WO1996001219A1 - Structure de reservoir souterrain a double paroi utilisant un materiau composite et son procede de production - Google Patents

Structure de reservoir souterrain a double paroi utilisant un materiau composite et son procede de production Download PDF

Info

Publication number
WO1996001219A1
WO1996001219A1 PCT/JP1995/001340 JP9501340W WO9601219A1 WO 1996001219 A1 WO1996001219 A1 WO 1996001219A1 JP 9501340 W JP9501340 W JP 9501340W WO 9601219 A1 WO9601219 A1 WO 9601219A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
layer
laminated
resin
frame
Prior art date
Application number
PCT/JP1995/001340
Other languages
English (en)
French (fr)
Inventor
Charles E. Kaempen
Original Assignee
Daido Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Co., Ltd. filed Critical Daido Co., Ltd.
Priority to EP95924504A priority Critical patent/EP0718215A1/en
Priority to BR9506025A priority patent/BR9506025A/pt
Priority to KR1019960701137A priority patent/KR960704786A/ko
Priority to AU28985/95A priority patent/AU2898595A/en
Priority to MX9600879A priority patent/MX9600879A/es
Publication of WO1996001219A1 publication Critical patent/WO1996001219A1/ja
Priority to FI961002A priority patent/FI961002A/fi
Priority to NO960878A priority patent/NO960878L/no

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/76Large containers for use underground
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/48Arrangements of indicating or measuring devices
    • B65D90/50Arrangements of indicating or measuring devices of leakage-indicating devices
    • B65D90/501Arrangements of indicating or measuring devices of leakage-indicating devices comprising hollow spaces within walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/02Wall construction
    • B65D90/022Laminated structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49879Spaced wall tube or receptacle

Definitions

  • the present invention relates to a composite laminated structure having a double corrugated wall formed on a mandrel (hereinafter, referred to as a mandrel) that cannot be removed integrally with the structure.
  • a mandrel a mandrel
  • a non-metallic underground fuel tank with a second containment vessel and an annular space that can be fitted with a monitoring device to warn of tank leaks It relates to a charge storage tank.
  • a tank with a second container of a type conforming to UL 1746 is usually a simple steel tank conforming to UL 58, with a mixture of glass fiber chopped strands, separated from steel and polyester resin, enclosing it. And made of glass fiber reinforced resin shell.
  • Tanks that comply with UL 1746 are generally not required to meet the same strength and corrosion resistance specifications as newer tanks with a second container feature that comply with UL 1316 .
  • the inner and outer vessels of a double-walled UL 1746 compliant tank do not need to withstand the same test pressures required for a UL 1316 compliant tank, so they are generally made flat on both ends rather than dome-shaped. Have been.
  • Underwriters Laboratories divides the double walled UL 1316 compliant tank with the second container into six classes. Three of them belong to the “Evening Eve I” second container holding tank. The shell or jacket of this type of tank does not completely enclose the first container. The other three classes belong to the “Type II” second container holding tank.
  • This “Type II J UL1316 compliant tank has a second container that completely wraps the outside of the first container. Underwriter-Slavatoris has a second container“ Type I j Or "Type III UL 1 316 For both inks, indicate which fuels can be stored in accordance with the chemical resistance of the first container.
  • UL 1 3 16 compliant double-walled inks belong to Class 12 (Type I) or Class 15 (Type II) and are approved for use in storage of petroleum products only UL with the highest chemical resistance 1 316
  • Compliant double-walled tanks belong to Class 14 (Type I) or Class 16 (Type II) and contain all petroleum products and all The storage of alcohol and mixtures of alcohol and gasoline has been tested and approved for use.
  • Underground storage tanks compliant with UL 1316 Class 16 have the highest strength and corrosion resistance established by Underwriters Laboratories for underground storage of flammable and flammable liquids. It conforms to the standard.
  • the first vessel (inner tank) meeting the requirements for UL 1316 class 16 (type II) underground tanks must have at least 15 psi (1.0 SkgZcm 2 ) in the outer second vessel tank It must be able to withstand 25 psi '(1.76 kg / cm 2 ) under pressure. This tank must be able to withstand the compressive loads created by a vacuum of 1.75 inches (29.8 cm) of mercury.
  • Example III of the U.S. Pat.No. 3,851,786 is a single layer conforming to the UL test requirements established in 1973 established for nonmetallic underground tanks used to store petroleum products only. It shows the details of the structure of the wall underground buried tank. The single-wall subsurface burial described in Example III of U.S. Pat. No. 3,851,786. Conventional laminated structures used in the construction of tanks are abbreviated to the UL 1316 standard for non-metallic underground tanks for storage of alcohol and petroleum products, revised in 1987.
  • the UL 1316 compliant double-walled all-glass fiber reinforced plastic underground buried tank which has been adopted as the industry's standard product for the past 30 years, is still divided into two pieces.
  • a half of a glass fiber chopped strand reinforced plastic tank hull (two-part tank hull, hereinafter referred to as a half-shell) is butted in the center of the tank, and a resin-impregnated glass woven fabric is wrapped around it and connected. Is being built.
  • Each of these half-shells is constructed by laminating a mixture of glass fiber chopped strands and polyester resin on two sets of folding or detachable steel mandrels.
  • the detachable mandrel for manufacturing the tank half seal is shaped so that a spherical end plate and half of the cylindrical part of the tank can be formed.
  • the mandrel for forming the tank half shell has one end supported by a drive shaft to provide the function of a rotating cantilever.
  • the conventional method of manufacturing a double-walled glass fiber reinforced plastic half seal is to apply a release agent to the surface of a half-shell molding mandrel, and then apply a mixture of a polyester resin and a glass fiber fiber strand.
  • a glass fiber reinforced plastic rib forming core is placed on the half shell inner wall, and resin is impregnated with resin on the rib forming core.
  • a film for mold release and formation of an annular space is placed on the part (except on the rib), and a polyether film is placed on the tank end plate and the cylindrical part with the rib.
  • Tel spraying a mixture of resin and glass O ⁇ chopped strand to obtain a double-wall tank half-shell with a second container feature.
  • detach the tank half shell from the mandrel place it on a trolley and cut it. Carry it to the saw, adjust the finish so that the end of the half-shell fits the end of the other half-shell exactly, and wind both ends of the butt joint with a band of glass fiber cloth impregnated with resin.
  • the formation of half-shells in conventional glass fiber reinforced plastic tanks depends on the skill of the person responsible for controlling the quantity, ratio and lamination status of the glass fiber chopped strands and resin material, temperament and degree of fatigue. .
  • the complexity of the computer-controlled mandrel / material feeder used to manufacture the conventional half-shells of glass fiber reinforced plastic tanks has led to frequent interruptions in manufacturing operations.
  • polyester resin used in the manufacture of most conventional underground tanks made of glass fiber reinforced plastic is an isophthalic acid polyester resin that does not contain additives that control styrene emission. Since these polyester resins usually contain 40 to 50% by weight of styrene monomer, the production of all-glass fiber reinforced plastic tanks by the conventional method reduces air pollution resulting from the necessary spray molding work. Expensive equipment for controlling is required.
  • the present invention overcomes the above-mentioned problems of the prior art method, having separate and concentric, hemispherical end plates, the walls of which are covered by a corrugated cylindrical double pressure vessel. It is intended to provide a composite double wall underground buoy consisting of a tank frame structure with the function of a rotatable metallic mandrel inside.
  • the tank frame provides buckling resistance and pressure resistance to withstand the load of earth and sand when the tank is buried underground.
  • the two pressure vessels comprise an inner first container made of the same material and wrapped in an outer second container having the same tensile strength and corrosion resistance.
  • the double wall underground tank made of composite material is a significant improvement over conventional steel and glass fiber reinforced plastic tanks, preventing leakage of contaminating and dangerous liquids stored in the tanks, It provides a more reliable way to protect the environment.
  • Each of the two pressure vessels is thermoset -1 o-It is made of a multi-layer composite laminate with a unique arrangement of a cloth impregnated with a polymer matrix.
  • the hemispherical end plate has a rotary shaft mounting port that can be sealed.
  • the outlet cap at the top of the tank is the non-corrugated part of the cylindrical laminate, where the outer container and the inner container are glued together and between the two bolted metal plates of the structure connected to the tank frame It is sandwiched and a sealing material is laminated on it.
  • the annulus between the two containers includes a reservoir formed uniquely into the lower portion of the hemispherical composite laminate end structure of the outer container and a connecting conduit to the annulus.
  • a preferred embodiment of the present invention is a petroleum product, alcohol, which has been established and published by Underlie Yuichi Laboratories, and has been published under the standard UL 13 16 "Glass fiber reinforced plastic underground tank for storing petroleum products". And the requirement for a type II all-round underground tank with a second container for the storage of alcohol-gasoline mixtures.
  • the manufacturing method and equipment used in the preferred embodiment of the present invention are as set forth in the UL file MH8781, dated September 30, 1993, by the inventor of the present invention as Underwriters Laboratories, Inc. It includes the procedure referred to in the above. Disclosure of the invention
  • the main point of view of the invention disclosed here is to create a multi-layer laminated corrugated structure with each concentric tank shell forming a non-metallic underground storage tank with a second container that complies with UL 1316
  • the placement and selection of the cloth material and thermosetting resin used for The laminated structure of each tank shell constituting the present invention after being immersed in a liquid chemical described in the UL 1316 standard for 270 days, exhibits at least 50% of its initial bending strength. Hold and safely withstand an internal pressure (units of pounds per square inch) equal to 200 divided by the tank diameter in feet (25 psi for an 8-foot tank) Can be done.
  • the present invention is to create a multi-layer laminated corrugated structure with each concentric tank shell forming a non-metallic underground storage tank with a second container that complies with UL 1316
  • the placement and selection of the cloth material and thermosetting resin used for The laminated structure of each tank shell constituting the present invention after being immersed in a liquid chemical described in the
  • Yet another aspect of the present invention is a cleaning article that is closely adhered to one another and that does not form a corrugated tank shell corrugation that is bonded to a metal outlet fitting plate that is welded to a metal tank frame.
  • Outlet seal structure of double wall tank including
  • Still another aspect of the present invention is to provide a tank annular space for capturing leaked liquid at the bottom and a reservoir for monitoring the entire tank for leakage with a flexible measuring rod or a leak detection sensor system.
  • An outer tank end plate shell structure made of a hemispherical composite material formed into a shape that simulates a curved communication conduit.
  • the axially continuous woven strands of the tank that constitutes the cylindrical evening husk stack are permanently attached to the hemispherical tank end plate. It is a ring-shaped composite material structure that connects an end plate and a shell formed by laminating continuous textile strands that are aligned in the direction on the end of the hemispherical end plate.
  • FIG. 1 is a top view, partially in section, of a preferred embodiment of the present invention, covered by a double, usually cylindrical, corrugated laminate separated by a plastic film. 1 shows a metal tank frame skeleton.
  • FIG. 2 is an enlarged partial view of the tank terminal seen from above, partially in section, showing the first and second halves covering the tank terminal frame structure.
  • 3 shows a multilayer structure of a spherical laminated tank end plate.
  • FIG. 3 is a partial perspective view showing a multilayer structure of the first and second cylindrical laminated structures shown in FIG.
  • FIG. 4 is a side view of a preferred embodiment, showing a pedestal supporting the tank, a continuous conduit to the annular space reservoir described below, and a second hemispherical laminated tank end plate shown in FIGS. 2 and 3.
  • Fig. 3 shows an annular space reservoir forming a part.
  • Figure 5 is a partial isometric view of the cross section of the center of the bottom of the double hemispherical laminated tank endplate, containing the communication conduit to the annular space reservoir and the sensor for detecting leakage. 2 shows a liquid reservoir at the bottom of the annular space.
  • FIG. 3 is a partial view of a cross section of a composite laminate used to seal the seal seen from above.
  • FIG. 3 is a perspective view of a partial cross section showing a laminated seal structure laminated on the upper part.
  • FIG. 8 is a record diagram of the infrared spectrum obtained by infrared spectroscopy of the first and second tank laminate materials tested by Underwriters Laboratories.
  • FIG. 9 is a cross-sectional view of a metal channel material used to fabricate a tank frame rib in a preferred embodiment of the present invention.
  • Fig. 1, especially Fig. 1 includes the double shell underground tank structure 1 made of composite material. Preferred embodiments (embodiments) of the present invention will be described.
  • the tank structure 1 is usually composed of a metal ink frame structure 2 and a double concentric multilayered structure 3 surrounding the frame structure. These laminates 3 use the same materials and construction methods as described in the UL file MH8781 of Underwriters Laboratories, Inc., which has approved the labeling conforming to UL 1316 standard class 16 It was manufactured.
  • This tank structure 1 further comprises, for example, two relative laminates 3 formed from said multilayer laminate 3 made using Derakane 470-36 vinyl ester resin from Dow Chemical Company. And a hemispherical end plate 4 and a multi-layer tank shell 5. Laminate 3 chemical resistance testing was performed over two and a half days as Underwriters Laboratories' UL files MH8781, 92SC104642 projects . The test results for these chemicals are shown in Table 1.
  • thermosetting resin matrix 62%
  • Izod impact value before test 1.17 kj / m (22 ft-lb / in)
  • a thin multilayer laminate 3 having a thickness of 3.175 mm (0.125 in) manufactured by the material composition according to the present invention was immersed in a wide variety of liquids for a long time. After that, retain its physical properties at least 50.
  • Dow Chemical's Delagen 470-36 vinyl ester resin is recommended as a preferred component of the multilayer laminate 3 constituting the first and second containers in a preferred embodiment of the tank.
  • the infrared spectrum curve 8 of the matrix was obtained by the infrared spectroscopy.
  • the first and second hemispheres made of the following fiber-reinforced material cloth impregnated with Delagen 470-36 manufactured by Dow Chemical Co., Ltd. to which a styrene-containing volatilization inhibitor containing PEX is added.
  • Tank terminal board laminate
  • First layer 44 g Zm 2 (1.3 oz / yd 2 ) polyester weave surfacing veil with openings
  • Second layer 4 42 g / m 2 (13.0 oz / yd 2 ) Unidirectional (circumferential) alignment glass weave roving
  • Fourth layer 6 1 2 g / m 2 (1.80 oz / yd 2 ) glass fiber roving cloth
  • each hemispherical composite laminate structure consists of a multilayer fiber reinforced plastic laminate structure.
  • the figure shows 5 layers of 4a—4e
  • the first layer 4a has a dry weight of 44 g / m 2 (1.3 oz / yd 2 ) and a polyester fiber with a soft opening of about 0.25 mm (0.010 in) thick
  • trapezoidal fabrics are cut from each other and have a transverse length cut from the surfing veil in the range of 1.5 to 2. lm (60 to 84 in).
  • the second layer 4 b has a tensile strength equal to 21 kg (1200 lb / in) per width, a dry weight of 44 2 g per square meter (13 ozZyd 2 ) and a thickness of 0 80 mm (0.03 in) continuous length of one-way aligning opening one-bing fabric material with a longitudinal length in the range of 1.2 to 1.8 m (48 to 72 in) It is preferable to include those in which the strands are oriented in the circumferential direction.
  • the third layer 4c which is a stack of trapezoidal cloth materials, is a glass with a dry weight of 4.58 g per square meter (1.5 ozZft 2 ) and a thickness of about 0.38 mm (0.015 in)
  • the length in the vertical direction cut from the fiber chopped strand is in the range of 1.5 to 2.1 m (60 to 84 in).
  • the fourth layer, 4d which is a stack of trapezoidal fabrics, has a tensile strength equal to 11 kg (600 lb / in) per hidden width and a dry weight of 6 12 g per square meter (18 oz / yd 2 ), cut from a 1.0 mm (0.04 in) thick glass fiber opening bing cloth, 1.2 to 1.8 m (48 to It is preferably in the range of 42 in).
  • the fifth layer 4e which is a stack of trapezoidal fabrics, has a tensile strength equal to 3.543 kg (200 lb / in) per lmm width and a dry weight of 204 g per square meter (6 ⁇ ⁇ 1 2 ) cut from a 0.25 mm (0.010 in) thick glass woven fabric, 1.5 to 2.1 m (6 It is preferably in the range of 0 to 84 in).
  • Layers 4a-4e of the first container 6 and the second container 7, which form the hemispherical laminated end plate structure, contain a liquid styrene volatilization inhibitor containing phenol. It is impregnated with a thermosetting liquid vinyl ester resin matrix containing 30 to 40% of a styrene monomer added at 1.3% by weight.
  • the cylindrical wave of the first tank which is made of the following fiber-reinforced material cloth impregnated with Delagen 4'70-36 manufactured by Dow Chemical Co., Ltd. Mold laminated structure
  • First layer 34 gZm 2 (1. OozZyd 2 ) resin-treated polyester textile fabric veil
  • Second layer 4 4 gZm 2 (1.3 ozZyd 2 ) polyester fiber surfing single veil without resin treatment
  • 3rd layer 204 gZm 2 (6.0 ozZyd 2 ) woven glass fabric 4th layer: 4 42 gZm 2 (13.0 oz / yd 2 ) Unidirectional (lengthwise) alignment Glass fiber roving
  • the cylindrical wave of the second tank which is made of the following textile reinforcing material cloth impregnated with Dow Chemical Delagen 470-36 to which a volatilization inhibitor of styrene containing PEG is added. Mold laminated structure
  • First layer 4 4 gZm 2 (1.3 ozZyd 2 ) polyester resin surfacing veil without resin treatment
  • Second layer 204 g / m 2 (6.0 oz / yd 2 ) woven glass fiber third layer: 44 2 g / m 2 (13.0 oz / yd 2 ) Unidirectional (long Glass fiber roving
  • Fourth layer 3 0 5 gZm 2 (1. OozZft 2 ) chopped strand of glass fiber
  • the cylindrical composite laminated shell structure forming the first container 6 is disposed on a number of equally-spaced metal annular ribs, and is composed of a number of layers 6a to 6h. Although eight layers of 6a-16h are shown in the drawing, it should be understood that additional layers can be added without departing from the spirit of the present invention.
  • the first layer of cloth 6a is impregnated with resin, weighs 34 g per square meter (1 oz / yd 2 ), and has a thickness of about 0.25 concealed (0.010 ⁇ ) , Inch (0.25 sq.), With openings hardened with resin in the range of 91.4 to 18 cm (36 to 72 in)
  • resin in the range of 91.4 to 18 cm (36 to 72 in)
  • it comprises a woven polyester fiber surfing veil.
  • the warp direction of the first-layer cloth is usually oriented in the direction of the longitudinal axis of the tank frame.
  • the second layer of cloth 6 has a dry weight of 44 g / sq m (1.3 oz / yd 2 ), a thickness of about 0.25 mm (0.010 in) and a width of 4 5. It is preferred to comprise a polyester fiber surfacing veil with soft openings in the range of 7 to 122 cm (18 to 48 in).
  • the longitudinal direction of the second-layer cloth is superimposed on the first-layer cloth 6a, oriented at right angles to the longitudinal direction, and a uniform force is applied to the first layer 6a and the second layer 6a.
  • Layer 6b is deformed so as to be a series of corrugations, and when viewed from the cross section including the axis of the tank frame, the cross section is usually between the adjacent convex parts and intersects with it.
  • the third layer of cloth 6c has a tensile strength equal to 3.54 3 kg (200 lb / in) per recital width and a dry weight of 204 g per square m (6oz / yd 2 ). It may consist of a glass fiber woven fabric having a thickness of 0.025 inch (0.010 in) and a width in the range of 30.4 to 13 cm (12 to 52 in). preferable.
  • the warp of the third layer of woven fabric 6c is superimposed on the second layer and oriented substantially parallel to the warp direction.
  • the fourth layer of cloth, 6 d is a continuous strand of glass fiber, usually aligned in one direction along the length of the cylinder, with a tensile strength of 21 kg (1200 lb / in) per lmm width, dry weight Is 442 kg per square meter (13 oz / yd 2 ), 0.80 mm (0.03 in) thick, 91.4 to 183 cm (36 to 72 cm) wide in).
  • the fifth layer of cloth 6e has a dry weight of 30.5 g per square meter (1 oz / ft 2 ), a thickness of about 0.025 (0.OlOin), and a width of 9 It is preferred that the glass woven chopped strands in the range of 1.4 to 183 cm (36 to 72 in) are oriented in a non-directional manner.
  • the sixth layer 6f is normally perpendicular to the fourth layer continuous fiber strand 6d so as to apply a sufficiently uniform force. It consists of a continuous glass fiber strand wound in a rolled circumferential direction.
  • the sixth layer 6f has a tensile strength of 21 kg (1200 lb / in) per 1 mm width, a dry weight of 4442 g / sq m (13 oz / yd 2 ), and a thickness of 6 f. It is 0.03 inch (0.08 mm) wide and ranges from 10 to 150 cm (4 to 60 in) wide.
  • the seventh layer 6 g is a one-way aligned glass continuous arrowhead strand that is wound on the glass fiber strand of the sixth layer 6 f and oriented substantially parallel thereto, and has a tensile strength of 1 2 1 kg (1.20 lb / in) per square meter, dry weight of 442 g / sq m (13 ozZyd 2 ), thickness of 0.80 mm (0.03 in) and width It is preferably in the range of 10 to 150 cm (4 to 60 in).
  • the eighth layer of fabric 6 h has a tensile strength equal to 3.54 3 kg (200 lb / in) per square meter and a dry weight of 204 g per square m (6 oz / yd 2 ), It is preferably made of glass fiber woven cloth having a thickness of 0.025 mm (0.010 in).
  • the cylindrical composite laminated shell structure 6h of the first container 6 is converted into the first and second cylinders as shown in FIGS. 2 and 3. Completely wrap and cover except for the tank outlet where the laminates are glued together.
  • the annular space formed by the plastic intermediate sheet 22 in the middle of the first and second cylindrical composite laminated tank shells 5 is such that the double-shelled tank is subjected to impact or shock during its transportation and handling.
  • the cylindrical composite laminated shell structure forming the second container 7 includes the first layer 6a Except for the above, it is preferable to use the same materials and in the same order as the composite laminated shell structure forming the first container 6.
  • the first layer 7a is made of a polyester woven surfing veil having soft openings.
  • the second layer 7b is made of glass woven fabric.
  • the third layer 7c is made of woven strands aligned in one direction in the longitudinal direction.
  • the fourth layer 7d is made of glass fiber chopped strand.
  • the fifth layer 7e and the sixth layer 7f are made of continuous glass fiber strands oriented in the circumferential direction.
  • the outermost seventh layer 7 g is made of glass fiber woven fabric.
  • Each layer forming the cylindrical laminated structure of the first and second containers contains 30 to 40% of a styrene monomer containing 1.3% by weight of a styrene volatilization inhibitor containing a liquid wax. It is impregnated with a curable liquid vinyl ester resin matrix.
  • a preferred matrix material is Delagen 470-36 from Dow USA.
  • FIG. 1 shows a preferred shape of the metal tank frame 2.
  • the tank frame 2 is a hemispherical metal terminal provided with a rotating shaft holding bracket 11 (FIG. 6) that can be rotated by a tank frame rotating device (not shown) while supporting both ends thereof.
  • the cylindrical tongue frame structure is made up of ring-shaped metal ribs 12 fixed at equal intervals by nine metal longitudinal members 13, and its end is connected to the rotary drive of the tank frame.
  • the outer diameter of the frame connected to a hemispherical metal tank end plate structure with a bracket on a removable pivot (not shown) is 24.1 cm (95 in) Is preferred.
  • the ribs 12 and longitudinal members 13 of the tank frame and the hemispherical end plate holding structure 10 are shown in the figure.
  • the carbon steel grooved steel shown in Fig. 9 has a cross section of about 3.23 square cm (0.5 in), a thickness of about 0.32 cm (0.125 in), and a flange. The height is 2.54 cm (1.0 in) and the web width is 5.08 cm (2.0 in).
  • the compressive strength is twice as large as that of a steel tank structure certified by Underline Yuichi Laboratories (UL58 standard). It has anti-buckling rigidity (proportional to the second-order moment of section I). Moreover, its weight is 1/6 of the steel tank structure.
  • the cross-sectional secondary moment I of the channel 14 shown in FIG. 9 is equal to 1.507 cm 4 (0.036 2 in 4 ) and the cross-sectional area is 0.2952 cm 2 (0 0 4 5 7 6 in 2 ).
  • the second moment of the steel plate having a thickness of 1 Z 4 inch is 0. 6 4 9 2 cm 4 (0. 0 1 5 6 in 4 ) and the cross-sectional area is equal to 19.35 cm 2 (3 in 2 ).
  • each outlet base plate 15 is welded to the tank frame 2 so that its surface is flush with the cylindrical outer surface of the tank frame rib, and its position is Be at the top of the evening frame between the frame ribs.
  • Each outlet base plate 15 is made of a steel curved plate and welded to the outer edge of adjacent tank frame ribs.
  • the outlet base plate 15 has an opening 16 (FIG. 3) and communicates with the inside of the tank through the outlet base 17.
  • Each outlet base plate 15 has at least a perimeter of 6 45 cm 2 (100 in 2 ) to which the inner surface 19 of the outlet portion of the lamination surface of the first container can be adhered and sealed. It is made to have an area surface 18.
  • Figure 7 shows that the two metal exit curved plates are sandwiched
  • Figure 3 shows a preferred embodiment of the structure 20 of the outlet part of the base of the double shell tank comprising the outlet part 21 of the cylindrical laminated structure 5 which is sealed by the structure 27 and which does not form a corrugation.
  • the inner metal curved ferrule mounting plate 15 with at least one outlet ferrule 17 is welded to the adjacent annular ribs 12 of the tank frame made of grooved steel and the outer ends of the tank frame ribs The same outer surface 24 is formed.
  • the inner surface of the tank outlet part 19 of the first tank laminated structure is adhered to the surface 24 of the metal outlet base plate with a thermosetting resin matrix used for impregnation of the laminated reinforcing material of the first container 6. .
  • the outer surface of the outlet portion 19 of the first tank also adheres to the inner surface of the laminate of the outlet portion 25 of the second tank.
  • the bonding area between the tank outlet base mounting plate 15 and the mutually bonded laminate outlet portion is at least equal to the area of the metal outlet base mounting plate.
  • the outer metal curved tank outlet pressure plate 26 is bolted to the inner tank outlet plate 15 and is adhered on the outer surface of the outlet portion 25 of the laminate of the second container. .
  • the outer surface around the outlet opening of this bolted metal pressure plate 26 is laminated on that surface and glued to the outer surface of the second tank to a certain extent around this pressure plate, the outlet It is covered by a laminated structure 27 that seals.
  • FIG. 4 shows a tank with a support pedestal 28 to raise the bottom of the tank above its support surface 29 to prevent damage to the annular space reservoir 30 and to facilitate inspection of the tank bottom 31.
  • An example of a preferred embodiment of the heavy shell underground storage tank 1 will be described.
  • FIG. 5 shows a second configuration with a communication conduit 33 to the annulus reservoir so that the integrity of the tank as a container can be monitored by a flexible measuring rod or leak detection sensor system 34.
  • Hemispherical laminated tank end plate of container 4 FIG. 3 shows a preferred conduit connection 32 to the annulus reservoir; At the top end of the communication conduit to the annular space reservoir is a metal pipe threaded at the end.
  • the tank support pedestal 28 is a multi-layer laminated composite approximately 6 mm (0.25 in) thick.When the tank is installed, approximately 15 cm x 12 2 cm (6 in x 48 in) ⁇ > is adhered to the outer surface of the bottom of the tank so that a trace of the dimensions of
  • Figure 6 shows a composite tank including the composite tank end plate sealing laminates 38 and 39 for sealing the rotary shaft mounting hole 36 in the first tank and the rotary shaft mounting hole 37 in the second tank.
  • 3 shows a preferred method of mounting the frame support rotary shaft.
  • the mounting holes 36 and 37 are for connecting the frame supporting rotary shaft (not shown) of the tank rotating device to the rotary shaft holding structure 11 of the metal tank frame.
  • the hemispherical end plate 4 of the first tank 4 is a laminated structure consisting of five layers with a diameter of about 25.4 cm (10 in) and is sealed with a sealing layer 38. Includes holes 36.
  • the laminated structure 38 for sealing is made of a first layer of a glass weave mat of 4.58 gZm 2 (l.5 ozZft 2 ), and a glass of 612 g / m 2 (18 oz / yd 2 ).
  • a second layer of fiber opening one Hingukurosu the third layer of glass O ⁇ mat, a glass fiber woven fabric of glass fiber row fourth layer Hing cloth and 2 0 4 g / m 2 ( 6 oz / yd 2) It consists of five layers.
  • the hemispherical end plate 7 h of the second tank forms a rotary shaft hole 37 with a diameter of 35.6 cm (14 in) and a part of the communication conduit 33 to the annular space layer reservoir 3 5 Includes a 7 k (14 in) diameter circular terminal closure laminate 7 k.
  • the second tank rotating shaft hole 37 has an inner diameter of 25.4 cm (10 in) and an outer diameter of 45.7 cm (18 in), and has a laminated body 38 for sealing the end of the first tank. Seal with a terminal seal laminated structure 39 in an annular space consisting of five layers of the same constituent material.
  • the laminate 40 that forms the connecting conduit is derived from a similar 5-layer laminate It is used to attach the metal communication pipe 41 to the communication pipe 33 to the annular space liquid reservoir.
  • FIG. 4 shows an example of a preferred embodiment of the connecting ring structure 42 extending between the laminated end plate and the cylindrical body.
  • the connecting ring structure 42 is formed by connecting the longitudinal continuous fiber strands 6 d forming the fourth layer of the corrugated laminated cylindrical shell of the first tank to the outermost layer 4 e of the first hemispherical tank end plate laminate, In order to bind the third layer 7c of the laminated cylindrical shell laminate of the second tank to the outermost layer 4e of the second hemispherical tank end plate laminate 7h, the ends of the hemispherical end plates 4 at both ends are connected. The part is filament wound.
  • the connecting ring that connects the end plate of the first tank and the cylindrical shell forms a winding that forms the beginning and end of the winding of the sixth layer 6 f and the seventh layer 6 g of the continuous fiber wound in the circumferential direction of the first tank. It is preferably made of continuous fiber strands aligned in the direction.
  • the connecting ring that binds the end plate of the second tank and the cylindrical shell forms the start and end of the fifth layer 7 e and the sixth layer 7 f of continuous fiber wound in the circumferential direction of the second tank. It is preferably made of continuous fiber strands aligned in the direction.
  • a preferred method and apparatus for shaping the preferred embodiment shown in FIG. 1 is described below in step order.
  • the preferred molding methods and equipment described below have been tested by Underwriters Laboratories, Inc. on August 5, 1993 and fully meet the requirements of UL 1316 standard type II class 16 was shown, diameter 2 8 3. 8 cm (8 ft), volume 4 5. used in 4 m 3 (1 2, 0 0 0 gal) of manufacture of the double-shelled non-metallic underground tanks Things.
  • a preferred method of forming a composite double shell underground tank of desired shape comprises the following steps: To manufacture the mandrel and end plate support structure 10 integrated with the tank using 2 83.8 (8 ft) diameter ribs 12 and longitudinal members 13 and end plate forming material, grooved steel Cut 14 into the required length from a raw material of 9.14m (3 Oft) length;
  • annular rib and end plate forming member with a roll bending device; Assemble the annular rib 12 and the longitudinal member 13 in the welding jig, and set the rib spacing to 30.5 cm (1 2 in)
  • a cylindrical tank frame member with a length of 17.3 or 16.7 cm (4.5 or 5.5 ft);
  • the tank frame cylinder 9 assembled with the cylindrical tank frame member and the hemispherical end plate frame to form a tank mandrel supported by the rotating shaft;
  • the steel base plate is an annular rib whose outer surface has a radius of curvature of the evening frame. Molded to be equal to the outer diameter of the;
  • a cloth-shaped base material cut into a trapezoid is impregnated with a thermosetting resin, and the hemispherical tank is laminated in a predetermined order while overlapping the peripheral part on the mold for forming the end plate of the hemispherical tank.
  • the first composite laminated tank end plate manufactured in advance is attached to the hemispherical tank end plate holding structures 10 at both ends of the completed tank frame mandrel 2.
  • a polyester fiber surfacing single baling 6a with a hard opening treated with resin is pinched so as to cover the ribs 12 arranged at equal intervals in the tank frame in an unimpregnated state. Cut and adhere so that both ends overlap the end of hemispherical composite laminated tank end plate 4 with a width of 9 inches; polyester fiber surf aceing with long soft resin-free openings Impregnate the bale 6b with a liquid thermosetting resin using a roll core;
  • a long polyester fiber surfing veil 6b impregnated with resin is spirally wound from one end to the other end of the tank on the above-mentioned unimpregnated polyester fiber surfing veil 6a, which is tightened. Attaching; impregnating the resin with the unimpregnated polyester fiber surfing veil which is taut between the ribs 12 of the tank frame and giving a warp to form a corrugated two-layer resin-impregnated laminated surface;
  • This unimpregnated glass fiber woven fabric 6c is pressed so as to be in intimate contact with the laminated surface of the two layers wetted with the corrugated resin;
  • This unimpregnated glass fiber woven fabric 6c is impregnated with a liquid thermosetting resin. Forming a three-layer lining laminate structure;
  • the first end plate is formed by winding the circumferentially wound cloth material 6f impregnated with the above resin onto the unimpregnated lengthwise cloth material 6d with the ends bonded in the circumferential direction. Forming a single shell connecting ring 42;
  • the first spiral winding is performed with the resin-impregnated circumferentially wound long-length cloth material 6 so that the edges thereof are in contact with each other, and from the one end to the other end of the tank, the unimpregnated lengthwise cloth material is used. Pressurize 6 d to impregnate the resin;
  • a mold for forming a hemispherical tank end plate at both ends one of which is heated on a mold formed so as to form a communication conduit 32 integral with the end plate and a liquid reservoir structure 30 at the bottom of the tank.
  • Six layers are laminated in a predetermined order while laminating trapezoidal cloth materials impregnated with a curable resin to form a second hemispherical composite material laminated tank end plate 4;
  • the above preformed second hemispherical composite laminated tank end plate 7 h is mounted on the preformed first hemispherical composite laminated tank end plate 4; the first tank and the second Attaching the second tank end plate to the motor-driven tank frame rotating device; Polishing the outer surface of the first tank in the portion 19 bonded to the lower metal tank outlet base mounting plate 15;
  • both the first and second vessels 6 and 7 are simultaneously pressurized to 0.35 kg / cm 2 (5 psi) to test for leaks.
  • the composite double-walled tank according to the present invention is a significant improvement over conventional steel and reinforced plastic tanks and is stored in the tank. Dangerous liquids can be prevented from leaking, and a reliable sunset is provided in terms of environmental protection. In particular, when the tank is buried underground, it can provide buckling resistance and compressive strength against soil loads.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
  • Moulding By Coating Moulds (AREA)

Description

明 細 書 複合材を用いた二重壁地下埋設タンクの構造およびその製作方法 技術分野
本発明は、 広くは構造物と一体化して取り外すことの出来ない芯金 ( 以下マンドレルと云う) の上に形成した二重の波型の壁を有する複合積 層構造物に関わるもので、 特に環境及び給水を破壊する危険な液体の漏 出を防ぐ為に、 第二の封じ込め容器とタンクの洩れを警告する監視装置 を取り付けることの出来る環状空間とを備えた非金属製の地下埋設の燃 料貯蔵タンクに関するものである。 背景技術
第二容器を備えたものを含む従来の地下埋設貯蔵夕ンクに関する基準 は、 全米防火協会 (National Fire Protection Association) が公表し た米国国家規格で A N S I /N F P A 3 0といわれる引火性及び可燃性 液体に関する規則に明らかである。 これらタンクの規格を定め、 公表し た主要な機関はアンダーライタ一スラボラトリーズ社 (Underwri ters L aboratories Inc. ) である。 1 9 6 4年までは、 殆ど総ての地下埋設貯 蔵タンクはスチール製であって、 アンダーライタースラボラトリーズ社 も始めは、 地下埋設タンクについての唯一の規格 「引火性および可燃性 液体用スチール製地下埋設タンク, U L 5 8 "Standard for Steel Und erground Tanks for Flammable and Combust ible Liquids, UL 58" j を 公表したのみであった。 1 9 6 6年 2月 2日付けで、 アンダーライター スラボラトリーズ社によって、 U L 5 8の改訂が行われ、 非金属製のガ ラス織維強化プラスチック製地下埋設貯蔵タンク "Glass-reinforced P lastic Underground Storage Tanks" の性能規格が確立された。 この規 格 「石油製品の貯蔵のみに用途を限定した非金属地下埋設タンク」 に適 合するものとして、 一重壁地下埋設タンクが、 アンダーライタ一スラボ ラトリーズ社より、 1 9 7 3年 7月 7日付けの UL File H 8781を以て 認定を受けた。 この一重壁地下埋設タンクの製造法の明細は 1 9 74年 1 2月 3日付けで許可された米国特許第 3, 8 5 1 , 7 8 6号明細書の 実施例 III に記述されている。
この 1 9 6 6年改訂の UL 5 8は更に何度も改訂されている。 1 9 7 7年に、 「石油製品貯蔵用ガラス繊維強化プラスチック製地下埋設夕ン クの規格、 UL 1 3 1 6」 と称される規格が導入され、 この規格は最も 最近では、 二重壁非金属地下埋設貯蔵タンクに関する対化学薬品性能と 物理的強度性能に対する要求を加えて、 1 9 9 1年に改訂された。 この 二重壁タンクは、 内側の第一容器に洩れを生じた時に、 タンクの内容物 がタンクの外に逸出するのを防ぐ為の、 第二容器機能を外側に備えたも のである。
スチール製の地下埋設タンクの腐食の結果、 新鲜な水の供給系統の破 壊や環境の著しい損傷が生じることが認められてから、 米国環境保護庁 (Environmental Protection Agency)はこれらスチールタンクに対する 耐食性の評価基準を確立した。 この E P Aの評価基準に合致させるため に、 NE PA 3 0の規則は 「内面の耐食性の付与」 を含むように改訂さ れ、 これに続いて、 アンダーライタースラボラトリーズ社が 「スチール 製地下埋設貯蔵タンクの外部防食システム、 UL 1 74 6」 と云う名称 のもうひとつの安全基準を 1 9 8 9年 1 1月 22日付けで公表した。 こ の規格は 1 9 9 3年 7月 2 7日に改訂された。
米国での使用が認められている従来の二重壁地下埋設タンクはアンダ —ライタースラボラトリーズ社の規格に適合する第二容器から成ってい る。 第二容器を備えていたスチールタンク及び非金属製タンクは、 夫々 UL 1 746及び 1 31 6の範躊に属するものである。
UL 1 746に適合するタイプの第二容器を有するタンクは通常、 U L 58に適合する単なるスチールタンクと、 これを包む、 スチールから は分離されたガラス繊維チヨップドストランドとポリエステル樹脂を混 合して作ったガラス繊維強化樹脂の殻とから成っている。 UL 1 746 に適合するタンクは、 一般に、 UL 1 31 6に適合する第二容器機能を 備えた比較的新しいタイプのタンクと同等の強度及び耐食性の規格を満 足することを求められてはいない。 二重壁の UL 1 746適合タンクの 内側及び外側容器は UL 1 31 6適合タンクに求められているのと同じ 試験内圧に耐える必要がないので、 一般に両端がドーム状ではなく、 平 面に作られている。
アンダーライタースラボラ トリーズ社は第二容器を有する二重壁の U L 1 31 6適合タンクを 6階級に区分している。 その内の 3階級は 「夕 イブ I」 第二容器保有タンクに属するものである。 このタイプのタンク の外殻あるいは外被は第一容器を完全には包んでいない。 他の 3階級は 「タイプ II」 第二容器保有タンクに属するものである。 この 「タイプ II J UL 1 31 6適合タンクは第一容器の外側を完全に包む第二容器を持 つものである。 アンダーライタ一スラボラ トリ一ズ社は第二容器を有す る 「タイプ I j あるいは 「タイプ ΙΠ UL 1 31 6夕ンクの双方につい て、 これに貯蔵することの出来る燃料を、 第一容器の耐化学薬品性に従 つて明示している。 耐化学薬品性の最も低い UL 1 3 1 6適合二重壁夕 ンクはクラス 1 2 (タイプ I) またはクラス 1 5 (タイプ II) に属する もので、 石油製品のみの貯蔵に用いることが認められる。 耐化学薬品性 の最も高い UL 1 31 6適合二重壁タンクはクラス 14 (タイプ I) ま たはクラス 1 6 (タイプ II) に属し、 総ての石油製品ならびに総てのァ ルコールおよびアルコールとガソリンの混合物の貯蔵について、 試験が 行われ、 その使用が認められている。
UL 1 3 1 6規格のクラス 1 6 (タイプ Π) に適合する地下埋設貯蔵 タンクは引火性及び可燃性液体の地下貯蔵用としてアンダーライタ一ス ラボラトリーズ社が確立した最高の強度性能と耐食性能の規格に合致す るものである。 UL 1 3 1 6規格のクラス 1 6 (タイプ II) 地下埋設夕 ンクに対する要求に適合する第一容器 (内側のタンク) は外側の第二容 器タンクに少なくとも 1 5psi ( 1. 0 SkgZcm2 ) の圧力を加えた状 態で、 25psi' ( 1. 76 kg/cm2 ) に耐え得なければならない。 この タンクは水銀柱 1 1. 75インチ (29. 8cm) の真空によって生じる 圧縮荷重に耐え得なければならない。 在来技術に基づく従来の複合材料 製貯蔵タンクは UL 1 3 1 6規格のクラス 1 6 (タイプ II) タンクの 1 993年基準を満足しない。 例えば、 米国特許第 3, 677, 432号 及び第 3, 85 1, 786号各明細書に記載されたタンクは、 この新し い 1 993年基準に適合する複合材二重壁地下埋設タンクの組成あるい は製作方法を明らかにしていない。 米国特許第 3, 85 1, 786号明 細書の第 20図に示された二重壁構造物は、 第一容器が洩れを生じた際 の対応手段としての第二容器を装備するというより、 複合材構造成形物 の断面係数及び曲げ強度の増大を意図したものである。 この構造物は、 このような複合構造物を用いて、 洩れ検知センサーを導入する連絡導管 や耐圧性のタンク出口を備えた第二容器を有する地下埋設夕ンクを実現 する方法を明らかにしてはいない。 米国特許第 3, 85 1, 786号明 細書の実施例 III は石油製品のみの貯蔵に用いられる非金属製地下埋設 タンクについて確立された 1 973年制定の UL試験の要求値に適合す る一重壁地下埋設タンクの構造の詳細を示すものである。 この米国特許 第 3, 85 1, 786号明細書の実施例 III に記載された一重壁地下埋 設タンクの製作に用いられた従来の積層構造物は、 1 9 8 7年に改訂さ れたアルコールおよび石油製品貯蔵用の非金属製地下埋設夕ンクに対す る UL 1 3 1 6規格に略述されている対化学薬品性の要求を満足しない 従来の技術は、 現在の UL 1 3 1 6規格のクラス 1 6 (タイプ Π) の 広範な物性及び対化学薬品性試験に合格することの出来る壁厚が僅か 3 mm ( 0. 1 2 in) の二重壁複合材タンク積層構造物を製作する方法を明 らかにしてはいない。 よく知られているように、 積層物の厚さは二重壁 タンクの製造コストを決める主要な要因で、 従って、 対化学薬品性およ び物性を保持したままで、 厚さを減らすことの出来ることが望ましい。 現在、 アルコール、 ガスホール及び石油製品の貯蔵用として、 UL 1 3 1 6規格適合品のリストに載せられている他の従来の二重壁地下埋設 タンクはすべて、 ガラス織維のチヨップドストランドと熱硬化性ポリエ ステル樹脂の混合物で造った、 両端にドームを付けた円筒である。 全米 防火協会の NFPA 3 0 「引火性および可燃性液体に関する規程」 に適 合するために、 これらの従来技術による総ガラス繊維強化プラスチック 製の地下埋設タンクは、 UL 1 3 1 6規格に略述されている構造および 耐食性の要求を満足しなければならず、 また 1 7 2kPa (2 5psi ) の 内圧および一 4 l kPa (- 6psi ) の負圧 (真空) に等しい圧縮荷重に 耐え得ることを示すために試験される。 UL 5 8対応の両端が平面のス チール製地下埋設貯蔵タンクは、 3 4KPa ( 5psi ) を超える試験圧に 安全に耐えることができないが、 これとは異なり、 非金属製地下埋設夕 ンクとして認められるものは総て 1 7 2KPa (2 5psi ) という安全率 5の耐圧強度の要求値を満足しなければならない。 このような理由で、 総ての UL 1 3 1 6対応の大直径地下埋設タンクは半球形の両端を持つ た耐圧容器として造らなければならない。 過去 3 0年来業界の標準製品として採用されて来た従来の技術による U L 1 3 1 6対応型の二重壁総ガラス繊維強化プラスチック製地下埋設 タンクは、 今なお、 2個に分けて成形した半分づつのガラス繊維チヨッ プドストランド強化プラスチックのタンク殻 ( 2分割タンク殻、 以下ハ 一フシヱルと云う) をタンクの中央部で突き合わせ、 その上に樹脂含浸 ガラス織維織布を巻きつけてつなぐことによって造られている。 これら のハーフシヱルの各々は、 2組の折り畳み式あるいは脱離式のスチール 製マンドレルの上にガラス繊維チヨップドストランドとポリエステル樹 脂の混合物を積層して造る。 タンクのハーフシヱルを製造するための脱 離式マンドレルは、 球状の端板とタンクの円筒部の半分を成形できる形 状になっている。 場合によっては、 このタンクハーフシェル成形用のマ ンドレルは、 その一端を駆動軸で支え、 回転する片持ち梁の機能を持た せる。
二重壁ガラス織維強化プラスチックハ一フシヱルを製造する従来の方 法は、 ハーフシェル成形用マンドレルの表面に離型剤を塗布し、 その上 にポリエステル樹脂とガラス織維チヨップドストランドの混合物を積層 してタンクの内壁構造物を造り、 そのハーフシェル内壁の上にガラス繊 維強化プラスチックのリブの形成用芯材を置き、 そのリブ成形用芯材の 上に樹脂を含浸させたガラス繊維チョップドストランドを吹き付けて薄 くコートし、 該ハーフシヱル内壁を硬化させ、 各々のガラス繊維強化プ ラスチックリブの側面の数個所に孔を明け、 該内壁のタンクの端面及び 円筒部の各リブの間の部分 (リブの上は除く) の上に離型および環状空 隙形成の為のフィルムをかぶせ、 該タンク端板およびリブのついた円筒 部の上にポリエステル樹脂とガラス織維チョップドストランドの混合物 を吹き付け、 第二容器機能を持つ二重壁タンクハーフシェルを得る。 次 いでそのタンクハーフシェルをマンドレルから脱離し、 台車に載せて切 断鋸まで運び、 そのハーフシヱルの端部がもう一方のハーフシェルの端 部にぴったり合うように正確に仕上げ調整して、 双方の突き合せ接合部 に樹脂を含浸させたガラス繊維クロスの帯を巻き重ねて永久的に接合す ガラス織維チヨップドストランドと熱硬化性樹脂で製造する従来の U L 1 3 1 6適合二重壁非金属製タンク構造物は引張り弾性率が小さく、 その結果たわみやすい構造物となることを避けられず、 小砂利や粉砕し た岩石あるいは高度に押し固めた土壌に包まれるように注意深く設置し なければ、 断面が楕円型化したり、 変形したり、 あるいは破壊する可能 性もある。 よく知られていることであるが、 従来工法に使用するチヨッ プドストランドは回転式力ッターの刃で切り易いように、 樹脂に難溶性 の結合剤で集束剤されている。 この為、 従来工法による地下埋設タンク 構造物に用いられているチヨップドストランド材料にはポリエステル樹 脂に包まれた微小な未含浸フィラメントの束が含まれている。 これらの 未含浸フィラメントはこのガラス繊維強化プラスチック材料の引張り弾 性率を減らす微小亀裂として働く。 この従来のガラス繊維チョップドス トランド強化プラスチック製タンクに乾燥砂を加えて用いると、 構造強 度の不安定さのまた別の要因になる。 このような理由で、 従来工法によ る二重壁非金属地下埋設貯蔵タンクを構成する樹脂含浸ガラス繊維チヨ ップドストランド材料は地下埋設燃料貯蔵タンクの使用者が望んでいる ような長期に亙って信頼性のある洩れの無い耐食性の構造材料にはなり 難い。
二重壁ガラス織維強化プラスチック地下埋設タンクの製造に用いられ る従来の工法では、 高価で取り扱いの面倒な脱離式のマンドレルを使用 するが、 このマンドレルの使用および保管には特別な注意が必要で、 且 っ屢々保守及び修理を要する。 タンクの生産速度はこの脱離式夕ンクマ ンドレルの充足度に左右される。 この為、 従来のガラス繊維強化プラス チック製タンクのハーフシェルはマンドレルからできるだけ早く離型す ることが必要である。 しかしハーフシェルの離型までの時間はシェルの 材料の硬化時間の関数である。 具合いの悪いことには、 多くの製造条件 の変数が存在する為に、 従来の工法によるガラス繊維強化プラスチック 製タンクのハーフシェルの材料の硬化時間を正確に予測あるいは制御す ることが極端に困難になっている。 例えば、 従来のガラス織維強化ブラ スチック製タンクのハーフシェルの成形は、 ガラス繊維チヨップドスト ランドおよび樹脂材料の量、 比率及び積層状況を管理する責任者の技能 、 気質及び疲労の程度に左右される。 更に、 従来のガラス織維強化ブラ スチック製タンクのハーフシェルの製造に用いられているコンピュータ 制御のマンドレルゃ材料の送り装置の複雑さが製造作業を屢々中断する 原因になっている。 周囲温度や湿度の毎日の変動に付随して、 ガラス織 維強化プラスチック製タンクのハ一フシエルの製造に用いるポリエステ ル樹脂マトリ ックスに加える硬化触媒と促進剤の比率を変える必要があ る。 従来工法によるガラス繊維強化プラスチック製タンクのハ一フシェ ルの製造に用いるボリエステル樹脂の硬化を促進する為に電熱ヒータを 使用する時は、 該樹脂マトリックスが高温になり過ぎたり着火や燃焼し たりしないように、 特別な注意が必要である。 従来工法のガラス繊維強 化プラスチック製タンクのハーフシヱルの製造では、 所要の品質管理を 行う為に、 各々の原材料の使用重量やハーフシェルの先端のドームの厚 さを連続して計測し、 記録する必要がある。 従来のガラス織維強化ブラ スチック製タンクのハーフシェルの製造に用いるマンドレルは、 未硬化 のガラスチヨップドストランド材料がマンドレルから床上に滑り落ちな いように、 材料が硬化するまで、 絶えず回転させ続けなければならない 。 作業時間や生産終了目標時間の制約により、 従来のガラス繊維強化プ ラスチック製タンクのハーフシェルをマンドレルから脱型するのが早過 ぎると、 該ハ一フシヱルは断面が楕円形化して円形ではなくなり、 これ を整形して相手のもうひとつのガラス織維強化プラスチック製タンクの ハーフシェルに合わせることが困難になる。 大部分の従来のガラス繊維 強化プラスチック製地下埋設タンクの製造に用いられているポリエステ ル樹脂はスチレンの発散を抑制する添加剤を含まないィソフタル酸ポリ エステル樹脂である。 これらのポリエステル樹脂は通常 4 0乃至 5 0重 量%のスチレンモノマーを含んでいるので、 従来工法による全ガラス繊 維強化プラスチック製タンクの製造では、 必要なスプレー成形作業の結 果生じる大気汚染を抑制する為の高価な設備が必要である。 ガラス繊維 の過剰スプレーや切断、 整形、 樹脂輸送ラインの洗滌等の作業の結果生 じる相当な量の可燃性のスクラップ材料の処理や取り扱いも、 U L 1 3 1 6規格に適合する従来の二重壁非金属地下埋設貯蔵夕ンクの製造に用 いる従来の生産法や生産装置に伴うもうひとつの要関心事である。
本発明は従来の工法についての前述の問題を克服するものであって、 分離した且つ同心の、 半球形の端板を持ち、 壁が波型の円筒形の二重の 耐圧容器に覆われた内部の回転可能な金属性のマンドレルの機能を有す るタンクフレーム構造物より成る、 複合材料製二重壁地下埋設夕ンクを 提供しょうとするものである。 該タンクフレームは、 タンクを地中に埋 設した時、 土砂の荷重に耐える耐座屈性と耐圧強度を供するものである 。 該 2個の耐圧容器は、 同じ材料で作られ、 引張り強度及び耐食性の同 じ外側の第二容器に包まれた内側の第一容器を含んでいる。 該複合材料 製二重壁地下埋設タンクは従来のスチール及びガラス繊維強化プラスチ ックのタンクを相当に改良するものであって、 タンクに貯蔵される汚染 性の危険な液体の漏れを防いで、 環境を保護する為のより一層信頼性の ある方法を提供するものである。 前記 2個の耐圧容器の各々は、 熱硬化 - 1 o - 性高分子マトリックスを含浸させた布状物を独特に配置した多層複合積 層材で作られている。 前記半球形端板はシールすることの出来る回転軸 取り付け口を備えている。 タンクの頂点の出口口金部は円筒形積層物の 波型のない部分で、 外側容器と内側容器とが互いに接着され、 前記タン クフレームに結合された構造のボルト締めの 2枚の金属板の間にサンド イッチされ、 その上にシール材が積層されている。 2重の容器の間の環 状空間は、 外側容器の半球形複合材料積層末端構造物の下方の部分を独 特の形状に成形した液溜めと環状空間部への連絡導管を含んでいる。 本 発明の望ましい具体化例は、 アンダーライ夕一スラボラトリーズ社によ つて確立され、 公表された規格 U L 1 3 1 6 「石油製品貯蔵用ガラス織 維強化プラスチック地下埋設タンク」 の石油製品、 アルコールおよびァ ルコールーガソリン混合物貯蔵用のタイプ I I全周第二容器付き地下埋設 タンクに対する要求を満足している。 本発明の望ましい具体化に用いる 製造法および設備は、 1 9 9 3年 9月 3 0日付けの U Lファイル MH 8 7 8 1の一部として本発明の発明者がアンダーライタースラボラトリ一 ズ社に付託した手順を含むものである。 発明の開示
ここに開陳する発明の主要な視点は U L 1 3 1 6に適合する第 2容器 を持つ非金属製地下埋設貯蔵タンクを形成する同心のタンク殻の夫々の 多層積層波型構造物を作る為めに用いる布材および熱硬化樹脂の配置と 選択にある。 本発明を構成する各タンク殻の積層構造物は U L 1 3 1 6 規格に述べられている液状化学品に 2 7 0日浸潰した後において、 その 初期の曲げ強さの 5 0 %以上を保持し、 また 2 0 0を呎で表したタンク の直径で割った数字 (8呎径のタンクに対しては 2 5 psi ) に等しい静 内圧 (単位はポンド毎平方吋) に安全に耐えることが出来る。 本発明
訂正された用紙 (规則 91) のもうひとつの視点は、 シールすることの出来る回転軸取付け孔を持つ た半球形の複合積層タンク端板構造物である。 この孔はタンク回転装置 のタンクフレーム回転軸を金属製のタンクフレーム構造物に結合する為 めに設けるものである。
本発明の更に他の視点は、 相互に緊密に接着され、 金属製タンクフレ ームに溶接した金属製の出口金取付け板に接着された同心のタンク殻の 波型を形成していない清掃物を含む二重壁タンクの出口のシール構造物 める o
本発明の更に他の視点は、 底部の漏れた液を捕捉するタンク環状空間 液溜めと可撓性の計量棒あるいは液漏れ検出センサ一システムでタンク 全体の漏れを監視できるような液溜めへの湾曲した連絡導管とを唱えた 形状に成形した半球形の複合材料製の外側タンク端板殻構造物である。 本発明の更にもうひとつの視点は、 円筒形の夕ンク殻積層物を構成す るタンクの軸方向の連続織維ストランドを前記の半球形タンク端板に永 久的に取り付ける為に、 その軸方向に引き揃えた連続織維ストランドを その半球形端板の端部部に重ねて積層した上に形成した端板と殻とをつ なぐリング状の複合材料ァン力一構造物である。 図面の簡単な説明
本発明の他の目的および利点は以下の記述及び付属の図面によって明 らかになるであろう。 これらの図面において:
図 1は、 本発明の好ましい具体化例の、 一部については断面を示す上 面図で、 プラスチックのフィルムで分離された二重の、 通常は円筒形の 波型積層構造物に覆われた金属製のタンクフレーム骨格を示す。
図 2は、 タンクの端末の、 上方から見た、 一部については断面を示す 拡大部分図で、 タンクの端末のフレーム構造を覆う第一および第二の半 球形の積層タンク端板の多層構造を示す。
図 3は、 図 2に示した第一および第二の円筒形積層構造物の多層構造 を示す部分的透視図である。
図 4は、 好ましい具体化例の側面図で、 タンクを支持する台座、 後記 する環状空間液溜めへの連続導管及び図 2および図 3に示した第二の半 球形の積層タンク端板の一部を為す環状空間液溜めを示す。
図 5は、 二重の半球形の積層タンク端板の底部の中央部分の断面の部 分的な等角投影図で、 環状空間液溜めへの連絡導管及び液漏れを検出す るセンサーを納めた該環状空間底部の液溜めを示す。
図 6は、 環状空間液溜めへの連絡導管、 タンクの回転軸を保持するね じを切った金具ならびに回転軸を通すために第一および第二の半球形積 層タンク端板に開けた穴をシールするのに用いる複合材積層板の断面を 上方から見た部分図である。
図 7は、 金属製のタンク出口口金取付け板と、 これにボルトで結合さ れる金属製の加圧板とに挟まれた第一および第二の円筒形積層構造物に 空けたタンク出口孔部の上に積層した積層シール構造を示す部分的断面 の透視図である。
図 8は、 アンダーライタースラボラト一ズ社によって試験された第一 および第二のタンク積層板素材の赤外線分光分析により得られた赤外線 スぺクトルの記録図である。
図 9は、 本発明の好ましい具体化例においてタンクフレームのリブの 製作に使用した金属製チャンネル材の断面図である。 発明を実施するための最良の形態
製品の好ましい具体化例
さて、 図中、 就中図 1に、 複合材料製二重殻地下タンク構造物 1を含 む本発明の好ましい具体化例 (実施態様) を示す。 タンク構造物 1は通 常金属製夕ンクフレーム骨格構造物 2とこれを囲む二重の同心の多層積 層物 3とより成っている。 これらの積層物 3は U L 1 3 1 6規格クラス 1 6適合のラベル表示を認めたアンダーライタースラボラトーズ社の U Lファイル M H 8 7 8 1に記載されているのと同じ材料と工法を用いて 製造したものである。
このタンク構造物 1はさらに、 例えばダウケミカル (Dow Chemi cal) 社のデラゲン (Derakane) 4 7 0 - 3 6ビニルエステル樹脂を用いて作 つた前記の多層積層物 3より形成される 2個の相対する半球形の夕ンク 端板 4と、 複層のタンク殻 5とから成っている。 積層物 3の対薬品性の 試験はアンダーライタースラボラトーズ社の U Lファイル M H 8 7 8 1 、 9 2 S C 1 0 4 6 2プロジェク トとして 2 7 0日以上に互って実施さ れた。 これらの対薬品性の試験結果は表 1に示す通りである。
1
MH 8 7 8 1所載の複合材料タンク積層物の対薬品性
繊維強化材の重量含有率 : 3 8 %
熱硬化性樹脂マ ト リ ッ クスの重量含有率 : 6 2 %
試験前の曲げ強さ = 1 2 8 MPa (18,564 psi )
試験前のアイゾッ ト衝撃値 = 1. 1 7 kj/m (22 ft - lb/in)
= 8. 1 4 5 GPa (1, 181,227 psi )
浸漬後の曲げ強さ保存率
薬液の種類 30日 90日 180日 270日 曰勤単 ffl
Figure imgf000016_0001
君 ϊ^π ffi Ιίπΐ 77、、ノノ Πリ 、ノノ ΌΛ
04 Q Q
丄丄¾ 00 91 nc
Stt ϊπ s J 7J ノ 'ノ ノ Ό οΖ 丄丄 vrn 楸 n
WO. L m^ m OO 1 Ό ob
燃料 c 95 105 106 82 ιοο¾ ハ
タノ一ノレ iD 93 73 87
50% ェタノール 50¾! 燃料 C 82 82 76 76
30¾ エタノールノ 70% 燃料 C 88 85 71 76
15% エタノール 85% 燃料 C 97 88 99 72
10% エタノール 90% 燃料 C 92 80 84 88
100%メタノール 79 80 82 90
50¾ メタノール /50% 燃料 C 83 87 77 80
15¾ メ タノール 85% 燃料 C 76 79 72 83 トルエン 97 97 83
各種薬液
硫 酸 98 98 79 82 塩 酸 81 90 80
硝 酸 93 85 77
苛性曹達 104 80 79
飽和食塩水 112 93 88 86 灰酸曹達 108 103 115
150 。 F の恒温槽
紫外線照射及び散水 90 表 1に示すように、 本発明に従う材料配合により製作した厚さ 3 . 1 7 5 mm ( 0 . 1 2 5 in) の薄い多層積層物 3は、 広範囲の種類の液体に 長期間浸潰した後も、 その物理的特性を 5 0 以上保持する。 例えば図 8に示すように、 タンクの好ましい具体化例で第一および第二の容器を 構成する多層積層物 3の好ましい成分として推奨されるダウケミカル社 のデラゲン 4 7 0 - 3 6 ビニルエステル樹脂マトリックスについて、 そ の赤外線分光分析により、 赤外線スぺク トル曲線 8が得られている。 半球形タンク端板 4の好ましい材料
第一および第二の容器 6及び 7の端板 4を構成する半球形複合材積層 物の好ましい具体例を製造するに用いる材料は、 表 2に夫々示す通りで める。
表 2
ヮックスを含有するスチレンの揮発抑制剤を添加したダウケミカル社製 デラゲン 4 7 0 - 3 6を含浸させた下記の繊維強化材の布状物により構 成された、 第一および第二の半球形のタンク端末板積層物
第 1層: 4 4 g Zm2 ( 1 . 3 oz/yd2 ) 開口を持つポリエステル 織維サーフヱーシングベール
第 2層 : 4 4 2 g /m2 ( 1 3 . 0 oz/yd2 ) 一方向 (周方向) 引揃え ガラス織維ロービング
第 3層 ·· 4 5 8 g Zm2 ( 1 . 5 ozZf t 2 ) ガラス繊維チョップドス 卜ランド
第 4層: 6 1 2 g /m2 ( 1 8 0 oz/yd2 ) ガラス繊維のロービング クロス
第 5層: 2 0 4 g /m2 ( 6 O ozXyd2 ) ガラス繊維の織布 図 2に示すように、 夫々の半球形の複合材積層構造物は多層繊維強化 プラスチック積層構造物から成っている。 図には、 4 a— 4 eの 5層の みしか示していないが、 必要に応じてさらに追加の層を選んで用いるこ とも出来ると理解すべきである。 第 1層 4 aは乾燥重量が 4 4 g/m2 ( 1. 3oz/yd2 ) で、 厚さが約 0. 2 5mm ( 0. 0 1 0 in) の軟質の開 口を持つポリエステル繊維サーフエ一シングベールから切り取つた経方 向の長さが 1. 5乃至 2. l m ( 6 0乃至 8 4 in) の範囲の、 台形の布 材を互いに重ね合せて作ることが好ましい。 第 2層 4 bは、 引張強さが 1隱幅当り 2 1 kg ( 1 2 0 0 lb/in) に等しく、 乾燥重量が 4 4 2 g毎 平方 m ( 1 3ozZyd2 ) 、 厚さが 0. 8 0 mm ( 0. 0 3 in) で、 縦方向 の長さが 1. 2乃至 1. 8m ( 4 8乃至 7 2 in) の範囲にある一方向引 揃え口一ビング布材の連続繊維ストランドを周方向に配向させたもの含 むものであることが好ましい。
台形の布材を重ね合わせた第 3層 4 cは、 乾燥重量が 4 5 8 g毎平方 m ( 1. 5ozZft2 ) 、 厚さが約 0. 3 8mm ( 0. 0 1 5 in) のガラス 繊維チョップドストランドから切取った、 縦方向の長さが 1. 5乃至 2 . 1 m ( 6 0乃至 8 4 in) の範囲のものであることが好ましい。 台形の 布材を重ね合わせた第 4層 4 dは、 引張強さが 1隱幅当り 1 1 kg ( 6 0 0 lb/in) に等しく、 乾燥重量が 6 1 2 g毎平方 m ( 1 8 oz/yd2 ) 、 厚さが 1. 0 0 mm ( 0. 0 4 in) のガラス繊維口一ビングクロスから切 取った、 縦方向の長さが 1. 2乃至 1. 8m (4 8乃至 4 2 in) の範囲 のものであることが好ましい。 台形の布材を重ね合わせた第 5層 4 eは 、 引張強さが l mm幅当り 3. 5 4 3 kg ( 2 0 0 lb/in) に等しく、 乾燥 重量が 2 0 4 g毎平方 m ( 6οζ ο12 ) で、 厚さが 0. 2 5 mm ( 0. 0 1 0 in) のガラス織維織布から切取った、 縦方向の長さが 1. 5乃至 2 . 1 m ( 6 0乃至 8 4 in) の範囲のものであることが好ましい。
第一容器 6および第二容器 7の半球形積層端末板構造物を形成する夫 1の層 4 a— 4 eは、 ヮックスを含有する液状のスチレン揮発抑制剤を 重量比で 1. 3 %添加したスチレンモノマーを 3 0乃至 4 0 %含む、 熱 硬化性液状ビニルエステル樹脂マトリ ックスを含浸させてある。
円筒形タンクシェル積層物 5の好ましい材料
第一容器 6及び第二容器 7を形成する円筒形の波型複合材積層物 5の 好ましい具体化例を用いる好ましい材料を図 3ならびるこれらを積層す る順序に従って、 表 3および 4に示す。 表 3
ヮックスを含有するスチレンの揮発抑制剤を添加したダウケミカル社製 デラゲン 4'7 0― 3 6を含浸させた下記の繊維強化材の布状物により構 成された、 第一タンクの円筒形波型積層構造物
第 1層: 3 4 gZm2 ( 1. OozZyd2 ) 樹脂処理したポリエステ ル織維サ一フエ一シングベール
第 2層: 4 4 gZm2 ( 1. 3ozZyd2 ) 樹脂処理してないポリエス テル繊維サーフヱ一シングベール
第 3層: 2 0 4 gZm2 ( 6. 0 ozZyd2 ) ガラス織維の織布 第 4層 : 4 4 2 gZm2 ( 1 3. 0 oz/yd2 ) 一方向 (長さ方向) 引揃 えガラス繊維ロービング
第 5層 : 3 0 5 gZni2 ( 1. OozZft2 ) ガラス織維のチョップド ストランド
第 6層: 4 4 2 g/m2 ( 1 3. 0 oz/yd2 ) 一方向 (周方向) 引揃え ガラス繊維ロービング
第 7層: 4 4 2 g/m2 ( 1 3. 0 oz/yd2 ) 一方向 (周方向) 引揃え ガラス織維ロービング
第 8層: 2 0 4 g/m2 ( 6. 0 oz/yd2 ) ガラス繊維の織布 表 4
ヮックスを含有するスチレンの揮発抑制剤を添加したダウケミカル社製 デラゲン 4 7 0 - 3 6を含浸させた下記の織維強化材の布状物により構 成された、 第二タンクの円筒形波型積層構造物
第 1層: 4 4 gZm2 ( 1. 3ozZyd2 ) 樹脂処理してないポリェ ステル繊維サーフエ一シングベール
第 2層: 2 0 4 g/m2 ( 6. 0 oz/yd2 ) ガラス繊維の織布 第 3層: 4 4 2 g/m2 ( 1 3. 0 oz/yd2 ) 一方向 (長さ方向) 引揃 えガラス繊維ロービング
第 4層: 3 0 5 gZm2 ( 1. OozZft2 ) ガラス織維のチョップド ストランド
第 5層: 4 4 2 g η2 ( 1 3. 0 oz/yd2 ) —方向 (周方向) 引揃え ガラス織維口一ビング
第 6層: 4 4 2 gZm2 ( 1 3. 0 oz/yd2 ) 一方向 (周方向) 引揃え ガラス繊維ロービング
第 7層: 2 0 4 g/m2 ( 6. 0 oz/yd2 ) ガラス織維の織布 第二容器 7を成形する前に、 タンクフレーム構造物 2の上に第一容器 6を建造する過程について述べる。 第一容器 6を形成する円筒形の複合 材積層シェル構造物は等間隔に配列した多数の金属製環形リブの上に配 置されており、 多数の層 6 a - 6 hから成っている。 図面表示では 6 a 一 6 hの 8層が示されているが、 本発明の意図から遊離しない範囲で、 積層を追加することは可能と理解すべきである。 第 1層の布状物 6 aは 樹脂を含浸させた、 乾燥重量が 3 4 g毎平方 m ( 1 oz/yd2 ) 、 厚さが 約 0. 2 5隱 (0. 0 1 0 ^) 、 吋 ( 0. 2 5讓) 、 幅が 9 1. 4乃至 1 8 3cm (3 6乃至 7 2 in) の範囲にある樹脂で硬質にした開口を持た せたポリエステル繊維サーフエ一シングベールから成ることが好ましい 。 この第 1層布状物の経方向は通常タンクフレームの長さ方向の軸の方 向に向けられている。
第 2層の布状物 6は、 乾燥重量が 4 4 g毎平方 m ( 1. 3 oz/yd2 ) 、 厚さが約 0. 2 5mm ( 0. 0 1 0 in) で、 幅が 4 5. 7乃至 1 2 2cm ( 1 8乃至 4 8 in) の範囲にある軟質の開口を持たせたポリエステル織 維サ一フヱーシングベールから成ることが好ましい。 第 2層布状物の経 方向は第 1層の布状物 6 aに重ねて、 その経方向に直角に配向させ、 充 分に均一な力を加えて、 第 1層 6 a及び第 2層 6 bが多数の波型の連な りになるように変形させ、 タンクフレームの軸を含む断面から見たとき に、 その断面が相隣る凸の部分の間に、 これと交わって通常抛物線状の 凹部を持つような波型積層物を形成させる。 第 3層の布 6 cは、 引張強 さが 1誦幅当り 3. 5 4 3 kg ( 2 0 0 lb/in) に等しく、 乾燥重量が 2 0 4 g毎平方 m ( 6oz/yd2 ) 、 厚さが 0. 0 2 5瞧 ( 0. 0 1 0 in) で、 幅が 3 0. 4乃至 1 3 2cm ( 1 2乃至 5 2 in) の範囲にあるガラス 繊維織布から成ることが好ましい。 第 3層の織布 6 cの経は第 2層の上 に重ねて、 その経方向にほぼ平行に配向させる。 第 4層の布 6 dは通常 円筒の長さ方向に一方向に引揃えたガラス織維連続ストランドで、 引張 強さは lmm幅当り 2 1 kg ( 1 2 0 0 lb/in) 、 乾燥重量は 4 4 2 kg毎平 方 m ( 1 3 oz/yd2 ) 、 厚さは 0. 8 0 mm ( 0. 0 3 in) で、 幅は 9 1 . 4乃至 1 8 3cm (3 6乃至 72 in) の範囲のものである。
第 5層の布状物 6 eは乾燥重量が 3 0 5 g毎平方 m ( 1 oz/ft2 )、 厚さが約 0. 0 2 5隱 ( 0. O l O in) 、 幅は 9 1. 4乃至 1 8 3 cm ( 3 6乃至 7 2 in) の範囲にあるガラス織維チョップドストランドを無方 向に配向させたものであることが好ましい。 第 6層 6 f は通常、 第 4層 の連続繊維ストランド 6 dに対して充分均一に力を加えるように直角に 巻いた周方向に引揃えたガラス連続織維ストランドより成るものである 。 この第 6層 6 f は、 引張強さが 1 mm幅当り 2 1 kg ( 1 2 0 0 lb/in) 、 乾燥重量が 4 4 2 g毎平方 m ( 1 3oz/yd2 ) 、 厚さが 0, 8 0 mm ( 0. 0 3吋) ( 0. 0 8 mm) で、 幅が 1 0乃至 1 5 0 cm ( 4乃至 6 0 in ) の範囲のものである。
第 7層 6 gは、 第 6層 6 f のガラス繊維ストランドに重ねて、 これに ほぼ平行に配向させて巻いた一方向引揃えのガラス連続鏃維ストランド であって、 その引張強さが 1讓幅当り 2 1 kg ( 1 2 0 0 lb/in) 、 乾燥 重量が 4 4 2 g毎平方 m ( 1 3ozZyd2 ) 、 厚さが 0. 8 0mm ( 0. 0 3 in) で、 幅が 1 0乃至 1 5 0cm (4乃至 6 0 in) の範囲のものである ことが好ましい。 第 8層の布 6 hは、 引張強さが 1讓幅当り 3. 5 4 3 kg ( 2 0 0 lb/in) に等しく、 乾燥重量が 2 0 4 g毎平方 m ( 6 oz/yd 2 ) 、 厚さが 0. 0 25 mm (0. 0 1 0 in) のガラス繊維織布で作るこ とが好ましい。
次ぎに、 第一容器の上にかぶせる第二容器の構造について記述する。 1形空間層を形成するためのプラスチックシート 2 2を用いて、 第一容 器 6の円筒形複合材積層シェル構造物 6 hを、 図 2および 3に図示する ように第一および第二円筒の積層板が互いに接着されているタンク出口 の部分を除いて、 完全に包み覆う。 プラスチック中間シート 22によつ て、 第一および第二の円筒形複合材積層タンクシエル 5の中間に形成さ れる環形空間は、 この二重殻タンクが、 その運送や取扱いの際の衝撃あ るいはまたタンクの内圧や設置に伴う圧縮力によって生じる応力に曝さ れた時に、 外側のタンクシェル 7が内側の第一タンクシェル 6を保護し 構造的に補強することを可能にするために、 1. 5mm (0. 0 6 in) よ り小さくすることが好ましい。
第二容器 7を形成する円筒形複合材積層シェル構造物は、 第 1層 6 a を除いて、 第一容器 6を形成する複合材積層シ二ル構造物と同じ材料を 同じ順序に用いて作ることが好ましい。 第 1層 7 aは軟質の開口を持つ ポリエステル織維サーフヱ一シングベールから成るものである。 第 2層 7 bはガラス織維織布を用いたものである。 第 3層 7 cは長さ方向に一 方向に引揃えた織維ストランドより成るものである。 第 4層 7 dはガラ ス繊維チョップドストランドより成るものである。 第 5層 7 e及び第 6 層 7 f は周方向に配向させた連続ガラス繊維ストランドより成るもので ある。 最外層の第 7層 7 gはガラス繊維織布より成るものである。 第一 および第二容器の円筒形積層構造物を形成する各層は、 液状のワックス を含むスチレン揮発抑制剤を重量比で 1 . 3 %添加したスチレン単量体 の 3 0乃至 4 0 %含有する硬化性の液状ビニルエステル樹脂マトリック スを含浸させたものである。 好ましいマトリックス材料がダウ U S A社 製のデラゲン 4 7 0 - 3 6と称するものである。
好ましいタンクフレーム 2
図 1に金属製タンクフレーム 2の好ましい形状を示す。 タンクフレー ム 2は、 その両端を支えながら、 タンクフレーム回転装置 (図には示さ れていない) で回転させることが出来る回転軸保持金具 1 1 (図 6 ) を 備えた半球形の金属製端末板骨格構造物 1 0に連結した通常円筒形の積 層成形用金属マンドレル構造物 9から成っている。 該円筒形タングフレ ーム構造物は 9本の金属製縦通材 1 3によって等間隔に固定した環形の 金属製リブ 1 2で出来ており、 その端末部はタンクフレームの回転駆動 装置に連結される取外し出来るほじ付き回転軸 (図に示されていない) の受け金具を備えた半球形の金属製タンク端板構造物に結合されている フレームの外径は 2 4 1 cm ( 9 5 in) が好ましい。 タンクフレームの リブ 1 2及び縦通材 1 3並びに半球径端板保持構造物 1 0の各部材は図 9に示すカーボンスチール製のみぞ型鋼で、 その断面積は約 3 . 2 3平 方 cm ( 0 . 5 in) 、 厚さは約 0 . 3 2 cm ( 0 . 1 2 5 in) 、 フランジの 高さは 2 . 5 4 cm ( 1 . 0 in) 、 ウェブの幅は 5 . 0 8 cm ( 2 . 0 in) である。
タンクフレーム 1 2を 1 2吋間隔に配したみぞ型鋼 1 4で作った場合 、 アンダーライ夕一スラボラトリーズ社認定 (U L 5 8規格) のスチー ルタンク構造物の 2倍もの大きさの圧縮強度と対座屈剛性 (断面 2次モ 一メント Iに比例する) を備えたものになる。 しかもその重さはスチ一 ルタンク構造物の 1 / 6である。 図 9に示すみぞ型鋼 1 4の断面 2次モ —メント Iは 1 . 5 0 7 cm4 ( 0 . 0 3 6 2 in4 ) に等しく、 断面積は 0 . 2 9 5 2 cm2 ( 0 . 0 4 5 7 6 in2 ) に等しい。 これに比較して、 U L 5 8規格スチールタンクに使う典型的な板である幅 1 2吋、 厚さ 1 Z 4吋の鋼板の断面 2次モーメントは 0 . 6 4 9 2 cm4 ( 0 . 0 1 5 6 in4 ) に等しく、 断面積は 1 9 . 3 5 cm2 ( 3 in2 ) に等しい。
図 3および 7に示すように、 各々の出口口金取付け板 1 5はタンクフ レーム 2に溶接し、 その表面はタンクフレームリブの円筒形の外表面と 同一面になるようにし、 その位置は夕ンクフレームリブの間で夕ンクフ レームの頂上部に来るようにする。 各々の出口口金取付け板 1 5はスチ 一ルの曲面板で作り、 隣り合ったタンクフレームリブの外側の端に溶接 する。 これらの出口口金取付け板 1 5は開口 1 6 (図 3 ) を持ち、 出口 口金 1 7を通してタンクの内側に通じるようになつている。 各々の出口 口金板 1 5は、 その表面に第一容器の積層面の出口部分の内面 1 9を接 着しシールすることが出来る、 少なくとも 6 4 5 cm2 ( 1 0 0 in2 ) の 周辺領域表面 1 8を備えるように作る。
タンクの出口の好ましい具体化例 2 0
図 7に、 2枚の金属製の出口曲面板に挟まれて接着され、 重複積層構 造物 2 7でシールされた、 波型を形成していない、 円筒形積層構造物 5 の出口部分 2 1 より成る二重殻タンクの口金の出口部分の構造 2 0の好 ましい実施態様を示す。 少なくとも 1個の出口口金 1 7を持つ内側の金 属製の曲面口金取付け板 1 5は、 みぞ型鋼で作ったタンクフレームの隣 り合う環形リブ 1 2に溶接され、 タンクフレームリブの外側端と同一面 の外表面 2 4を形成する。
第一タンク積層構造物のタンク出口部分 1 9の内面は、 金属製の出口 口金取付け板の表面 2 4に、 第一容器 6の積層強化材の含浸に用いる熱 硬化性樹脂マトリックスで、 接着する。 第一タンクの出口部分 1 9の外 表面は同様に、 第二タンクの出口部分 2 5の積層物の内面に接着する。 タンク出口口金取付け板 1 5と、 また相互に接着した積層物出口部分の 接着面積は、 少なくとも、 金属製出口口金取付け板の面積と等しくなつ ている。 外側の金属製の曲面状のタンク出口加圧板 2 6は、 内側のタン ク出口板 1 5にボルト結合され、 第二容器の積層物の出口部分 2 5の外 表面に載せて接着されている。 このボルト付けした金属製の加圧板 2 6 の出口開口部の周囲の外表面は、 その表面に積層され、 第二タンクの外 表面に、 この加圧板の周囲のある範囲まで接着された、 出口をシールす る積層構造物 2 7によって覆われている。
環状空間への連絡導管の好ましい具体化例
図 4に、 タンクの底をその支持面 2 9より上に持ち上げ、 環状空間液 溜め 3 0の損傷を防ぎ、 タンクの底 3 1を検査し易くするために、 支持 台座 2 8を備えた二重殻地下埋設貯蔵タンク 1の好ましい具体化の例を 示す。
図 5に、 可撓性の計量棒あるいは漏れ検知用センサーシステム 3 4で タンクの容器としての完全性を監視出来るように環状空間液溜めへの連 絡導管 3 3を備えた形状にした第二容器の半球形積層タンク端板 4から 成る、 好ましい環状空間液溜めへの連絡導管構造物 3 2を示す。 環状空 間液溜めへの連絡導管の上端には、 端末にねじを切つた金属製パイプが 付いている。 タンクの支持台座 2 8は、 厚さが約 6 mm ( 0, 2 5 in) の 多層積層複合材で、 タンクを設置したときに、 約 1 5 cmx 1 2 2 cm ( 6 inx 4 8 in) の寸法の跡が付くように、 タンクの底の外表面に接着して あ <ε>。
好ましいタンクフレーム支持回転軸取付け方法
図 6に、 第一タンクの回転軸取付け孔 3 6及び第二タンクの回転軸取 付け孔 3 7をシールするための複合材タンク端板シール用積層板 3 8及 び 3 9を含む夕ンクフレーム支持回転軸の取付けの好ましい方法を示す 。 取付け孔 3 6及び 3 7は、 タンクの回転装置のフレーム支持回転軸 ( 図には示されていない) を金属製のタンクフレームの回転軸保持構造物 1 1に結合するためのものである。 第一タンクの半球形端板 4は直径約 2 5. 4 cm ( 1 0 in) の 5層から成るシール用積層構造物 3 8でシール する直径 1 2. 7 cm (5 in) の回転軸孔 3 6を含む。 該シール用積層構 造物 3 8は、 4 5 8 gZm2 ( l . 5 ozZf t2 ) のガラス織維マッ トの第 1層、 6 1 2 g/m2 ( 1 8oz/yd2 ) のガラス繊維口一ヒングクロスの 第 2層、 ガラス織維マッ トの第 3層、 ガラス繊維ローヒングクロスの第 4層および 2 0 4 g/m2 ( 6 oz/yd2 ) のガラス繊維織布の第 5層より 成っている。 第二タンクの半球形端板 7 hは、 3 5. 6cm ( 1 4 in) 径 の回転軸孔 3 7と、 環状空間層液溜めへの連絡導管 3 3の一部を形成す る 3 5. 6 cm ( 1 4 in) 径の円形の端末閉鎖用積層構造物 7 kを含んで いる。 第二タンク回転軸孔 3 7は、 内径が 2 5. 4 cm ( 1 0 in) 、 外径 が 4 5. 7 cm ( 1 8 in) で、 第一タンクの端末シール用積層物 3 8と同 じ構成材料の 5層から成る環状空間の端末シール積層構造物 3 9でシー ルする。 連絡導管を形成する積層物 4 0は、 同様の 5層積層構造物から 成り、 環状空間液溜めへの連絡導管 3 3に、 金属製連絡パイプ 4 1を取 り付けるのに用いる。
端板を筒体に繫ぐ結合リングの好ましい具体化の例
図 4に、 積層端板と筒体とを繫ぐ結合リング構造物 4 2の好ましい具 体化の例を示す。 結合リング構造物 4 2は、 第一タンクの波型積層円筒 殻の第 4層を形成する長さ方向の連続繊維ストランド 6 dを第一半球形 タンク端板積層物の最外層 4 eに、 また第二タンクの積層円筒殻積層物 の第 3層 7 cを第二半球形タンク端板積層物 7 hの最外層 4 eに緊結す るために、 両端の半球形の端面板 4の終端部にフィラメントワインディ ングしたものである。 第一タンクの端板と円筒殻とをつなぐ結合リング は、 第一タンクの周方向に巻いた連続織維の第 6層 6 f および第 7層 6 gの巻き始めおよび巻き終りを形成する周方向に引揃えた連続繊維スト ランドより成るものであることが好ましい。 第二タンクの端板と円筒殻 とを緊結する結合リングは、 第二タンクの周方向に巻いた連続繊維の第 5層 7 eおよび第 6層 7 f の巻き始めおよび巻き終りを形成する周方向 に引揃えた連続繊維ストランドより成るものであることが好ましい。 好ましい成形方法及び装置
図 1に示した好ましい具体化の例を成形するための好ましい方法およ び装置について、 ステップ順に以下に記述する。 以下に述べる好ましい 成形方法および装置は、 アンダーライタ一スラボラトリーズ社によって 、 1 9 9 3年 8月 5日に試験され、 U L 1 3 1 6規格タイプ I Iクラス 1 6の要求に完全に合致することが示された、 直径 2 8 3 . 8 cm ( 8 f t) 、 容量 4 5 . 4 m3 ( 1 2 , 0 0 0 gal ) の二重殻非金属製地下埋設タン クの製作に用いられたものである。
所望の形状の複合材二重殻地下埋設タンクを成形する好ましい方法は 以下のステップから成るものである : タンクに一体化するマンドレル及び端板支持構造物 1 0を 2 8 3. 8 ( 8ft) 径の肋材 1 2及び縦通材 1 3ならびに端板形成材を用いて製作 するために、 みぞ型鋼 1 4を、 長さ 9. 1 4m ( 3 Oft) の原材から、 所要の長さに切り出す;
ロール曲げ装置で環状リブおよび端板形成部材を形成する ; 溶接治具の中で、 環状リブ 1 2及び縦通材 1 3を組立てて、 リブの間 隔が 3 0. 5cm ( 1 2 in) 、 長さが 1 3 7. 2また 1 6 7. 6 cm ( 4. 5または 5. 5 ft) の円筒径のタンクフレーム部材とする ;
溶接治具の中で、 半球形の端板フレーム 1 0及びフレーム回転軸保持 構造物 1 1を組立てる ;
円筒形タンクフレーム部材で組立てたタンクフレーム円筒 9と半球形 端面板フレームを組んで、 回転軸で支えるタンクマンドレルとする ; スチールの口金取付け板を、 その外面の曲率半径が夕ンクフレームの 環状リブの外径に等しくなるように成形する ;
上記の曲面を与えた口金取付け板から夕ンクの出口孔を切取り、 口金 取付け板がタンクフレームの環状リブの間に収まるように調整する ; スチール製のパイプ接手 1 7を出口口金取付け板 1 5の内面に溶接す る ;
出口口金取付け板 1 5の周縁をこれに接するタンクフレームリブ 1 2 に溶接する ;
すべての出口口金取付け板の下方に受け板を溶接する ;
台形に裁断した布状基材に熱硬化性樹脂を含浸させ、 半球形のタンク 端板成形用の型の上に周縁部分を重ねながら、 所定の順序に積層して、 5層から成る半球形の複合材積層タンク端板を製作する ;
予め製作した最初の複合材積層タンク端板を前記の完成したタンクフ レームマンドレル 2の両端の半球形タンク端板保持用構造物 1 0に取付 ける ;
前記のタンク端板及びタンクフレーム 2をモ一夕駆動の夕ンクフレー ム回転装置に取付ける ;
各出口口金取付け板 1 5の外面 2 4を研磨して、 清浄な金属面を出す 樹脂を含浸させた 3層のポリエステル繊維サーフヱ一シングベール 6 aを各出口口金取付け板の新鮮な研磨面に接着する ;
樹脂処理した硬質の開口を持つポリエステル織維サ一フヱ一シングべ ール 6 aを、 未含浸の状態で、 タンクフレームの等間隔に配置されてい るリブ 1 2を覆うようにピンと張り、 その両端末が半球形の複合材積層 タンク端板 4の終端部に 9吋幅で重なるように、 裁断して接着する ; 長尺の樹脂処理していない軟質の開口を持つポリエステル繊維サーフ エーシングベール 6 bに、 ロールコ一夕を用いて、 液状の熱硬化性樹脂 を含浸させる ;
樹脂を含浸させた長尺のポリエステル織維サーフヱ一シングベール 6 bを、 前述のピンと張つた未含浸のポリエステル繊維サーフヱ一シング ベール 6 aの上に、 タンクの一端から多端まで、 螺旋状に巻付ける ; タンクフレームのリブ 1 2の間にピンと張った前記未含浸のポリエス テル繊維サーフヱ一シングベールに樹脂を含浸させ、 反りを与えて、 波 型の 2層の樹脂含浸積層表面を形成する ;
前記の波型になった樹脂に濡れた状態の積層表面を覆うように、 重量 が 2 0 4 g毎平方 m ( 6 oz/yd2 ) の密に織ったガラス織維織布 6 cを 、 未含浸のまま、 縁を接して平行に巻き付け;
この未含浸のガラス繊維織布 6 cを前記の波型になった樹脂に濡れた 2層の積層面に密着するように押し付ける ;
この未含浸のガラス繊維織布 6 cに液状の熱硬化性樹脂を含浸させて 、 3層から成る内張り積層構造物を形成する ;
両端の夕ンク端板 4に、 外面にチョップドストランドマッ トの層 6 e を備えたタンクフレームの中心軸に平行に引揃えたガラス織維連続スト ランド 6 dから成る未含浸の長さ方向の布材の端末を 9吋幅の重ね代で 接着する ;
タンクフレーム 2を完全に包んでいる波型の 3層の内張り積層物の上 に、 上記の長さ方向の布材に追加して、 これを平行に、 上記と同様の未 含浸の長さ方向の布材を配置積層する ;
一方向に引揃えたガラス織維連続ストランドより成る長尺の周方向に 巻く布材 6 f に、 液状の熱硬化性樹脂マトリックスを含浸させる ; 上記の周方向に巻く布材 6 f の巻き始めを、 最初のタンク端板に接着 した長さ方向の布材 6 dの何れかに張付け、 この周方向巻きの布材が約 9吋の重なり代で、 第一の半球形複合材積層タンク端板 4の終端部に重 なるようにする ;
上記の樹脂を含浸させた周方向巻きの布材 6 f を、 末端を接着した未 含浸の長さ方向の布材 6 dの上に、 周方向に一巻きすることにより、 最 初の端板一殻の結合リング 4 2を形成する ;
樹脂を含浸させた周方向巻きの長尺布材 6 で、 その縁が接するよう にして最初の螺旋巻きを行い、 タンクの一端から他端まで、 前記の未含 浸の長さ方向の布材 6 dを加圧し、 樹脂を含浸させる ;
樹脂を含浸させた周方向巻きの布材 6 gで、 第一の半球形タンクのも う一方の端板 4の終端部に重ねてある未含浸の長さ方向の層 6 dとチヨ ップドストランド層 6 eの上を 2回巻いて、 端面板—殻の二番目の結合 リング 4 2を形成する ;
タンクの一端から他端まで、 樹脂を含浸させた長尺の周方向巻きの布 材 6 gをその縁が接するようにして、 二回目の螺旋巻きを行う ; 前記の樹脂に濡れた状態の周方向積層布材 6 gの表面に、 重量が 2 0 4 g毎平方 m ( 6 oz/yd2 ) の密に織ったガラス織維織布 6 hを、 未含 浸のまま、 前記の樹脂を含浸させた周方向巻きの布層 6 dの上に 1層巻 き付ける ;
タンク出口口金取付け板の表面 2 4を点検して、 樹脂を含浸させた夕 ンクの内面積層物 6 aが該タンク出口口金取付け板の表面 2 4に密着し て、 気泡を生じていないことを確認する ;
第一夕ンク殻 6の外表面を不透明な熱硬化樹脂で塗装する ; 第一タンク殻積層物の樹脂マトリッ クス及び覆装積層物の樹脂を硬化 させる ;
前記の第一夕ンクの円筒形複合材積層構造物を完全に覆い、 且つ両端 の第一半球形複合積層タンク端板 4に、 その終端から 3 0 . 5 cm ( 1 2 in) 重なるように、 厚さ 1 5 2 . 4 ( 6 mi l)のポリエチレンシート 2 2を被せる ;
該プラスチックシート 2 2の、 タンク出口口金取付け板 1 5の接着部 に当たる部分を切って取除く ;
第一タンク 6をタンクの支持回転装置から外す;
両端の半球形タンク端板成形用の型、 その一方は端面板と一体になつ た連絡導管 3 2及びタンクの底の液溜め構造物 3 0を成形できるように 形作った型の上で、 熱硬化性樹脂を含浸させた台形の布材を重ね合わせ ながら、 所定の順序で 6層積層して、 第二の半球形複合材積層タンク端 板 4を成形する ;
上記の予め成形した第二の半球形複合材積層タンク端板 7 hを、 予め 成形した第一の半球形複合材積層タンク端板 4の上に取付ける ; 第一タンクと、 これに取付けた第二のタンク端板をモータ駆動のタン クフレーム回転装置に取付ける ; 下側の金属製のタンク出口口金取付け板 1 5と接着されている部分 1 9の第一タンクの外面を研磨する ;
第一の円筒形複合材積層タンク殻構造物 6 hの製作に用いたと同じ材 料で、 同じ工法を繰返して、 第二の円筒形複合材積層タンク殻構造物 7 gを作る ;
総ての夕ンクロ金の出口部において、 第一および第二の円筒形複合材 積層構造物を貫いてタンクの出口孔 1 6を穿つ;
金属性の加圧板 2 6を総ての金属製出口口金取付け板 1 5にボルトで 取付ける ;
3層の積層物 2 7をボルトで取付けた加圧板 2 6に重ね、 周縁を覆つ て、 総てのタンク出口口金取付け板をシールする ;
中央のタンク出口口金 1 7に、 吊り上げ用のラグを取付ける ; 完成した二重殻タンク構造物を吊り上げ、 マンドレル支持回転装置か ら取り外す;
回転軸の支持回転装置をスチールフレームの回転軸取付け金具に連結 するための開口 3 6及び 3 7を覆い、 シールするために複合材を積層す る ;
更に第一および第二容器 6および 7の双方を同時に、 0 . 3 5 kg/ cm 2 ( 5 psi)まで加圧して、 漏れを試験する。
好ましい具体化の例等は上記の通りであるが、 本発明の意図と精神の 範囲内において、 他の形での具体化も考え得ることを理解すべきである
産業上の利用可能性
本発明に係る複合材二重壁タンクは従来のスチールおよび強化プラス チックタンクを大幅に改良したものであつて、 タンクに貯蔵されている 危険な液体の漏出を防ぐことができ、 環境保全の点で信頼性の高い夕ン クが提供される。 特に、 タンクを地下に埋設した時に、 土壌の荷重に対 して、 座屈に対する抵抗性と耐圧強度を与えることができる。

Claims

請 求 の 範 囲
1 . 少なくとも 1個の排出ロロ金取付け板を備えた金属製タンクフレー ムと ;
前記の金属製タンクフレームの上に取付けられ、 少なくともその一部 を覆う、 耐化学薬品性の多層積層構造物より成る不透液性の非金属製第 一容器と ;
該第一容器の上に取付けられ、 少なく ともその一部を覆う、 耐化学薬 品性の多層積層構造物より成る不透液性の非金属製第二容器とからなり 該第二容器は少なくとも一個の排出ロロ金取付け板にピッタリ合わせ て、 接着された少なくとも一個の第一排出口パネルを含むものであり ; 該第二容器は少なくとも一個の第一排出口パネルに対応してこれにピ ッ夕リ合わせて、 接着された少なくとも一個の第二排出口パネルを含む ものであり ;
更に少なく とも一個の前記排出ロロ金取付け板と、 少なくとも一個の 前記第一排出口パネルと、 これらに対応する少なくとも一個の第二排出 口パネルとで、 少なくとも一個の耐圧排出口シールを形成することを特 徵とする多重壁タンク構造物。
2 . 請求の範囲第 1項記載の多重壁タンク構造物において、 前記第一及 び第二容器の間に空隙を有し;
前記第二容器には環状空間に通じる連絡導管を備え、 これによつて、 前記第一容器と第二容器との空隙が大気圧に通じるようにしたことを特 徵とする多重壁タンク構造物。
3 . 請求の範囲第 2項記載の多重壁タンク構造物において、 前記金属製 タンクフレームが少なくとも一個の端板を持ち ; 且つ前記の少なくとも一個の端板が半球形状であることを特徴とする 多重壁タンク構造物。
4 . 請求の範囲第 3項記載の多重壁タンク構造物において、 前記金属製 タンクフレームが細長い形状で、 その長さ方向が幾何学的軸に沿ってお り ;
前記幾何学的軸が実質的に水平方向に配向され;
前記の少なく とも一個の排出ロロ金取付け板が前記金属製フレームの 最上面に位置するようにしたことを特徴とする多重壁タンク構造物。
5 . 請求の範囲第 4項記載の二重壁タンク構造物において、 前記金属製 フレームが、 前記幾何学的軸と同心に間隔を空けて配置された多数の環 状リブから成り ;
前記の多数環状リブは、 周方向に間隔を空けて配置した多数の縦通材 に取付けられ;
且つ前記の少なくとも一個の排出ロロ金取付け板は、 前記の多数の環 状リブ及び縦通材の相隣るものにシッカリと接合されていることを特徴 とする多重壁タンク構造物。
6 . 請求の範囲第 5項記載の多重壁タンク構造物において、 前記の少な くとも一個の排出ロロ金取付け板の外表面が、 これを接合する相隣る前 記金属性環状リブの外表面と同一面になるようにすることを特徴とする 多重壁タンク構造物。
7 . 請求の範囲第 6項記載の多重壁タンク構造物において、 前記金属製 フレームの少なくとも一個の端末が、 多数の湾曲した金属製リブを前記 環状リブのひとつ及びフレーム保持軸取付け金具に接合したものより成 ることを特徴とする多重壁タンク構造物。
8 . 請求の範囲第 7項記載の多重壁タンク構造物において、 少なくとも 数個の前記環状リブと前記の周方向に間隔をおいて配置した少なくとも 数個の縦通材の断面の形状がチャンネルであることを特徴とする多重壁 タンク構造物。
9. 請求の範囲第 8項記載の多重壁タンク構造物において、 前記の多数 の環状リブ及び前記の湾曲したリブが通常同じ断面形状であることを特 徴とする多重壁タンク構造物。
1 0. 請求の範囲第 9項記載の多重壁タンク構造物において、 前記の金 属製タンクフレーム構造物がカーボンスチール製であることを特徴とす る多重壁タンク構造物。
1 1. 請求の範囲第 1 0項記載の多重壁タンク構造物において、 前記の 多数の環状及び湾曲したリブならびに前記の多数の縱通材が、 ウェブの 幅が約 5 0. 8隱 (2 in) 、 フランジの高さが約 2 5. 4 mm ( 1 in) またウェブの厚さが 3. 1 7 5乃至 4. 7 6 2 5 mm ( 0. 1 2 5乃至 0 . 1 8 7 5 in) の範囲にあるスチールチャンネルで作られていることを 特徵とする多重壁タンク構造物。
1 2. 請求の範囲第 1 1項記載の多重壁タンク構造物において、 前記の 多数の環状リブが前記フレームの幾何学的軸に沿ってほぼ 3 0. 5 cm ( 1 2 in) に等しい均一な間隔で配置され、 そのフランジを外向きにして 、 最大外径が 24 1. 3乃至 3 0 2. 3 cm ( 9 5乃至 1 1 9 in) の範囲 になるように加工されていることを特徴とする多重壁夕ンク構造物。
1 3. 請求の範囲第 1 2項記載の多重壁タンク構造物において、 前記縦 通材が 9本の重通材より成り ;
縦通材の 1本がフランジを下に向けた底部縦通材で;
これに隣る各 3本の側方縦通材は 4 5度の間隔で配置され、 そのフラ ンジは底面の方向を向いており ;
最上方の 2本の縦通材は、 そのフランジを、 前記の長さ方向の幾何学 的軸を含む垂直面に背を向けて、 2 2 9乃至 3 0 5隱 (9乃至 1 2 in) の間隔を隔てて、 前記の多数の環状リブにシッカリと接合されているこ とを特徴とする多重壁タンク構造物。
1 4 . 請求の範囲第 7項記載の多重壁タンク構造物において、 前記のフ レーム支持軸の取付け金物が通常、 支持軸の着脱に便利なパイプ結合口 金を溶接した円形のスチール板より成るものであることを特徴とする多 重壁タンク構造物。
1 5 . 請求の範囲第 1 4項記載の多重壁タンク構造物において、 前記の 金属性フレームが、 相対する両端に通常半球形の端面部を持つことを特 徵とする多重壁タンク構造物。
1 6 . 請求の範囲第 1 5項記載の多重壁タンク構造物において、 前記の 両端の端面部が、 異なる長さのスチールチヤンネルで作った 3乃至 5 0 本の湾曲したリブから成り、 その両端を前記のフレーム支持軸取付け金 物と、 スチールチャンネルをロールで曲げて作った環状リブとに確実に 接合したものであることを特徴とする多重壁タンク構造物。
1 7 . 請求の範囲第 2項記載の多重壁タンク構造物において、 前記の第 一容器が、 波型円筒形の複合材料積層第一殻構造物の両端の相当箇所に 接着シールされた 2個の通常半球形の複合材料積層第一端板より成り ; 且つ前記の第二容器が、 波型円筒形の複合材料積層第二殻構造物の両 端の相当箇所に接着シールされた 2個の通常半球形の複合材料積層第二 端板より成ることを特徴とする多重壁タンク構造物。
1 8 . 請求の範囲第 1 7項記載の多重壁タンク構造物において、 前記の 金属製フレームが、 間隔を空けて配置された金属製環状リブから成り ; 該金属製フレームは幾何学的軸の方向を長さ方向とする細長い形状で 前記の第一円筒形複合材積層構造物は、 前記の環状リブの上に形成し た多層積層強化プラスチックで; 樹脂結合材を含む硬質の開口を持つ、 経を有するポリエステル繊維サ 一フヱーシングベールより成る第 1層布材と ;
経を有し、 その経が前記の第 1層の経に対して通常横方向になるよう に、 第 1層の上に巻き、 第 1層に充分均一な荷重を加えて、 第 1層とと もに変形して多数の波型を形成する、 軟質の開口を持つポリエステル織 維サーフヱ—シングベールより成る第 2層布材と ;
第 2層の上に巻かれ、 その経が第 2層の経と充分に平行の関係にある ガラス繊維織布から成る第 3層布材と ;
前記の幾何学的軸に充分に平行に配向させた一方向引揃えのガラス織 維連続ストランドの最初の層である第 4層;
無方向に配向させたガラス繊維チヨップドストランドから成る第 5層 前記の最初の一方向引揃えガラス繊維ストランド層の上に、 これと直 角の方向に巻いた 2番目の一方向引揃えの連続ガラス織維ストランドの 層である第 6層;
前記の 2番目の一方向引揃えガラス織維ストランド層の上に、 これと ほぼ平行に巻いた 3番目の一方向引揃えの連続ガラス繊維ストランドの 層である第 7層; ガラス織維織布から成る第 8層と ;
前記積層構造物に含まれる繊維強化材に含浸させる熱硬化性液状ビニ ルエステル樹脂とから成ることを特徴とする多重壁タンク構造物。
1 9 . 請求の範囲第 1 7項記載の多重壁タンク構造物において、 前記金 属製フレームは幾何学的軸の方向を長さ方向とする細長い形状で; 前記の第一の半球形複合材端板は;
軟質の開口を持つポリエステル織維サーフヱーシングベールで形成す る第 1層と ;
その経である連続繊維ストランドが前記の幾何学的軸に充分直角にな るように配置した多数の一方向引揃えストランドの布材から成る第 2層 と ;
ガラス織維チヨップドストランドで形成する第 3層と ;
ガラスロービング織布で形成する第 4層と ;
ガラス繊維織布で形成する第 5層と ;
前記積層構造物に含まれる布状繊維強化材に含浸される熱硬化性液状 ビニルエステル樹脂とより成ることを特徴とする多重壁タンク構造物。
2 0 . 請求の範囲第 1 7項記載の多重壁タンク構造物において、 前記金 属製フレームは幾何学的軸の方向を長さ方向とする細長い形状で; 且つ前記第二円筒形複合材積層殻構造物が波型をした強化プラスチッ ク多層積層板構造物より成り ;
その第 1層の布材は、 経を持つ軟質の開口を持つポリエステル織維サ —フエ一シングマツ トを成形したものであり ;
第 2層は、 その経が前記第 1層の経に概ね直角になるように該第 1層 の上に巻かれ、 これに充分均一な荷重を加えて変形させ、 この第 1層及 び第 2層とで、 多数の波型を形成するガラス繊維織布を含み;
第 3層は、 前記の幾何学的軸に充分平行に一方向に引揃えたガラス織 維ストランドの一番目の層であって、 この層の経が前記第 2層の経に充 分平行関係を保って、 該第 2層の上に巻かれ;
第 4層はガラス繊維チヨップドストランドを無方向に配向したチヨッ プドストランドマツ トから成り ;
第 5層は長い一方向に引揃えたガラス鏃維ストランドの二番目の層か ら成り、 前記の 1番目のガラス繊維ストランドに対して、 その上に通常 直角に巻かれ、 これに充分均一な荷重を加えており ;
第 6層は一方向に引揃えたガラス繊維ストランドの 3番目の層から成 り、 前記の 2番目のガラス繊維ストランドに対して、 その上に通常平行 に巻かれており ;
第 7層はガラス繊維織布で;且つこれに加えて、 前記積層構造物に含 浸された硬化性液状ビニルエステル樹脂より成ることを特徴とする多重 壁タンク構造物。
2 1 . 請求の範囲第 1 7項記載の多重壁タンク構造物において、 前記金 属製フレームは幾何学的軸の方向を長さ方向とする細長い形状で; 且つ前記の第二の半球形複合材積層端板は、 強化プラスチック多層積 層板構造物より成るもので;
軟質の開口を持つポリエステル織維サーフヱ一シングベールで形成す る第 1層と;
その経である連続繊維ストランドが前記の幾何学的軸に充分直角にな るように配置した多数の一方向引揃えストランドの布材から成る第 2層 と ;
ガラス織維チョップドストランドマツ トで形成する第 3層と ; ガラスロービング織布で形成する第 4層と ;
ガラス織維織布で形成する第 5層と :
前記積層構造物に含まれる布状織維強化材に含浸される熱硬化性液状 ビニルエステル樹脂とより成ることを特徴とする多重壁タンク構造物。
2 2 . 請求の範囲第 1 7項記載の多重壁タンク構造物において、 前記の 第二の円筒形複合材積層構造物の一端の底部に、 液溜め容器が形成され て居り ;
前記液溜め容器は前記の一端の第二半球形複合材積層タンク端面板の 下部の 1 4を形成しつつその中央に位置して、 前記液溜めと上方の外 気とを連絡する湾曲したチューブ状導管構造物の下端に連結されている ことを特徴とする多重壁夕ンク構造物。
2 3 . 請求の範囲第 2 2項記載の多重壁タンク構造物において、 前記の 液溜め容器の底を夕ンク構造物の設置面より持ち上げるために、 少なく とも 2個の支持台座構造物を前記の第二円筒形複合材積層構造物に取付 けることを特徴とする多重壁夕ンク構造物。
2 4 . 請求の範囲第 2 3項記載の多重壁タンク構造物において、 各々の 前記の支持台座構造物多層複合材積層構造物より成り、 タンクの外表面 に接着されていることを特徵とする多重壁タンク構造物。
2 5 . 請求の範囲第 1項記載の多重壁タンク構造物において、 前記の一 次排出口パネルが、 前記排出ロロ金を囲む開口を有し;
前記の二次排出口パネルが、 前記の第一排出口パネルの開口とピッ夕 リー致する開口を持ち ;
且つ前記の一次排出口パネルの内面が、 夫々の排出ロロ金取付け板の 外表面に接着され、 また前記の第二排出口パネル内面が、 夫々の第一排 出口パネルの外表面に接着されて、 前記の耐圧性のシールを形成するこ とを特徴とする多重壁タンク構造物。
2 6 . 請求の範囲第 2 5項記載の多重壁タンク構造物において、 前記の 第一排出口パネルが前記の第一円筒形複合材積層構造物と地続きになつ て居り、 また前記の第二排出口パネルが前記の第二円筒形複合材積層構 造物と地続きになって居ることを特徴とする多重壁タンク構造物。
2 7 . 請求の範囲第 2 6項記載の多重壁タンク構造物において、 前記の 第二排出ロバネルが、 さらに前記の金属製タンク排出ロロ金取付け板と 同じ寸法、 開口及び形状を持つ金属製の排出口加圧板と ;
且つ前記金属製排出口加圧板の上に重ねて、 排出口の開口を有し、 そ の周縁が該加圧板周縁を越える複合材積層構造物より成り、 その周縁部 の内面が前記第二タンク殻の排出口パネルの外表面に接着されて、 耐圧 性のシールを形成するシール材より成ることを特徴とする多重壁夕ンク 構造物。
2 8 . 請求の範囲第 2項記載の多重壁タンク構造物において、 該多重壁 タンク構造物が二重壁地下埋設貯蔵タンクであることを特徴とする多重 壁タンク構造物。
2 9 . 請求の範囲第 1項記載の多重壁タンク構造物において、 前記の多 層積層構造物が波型を形成していることを特徴とする多重壁タンク構造 物。
3 0 . 請求の範囲第 2 0項記載の多重壁タンク構造物において、 前記 の波型の多層積層構造物が、 揮発性の芳香属化合物の揮散を減らすため のスチレン揮発抑制剤を含有する低スチレンビニルエステル熱硬化性樹 脂を含浸させた、 切断しないままの連続ガラス繊維を含むことを特徴と する多重壁タンク構造物。
3 1 . 多重壁タンク構造物を製作する方法であって、 少なく ともひとつ の排出ロロ金取付け板を備えた金属製のタンクフレームの形成と ; 該金属製フレームの少なくとも一部に、 化学的抵抗性を有する多層積 層構造物より成る不透過性の非金属製第一容器をかぶせ、 また該第一容 器は、 前記の少なくとも一個の排出口取付け板にピッタリと寸法を合わ せて接着した少なくとも一個の第一排出口パネルを含み;
該第一容器の少なくとも一部に、 化学的抵抗性を有する多層積層構造 物より成る不透過性の非金属製第二容器をかぶせ、 また該第二容器は、 前記の少なくとも一個の排出口パネルにピッタリと寸法を合わせて接着 した少なくとも一個の第二排出口パネルを含み、 その結果として前記の 少なくとも一個の排出ロロ金取付け板と、 前記の少なくとも一個の第一 排出口パネルと、 前記の少なくとも一個の第二排出口パネルとで少なく とも一個の耐圧性の排出口シールを形成し;
前記の第一及び第二容器の間に空間を形成し;
さらに前記の第二容器に、 第一及び第二容器の間の空間を外部の大気 圧につなげるための連絡導管の出口を形成することを特徴とする多重壁 タンク構造物の製作方法。
3 2. 二重壁タンク構造物を製作する方法であって、 以下のステップ、 すなわち、 長さ 9. 1 4m ( 3 Oft) のスチールチャンネル材から、 タ ンク形成のマンドレル及び端板の支持構造物に組み上げるための直径 2 . 4 4m ( 8ft) のスチールフレームのリブ、 フレームの縦通材及び端 板の形成材を、 必要な長さに切り出し;
リング形成ロール装置を用いて、 環形リブ及び端板を成形するための 半球形フレームの材料を成形し;
溶接治具を用いて、 前記の環形リブと縦通材を組立てて、 リブの間隔 3 0. 5 cm ( 1 2in) 、 長さが 1. 3 7または 1. 6 8m (4. 5また は 5. 5ft) の円筒形タンクフレーム部材を作り ;
溶接治具を用いて、 前記の半球形フレームの材料を組立てて、 半球形 の端面板部フレーム部材及びタンクフレーム支持軸を作り ;
前記の円筒形タンクフレーム部材と半球形の端板部フレーム部材を組 立てて、 回転軸で支えるタンクマンドレルを作り ;
スチール製の排出ロロ金取付け板原板に、 タンクフレームのリブの外 径に合わせた曲面を与え;
前記の曲面を与えた排出口口金取付け板原板からタンクの排出口を切 取り、 該取付け板が夕ンクフレームの環状リブの間に収まるように寸法 を調整し;
スチール製のパイプ取付け口金を前記の排出ロロ金取付け板の内面に 溶接し;
前記のタンク排出ロロ金取付け板の端縁をこれに隣接するタンクフレ ームの環状リブに溶接し;
タンクの総ての排出ロロ金取付け板の下方に、 当て板を溶接し; 半球形のタンク端面板の成形型の上に台形に裁断して熱硬化性樹脂を 含浸させた布材を所定の順序に 6層積層して、 第一の半球性複合材積層 タンク端板を作り ;
予め成形した第一の半球形複合材積層タンク端板を、 組立ての完了し たタンクフレームのマンドレルの半球形の端板保持フレーム構造物に取 付け:
該タンク端板とタンクフレームをモ一夕で駆動するタンクフレーム回 転装置に載せ;
タンクの排出口口金取付け板の各々の外表面を研磨して、 清浄な金属 生地の表面を出し;
各タンクの排出ロロ金取付け板の新鮮な研磨面に樹脂を含浸させた 3 層のポリエステル織維サーフヱ一シングベールを接着し;
両端の半球形複合材積層タンク端面板の端縁部に、 両端が 2 2 . 9 cm ( 9 in) の幅で重なるように、 樹脂で結合した硬質の開口を持つポリェ ステル繊維サ一フヱ一シングベールを裁断し、 樹脂を含浸させないまま で、 タンクフレームの間隔を明けたリブを覆うようにピンと張って接着 し;
長さ方向に連続した樹脂結合材を含まない軟質のポリエステル織維サ ーフヱ一シングベールに、 ロールコ一夕を通して、 樹脂を含浸させ; 前記の樹脂を含浸させないままピンと張ったポリエステル繊維サ一フ エーシングベールの上に、 樹脂を含浸させた長さ方向に連続した樹脂結 合材を含まない軟質のポリエステル織維サーフエ一シングベールを、 夕 ンクの一方の端から他端まで、 螺旋状に巻付け;
前記の樹脂を含浸させないままピンと張ったポリエステル繊維サ一フ エーシングベールに、 樹脂を含浸させ、 タンクフレームのリブの間で変 形させて、 波型を持つ樹脂を含浸させた 2層の積層面を形成し; 波型を持つ樹脂を含浸させた 2層の積層面の上に、 重さが 6オンス毎 平方ヤードの密に織ったガラスクロスを、 樹脂を含浸させないままで平 行巻きし;
該ガラスクロスに樹脂を含浸させて、 3層からなる内面層積層構造物 を形成し;
タンクフレームの軸方向に引揃えたガラス繊維の連続ストランドから 成り、 外面にガラス繊維チヨップドストランドマツ トを持つ一方向布材 を、 樹脂を含浸させないままで、 その両端を 2 2 . 9 cm ( 9 in) の重な り代でタンクの端板に取付け;
さらに同様の一方向布材をタンクフレームを完全に覆っている前記の 波型の 3層の内面層積層物表面に配置し;
熱硬化性樹脂マトリックスをガラス繊維連続ストランドより成る長さ 方向に連続した周方向巻き用の一方向布材に含浸させ;
該周方向巻き用の一方向布材の端縁が第一の半球形複合材積層タンク 端面板の端縁に約 2 2 . 9 cm ( 9 in) 幅で重なるように、 その巻き始め を第一のタンク端板に接着した長さ方向の一方向布材に取付け; 上記の両端を第一のタンク端面板に接着した未含浸の長さ方向の布材 の上に樹脂を含浸させた周方向に向けた布材を 1層巻付け、 タンクの殻 と端面とをつなぐ第一のアンカーリングを形成し;
樹脂を含浸させた周方向巻き布材の始めの 1層を布材の端部を接して 、 未含浸の長さ方向の布材の上にタンクの一端から他端まで、 螺旋巻き して、 圧力を加え、 樹脂を含浸させ;
樹脂を含浸させた周方向巻き布材を前記の未含浸の長さ方向の布及び マツ ト材の上に 2回目の螺旋巻きを行い、 第一の半球形頭部端面板に 2 回目の巻き重ねにより、 タンクの殻と端部をつなぐ第二番目のアンカ一 リングを形成し; 樹脂を含浸させた該周方向巻き布材をタンクの一端から他端まで布材 の端部を接して 2回目の螺旋巻きを行い;
樹脂を含浸させた周方向積層面を覆って、 密に織った 2 0 4 g /m 2 ( 6 oz/yd2 ) の未含浸のガラスクロスを巻付け;
タンク口金取付け板の表面を検査して、 樹脂を含浸させたタンクの内 面層が、 該タンク口金取付け板に空洞を含むことなく密着していること を確かめ;
タンク殻の外表面を不透明熱硬化樹脂で塗装し;
第一タンク殻の積層樹脂ならびに表面塗覆層樹脂を硬化させ; 第一タンク円筒部の複合材料積層構造物を、 厚さ 0 . 1 5隱 ( 6 mi l) の不透明なポリエチレンプラスチックシ一トで完全に覆い、 また両端の 第一半球形複合材積層タンク端板の端部を約 3 0 . 5 cm ( 1 2 in) の重 ね代で覆い;
該プラスチックシ一トのタンク出口口金取付け板の接着部に当たる部 分を切って取除き ;
第一タンクをタンクの支持回転装置から下ろし;
台形に切断した布材に熱硬化性樹脂を含浸させ、 所定の順序に 6層重 ねて、 半球形のタンク端板の 2個の成形型、 その成形型の一方は環状空 間部への連絡導管及び底部の樹脂溜めを一体成形出来るような形状を持 たせてあるが、 その成形型の上に積層して、 第 2の半球形複合材積層夕 ンク端面板を成形し;
該第 2の半球形複合材積層タンク端板を第 1タンクの両端の半球形複 合材積層タンク端板の上に取付け;
この第一タンク及び第二タンク端面板をモータ一で駆動するタンクフ レーム回転装置に取付け;
第一タンク殻の外表面の、 その下面が金属製の出口金具取付け板に接 着されている部分を研磨し;
第一の円筒形複合材積層タンク殻構造物の成形に用いたと同じ材料で 、 おなじ工法を繰返して、 第 2の円筒形複合材積層タンク殻構造物を作 ;
第一及び第二の円筒形複合材積層夕ンク殻構造物を貫いて、 タンクの 総ての出口口金取付け位置にタンクの出口穴を穿ち ;
総ての金属製出口口金取付け板に金属製の加圧板をボルトで取付け; 3層の積層材を、 ボルト結合した総ての金属製加圧板の端部に重ねて 積層し、 これをカバーして、 総てのタンク出口口金をシールし;
タンクの中央の出口口金にタンクの吊り金物を取付け:
完成した二重殻夕ンク構造物をマンドレル支持回転装置から外して吊 り下ろし;
複合材シールにより、 スチールフレームの回転軸取付け金物とタンク 支持回転装置を繫ぐ為に第一及び第二の複合材タンク端板に設けた軸接 続孔を塞ぎ;
第一及び第二容器に 0 , 3 5 kgZcm2 ( 5 ps i)の圧力を同時に加えて 洩れを試験することにより成ることを特徵とする複合材二重壁地下埋設 タンク構造物の製作方法。
3 3 . 請求の範囲第 1 3項記載の多重壁タンク構造物において、 前記の 第一容器の波型の円筒形複合材積層殻構造物が、 前記の等間隔に配置し た金属製の環状リブの上に、 その水平な長さ方向の軸に沿って積層した 多層の強化プラスチック積層構造物であって;
乾燥重量が 3 4 g /讓 2 ( 1 oz/yd2 ) で、 厚さが約 0 . 2 5讓 ( 0 . 0 1 0 in) 、 また幅が 9 4乃至 1 8 3 cm ( 3 6乃至 7 2 in) の範 囲にある、 開口を持ち、 樹脂で結合した硬質のポリエステル織維サーフ エーシングヴヱールであって、 その経を概ね前記の軸の方向に展開させ て成る第 1層と ;
乾燥重量が 4 4 gZm2 ( 1. 3ozZyd2 ) で、 厚さが約 0. 2 5 mm ( 0. 0 1 0 in) 、 また幅が 4 5. 7乃至 1 2 2 cm ( 1 8乃至 4 8 in) の 範囲にある軟質のポリエステル繊維サ一フエ一シングヴエールであって 、 その経を前記の第 1層の経を横切る方向に向け、 該層の上に充分に均 一な力を加えながら巻き付け、 該第一層とともに撓ませ、 円筒軸を含む 断面から見て、 相隣る凸部の間に概ね凹の抛物線が挟まれた波形から成 る複数の波型の連なりを形成させて成る第 2層と ;
幅当たりの引張強さが 3. 5 4 3 kg/mm ( 2 0 0 lbZin) で、 乾燥重 量が 2 0 4 gZm2 (6ozZyd2 ) 、 厚さが 0. 2 5mm ( 0. 0 1 0 in) 、 また幅が 3 0. 4乃至 1 3 2cm ( 1 2乃至 5 2 in) の範囲にあるガラ スクロスを、 第 2層の上に、 その経が第 2層の経にほぼ平行になるよう に巻いて成る第 3層と ;
幅当たりの引張強さが 2 1 kg/mm ( 1 2 0 0 lb/in) で、 乾燥重量が 4 4 2 g/m2 ( 1 3oz//yd2 ) 、 厚さが 0. 8 0mm (0. 0 3 in) 、 ま た幅が 9 1. 4乃至 1 8 3cm (3 6乃至 72 in) の範囲にある一方向引 き揃え連続ガラス繊維ストランドの布を、 その引き揃えストランドの方 向が前記円筒軸に平行になるように積層して成る、 一方向引き揃え連続 ガラス繊維ストランドとしては第一番目の層を構成している第 4層と ; 乾燥重量が 30 5 gZm2 ( 1 ozZft) 、 厚さが 0. 2 5mm (0. 0 1 0 in) 、 また幅が 9 1. 4乃至 1 8 3cm ( 3 6乃至 72 in) の範囲にあ る、 無方向に配向させたガラス繊維チョップドストランドより成る第 5 層と ;
前記の第一番目の一方向引き揃え連続ガラス織維ストランドに対して 、 その上に横方向に充分に均一な荷重を加えるように巻かれた第二の一 方向引き揃え連続ガラス繊維ストランドであって、 その経方向の幅当り の引張強さは 2 1 kgZ睡 ( 1 2 0 0 lb/in) 、 乾燥重量が 4 4 2 g/m2 ( 1 SozZyd2 ) 、 厚さが 0. 8 mm (0. 0 3 in) 、 また幅が 1 0乃至 1 5 0cm (4乃至 6 0 in) の範囲にある一方向引き揃え連続ガラスから 成ることを特徴とする第 6層と ;
前記の第二番目の一方向引き揃え連続ガラス織維ストランドの上に、 これとほぼ平行に巻かれ、 その経方向の幅当りの引張強さは 2 1 kg/mm ( 1 2 0 0 lb/in) 、 乾燥重量が 4 4 2 g/ 2 ( 1 3 oz/yd2 ) 、 厚さ が 0. 8 mm ( 0. 0 3 in) 、 また幅が 1 0乃至 1 5 0 cm ( 4乃至 6 0 in ) の範囲にある第三番目の一方向引き揃え連続ガラスから成ることを特 徵とする第 7層と ;
幅当たりの引張強さが 3. 5 4 3 kg 隱 ( 2 0 0 lb/in) で、 乾燥重 量が 2 0 4 gZm2 (6oz/yd2 ) 、 厚さが 0. 2 5mm ( 0. 0 1 0 in) 、 また幅が 3 0, 4乃至 1 3 2cm ( 1 2乃至 5 2 in) の範囲にあるガラ スクロスの第 8層と ;
前記積層構成に含まれる繊維強化材に含浸され硬化する、 3 0乃至 4 0 %のスチレンモノマと、 1. 3 %のワックス含有スチレン揮発抑止剤 を含む液状のビニルエステル樹脂とから成ることを特徴とする円筒形複 合材積層殻構造物であって;
またこの多層壁夕ンク構造物において、 前記の半球形の複合材積層第 一構造物が、 多層強化プラスチック積層構造物であって;
乾燥重量が 4 4 gZm2 ( 1. 3ozZyd2 ) 、 厚さが約 0. 2 5議(約 0. 0 1 0 in) 、 また経方向の長さが 1. 5乃至 2. 1 m ( 6 0乃至 8 4 in) の範囲にある、 台形に裁断した軟質のポリエステル繊維サーフエ 一シングヴエールを、 少なくとも 1 5枚互いに重ねて積層して成る第 1 層と ;
幅当たりの引張強さが 2 l kgZ画 ( 1 2 0 0 lb/in) で、 乾燥重量が
訂正された用紙 (規則 91) 4 4 2 gZm2 ( 1 SozZyd2 ) 、 厚さが 0. 8 0 mm ( 0. 0 3 in) 、 ま た経方向の長さが 1. 2乃至 1. 8m (4 8乃至 7 2 in) の範囲にある 一方向引き揃え連続ガラス繊維ストランドの布を少なくとも 3枚、 その 経方向が前記円筒軸にほぼ直角になるように積層して成る第 2層と ; 乾燥重量が 4 5 8 gZm2 ( 5ozZft2 ) で、 厚さが約 0. 2 5 mm ( 0. 0 1 5 in) 、 また長さが 1. 5乃至 2. l m (6 0乃至 8 4 in) の範囲にある、 台形に裁断したガラス繊維チヨップドストランドを少な く とも 1 5枚互いに重ねて積層して成る第 3層と ;
幅当たりの引張強さが 1 lkgZmm ( 6 0 0 lb/in) で、 乾燥重量が 6 1 2 g/m2 ( 1 3 oz/yd2 ) 、 厚さが 1. 0 0 mm (0. 0 4 in) 、 また 長さが 1. 2乃至 1. 8m (4 8乃至 72 in) の範囲にある、 台形に裁 断したガラスロービング織物を少なくとも 1 5枚、 互いに重ねて積層し て成る第 4層と ;
幅当たりの引張強さが 3. 5 4 3 kg/mm ( 2 0 0 lb/in) で、 乾燥重 量が 2 0 4 gZm2 (6ozZyd2 ) 、 厚さが 0. 2 5mm (0. 0 1 0 in) 、 また幅が 5乃至 1. 8m (4 8乃至 72 in) の範囲にある、 台形 に裁断したガラスクロスを少なくとも 1 5枚、 互いに重ねて積層して成 る第 5層と ;
前記積層構成に含まれる繊維強化材に含浸され硬化する、 3 0乃至 4 0 %のスチレンモノマと、 1. 3 %のワックス含有スチレン揮発抑止剤 を含む液状のビュルエステル樹脂とから成ることを特徴とする半球形複 合材積層構造物であって;
またこの多層壁夕ンク構造物において、 前記の半球形の複合材料積層 第一タンク端板構造物が、 前記の波型円筒形の複合材料積層第一殻構造 物の両端部において、 これを構成する複合材料積層物の最初の 5層と接 合、 シールされ、 該タンク端板構造物の端部に、 軸方向の幅でほぼ 2 0 乃至 3 Ocm ( 8乃至 1 2 in) に亙って、 殻構造物を構成する複合材料積 層物の第 6及び第 7層を巻き重ねて形成した結合リングによつて該殻構 造物に固着され;
またこの多層壁タンク構造物において、 前記半球形の複合材料積層第 一タンク端板構造物と前記半球形の複合材料積層第二タンク端板構造物 とを隔てる第一の環状空間の軸方向の距離がほぼ 3乃至 9mm ( 0. 1 2 乃至 0. 3 6 in) の範囲にあり ;
またこの多層壁タンク構造物において、 前記円筒形の複合材料積層第 一殻構造物の底半部と前記円筒形の複合材料積層第二殻構造物の底半部 とを隔てる第二の環状空間の垂直方向の距離がほぼ 0. 2 5乃至 9國 ( 0. 0 1乃至0. 3 6 in) の範囲にあり ;
またこの多層壁タンク構造物において、 前記第二の環状空間が、 その 厚さがほぼ 0. 0 2 5乃至0. 2 5mm ( 0. 0 0 1乃至 0. 0 1 in) の 範囲にあるプラスチックのシートを包蔵し、 そのシートが前記円筒形の 複合材料積層第一殻構造物の、 前記第一排出口パネルの部分を除く全表 面に巻き重ねられ、 同表面を包むものであり ;
またこの多層壁タンク構造物において、 前記円筒形の複合材料積層第 二殻構造物が、 前記プラスチックシートの上に形成された波形の多層強 化プラスチック積層物であって;
乾燥重量が 4 4 g η2 ( 1. 3οζ ά2 ) 、 厚さが約 0. 2 5讓(約 0. 0 1 0 in) 、 また幅が 4 5. 7乃至 1 22 cm ( 1 8乃至 4 8 in) の 範囲にある開口を持つ軟質のボリエステル繊維サーフヱ一シングヴエー ルから成り、 前記プラスチックシートの上に巻き重ねられ、 該プラスチ ックシ一トの上に充分に均一な力を加えて、 円筒軸を含む断面から見て 、 相隣る凸部の間に概ね凹の抛物線が挟まれた波形から成る複数の波型 の連なりを形成させて成る第 1層と ; 幅当たりの引張強さが 3. 5 4 3 kg/mm ( 2 0 0 lb/in) で、 乾燥重 量が 2 0 4 g/m2 ( 6οζ (12 ) 、 厚さが 0. 2 5 mm ( 0. 0 1 0 in) 、 また幅が 3 0. 4乃至 1 3 2cm ( 1 2乃至 5 2 in) の範囲にあるガラ スクロスを、 第 1層の上に、 その経が該第 1層の経方向にほぼ平行にな るように巻いた第 2層と ;
幅当たりの引張強さが 2 1 kg,隱 ( 1 2 0 0 lb/in) で、 乾燥重量が 4 4 2 gZm2 ( 1 3ozZyd2 ) 、 厚さが 0. 8 0 mm ( 0. 0 3 in) 、 ま た幅が 9 1. 4乃至 1 8 3cm ( 3 6乃至 7 2 in) の範囲にある一方向引 き揃え連続ガラス繊維ストランドの布を、 その引き揃えストランドの方 向が前記円筒軸に平行になるように積層して成る、 一方向引き揃え連続 ガラス繊維ストランドとしては第一番目の層を構成している第 3層と ; 乾燥重量が 3 0 5 gZm2 ( 1 ozZft2 ) 、 厚さが 0. 2 5 mm ( 0. 0 1 0 in) 、 また幅が 9 1. 4乃至 1 8 3cm ( 3 6乃至 72 in) の範囲に ある、 無方向に配向させたガラス織維チヨップドストランドより成る第 4層と ;
前記の第一番目の一方向引き揃え連続ガラス繊維ストランドに対して 、 その上に横方向に充分に均一な荷重を加えるように巻かれた第二の一 方向引き揃え連続ガラス織維ストランドであって、 その経方向の幅当り の引張強さは 2 1 kgZ讓 ( 1 2 0 0 lb/in) 、 乾燥重量が 4 4 2 g/ra2 ( 1 3oz/yd2 ) 、 厚さが 0. 8mm (0. 0 3 in) 、 また幅が 1 0乃至 1 5 0cm (4乃至 6 0 in) の範囲にある一方向引き揃え連続ガラスから 成ることを特徴とする第 5層と ;
前記の第二番目の一方向引き揃え連続ガラス繊維ストランドの上に、 これとほぼ平行に巻かれ、 その経方向の幅当りの引張強さは 2 1 kg/隱 ( 1 2 0 0 lb/in) 、 乾燥重量が 4 4 2 g/ιι2 ( 1 3 oz/yd2 ) 、 厚さ が 0. 8 mm ( 0. 0 3 in) 、 また幅が 1 0乃至 1 5 0 cm ( 4乃至 6 0
訂正された用紙 (規則 91) in) の範囲にある第 3番目の一方向引き揃え連続ガラスから成ることを 特徴とする第 6層と ;
幅当たりの引張強さが 3. 5 4 3 kg 隱 (2 0 0 lb/in) で、 乾燥重 量が 2 0 4 gZm2 ( SozZyd2 ) 、 厚さが 0. 2 5mm ( 0. 0 1 0 in) 、 また幅が 3 0. 4乃至 1 3 2cm ( 1 2乃至 5 2 in) の範囲にあるガラ スクロスの第 7層と ;
前記積層構成に含まれる繊維強化材に含浸され硬化する、 3 0乃至 4 0 %のスチレンモノマと、 1 , 3 %のワックス含有スチレン揮発抑止剤 を含む液状のビニルエステル樹脂とから成ることを特徴とする複合材積 層第二殻構造物と ;
またこの多層壁夕ンク構造物において、 前記の半球形の複合材積層第 二構造物が、 多層強化プラスチック積層構造物であって;
乾燥重量が 4 4 g η2 ( 1. 3ozZyd2 ) 、 厚さが約 0. 2 5讓 (約 0. 0 1 0 in) 、 また経方向の長さが 1. 5乃至 2. 1 m ( 6 0乃至 8 4 in) の範囲にある、 台形に裁断した軟質の表層成形用ポリエステル繊 維ヴエールを、 少なくとも 1 5枚互いに重ねて積層して成る第 1層と ; 幅当たりの引張強さが 2 1 kg/mm ( 1 2 0 0 lb/in) で、 乾燥重量が 4 4 2 g/m2 ( 1 3 oz/yd2 ) 、 厚さが 0. 8 0 mm ( 0. 0 3 in) 、 ま た経方向の長さが 2乃至 1. 8m (4 8乃至 7 2in) の範囲にある 一方向引き揃え連続ガラス繊維ストランドの布を少なくとも 3枚、 その 経方向が前記円筒軸にほぼ直角になるように積層して成る第 2層と ; 乾燥重量が 4 5 8 gZra2 ( 1. 5ozZft2 ) で、 厚さが約 0. 25mm ( 0. 0 1 5 in) 、 また長さが 1. 5乃至 2. 1 m ( 6 0乃至 8 4 in) の範囲にある、 台形に裁断したガラス繊維チヨップドストランドを少な くとも 1 5枚互いに重ねて積層して成る第 3層と ;
幅当たりの引張強さが 1 l kgZ隱 ( 6 0 0 lb/in) で、 乾燥重量が 6 1 2 g/m2 ( 1 8 oz/yd2 ) 、 厚さが 1. 0 0 mm ( 0. 0 4 in) 、 また 長さが 1. 2乃至 1. 8111 (4 8乃至7 2 ^) の範囲にある、 台形に裁 断したガラス口一ビングクロスを少なく とも 1 5枚、 互いに重ねて積層 して成る第 4層と ;
幅当たりの引張強さが 3. 5 4 3 kgZ隱 (2 0 0 lb/in) で、 乾燥重 量が 2 0 4 g/m2 ( 6 oz/yd2 ) 、 厚さが 0. 2 5mm (0. 0 1 0 in) 、 また幅が 1. 5乃至 2. l m ( 6 0乃至 8 4 in) の範囲にある、 台形 に裁断したガラスクロスを少なくとも 1 5枚、 互いに重ねて積層して成 る第 5層と ;
前記積層構成に含まれる繊維強化材に含浸され硬化する、 3 0乃至 4 0 %のスチレンモノマと、 1. 3 %のワックス含有スチレン揮発抑止剤 を含む液状のビニルエステル樹脂とから成ることを特徴とする複合材積 層第二構造物と ;
またこの多層壁タンク構造物において、 前記の半球形の複合材積層第 二タンク端板構造物が、 前記の波型円筒形の複合材料積層第二殻構造物 の両端部において、 これを構成する複合材料積層物の最初の 5層と接合 、 シールされ、 該タンク端板構造物の端部に、 軸方向の幅でほぼ 2 0乃 至 3 0cm (8乃至 1 2 in) に亙って、 殻構造物を構成する複合材料積層 物の第 6及び第 7層を巻き重ねて形成した結合リングによって該殻構造 物に固着され;
またこの多層壁タンク構造物において、 前記第二円筒形複合材積層構 造物の一端に底部液溜めが形成され、 該液溜めは前記半球形の複合材料 積層第二タンク端板構造物の片方の中心線上に位置し、 その下方の四半 分を含む湾曲した管状の溝の下端に接続して、 該溝の上部の開放端と前 記液溜めとをつなぐ、 環状空間への連絡構造物を形成し;
またこの多層壁タンク構造物において、 前記環状空間に通じる構造物 の上端に 1一 1 2 inのネジ付き結合金具を取り付け; またこの多層壁夕ンク構造物において、 前記第二円筒形複合材料積層 構造物の底部に二個の鞍形の支持構造物を取り付け、 前記液溜めの底面 をタンク構造物の設置面より約 1 O cm ( 4 in) 持ち上げ;
またこの多層壁タンク構造物において、 前記鞍形の構造物が厚さが約
6 mm ( 0 . 2 5 i n) の多層複合材料積層構造物であって、 タンクの底面 の外表面に接着され、 その設置面への投影寸法はほぼ 1 5 cm x 1 2 0 cm
( 6 X 4 8 in) であり ;
またこの多層壁タンク構造物において、 前記第一排出口パネルが前記 第一円筒形複合材料積層構造物と連続した層から成り、 前記第二排出口 パネルが前記第二円筒形複合材料積層構造物と連続した層から成り ; またこの多層壁タンク構造物において、 前記第二排出口パネルは更に 、 前記の金属製排出口パネルと寸法、 開口及び形状が同じ金属製排出口 圧接パネルと、 該排出口圧接パネルを該金属製排出口パネルにつなぐボ ルト結合手段を含み;
該排出口圧接パネルのシールは、 外側に積層した複合材積層板構造物 から成っており、 排出ロロ金の為の開口を持ち、 その周縁は該金属製排 出口圧接パネルの周縁の外方に約 1 0 cm ( 4 in) 広がっており、 その 1 0 cm広がった周縁部の内面は前記の第二タンク殻の出口パネルの外面に 接着されて耐圧性のシール形成し;
またこの多層壁タンク構造物において、 前記の第一容器と第二容器を 隔てる前記の環状空間は 0 . 2 5乃至 9 . 5 mm ( 0 . 0 1 0乃至 0 . 3
7 5 in) の範囲にあり ;
またこの多層壁タンク構造物において、 前記の多層強化プラスチック 積層構造物の最小厚みは 3乃至 3 . 3 mm ( 0 . 1 2乃至 0 . 1 4 in) に あることを特徴とする多層壁夕ンク構造物。
訂正された用紙 (規則 91)
3 4 . 請求の範囲第 3 3項記載の多層壁タンク構造物であって、 粒度が 0 . 2 5乃至 6 . 3 mm ( 0 . 0 1乃至 0 . 2 5 in) の範囲にある (砂粒 が、 ガラス繊維クロスより成る前記の第二円筒形複合材積層殻構造物の 第 9層に包まれて第 8層を構成し、 該) 砂粒およびガラスクロスが硬化 する液状の高分子樹脂に含浸結合されて第 8層および第 9層を形成する ことを特徴とする多層壁夕ンク構造物。
3 5 . 請求の範囲第 3 4項記載の多層壁タンク構造物であって、 粒度が 0 . 2 5乃至 6 . 3 mm ( 0 . 0 1乃至 0 . 2 5 in) の範囲にある (砂粒 が、 ガラス繊維クロスより成る前記の第二半球形複合材積層末端構造物 の第 7層に包まれて第 6層を構成し、 該) 砂粒およびガラスクロスが硬 化する液状の高分子樹脂に含浸結合されて第 6層および第 7層を形成す ることを特徴とする多層壁夕ンク構造物。
PCT/JP1995/001340 1994-07-06 1995-07-05 Structure de reservoir souterrain a double paroi utilisant un materiau composite et son procede de production WO1996001219A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP95924504A EP0718215A1 (en) 1994-07-06 1995-07-05 Double wall underground tank structure using composite material and method of manufacturing the same
BR9506025A BR9506025A (pt) 1994-07-06 1995-07-05 Estrutura de tanque enterrado de parede dupla compósita e método de realização da mesma
KR1019960701137A KR960704786A (ko) 1994-07-06 1995-07-05 복합 2중벽 지하 탱크 구조물 및 그 제조방법
AU28985/95A AU2898595A (en) 1994-07-06 1995-07-05 Double wall underground tank structure using composite material and method of manufacturing the same
MX9600879A MX9600879A (es) 1994-07-06 1995-07-05 Estructura de tanque subterraneo de doble pared, compuesta y metodo para su fabricacion.
FI961002A FI961002A (fi) 1994-07-06 1996-03-04 Yhdistetyllä kaksinkertaisella seinämällä varustettu maanalainen tankki ja menetelmä sen valmistamiseksi
NO960878A NO960878L (no) 1994-07-06 1996-03-05 Underjordisk tank med dobbelt komposittvegg, samt fremgangsmåte for dens fremstilling

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/271362 1994-07-06
US08/271,362 US5590803A (en) 1994-07-06 1994-07-06 Composite double-wall underground tank structure and method for making same

Publications (1)

Publication Number Publication Date
WO1996001219A1 true WO1996001219A1 (fr) 1996-01-18

Family

ID=23035244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/001340 WO1996001219A1 (fr) 1994-07-06 1995-07-05 Structure de reservoir souterrain a double paroi utilisant un materiau composite et son procede de production

Country Status (13)

Country Link
US (2) US5590803A (ja)
EP (1) EP0718215A1 (ja)
JP (1) JP2736314B2 (ja)
KR (1) KR960704786A (ja)
CN (1) CN1061941C (ja)
AU (1) AU2898595A (ja)
BR (1) BR9506025A (ja)
CA (1) CA2170765A1 (ja)
FI (1) FI961002A (ja)
MX (1) MX9600879A (ja)
NO (1) NO960878L (ja)
TW (1) TW308632B (ja)
WO (1) WO1996001219A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11776712B2 (en) 2016-06-09 2023-10-03 Schlumberger Technology Corporation Compression and stretch resistant components and cables for oilfield applications

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6024243A (en) * 1996-10-23 2000-02-15 Palazzo; David T. Double wall storage tank having an outer jacket which is sealed around an aperture and a method for making same
US6145692A (en) * 1997-12-30 2000-11-14 Cherevatsky; Solomon Pressure vessel with thin unstressed metallic liner
US6398057B1 (en) * 1998-01-28 2002-06-04 Xerxes Corporation Triple walled underground storage tank
US6177368B1 (en) * 1998-03-16 2001-01-23 Russell J. Fisher Blast resistant laminate composite container wall construction
US7488315B2 (en) * 2003-09-05 2009-02-10 Medical Designs, Llc Surgical smoke field evacuators
EP1520683B1 (en) * 2003-10-01 2008-02-27 Fuji Jukogyo Kabushiki Kaisha Pressure container manufacturing method
US20050281970A1 (en) * 2004-06-16 2005-12-22 Lamarca Louis J Ii Lateral liner substrates
NZ553002A (en) * 2004-08-02 2010-09-30 Environment One Corp Sewage tank for use with a pump, the tank having a tapered lower portion and a plurality of intersecting ribs defining recessed pockets
CA2499849C (en) * 2005-03-09 2010-02-02 Zcl Composites Inc. Composite laminated sheet material for containment sumps
WO2006105241A2 (en) * 2005-03-30 2006-10-05 Radian, Inc. Lightweight protection for coated fabric containers
AU2007352883B2 (en) * 2007-04-27 2012-07-26 Manfred Roth Plastic tank
FR2924697B1 (fr) * 2007-12-07 2012-09-21 Maya Group Cuve destinee a etre enterree
CA2851877C (en) 2011-10-17 2021-02-09 Schlumberger Canada Limited Dual use cable with fiber optic packaging for use in wellbore operations
US9162816B1 (en) 2012-01-12 2015-10-20 DenHartog Industries Double tank assembly with shipping notches and lifting eyes
WO2014004026A1 (en) 2012-06-28 2014-01-03 Schlumberger Canada Limited High power opto-electrical cable with multiple power and telemetry paths
CN102927440A (zh) * 2012-11-14 2013-02-13 西安轨道交通装备有限责任公司 低温液体储运容器外罐加强装置
KR101538866B1 (ko) 2013-12-24 2015-07-22 주식회사 포스코 유체저장탱크
CN104275565B (zh) * 2014-08-13 2016-06-15 浙江海洋学院 油罐加强芯焊料填装机
CN104495116A (zh) * 2014-12-22 2015-04-08 山东万普海容石油设备科技发展有限公司 一种埋地承重储罐
WO2016122446A1 (en) 2015-01-26 2016-08-04 Schlumberger Canada Limited Electrically conductive fiber optic slickline for coiled tubing operations
US11745391B2 (en) 2015-04-16 2023-09-05 Response Technologies, Llc Method of manufacturing complex-shaped, flexible, and reusable tanks
US10688775B2 (en) 2015-04-16 2020-06-23 Response Technologies, Llc Method of manufacturing containment bladders
US9908692B2 (en) 2015-05-06 2018-03-06 ASFI Partners, L.P. Multi-piece storage tank pad with separate connectors
CN104986458B (zh) * 2015-05-25 2018-03-02 刘亚湘 一种储罐及其成型工艺
RU2664732C1 (ru) * 2016-07-18 2018-08-22 Общество с ограниченной ответственностью Управляющая Компания "РэйлТрансХолдинг" Вагон-цистерна для перевозки химических продуктов
CN107089451A (zh) * 2017-06-14 2017-08-25 哈尔滨通航科技开发有限公司 一种罐式运输车罐体
CN113428556B (zh) * 2021-07-02 2022-07-19 长沙理工大学 一种地下储气库及其构建方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537820A (en) * 1976-07-09 1978-01-24 Tokyo Tatsuno Kk Doubleewalled tanks
JPS62503024A (ja) * 1985-05-28 1987-12-03 オウエンス コ−ニング フアイバ−グラス コ−ポレ−シヨン 二重壁地下タンクおよびその製造方法
JPH02502992A (ja) * 1988-01-25 1990-09-20 オーエンス・コーニング フアイバーグラス コーポレーシヨン 組み付け支持リブを備えた貯蔵タンク
JPH0329785A (ja) * 1989-03-28 1991-02-07 State Ind Inc タンク構造体及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2389210A (en) * 1942-04-08 1945-11-20 Du Pont Airplane wing or fin with improved airfoil characteristics
US2361743A (en) * 1943-03-05 1944-10-31 Glenn L Martin Co Flexible cell support
US2360525A (en) * 1943-06-15 1944-10-17 Baker Mcmillen Company Self-sealing tank
US2533041A (en) * 1946-09-27 1950-12-05 Hammond Iron Works Internal bracing for liquid storage tanks
US4927050A (en) * 1985-09-12 1990-05-22 Palazzo David T Method of making double wall storage tank for liquids from a metal tank having a patterned surface
US5259895A (en) * 1988-07-05 1993-11-09 Sharp Bruce R Method of building double walled storage tanks
US5152859A (en) * 1989-12-14 1992-10-06 Sharp Bruce R Method of making a double walled cylindrical-shaped storage tank with independent monitoring of tank areas
US5065890A (en) * 1990-07-30 1991-11-19 George Greenbaum Comply system
US5351847A (en) * 1992-11-04 1994-10-04 George Greenbaum Solamar potable water system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537820A (en) * 1976-07-09 1978-01-24 Tokyo Tatsuno Kk Doubleewalled tanks
JPS62503024A (ja) * 1985-05-28 1987-12-03 オウエンス コ−ニング フアイバ−グラス コ−ポレ−シヨン 二重壁地下タンクおよびその製造方法
JPH02502992A (ja) * 1988-01-25 1990-09-20 オーエンス・コーニング フアイバーグラス コーポレーシヨン 組み付け支持リブを備えた貯蔵タンク
JPH0329785A (ja) * 1989-03-28 1991-02-07 State Ind Inc タンク構造体及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11776712B2 (en) 2016-06-09 2023-10-03 Schlumberger Technology Corporation Compression and stretch resistant components and cables for oilfield applications

Also Published As

Publication number Publication date
JP2736314B2 (ja) 1998-04-02
CN1061941C (zh) 2001-02-14
EP0718215A1 (en) 1996-06-26
AU2898595A (en) 1996-01-25
US5590803A (en) 1997-01-07
US5742992A (en) 1998-04-28
TW308632B (ja) 1997-06-21
JPH0891478A (ja) 1996-04-09
NO960878D0 (no) 1996-03-05
KR960704786A (ko) 1996-10-09
FI961002A0 (fi) 1996-03-04
NO960878L (no) 1996-04-30
FI961002A (fi) 1996-04-29
BR9506025A (pt) 1997-10-14
CN1134138A (zh) 1996-10-23
CA2170765A1 (en) 1996-01-18
MX9600879A (es) 1997-06-28

Similar Documents

Publication Publication Date Title
WO1996001219A1 (fr) Structure de reservoir souterrain a double paroi utilisant un materiau composite et son procede de production
US5383566A (en) Dual-chamber composite pressure vessel and method of fabrication thereof
US3700512A (en) Method of forming a fluid retaining wall
US5651848A (en) Method of making three dimensional articles from rigidizable plastic composites
US3394841A (en) Underground liquid storage system
WO1993017267A1 (en) Double-walled construction of composite material tube, method for manufacturing the same, and device therefor
HU212210B (en) Container and method for producing it
US5368670A (en) Method of making multi-walled pipes and storage tanks for toxic and corrosive fluids
AU720603B2 (en) Underground storage tank and process of making
US5020358A (en) Double walled fibrous reinforced resinous storage tanks with common rib supports
US4821915A (en) Twin wall fiberglass tank and method of producing the same
US5553734A (en) Double walled storage tank systems with enhanced wall integrity
US6398057B1 (en) Triple walled underground storage tank
CA2120159C (en) Method of making multi-walled storage tanks and products
CA2307987A1 (en) Composite laminated transport container for liquids
US5308423A (en) Method of making multi-walled pipes and storage tanks for toxic and corrosive fluids
KR960006185B1 (ko) 플라스틱으로 이루어진 내화성 샌드위치형 구조물
US20010002022A1 (en) Hybrid steel/fiberglass underground storage tank
US5102481A (en) Method of building double walled fibrous reinforced resinous storage tanks with common rib supports
CA2171671C (en) Double walled storage tank systems with enhanced wall integrity
JPH0423635Y2 (ja)
US20200189209A1 (en) Component mounting on storage tanks
RU96107391A (ru) Композитная структура двустенного подземного танка и способ его создания
TH18419B (th) โครงสร้างถังเก็บใต้ดินที่มีผนังประกอบสองชั้น และกระบวนการสำหรับสร้างถังเก็บชนิดนี้
SK279141B6 (sk) Nádrž a spôsob jej výroby

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95190771.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN FI KR MX NO RU VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2170765

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 961002

Country of ref document: FI

WWE Wipo information: entry into national phase

Ref document number: 1995924504

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1995924504

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1995924504

Country of ref document: EP