from the microwave introduction window.
  • Plasma generation was also performed in the same manner as in the first embodiment, using Ar gas, at a pressure of 10 mTorr and a microwave power of 3 kW.
  • FIG. 11 is a graph showing the measurement results of the ion current density distribution of this example. As in the first embodiment, the plasma could be generated almost uniformly.
  • FIGS. 12 and 13 are a schematic plan view and a GG sectional view of a plasma processing apparatus according to a third embodiment of the present invention.
  • the microwave oscillator 26a and the microwave waveguide 23a are provided for the dielectric layer 2la, and the microwave oscillator 26b and the microwave waveguide 23a are provided for the dielectric layer 21b. Only the point that 23b is provided is different from the second embodiment.
  • the microwave oscillated by the microwave oscillator 26a is introduced into the divided dielectric layer 21a via the microwave waveguide 23a.
  • the microwave oscillated by the microwave oscillator 26b is introduced into the divided dielectric layer 21b via the microwave waveguide 23b.
  • An electric field is formed in the lower hollow layers 20a and 20b by the microwaves propagating through the dielectric layers 21a and 21b. This electric field is transmitted through the microwave introduction window 4 and supplied into the reaction chamber 2 to generate plasma.
  • 14 and 15 are a schematic plan view and a partial sectional view taken along line HH of a plasma processing apparatus according to a fourth embodiment of the present invention.
  • the dielectric layer is divided into two in the traveling direction of the microwave. Oscillated by a microwave oscillator 26a in which a dielectric layer is divided into a dielectric layer 21a and a dielectric layer 21b by a metal wall 30, and a hollow layer is divided into a hollow layer 20a and a hollow layer 20b.
  • the microwave is introduced into the divided dielectric layer 21a through the microwave waveguide 23a.
  • the microwave oscillated by the microwave oscillator 26b is introduced into the divided dielectric layer 21b via the microwave waveguide 23b.
  • An electric field is formed in the lower hollow layers 20a and 20b by the microwaves propagating through the dielectric layers 21a and 21b. This electric field is transmitted through the microwave introduction window 4 and supplied into the reaction chamber 2 to generate plasma.
  • FIG. 1, FIG. 2 and FIG. 3 are a schematic plan view, an AA partial cross-sectional view and a BB cross-sectional view of a conventional plasma processing apparatus using this dielectric layer.
  • the configuration and use of the illustrated device are as described above.
  • the apparatus of this comparative example had a plasma generation area of 50 Omm x 50 Omm, and the dimensions and materials of its main parts were as follows. Introduction of micro wave The mouth 3 was 500 mm x 500 mm, and the microwave introduction window 4 was a 600 mm x 600 mm quartz plate with a thickness of 20 mm.
  • the flat plate portion 2 13 of the dielectric layer 21 was made of Teflon having a thickness of 600 mm ⁇ 600 mm and a thickness of 20 mm.
  • the ion current density distribution was measured. The measurement was performed in the Z direction, which is the direction of the microwave, and in the Y direction perpendicular to the center of the sample stage. The measurement position was 100 mm from the microwave introduction window. Plasma generation was performed using Ar gas at a pressure of 10 mTorr and a microwave power of 3 kW.
  • FIG. 16 is a graph showing the measurement results of the ion current density distribution of this comparative example.
  • the ion current density decreases at the end in the Y direction, which is the width direction of the dielectric layer 21.
  • the Z direction which is the direction in which the microwave travels, the ion current density is high on the introduction side and gradually decreases. For this reason, the uniformity of plasma distribution was insufficient.
  • plasma can be uniformly generated over a large area with a simple configuration. Therefore, a large-area substrate such as a semiconductor element substrate or a glass substrate for a liquid crystal display can be stably and uniformly subjected to plasma processing such as etching, asshing, and CVD.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)

Description

明 細 書 ブラズマ処理装置 技術分野
本発明は、 半導体素子基板、 液晶ディ スプレイ (LCD) 用ガラス基 板等にプラズマを利用 してエッチング、 アツ シングおよび C V D等の処 理を施すのに適したプラズマ処理装置に関する。 背景技術
反応性ガスのプラズマは、 L S Iおよび LCD製造プロセスにおいて 広く用いられている。 特に、 プラズマを用いた ドライエッチング技術は 、 L S Iおよび LCD製造プロセスにとって不可欠な基本技術となって いる。
プラズマを発生させるための励起手段と して、 1 3. 56MHzの R F (高周波) が多く用いられているが、 最近マイク ロ波も用いられるよ うになつている。 それは低温で高密度のプラズマが得られ、 また装置の 構成及び操作が簡単である等の利点があるためである。
し力、し、 マイ クロ波を用いたプラズマ処理装置では、 大面積に均一な プラズマを発生させることが困難であるため、 大口径の半導体基板や L CD用ガラス基板を均一に処理するこ とが困難である。
この点に関し、 本出願人は大面積に均一にマイ クロ波プラズマを発生 させるこ とが可能なプラズマ処理装置と して、 特開昭 62— 5600号 公報および特開昭 62— 9948 1号公報において、 誘電体層を利用す る方式を提案している。
図 1、 図 2および図 3は、 上記公報で提案した誘電体層を有するプラ ズマ処理装置の模式的な平面図、 A— A部分断面図および B— B断面図 である。
これらの図に示すプラズマ処理装置では、 マイ ク口波はマイ ク口波発 振器 2 6で発振され、 導波管で構成されたマイ クロ波導波路 2 3を介し て誘電体層 2 1 に導入される。 この誘電体層 2 1 を伝搬するマイ クロ波 により下方の中空層 2 0に電界が形成される。 この電界がマイ クロ波導 入窓 4を透過して反応室 2内に供給されて、 反応性ガスを励起してブラ ズマが生成される。 このプラズマによって試料 Sの表面にプラズマ処理 が施される。
誘電体層 2 1 は導入部 2 1 1、 テーパ部 2 1 2および平板部 2 1 3か らなる。 マイ ク ロ波導波路 2 3から誘電体層 2 1 へのマイク ロ波導入は 、 次のように して行われる。 導入部 2 1 1 において導波管から誘電体層 にマイ ク ロ波が導入される。 テーパ部 2 1 2において幅方向に拡げられ る。 拡げられたマイ クロ波が平板部 2 1 3に導入される。 こうするこ と により、 大面積の平板部 2 1 3においてマイ クロ波を幅方向に均一に伝 搬させるこ とができる。
この誘電体層を有するプラズマ処理装置では、 大面積の平板部 2 1 3 にマイ クロ波を均一に伝搬させることができるため、 この平板部 2 1 3 に対向するマイ クロ波導入窓 4およびマイ クロ波導入口 3を拡げれば、 反応室 2において大面積のマイクロ波プラズマを生成させることができ る。
近年 L C D用のガラス基板の大きさは大き く なり、 4 0 0 m m x 4 0 O m m以上のガラス基板を均一に処理できる装置の要求が高ま っている 。 この誘電体層を有するプラズマ処理装置では、 上述したように誘電体 層、 マイ ク ロ波導入窓およびマイ クロ波導入口を大き く すれば大面積プ ラズマを生成できる。
しかしながら、 この誘電体層の面積を大き く していく と、 次のような 問題が生じる。 テーパ部 2 1 2の長さを変えずに、 誘電体層の幅を余り 広げると、 テーパ部の誘電体層を幅方向に広げるテーパ角度が急角度に (すなわち、 大き く) なる。 このためマイ ク ロ波を誘電体層の幅方向に 均一に広げるこ とができず、 誘電体層の幅方向の端でマイ クロ波の電界 強度が弱く なり、 誘電体層の幅方向のプラズマの分布が不均一になる。 誘電体層を余り長くすると、 マイ ク ロ波の進行方向に従って、 マイ ク 口波の電界強度の減衰が大き く なり、 マイ クロ波の進行方向に対するプ ラズマの分布が不均一になる。
誘電体層の幅方向にマイ クロ波が均一になるように導入するには、 誘 電体層のテーパ部の誘電体層を幅方向に広げるテーパ角度をよ り緩やか な角度に (すなわち、 よ り小さ く ) することが必要である。 しかし、 テ ーパ角度を緩やかにすると、 このテ一パ部が非常に長く なつて しまう。 マイ ク ロ波の進行方向に従って、 マイ クロ波の電界強度の減衰を抑え るには、 誘電体層とマイ ク ロ波導入窓との間隔をより広げて、 マイ クロ 波とプラズマとの結合を弱めれば良い。 し力、し、 この結合を弱めるとプ ラズマ密度自体が大き く 低下し、 プラズマ処理速度が低下する。
また、 誘電体層の面積が大き く なり、 マイ ク ロ波の伝搬が不均一にな ると、 誘電体層の各部のマイ クロ波の吸収による昇温が不均一になる。 このため、 誘電体層の面内温度分布が不均一になり、 誘電体層の変形を 生じ、 プラズマ処理速度の再現性を悪化させるという問題もある。
本発明はこのよう な課題に鑑みてなされたものであり、 液晶ディ スプ レイ (L C D ) 用ガラス基板等の大面積の基板を安定して しかも簡単な 構成で均一にプラズマ処理するこ とができるプラズマ処理装置を提供す ることを目的と している。 発明の開示
本発明のプラズマ処理装置は、 マイクロ波導入窓に対向する誘電体層 を複数に分割し、 それぞれの分割された誘電体層にマイ クロ波導波路を 介して一つまたは複数のマイ クロ波発振器を接続している。 このような 構成を採用するこ とによ り、 マイ クロ波導波路からマイ クロ波が導入さ れる個々の誘電体層の面積を小さ くできるため、 マイ ク ロ波の電界強度 分布を均一にできる。
図 4、 図 8および図 1 2は誘電体層の幅方向に誘電体層を分割した装 置の例である。 装置の詳細な構成は後述する。 図示するように、 誘電体 層の幅方向に誘電体層を分割し、 それぞれにマイ ク ロ波を導入すること により、 誘電体層のテーパ部を長くするこ となく、 誘電体層の幅方向に マイ ク ロ波が均一になるように導入できる。 また、 それぞれのマイ クロ 波の伝搬面積が減少するので、 マイ ク ロ波の進行方向に対するマイ ク ロ 波の電界強度の減衰も抑えることができる。
図 1 4はマイ クロ波の進行方向に誘電体層を分割 した装置の例である 。 装置の詳細な構成は後述する。 図示するようにマイ クロ波の進行方向 に誘電体層を分割し、 それぞれにマイ クロ波を導入することにより、 マ イク口波の伝搬距雜を短く でき、 マイ クロ波の進行方向に対するマイ ク 口波の電界強度の減衰を小さ く できる。 また、 それぞれのマイ クロ波の 伝搬面積が減少するので、 誘電体層の幅方向の端でマイ クロ波の電界強 度が弱く なるこ とを抑えるこ とができる。
上記いずれの場合も、 誘電体層のマイ クロ波の伝搬を均一にできるた め、 誘電体層の面内温度分布の不均一による誘電体層の変形やプラズマ 処理の再現性の悪化を防ぐこ とができる。
図 8、 図 1 2および図 1 4に示すように、 誘電体層を分割する場合、 分割された複数の誘電体層を金属板により分離しておく ことにより、 そ れそれの誘電体層を伝搬するマイ クロ波の干渉を抑えることができる。 このような構成を採用することにより、 プラズマの発生条件、 例えばガ ス流量、 反応室内圧力を変化させたと しても、 マイ クロ波の伝搬が大き く変化することはない。 プラズマの発生条件の所定の範囲内で安定して プラズマを発生させるこ とができる。
図 4、 図 8および図 1 2に示すように、 誘電体層の幅方向に誘電体層 を分割し、 それぞれにマイ クロ波を導入することによ り、 誘電体層のテ ーパ部のテ一パ角度を緩やかにする必要がなく、 このテーパ部を短く で きる。 この結果、 装置が大き く なることを抑えるこ とができる。
図 4および図 8に示すように、 分岐を有するマイ ク ロ波導波路により 、 分割された複数の誘電体層に 1 つのマイ クロ波発振器を接続し、 マイ クロ波を分岐して伝搬させることにより、 複数のマイ クロ波発振器を設 ける必要がなく、 装置コ ス ト を低減できる。
図 1 2および図 1 4に示すように、 分割された複数の誘電体層のそれ ぞれに対して、 独立したマイ クロ波導波路とマイクロ波発振器を備える ことにより、 マイ クロ波導波路においてマイ ク ロ波の分岐部分を不要に でき、 装置構成を簡略にすることができる。 図面の簡単な説明
図 1 は従来のプラズマ処理装置を示す模式的な平面図、 図 2は従来の プラズマ処理装置を示す A— A部分断面図、 図 3は従来のプラズマ処理 装置を示す B— B断面図である。
図 4は本発明の第 1 実施例のプラズマ処理装置を示す模式的な平面図 、 図 5は本発明の第 1 実施例のプラズマ処理装置を示す C一 C部分断面 図、 図 6は本発明の第 1 実施例のプラズマ処理装置を示す D— D断面図 である。 図 7は本発明の第 1 実施例のプラズマ処理装置のイオン電流密 度分布の測定結果を示すグラフである。
図 8は本発明の第 2実施例のプラズマ処理装置を示す模式的な平面図 、 図 9は本発明の第 2実施例のプラズマ処理装置を示す E— E部分断面 図、 図 1 0は本発明の第 2実施例のプラズマ処理装置を示す F— F断面 図である。 図 1 1 は本発明の第 2実施例のプラズマ処理装置のイオン電 流密度分布の測定結果を示すグラフである。
図 1 2は本発明の第 3実施例のプラズマ処理装置を示す模式的な平面 図、 図 1 3は本発明の第 3実施例のプラズマ処理装置を示す G— G断面 図である。
図 1 4は本発明の第 4実施例のプラズマ処理装置を示す模式的な平面 図、 図 1 5は本発明の第 4実施例のプラズマ処理装置を示す H— H部分 断面図である。
図 1 6は従来のプラズマ処理装置のイオン電流密度分布の測定結果を 示すグラフである。 発明を実施するための最良の形態
(第 1 実施例)
以下、 本発明をその第 1 実施例を示す図面に基づき具体的に説明する 図 4は本発明の第 1 実施例のプラズマ処理装置の模式的な平面図であ る。 この実施例は、 誘電体層を誘電体層の幅方向に 2つに分割したもの である。
マイ ク口波の誘電体層への導入について説明する。 マイクロ波導波路 2 3は導波管により構成されている。 マイ ク ロ波導波路 2 3の途中には マイ ク ロ波分配器 (図示しない) が設けられており、 2つの導波路にマ イ ク口波が均等に分けられて供給される。 このマイ クロ波導波路 2 3を 介して、 マイクロ波発振器 2 6と分割された誘電体層 2 1 a、 2 1 bと が連結されている。 2つに誘電体層 2 1 a、 2 l bの上面は金属板 2 2 で覆われている。 誘電体層 2 1 a、 2 l bにはテフ ロ ン (登録商標) 等 のフ ッ素系樹脂が用いられる。 金属板 2 2はアルミ ニウム等で作製され る。
このマイ クロ波導波路 2 3の途中には、 マイ クロ波の整合 (マ ツチン グ) をとるためのチューナー 24 a、 24 bが設けられている。 また、 マイ ク 口波の反射波をとり除く アイ ソ レータ 25 a、 25 bが設けられ ている。 チューナーおよびアイ ソ レータをそれぞれの誘電体層 2 1 a、 2 l bに接続される導波路に設けるこ とによ り、 それぞれの誘電体層を 独立して整合調整することが可能であり、 それぞれの反射波による悪影 響を取り除く こ とができる。
マイ クロ波発振器 26で発振されたマイ ク ロ波は、 マイ クロ波導波路 23の途中で 2つに分岐され、 それぞれ誘電体層 2 1 a、 2 l bに導入 される。 マイ ク ロ波は、 導入部 2 1 l a、 2 1 1 bで導波管から誘電体 層に導入され、 テ一パ部 2 1 2 a、 2 1 2 bにおいて幅方向に拡げられ て、 平板部 2 1 3 a、 2 1 3 bに導入される。 こう して、 マイ クロ波導 入窓 4に対向する平板部 2 1 3 a、 2 1 3 bにおいてマイ クロ波を均一 に伝搬させる。
図 5はこの第 1実施例のプラズマ処理装置の C— C部分断面図である 。 反応容器および反応容器と誘電体層との配置を説明する。
反応容器 1は中空直方体の形状を しており、 アルミ ニウム (A 1 ) 等 の金属を用いて形成されている。 反応容器 1の内部には反応室 2が設け られている。 反応容器 1の上部にはマイ クロ波導入口 3が開口 してある 。 このマイ クロ波導入口 3はマイ クロ波導入窓 4にて反応容器 1の上部 壁との間に 0リ ング 9を挟持することによ り気密に封止されている。 マ イ ク口波導入窓 4は、 耐熱性とマイ ク ロ波透過性を有し、 かつ誘電損失 が小さい誘電体、 例えば石英ガラス (S i 0 、アルミ ナ (A 1203) 等、 で形成される。
反応室 2内にはマイクロ波導入窓 4とは対向する位置に、 試料 Sを載 置する試料台 7が配設されている。 反応ガスを導入するためのガス導入 孔 5および排気装置 (図示しない) に接続される排気口 6が設けられて いる。 反応容器 1 の周囲壁には溶媒通流路 8が形成されており、 この溶 媒通流路 8に所定の温度の溶媒を循環させるこ とにより、 反応容器 1の 周囲壁を所定の温度に保持することができる。 反応容器 1の側壁には、 試料 Sを反応室 2に搬入、 搬出するゲー トバルブ (図示しない) が設け られている。
マイ ク ロ波導入窓 4と対向 して、 中空層 20を挟んで、 マイ クロ波導 入窓 4を覆うように誘電体層 2 1 aと 2 1 b (図示されていない) が配 置されている。
図 6はこの第 1実施例のプラズマ処理装置の模式的な D— D断面図で ある。 マイ クロ波導入窓 4と対向して誘電体層 2 l aと 2 l bが並列配 置されている。
この実施例の装置はプラズマ発生面積が 50 Ommx 50 Ommと し 、 その主要部の寸法および材質は以下のとおり と した。 すなわち、 マイ クロ波導入口 3は 500mmx 500mmと し、 マイ ク ロ波導入窓 4は 600mmx 600mmで厚みが 20 mmの石英板と した。 誘電体層 2 1 a、 2 1 bの平板部 2 1 3 a、 2 1 3 bはそれぞれ 600 mm x 30 Ommで厚みが 2 Ommのテフ ロ ンと した。
この実施例のプラズマ処理装置を用いて試料台上に載置された試料 S の表面にプラズマ処理を施す方法について説明する。
所定の温度の溶媒を溶媒通路 8内に循環させる。 排気口 6から排気を 行って反応室 2内を所要の圧力まで排気した後、 周囲壁に設けられたガ ス導入孔 5から反応ガスを供給し反応室 2内を所定の圧力とする。
マイ クロ波発振器 26でマイ クロ波を発振させ、 発生したマイ ク ロ波 をマイ クロ波導波路 23の途中において 2つの導波路に分岐させてそれ それ誘電体層 2 1 a、 2 1 bに導入する。 誘電体層 2 1 a、 2 1 bを伝 搬するマイ クロ波により、 下方の中空層 20に電界が形成される。 この 電界がマイ クロ波導入窓 4を透過して反応室 2内に供給されて、 プラズ マが生成される。 このプラズマによって試料 Sの表面にプラズマ処理が 施される。
この実施例のプラズマ処理装置におけるプラズマの均一性を評価する ために、 イオン電流密度分布を測定した。 試料台の中心位置を中心と し てマイ クロ波の進行方向である Z方向とそれに垂直な Y方向について測 定を行った。 なお、 測定位置はマイ クロ波導入窓から 1 00 mmの位置 と した。 プラズマ発生は A rガスを用い、 圧力 1 0mT o r r、 マイ ク 口波パワー 3 k Wで行った。
イオン電流密度の測定には、 ステン レスで作製した直径が 2. 0 mm の円形平板電極のプローブを用いた。 測定は、 このプローブと反応室壁 との間に— 50 Vの直流電圧を印加して、 プローブに流れ込む電流 i を 測定した。 イオン電流密度はこのときの電流 i をプローブの電極面積で 割ることにより求めた。
図 7はこの実施例のイオン電流密度分布の測定結果を示すグラフであ る。 図 7から明かなように、 ほぼ均一にプラズマを発生できている。 Y 方向についてプラズマを均一に発生できているのみならず、 Z方向につ いてもプラズマを均一に発生できた。
(第 2実施例)
図 8、 図 9および図 1 0は本発明の第 2実施例のプラズマ処理装置の 模式的な平面図、 E— E部分断面図および F— F断面図である。
この実施例は、 金属壁 30によって、 誘電体層が誘電体層 2 1 aおよ び誘電体層 2 1 bに、 中空層が中空層 20 aと中空層 2 0 bに分割され ている点のみが、 第 1実施例と異なっている。 誘電体層 2 l aおよび誘 電体層 2 l bが金属壁 30によって隔てられているため、 マイ クロ波は それぞれの誘電体層 2 1 a、 2 1 bを独立して伝搬する。 すなわち、 そ れそれの誘電体層 2 1 a、 2 1 bを伝搬するマイ ク ロ波の干渉が抑えら れる。
マイ クロ波の誘電体層 2 1 a、 2 l bへの導入およびプラズマの生成 は、 第 1実施例と同 じである。 マイ クロ波発振器 26で発振されたマイ クロ波は、 マイ クロ波導波路 23の途中において 2つの導波路に分岐し てそれぞれ誘電体層 2 1 a、 2 1 bに導入される。 この誘電体層 2 1 a 、 2 1 bを伝搬するマイ ク ロ波によ り、 中空層 20 a、 20 bに電界が 形成される。 この電界が、 マイ ク ロ波導入窓 4を透過して反応室 2内に 供給されて、 プラズマが生成される。
この実施例の装置はプラズマ発生面積が 500mmx 500mmと し 、 その主要部の寸法および材質は以下のとおり と した。 マイ ク ロ波導入 口 3は 500mmx 500mmと し、 マイクロ波導入窓 4は 600mm x 600mmで厚みが 20mmの石英板と した。 誘電体層 2 1 a、 2 1 bの平板部 2 1 3 a、 2 1 3 はそれぞれ60011111ズ 29711111で厚 みが 20mmのテフロンと し、 金属壁 30は幅が 6mmのアルミ ニゥム (A 1 ) 板と した。
この実施例のプラズマ処理装置におけるプラズマの均一性を評価する ために、 第 1実施例と同じく、 イオン電流密度分布を測定した。 試料台 の中心位置を中心と してマイ クロ波の進行方向である Z方向とそれに垂 直な Y方向について、 マイ クロ波導入窓から 1 00mmの位置で測定し た。 プラズマ発生も第 1実施例と同 じく、 A rガスを用い、 圧力 1 0m To r r、 マイ クロ波パワー 3 kWで行った。
図 1 1はこの実施例のイオン電流密度分布の測定結果を示すグラフで ある。 第 1実施例と同様、 プラズマをほぼ均一に発生できた。
(第 3実施例)
図 1 2および図 1 3は本発明の第 3実施例のプラズマ処理装置の模式 的な平面図および G— G断面図である。 この実施例は、 誘電体層 2 l a に対してマイ クロ波発振器 26 aおよびマイ ク ロ波導波路 23 aを、 誘 電体層 2 1 bに対してマイ クロ波発振器 26 bおよびマイ クロ波導波路 23 bをそれぞれ設けた点のみ、 第 2実施例と異なっている。 マイ ク ロ波発振器 26 aで発振されたマイ ク ロ波は、 マイ ク ロ波導波 路 23 aを介して、 分割された誘電体層 2 1 aに導入される。 同じく、 マイクロ波発振器 26 bで発振されたマイ ク ロ波は、 マイ ク ロ波導波路 23 bを介して、 分割された誘電体層 2 1 bに導入される。 誘電体層 2 1 a、 2 1 bを伝搬するマイ クロ波により、 下方の中空層 20 a、 20 bに電界が形成される。 この電界がマイ クロ波導入窓 4を透過して反応 室 2内に供給されて、 プラズマが生成される。
(第 4実施例)
図 1 4および図 1 5は本発明の第 4実施例のプラズマ処理装置の模式 的な平面図、 H— H部分断面図である。
この実施例は、 誘電体層をマイ ク ロ波の進行方向に 2つに分割したも のである。 金属壁 30によって、 誘電体層が誘電体層 2 1 aおよび誘電 体層 2 1 bに、 中空層が中空層 20 aと中空層 20 bに分割されている マイ クロ波発振器 26 aで発振されたマイ クロ波は、 マイ ク ロ波導波 路 23 aを介して、 分割された誘電体層 2 1 aに導入される。 マイ クロ 波発振器 26 bで発振されたマイ クロ波は、 マイ クロ波導波路 23 bを 介して、 分割された誘電体層 2 1 bに導入される。 誘電体層 2 1 a、 2 1 bを伝搬するマイ クロ波により、 下方の中空層 20 a、 20 bに電界 が形成される。 この電界がマイクロ波導入窓 4を透過して反応室 2内に 供給されて、 プラズマが生成される。
(比較例)
図 1、 図 2および図 3は、 この誘電体層を利用する従来のプラズマ処 理装置の模式的な平面図、 A— A部分断面図および B— B断面図である 。 図示した装置の構成および使用方法は、 前述の通りである。
この比較例の装置はプラズマ発生面積が 50 Omm x 50 Ommと し 、 その主要部の寸法および材質は以下のとおり と した。 マイ ク ロ波導入 口 3は 500mmx 500mmと し、 マイ ク ロ波導入窓 4は 600mm x 600mmで厚みが 20mmの石英板と した。 誘電体層 2 1の平板部 2 1 3は 600mmx 600mmで厚みが 20mmのテフ ロ ンと した。 この従来のプラズマ処理装置におけるプラズマの均一性を評価するた めに、 イオン電流密度分布を測定した。 試料台の中心位置を中心と して マイ クロ波の進行方向である Z方向とそれに垂直な Y方向について測定 を行った。 測定位置はマイ クロ波導入窓から 1 00mmの位置と した。 プラズマ発生は A rガスを用い、 圧力 1 0mTo r r、 マイ ク ロ波パヮ 一 3 k Wで行つた。
図 1 6はこの比較例のイオン電流密度分布の測定結果を示すグラフで ある。 図 1 6から明かなように、 誘電体層 2 1の幅方向である Y方向の 端部でイ オン電流密度が低下している。 また、 マイ ク ロ波の進行方向で ある Z方向については、 イ オン電流密度が導入側では高く、 徐々 に減少 している。 このため、 プラズマの分布の均一性が不十分であった。 産業上の利用可能性
本発明装置にあっては、 簡単な構成で大面積に均一にプラズマを発生 できる。 このため、 半導体素子基板、 液晶ディ スプレイ用ガラス基板等 の大面積の基板に、 安定して しかも均一に、 エッチング、 アツ シングぉ よび CVD等のプラズマ処理を施すことができる。

Claims

請求の範囲
1 . マイ ク ロ波発振器と、 マイ クロ波を伝搬させるマイ ク ロ波導波路と 、 前記マイ クロ波導波路に接続される誘電体層と、 前記誘電体層に中空 層を挟んで対向配置されるマイク ロ波導入窓と、 前記マイクロ波導入窓 によってマイ クロ波導入口が気密に封止される金属製反応容器とを備え たプラズマ処理装置において、 前記誘電体層が複数の誘電体層に分割さ れており、 それぞれの分割された誘電体層にマイクロ波導波路が接続さ れているこ とを特徴とするプラズマ処理装置。
2 . 前記分割された複数の誘電体層が金属壁によりそれぞれ分離されて いるこ とを特徴とする請求の範囲第 1 項記載のプラズマ処理装置。
3 . 前記誘電体層を誘電体層の幅方向に分割して複数の誘電体層と して いるこ とを特徴とする請求の範囲第 1 項記載のプラズマ処理装置。
4 . 前記マイ ク ロ波発振器が 1 つであって、 1 つのマイ クロ波発振器か ら前記分割された複数の誘電体層へマイクロ波を分岐して伝搬させるマ イク口波導波路を備えるこ とを特徴とする請求の範囲第 1項、 第 2項ま たは第 3項記載のプラズマ処理装置。
5 . 前記分割された複数の誘電体層のそれぞれに対して、 独立したマイ クロ波導波路およびマイ ク ロ波発振器を備えることを特徴とする請求の 範囲第 1 項、 第 2項または第 3項記載のプラズマ処理装置。
6 . 前記分割された誘電体層の個数が 2であることを特徴とする請求の 範囲第 1 項、 第 2項または第 3項記載のプラズマ処理装置。
PCT/JP1995/001403 1994-07-14 1995-07-13 Dispositif de traitement au plasma WO1996003019A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US08/605,216 US5788798A (en) 1994-07-14 1995-07-13 Plasma processing apparatus
DE69512376T DE69512376D1 (de) 1994-07-14 1995-07-13 Plasma-bearbeitungsvorrichtung
KR1019960701293A KR100205476B1 (ko) 1994-07-14 1995-07-13 플라스마 처리장치
EP95925123A EP0723386B1 (en) 1994-07-14 1995-07-13 Plasma processing device
TW088203124U TW397320U (en) 1994-07-14 1995-08-28 Plasma processing apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP6/162021 1994-07-14
JP6162021A JP2932942B2 (ja) 1994-07-14 1994-07-14 プラズマ処理装置
JP11733495A JP3703877B2 (ja) 1995-05-16 1995-05-16 プラズマ装置
JP7/117334 1995-05-16

Publications (1)

Publication Number Publication Date
WO1996003019A1 true WO1996003019A1 (fr) 1996-02-01

Family

ID=26455471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/001403 WO1996003019A1 (fr) 1994-07-14 1995-07-13 Dispositif de traitement au plasma

Country Status (6)

Country Link
US (1) US5788798A (ja)
EP (1) EP0723386B1 (ja)
KR (1) KR100205476B1 (ja)
DE (1) DE69512376D1 (ja)
TW (1) TW397320U (ja)
WO (1) WO1996003019A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6652709B1 (en) * 1999-11-02 2003-11-25 Canon Kabushiki Kaisha Plasma processing apparatus having circular waveguide, and plasma processing method
JP3792089B2 (ja) * 2000-01-14 2006-06-28 シャープ株式会社 プラズマプロセス装置
KR20020091857A (ko) * 2001-05-30 2002-12-11 사단법인 고등기술연구원 연구조합 다중 공진 모드를 이용한 플라즈마 방전 시스템
TW200415726A (en) * 2002-12-05 2004-08-16 Adv Lcd Tech Dev Ct Co Ltd Plasma processing apparatus and plasma processing method
JP5222744B2 (ja) * 2009-01-21 2013-06-26 国立大学法人東北大学 プラズマ処理装置
KR20140023807A (ko) * 2012-08-17 2014-02-27 삼성전자주식회사 반도체 소자를 제조하는 설비

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS625600A (ja) * 1985-06-28 1987-01-12 住友金属工業株式会社 マイクロ波プラズマ処理装置
JPS6411403A (en) * 1987-07-03 1989-01-17 New Japan Radio Co Ltd Plasma generation reacting device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3244391A1 (de) * 1982-12-01 1984-06-07 Leybold-Heraeus GmbH, 5000 Köln Vorrichtung zur beschichtung von substraten durch plasmapolymerisation
JPH0695479B2 (ja) * 1985-10-25 1994-11-24 住友金属工業株式会社 マイクロ波プラズマ発生装置
JP2570090B2 (ja) * 1992-10-08 1997-01-08 日本電気株式会社 ドライエッチング装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS625600A (ja) * 1985-06-28 1987-01-12 住友金属工業株式会社 マイクロ波プラズマ処理装置
JPS6411403A (en) * 1987-07-03 1989-01-17 New Japan Radio Co Ltd Plasma generation reacting device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0723386A4 *

Also Published As

Publication number Publication date
KR100205476B1 (ko) 1999-07-01
EP0723386A4 (en) 1997-01-29
DE69512376D1 (de) 1999-10-28
KR960705336A (ko) 1996-10-09
US5788798A (en) 1998-08-04
EP0723386A1 (en) 1996-07-24
EP0723386B1 (en) 1999-09-22
TW397320U (en) 2000-07-01

Similar Documents

Publication Publication Date Title
JP2003059919A (ja) マイクロ波プラズマ処理装置および処理方法
KR100279656B1 (ko) 플라즈마 처리장치 및 플라즈마 처리방법
WO1996003019A1 (fr) Dispositif de traitement au plasma
JP3703877B2 (ja) プラズマ装置
JP3204145B2 (ja) プラズマ処理装置
JPH1167492A (ja) プラズマ処理装置及びプラズマ処理方法
JP4165946B2 (ja) マイクロ波プラズマ処理装置
JP3067579B2 (ja) プラズマ装置
JP3815868B2 (ja) プラズマ処理装置
JP3491190B2 (ja) プラズマ処理装置
JPH10199698A (ja) プラズマ処理装置
JP3042347B2 (ja) プラズマ装置
JP4488551B2 (ja) マイクロ波プラズマ処理装置及び封止部材
JP3683081B2 (ja) プラズマ処理装置
JP2932942B2 (ja) プラズマ処理装置
JP3085155B2 (ja) プラズマ処理装置
JP4052735B2 (ja) プラズマ処理装置
JP4401400B2 (ja) マイクロ波プラズマ処理装置
JPH1126187A (ja) プラズマ処理装置及びプラズマ処理方法
JPH10242124A (ja) プラズマ処理装置およびプラズマ処理方法
JPH08250477A (ja) プラズマ装置
JP4514291B2 (ja) マイクロ波プラズマ処理装置及びプラズマ処理方法
JP3729615B2 (ja) プラズマ処理装置及びプラズマ処理方法
JP2000164391A (ja) マイクロ波プラズマ処理装置
JP2921302B2 (ja) マイクロ波プラズマ処理装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1019960701293

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1995925123

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08605216

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1995925123

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995925123

Country of ref document: EP